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Abstract
We study a natural class of invariant measures supported on the attractors of a family of
nonlinear, non-conformal iterated function systems introduced by Falconer, Fraser and Lee.
These are pushforward quasi-Bernoulli measures, a class which includes the well-known
class of Gibbs measures for Hölder continuous potentials. We show that these measures are
exact dimensional and that their exact dimensions satisfy a Ledrappier–Young formula.
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1 Exact dimensionality and Ledrappier–Young formulae

Given an iterated function system (IFS), which in this article will refer to a finite family of
uniform contractions {Si : [0, 1]2 → [0, 1]2}Ni=1, it is well-known that there exists a unique,

non-empty, compact set F ⊆ [0, 1]2 such that F = ⋃N
i=1 Si (F) which we call the attractor

of the IFS. We say that a measure μ supported on F is invariant (respectively ergodic) if
there exists a σ -invariant (respectively ergodic) measure m on � = {1, . . . , N }N (where σ

denotes the left shift map) such that μ = m ◦ �−1 where � : � → [0, 1]2 is the canonical
coding map defined by �(i1, i2 . . .) = limn→∞ Si1 ◦ · · · ◦ Sin ([0, 1]2).

Recall that the (upper and lower) local dimensions of μ at x are defined as

dimloc(x) := lim sup
r→0

log(μ(B(x, r)))

log r
and dimloc(x) := lim inf

r→0

log(μ(B(x, r)))

log r

where B(x, r) denotes a ball of radius r centred at x . If dimloc(x) = dimloc(x)we denote the
common value by dimloc(x) and call it the local dimension of μ at x . If the local dimension
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exists and is constant for μ-almost all x we say that the measure μ is exact dimensional and
call this constant the exact dimension ofμ, which we will denote by dimμ. In this case, most
well-known notions of dimension coincide with the exact dimension of μ.

In the dimension theory of measures, it is a problem of central interest to establish the
exact dimensionality of ergodic invariant measures supported on attractors of IFS, and to
provide a formula for the exact dimension. In many settings, the exact dimension has been
shown to satisfy a formula in terms of Lyapunov exponents, various notions of entropy and
the dimensions of projected measures.

In particular, if the maps Si are conformal and the IFS satisfies an additional separation
condition, it is a classical result that any ergodic invariantmeasureμ supported on the attractor
F is exact dimensional and its exact dimension is given by its measure-theoretic entropy
over the Lyapunov exponent (see e.g. [3]). In the substantially more difficult case where no
separation condition is assumed, Feng and Hu generalised this classical result by showing
that any ergodic invariant measure μ supported on the attractor F is exact dimensional and
its exact dimension is given by the projection entropy over the Lyapunov exponent. In this
sense, exact dimensionality is understood in the conformal setting.

On the other hand, the question of whether every ergodic invariant measure supported on
the attractor of a non-conformal IFS is exact dimensional is still very much open, and this
question has recently received a lot of attention in the particular case where the maps Si are
all affine. Feng [7] has very recently shown that all ergodic invariant measures supported on
the attractors of IFS composed of affine maps are exact dimensional and satisfy a formula in
terms of the Lyapunov exponents and conditional entropies. This answered a folklore open
question in the fractal community and unified previous partial results obtained in [1,10].
In the non-conformal setting, this formula for the exact dimension of μ is often called a
“Ledrappier–Young formula”, following the work of Ledrappier andYoung on the dimension
of invariant measures for C2 diffeomorphisms on compact manifolds [13,14].

While Feng’s result settles the case of ergodic measures supported on self-affine sets,
the more general case of ergodic measures supported on attractors of more general (i.e.
nonlinear) non-conformal IFS is still open. In fact, the only result in this direction that the
authors are aware of is [7, Theorem 2.11], where Feng and Hu prove exact dimensionality
of ergodic invariant measures supported on the attractors of IFSs which can be expressed as
the direct product of IFSs composed of C1 maps on R. The fact that there is limited litera-
ture concerning the exact-dimensionality of measures supported on general non-conformal
attractors reflects the wider challenge of understanding the dimension theory of nonlinear
non-conformal attractors, although this appears to be an area of growing interest [4,6,9].

In this articlewe consider (pushforward) quasi-Bernoullimeasures supported on the attrac-
tors of nonlinear, non-conformal IFSwhichwere introduced in [6], andwe show that these are
exact dimensional and satisfy a Ledrappier–Young formula. In Sect. 2 we introduce the class
of attractors and measures which will be studied and state our main result, Theorem 2.5. In
Sect. 3 we recall some technical results which were proved in [6] concerning the contractive
properties of the maps in our IFS. Section 4 contains the proof of Theorem 2.5, which adapts
an approach used in [10].

2 Our setting and statement of results

Let fi,x , fi,y denote partial derivatives of fi with respect to x and y respectively and gi,x ,
gi,y denote partial derivatives of gi with respect to x and y respectively.
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Ledrappier–Young formulae for a family of nonlinear attractors 2415

We will consider the following family of attractors which were introduced by Falconer,
Fraser and Lee [6, Definitions 1.1 and 3.1], although we require a stronger separation condi-
tion than the one they assumed.

Definition 2.1 Suppose I is a finite index set with |I| ≥ 2. For each i ∈ I let Si : [0, 1]2 →
[0, 1]2 be of the form Si (a1, a2) = ( fi (a1), gi (a1, a2)), where:

1. fi and gi are C1+α contractions (α > 0) on [0, 1] and [0, 1]2 respectively.
2. {Si }i∈I satisfies the rectangular strong separation condition (RSSC) : the sets

{Si ([0, 1]2)}i∈I are pairwise disjoint.
3. {Si }i∈I satisfies the domination condition: for each i ∈ I

inf
a∈[0,1]2

| fi,x (a)| > sup
a∈[0,1]2

|gi,y(a)| ≥ inf
a∈[0,1]2

|gi,y(a)| ≥ d, (1)

where d > 0.

Let F denote the attractor of {Si }i∈I .
For n ∈ N we write In to denote the set of all sequences of length n over I and we let

I∗ = ⋃
n≥1 In denote the set of all finite sequences over I. We let � = IN denote the set of

infinite sequences over I and for i = (i1, i2, . . . ) ∈ � we write i|n = (i1, i2, . . . , in) ∈ In

to denote the restriction of i to its first n symbols. For i = (i1, i2, . . . , in) ∈ In we write
Si = Si1 ◦ · · · ◦ Sin and we write [i] ⊆ � to denote the cylinder set corresponding to i,
which is the set of all infinite sequences over I which begin with i.

Definition 2.2 We say that a measure m on � is quasi-Bernoulli if there exists some L > 0
such that for all i,j ∈ I∗

L−1m([i])m([j]) ≤ m([ij]) ≤ Lm([i])m([j]). (2)

Wewill study the pushforwardmeasureμ = m◦�−1 for an ergodic invariant quasi-Bernoulli
measure m, noting that μ is supported on F . Apart from including the important class of
Bernoulli measures, quasi-Bernoulli measures also include the well-known class of Gibbs
measures forHölder continuous potentials. Furthermore it was shown in [2] that this inclusion
is strict.

The Shannon–McMillan–Breiman theorem allows us to define the entropy of μ.

Definition 2.3 (Entropy) There exists a constant h(μ) ≤ 0 such that form-almost all i ∈ �,

h(μ) = lim
n→∞

1

n
logm([i|n]). (3)

We call h(μ) the entropy of μ.

Apart from entropy the other key features of the Ledrappier–Young formula are the Lya-
punov exponents, which describe the typical contraction rates in different directions.

Lyapunov exponents are defined in terms of Jacobianmatrices of themaps Si|n .We denote
the Jacobian matrix of Si|n at a point a ∈ [0, 1]2 by DaSi|n . We recall that the singular
values of an n × n matrix A are defined to be the positive square roots of the eigenvalues
of AT A, where AT denotes the transpose of A. The Lyapunov exponents are defined in
terms of singular values of the matrices DaSi|n . For fixed a ∈ [0, 1]2 and any n ∈ N we let
α1(DaSi|n) ≥ α2(DaSi|n) denote the singular values of DaSi|n . The sub-additive ergodic
theorem then allows us to make the following definition.
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Definition 2.4 (Lyapunov exponents) There exist constants χ2(μ) ≤ χ1(μ) < 0 such that
for m-almost all i ∈ �,

χ1(μ) = lim
n→∞

1

n
logα1

(
D�(σ ni)Si|n

)
(4)

and

χ2(μ) = lim
n→∞

1

n
logα2

(
D�(σ ni)Si|n

)
. (5)

We call χ1(μ), χ2(μ) the Lyapunov exponents of the system with respect to μ.

Let π : [0, 1]2 → [0, 1] denote projection to the x-co-ordinate. Let π(μ) = μ ◦ π−1

denote the projectedmeasurewhich is supported onπF , which is the attractor of the (possibly
overlapping) conformal IFS { fi }i∈I on [0, 1]. Note that by [8, Theorem 2.8], π(μ) is exact
dimensional. We denote its exact dimension by dim π(μ).

We are now ready to state our main result.

Theorem 2.5 Let μ be a pushforward ergodic invariant quasi-Bernoulli measure supported
on F, where F satisfies Definition 2.1. Then μ is exact dimensional and moreover its exact
dimension dimμ satisfies the following Ledrappier–Young formula

dimμ = h(μ)

χ2(μ)
+ χ2(μ) − χ1(μ)

χ2(μ)
dim π(μ).

3 Preliminaries

Since each fi (i ∈ I) only depends on the x-co-ordinate of a given point, it is easy to see
that the Jacobian of each Si must be lower triangular. Denote the Jacobian by

DaSi =
(
fi,x (a) 0
gi,x (a) gi,y(a)

)

.

It is easy to see by the chain rule for any i ∈ � and n ∈ N the Jacobian of Si|n must also be
lower triangular which we will write as

DaSi|n =
(
fi|n,x (a) 0
gi|n,x (a) gi|n,y(a)

)

.

Our IFS has several useful properties, which were established in [6]. To begin with we have
the following bound, which allows us to control the off-diagonal entry:

Lemma 3.1 [6, Lemma 3.3] There exists a constant C > 0 such that for any i ∈ �, n ∈ N

and a,b ∈ [0, 1]2,
|gi|n,x (a)|
| fi|n,x (b)| ≤ C . (6)

A consequence of Lemma 3.1 is that the singular values of the the Jacobian matrices are
comparable to their diagonal entries.

Lemma 3.2 [6, Lemma 3.4] There exists a constant M ≥ 1 such that for all a ∈ [0, 1]2,
i ∈ � and n ∈ N the singular values of the Jacobian matrices DaSi|n satisfy

M−1 ≤ α1
(
DaSi|n

)

| fi|n,x (a)| ,
α2

(
DaSi|n

)

|gi|n,y(a)| ≤ M . (7)
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Ledrappier–Young formulae for a family of nonlinear attractors 2417

Lemma 3.2, together with the domination condition, implies that the two Lyapunov expo-
nents are distinct, χ2(μ) < χ1(μ).

Another useful property of our IFS is that the diagonal entries of the Jacobian matrices
satisfy a bounded distortion condition.

Lemma 3.3 [6, Lemma 3.2] There exists a constant A ≥ 1 such that for all i ∈ �, n ∈ N

and all a,b ∈ [0, 1]2,
A−1 ≤ | fi|n,x (a)|

| fi|n,x (b)| ,
|gi|n,y(a)|
|gi|n,y(b)| ≤ A. (8)

Finally, the singular values of the Jacobian matrices also satisfy bounded distortion.

Lemma 3.4 There exists a constant R ≥ 1 such that for all i ∈ �, n ∈ N and all a,b ∈
[0, 1]2,

R−1 ≤ α1
(
DaSi|n

)

α1
(
DbSi|n

) ,
α2

(
DaSi|n

)

α2
(
DbSi|n

) ≤ R. (9)

Proof Simply combine Lemmas 3.2 and 3.3. 
�
An easy but useful consequence of Lemma 3.4 is that the Lyapunov exponents defined in

Definition 2.4 may be expressed as

χ1(μ) = lim
n→∞

1

n
logα1

(
Dan Si|n

)
and χ2(μ) = lim

n→∞
1

n
logα2

(
Dan Si|n

)
(10)

for any sequence (an)n∈N in [0, 1]2, on the same set of i ∈ � of full m-measure that was
used in Definition 2.4.

4 Proofs

The following key lemma allows us to estimate the μ-measure of a small “approximate
square” in [0, 1]2 by the product of the m-measure of an appropriate cylinder and the π(μ)-
measure of the π-projection of the “blow up” of the “approximate square”. It is worth
noting that this lemma is the only place where the assumption that m is quasi-Bernoulli
(Definition 2.2) is used.

For r > 0, n ∈ N, a = (a1, a2) ∈ [0, 1]2 and i ∈ � such that �(i) = a we write
Bn(a, r) to denote the strip of points b = (b1, b2) ∈ Si|n([0, 1]2) whose x co-ordinate
satisfies |b1 − a1| < r/2. We note that by the RSSC, � is an injective map and therefore
Bn(a, r) is well defined. For x ∈ R and r > 0 we write Q1(x, r) = (

x − r
2 , x + r

2

)
.

Lemma 4.1 Let r > 0, n ∈ N, a = (a1, a2) ∈ F and i ∈ � such that �(i) = a. Then

μ(Bn(a, r))

≤ Lm([i|n])π(μ)

(

Q1

(

π(�(σ ni)),
Mr

minb∈[0,1]2 α1
(
DbSi|n

)

))

(11)

and

μ(Bn(a, r))

≥ L−1m([i|n])π(μ)

(

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1
(
DbSi|n

)

))

(12)
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where L is the constant from the quasi-Bernoulli property (2), where M is as defined in
Lemma 3.2 and where Rn := min

{
r , diam

(
π Si|n([0, 1]2)

)}
.

Proof Let

J = J (i, n, r) =
{
j ∈ I∗ : Si|nj([0, 1]2) ⊆ Bn(a, r) and Si|nj†([0, 1]2) � Bn(a, r)

}

writing j† to denote j with the last symbol removed. It follows by our separation assump-
tion that the sets {Si|nj([0, 1]2)}j∈J are pairwise disjoint and exhaust Bn(a, r) in measure,
therefore

μ(Bn(a, r)) =
∑

j∈J
m([i|nj]).

Furthermore, as m is quasi-Bernoulli (Definition 2.2) we get

L−1m([i|n])
∑

j∈J
m([j]) ≤ μ(Bn(a, r)) ≤ Lm([i|n])

∑

j∈J
m([j]). (13)

Note that the sets {Sj([0, 1]2)}j∈J are pairwise disjoint and exhaust S−1
i|n(Bn(a, r)) in mea-

sure. Moreover, since S−1
i|n Bn(a, r) necessarily has height 1 we have

∑

j∈J
m([j]) = μ(S−1

i|n Bn(a, r)) = π(μ)(π S−1
i|n(Bn(a, r))).

Observe that π S−1
i|n(a) = π(�(σ n(i))). Writing â and b̂ for the left and right endpoints of

π S−1
i|n(Bn(a, r)), it follows from the mean value theorem that

|π(�(σ ni)) − â| = |a1 − fi|n(â)|
| fi|n,x (ĉ1)|

for some ĉ1 ∈ [0, 1] and

|π(�(σ ni)) − b̂| = |a1 − fi|n(b̂)|
| fi|n,x (ĉ2)|

for some ĉ2 ∈ [0, 1]. It is easy to see that

max
{
|a1 − fi|n(â)|, |a1 − fi|n(b̂)|

}
≤ r

2
,

so Lemma 3.2 gives

max

{
|a1 − fi|n(â)|
| fi|n,x (ĉ1)| ,

|a1 − fi|n(b̂)|
| fi|n,x (ĉ2)|

}

≤ r

2minb∈[0,1]2 | fi|n,x (b)|

≤ Mr

2minb∈[0,1]2 α1
(
DbSi|n

) .

Therefore

∑

j∈J
m([j]) ≤ π(μ)

(

Q1

(

π(�(σ ni)),
Mr

minb∈[0,1]2 α1
(
DbSi|n

)

))

. (14)
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Ledrappier–Young formulae for a family of nonlinear attractors 2419

We now consider the lower bound. Observe that

max
{
|a1 − fi|n(â)|, |a1 − fi|n(b̂)|

}
≥ min

{
r

2
,
diam

(
π Si|n([0, 1]2)

)

2

}

= Rn

2
.

so Lemma 3.2 gives

max

{
|a1 − fi|n(â)|
| fi|n,x (ĉ1)| ,

|a1 − fi|n(b̂)|
| fi|n,x (ĉ2)|

}

≥ Rn

2maxb∈[0,1]2 | fi|n,x (b)|

≥ M−1Rn

2maxb∈[0,1]2 α1
(
DbSi|n

) . (15)

If we also have

min
{
|a1 − fi|n(â)|, |a1 − fi|n(b̂)|

}
≥ Rn

2
,

the same reasoning gives

min

{
|a1 − fi|n(â)|
| fi|n,x (ĉ1)| ,

|a1 − fi|n(b̂)|
| fi|n,x (ĉ2)|

}

≥ M−1Rn

2maxb∈[0,1]2 α1
(
DbSi|n

) ,

so we may conclude that

∑

j∈J
m([j]) ≥ π(μ)

(

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1 (DbSi)

))

. (16)

Now suppose

min
{
|a1 − fi|n(â)|, |a1 − fi|n(b̂)|

}
<

Rn

2
.

Note that if |a1 − fi|n(â)| < Rn/2 then this implies that fi|n(â) is on the boundary of
π Si|n([0, 1]2), which means that â = 0. Similarly if |a1 − fi|n(b̂)| < Rn/2 then b̂ = 1.
Consider

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1 (DbSi)

)

.

By (15) and the above analysis of the points â and b̂, either

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1 (DbSi)

)

⊆ π S−1
i|n(Bn(a, r))

or

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1 (DbSi)

)

⊆ π S−1
i|n(Bn(a, r)) ∪ I

where I = (−β, 0) or I = (1, β) for some β > 0. In either case, since π(μ) is supported on
[0, 1] we still have

π(μ)

(

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1 (DbSi)

))

≤ π(μ)
(
π S−1

i|n(Bn(a, r))
)

.

Therefore (16) also holds in this setting. Combining (14) and (16) with (13) completes the
proof. 
�
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2420 N. Jurga, L. D. Lee

Recall by [8, Theorem2.8] that as an ergodicmeasure on a self-conformal set,π(μ) is exact
dimensional with exact dimension dim π(μ). This informs us how π(μ)

(
Q1

(
π(�(i)), 1

n

))

scales for an m-typical point i ∈ �, although it does not provide any uniform bounds on the
projected measure of this interval. The following lemma guarantees the existence of a set of
positive measure on which we can uniformly bound π(μ)

(
Q1

(
π(�(i)), 1

n

))
.

Lemma 4.2 Let dim π(μ) = t . There exists a set G ⊆ � with measure m(G) ≥ 1/2 such
that if ε > 0, then for all n sufficiently large

logπ(μ)

(

Q1

(

π(�(i)),
1

n

))

≤ (t − ε) log

(
1

n

)

and

logπ(μ)

(

Q1

(

π(�(i)),
1

n

))

≥ (t + ε) log

(
1

n

)

for all i ∈ G.

Proof Define fn : � → R by

fn(i) = logπ(μ)
(
Q1

(
π(�(i)), 1

n

))

− log n
.

Therefore for m-almost all i

lim
n→∞ fn(i) = lim

n→∞
logπ(μ)

(
Q1

(
π(�(i)), 1

n

))

− log n
= t

because π(μ) is exact dimensional. By Egorov’s Theorem there exists a Borel measurable
set G ⊆ � with m(G) ≥ 1/2 such that fn converges uniformly on G. In particular, for all
ε > 0 there exists Nε ∈ N such that

t − ε ≤ logπ(μ)
(
Q1

(
π(�(i)), 1

n

))

− log n
≤ t + ε

for all n ≥ Nε and i ∈ G. Rearranging this expression yields the desired result. 
�
Next we show that for m-almost all i ∈ � the sequence of points {σ n(i)}n∈N regularly

visits the set G from Lemma 4.2, yielding uniform bounds on the projected measure of the
intervals that appear in (11) and (12) along a subsequence of n ∈ N.

Lemma 4.3 Let dim π(μ) = t and for each i ∈ � let (rn(i))n∈N be a positive null sequence
such that rn(i) → 0 uniformly over all i ∈ �. Then for m-almost all i ∈ � there exists a
sequence {nk}k∈N such that for all ε > 0

logπ(μ)
(
Q1

(
π(�(σ nki)), rnk (i)

)) ≤ (t − ε) log
(
rnk (i)

)
(17)

and

logπ(μ)
(
Q1

(
π(�(σ nki)), rnk (i)

)) ≥ (t + ε) log
(
rnk (i)

)
(18)

for all sufficiently large k ∈ N. Furthermore the sequence {nk}k∈N can be chosen to satisfy

lim
k→∞

nk+1

nk
= 1.
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Proof Let G be the set from the statement of Lemma 4.2 and consider the characteristic
function 1G , which is easily seen to be in L1(�). We can now apply the Birkhoff Ergodic
Theorem to obtain that for m-almost all i ∈ �

lim
n→∞

1

n

n−1∑

j=0

1G(σ ji) =
∫

1Gdm = m(G) ≥ 1/2.

This gives that for m-almost all i ∈ �, σ ji ∈ G with frequency greater than or equal to
1/2. For each i ∈ � which satisfies this let {nk}k∈N be the sequence for which σ nki ∈ G
for all k ∈ N. Then by Lemma 4.2 for all ε > 0 there exists Nε ∈ N such that

logπ(μ)

(

Q1

(

π(�(σ nki)),
1

n

))

≤
(
t − ε

2

)
log

(
1

n

)

and

logπ(μ)

(

Q1

(

π(�(σ nki)),
1

n

))

≥
(
t + ε

2

)
log

(
1

n

)

for n ≥ Nε and all k ∈ N. Since rn(i) → 0 uniformly over all i ∈ �, we can choose
Mε ∈ N such that rn(i) ≤ 1

Nε
for all n ≥ Mε. In particular for all nk ≥ Mε and m-almost

all i ∈ � there exists 
 ≥ Nε such that

1

l + 1
≤ rnk (i) ≤ 1

l
,

which gives

logπ(μ)
(
Q1

(
π(�(σ nki)), 1




))

log
( 1




) + log
(




+1

)

≤ logπ(μ)
(
Q1

(
π(�(σ nki)), rnk (i)

))

log rnk (i)

and

logπ(μ)
(
Q1

(
π(�(σ nki)), rnk (i)

))

log rnk (i)

≤
logπ(μ)

(
Q1

(
π(�(σ nki)), 1


+1

))

log
(

1

+1

)
+ log

(

+1



) .

Hence there exists N ′
ε ≥ Mε such that for m-almost all all i and all nk ≥ N ′

ε ,
∣
∣
∣
∣
∣

logπ(μ)
(
Q1

(
π(�(σ nki)), rnk (i)

))

log rnk (i)
− t

∣
∣
∣
∣
∣
≤ ε,

giving the first part of the result.
It remains to show that limk→∞ nk+1/nk = 1. Let i belong to the set of full m-measure

for which σ ji ∈ G with frequency at least 1/2 and write

Snk =
nk−1∑

j=0

1G(σ ji).
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ByBirkhoff’s ErgodicTheorem limk→∞ Snk/nk = m(G) ≥ 1/2 and clearly Snk+1 = Snk +1.
Now note that

∣
∣
∣
∣
Snk
nk

(
nk
nk+1

− 1

)

+ 1

nk+1

∣
∣
∣
∣ =

∣
∣
∣
∣
Snk + 1

nk+1
− Snk

nk

∣
∣
∣
∣ → 0

as k → ∞. As Snk/nk → m(G) ≥ 1/2 and 1/nk+1 → 0 it follows that nk/nk+1 → 1 as
k → ∞, completing the result. 
�

The RSSC gives us control over the distance between “level n” cylinders, as described in
the following lemma.

Lemma 4.4 There exists θ > 0 such that for any i,l ∈ � with i|n �= l|n,
inf

a,b∈[0,1]2
d(Si|n(a), Sl|n (b)) ≥ θα2(D�(σ n−1i)Si|n−1) (19)

where d denotes the standard Euclidean metric.

Proof For notational convenience in this proof we shall sometimes write a � b to mean that
for a, b ∈ R we have a ≤ cb for some universal constant c > 0, where c is independent of
any variable which a and b depend on.

We begin by showing that for any a1, b1, b2 ∈ [0, 1] with a1 �= b1 and any i ∈ I∗,
|gi(b1, b2) − gi(a1, b2)|

| fi(b1) − fi(a1)| ≤ C (20)

where C is the constant from (6). To see this, notice that by the mean value theorem there
exist c1, c2 ∈ (a1, b1) such that

|gi(b1, b2) − gi(a1, b2)|
| fi(b1) − fi(a1)| = |gi,x (c1, b2)||b1 − a1|

| fi,x (c2)||b1 − a1| = |gi,x (c1, b2)|
| fi,x (c2)| ≤ C,

where the final inequality follows by (6).
Now, let a = (a1, a2),b = (b1, b2) ∈ [0, 1]2. Define c = (b1, a2). We will now show

that

d(Si(a), Si(b)) � d(Si(a), Si(c)) + d(Si(c), Si(b)), (21)

where the implied constant is independent of i ∈ I∗, a, and b. To see this, we let γ =
| fi(a1)− fi(b1)|, ε = |gi(a)−gi(b)| and η = |gi(a)−gi(c)|. Note that d(Si(a), Si(b)) =√

γ 2 + ε2, d(Si(a), Si(c)) = √
γ 2 + η2. This is displayed visually in Fig. 1.

There are now three possibilities: (i) d(Si(c), Si(b)) = η + ε, (ii) η > ε and
d(Si(c), Si(b)) = η − ε or (iii) ε > η and d(Si(c), Si(b)) = ε − η. Hence

d(Si(a), Si(c)) + d(Si(c), Si(b))

d(Si(a), Si(b))
=

√
γ 2 + η2 + d(Si(a), Si(c))

√
γ 2 + ε2

. (22)

In cases (i) and (iii) we can use (20) to bound η � γ , yielding that
√

γ 2 + η2 + d(Si(a), Si(c))
√

γ 2 + ε2
� γ + ε

√
γ 2 + ε2

� 1.

whereas in case (ii) we can use η � γ to deduce that
√

γ 2 + η2 + d(Si(a), Si(c))
√

γ 2 + ε2
� γ

γ
= 1.
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Fig. 1 The images of the points a,b and c under Si and the distances γ, ε and η

This completes the proof of (21).
Now, notice that by the mean value theorem there exists c1 ∈ [0, 1]2 such that

d(Si(a), Si(c))2 = fi,x (c1)2|a1 − b1|2 + gi,x (c1)2|a1 − b1|2
≥ d(a, c)2 fi,x (c1)2 ≥ d(a, c)2 sup

c2∈[0,1]2
gi,y(c2)2

by (1). Similarly one can check that

d(Si(b), Si(c))2 ≥ d(b, c)2 inf
c2∈[0,1]2

gi,y(c2)2.

Therefore

d(Si(a), Si(b)) � d(Si(a), Si(c)) + d(Si(c), Si(b))

� (d(a, c) + d(b, c)) inf
c2∈[0,1]2

|gi,y(c2)|
≥ d(a,b) inf

c2∈[0,1]2
|gi,y(c2)|

� d(a,b) sup
c3∈[0,1]2

α2(Dc3 Si) (23)

where the first inequality follows by (21) and the final one by Lemma 3.2.
Finally, note that by the RSSC, there exists δ > 0 such that

min
i �= j∈I min

x∈Si (F)
min

y∈S j (F)
d(x, y) ≥ δ. (24)

Let i = (i1, i2, . . .),l = (l1, l2, . . .) ∈ � with i|n �= l|n. In particular there exists
0 ≤ m ≤ n − 1 such that i|m = l|m and im+1 �= lm+1. We write i|n = i|mj and
l|n = i|mk. Then for all a,b ∈ [0, 1],

d(Si|n(a), Sl|n(b)) = d(Si|m(Sj(a)), Si|m(Sk(b)))

� d(Sj(a), Sk(b)) sup
c3∈[0,1]2

α2(Dc3 Si|m)

� α2(D�(σ n−1i)Si|n−1)

where the second inequality follows by (23) and the final inequality follows by (24) (since j
and k begin with different digits) and Lemma 3.4. 
�
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We are now in a position to be able to prove Theorem 2.5, our main result. We do so by
establishing both the corresponding lower and upper bounds for the local dimension of μ at
�(i) for i ∈ � belonging to a set of full m-measure. It is worth noting that only the lower
bound requires Lemma 4.4 and as such this is the only bound that requires the RSSC.

Proof of Theorem 2.5 Let i ∈ � belong to the set of full m-measure for which (3), (4) and
(5) hold. Let

η := sup
i∈I,a,b∈[0,1]2

{ |gi,y(a)|
| fi,x (b)|

}

and note that by the domination condition from Definition 2.1 η < 1. Using Lemma 3.2,
applying the chain rule to gi|n,y(�(σ ni)) and fi|n,x (b) for each n ∈ N and pairing off
appropriate terms we get

α2
(
D�(σ ni)Si|n

)

minb∈[0,1]2 α1
(
DbSi|n

) ≤ M2|gi|n,y(�(σ ni))|
minb∈[0,1]2 | fi|n,x (b)| ≤ M2ηn → 0.

Similarly,

α2
(
D�(σ ni)Si|n

)

maxb∈[0,1]2 α1
(
DbSi|n

) ≤ M2ηn → 0.

Define the sequences

rn(i) = Mθα2
(
D�(σ ni)Si|n

)

minb∈[0,1]2 α1
(
DbSi|n

) and r ′
n(i) = M−1α2

(
D�(σ ni)Si|n

)

maxb∈[0,1]2 α1
(
DbSi|n

) , (25)

and observe that both rn(i) and r ′
n(i) converge to 0 uniformly over all i ∈ �. Hence we

can also assume that i ∈ � belongs to the set of full measure which satisfies (17) and (18)
for the sequences rn(i) and r ′

n(i).
For a given a = (a1, a2) ∈ [0, 1]2 and r > 0 write

Q2(a, r) =
(
a1 − r

2
, a1 + r

2

)
×

(
a2 − r

2
, a2 + r

2

)
.

Write x = �(i), let n ∈ N and consider the square Q2
(
x, θα2

(
D�(σ ni)Si|n

))
. By

Lemma 4.4 note that Q2
(
x, θα2

(
D�(σ ni)Si|n

))
intersects only the cylinder Si|n([0, 1]2),

therefore it is easy to see that

Q2
(
x, θα2

(
D�(σ ni)Si|n

)) ∩ F ⊆ Bn(x, θα2
(
D�(σ ni)Si|n

)
).

Hence by Lemma 4.1,

μ
(
Q2

(
x, θα2

(
D�(σ ni)Si|n

)))

≤ Lm([i|n])π(μ)

(

Q1

(

π(�(σ ni)),
Mθα2

(
D�(σ ni)Si|n

)

minb∈[0,1]2 α1
(
DbSi|n

)

))

. (26)

Consider the subsequence (nk)k∈N guaranteed by applying Lemma 4.3 to the sequence rn(i).
Applying the chain rule we have

α2
(
D�(σ n+1i)Si|n+1

) = α2

(
DSin+1�(σ n+1i)Si|nD�(σ n+1i)Sin+1

)

≤ α2

(
DSin+1�(σ n+1i)Si|n

)
α1

(
D�(σ n+1i)Sin+1

)
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< α2

(
DSin+1�(σ n+1i)Si|n

)

= α2
(
D�(σ ni)Si|n

)
,

where in the first inequalitywehave used thatα2(AB) ≤ α2(A)α1(B) for 2×2matrices A and
B. This implies that the null subsequence

(
θα2

(
D�(σ nk i)Si|nk

))
k∈N is strictly decreasing.

Hence for any r > 0 sufficiently small we can choose k ∈ N sufficiently large so that

θα2
(
D�(σ nk+1i)Si|nk+1

) ≤ r < θα2
(
D�(σ nk i)Si|nk

)
. (27)

Let t = dim π(μ) and ε > 0. Let r > 0 be sufficiently small so that k ∈ N that satisfies
(27) is sufficiently large that (17) holds for ε. Then, using (10), (26) and (17) we get

logμ (Q2(x, r))
log r

≥ logμ
(
Q2

(
x, θα2

(
D�(σ nk i)Si|nk

)))

log
(
θα2

(
D�(σ nk+1i)Si|nk+1

))

≥
log Lm([i|nk]) + logπ(μ)

(

Q1

(

π(�(σ nki)),
Mθα2

(
D�(σnk i)Si|nk

)

minb∈[0,1]2 α1
(
DbSi|nk

)

))

log
(
θα2

(
D�(σ nk+1i)Si|nk+1

))

≥
log Lm([i|nk]) + (t − ε) log

(
Mθα2

(
D�(σnk i)Si|nk

)

minb∈[0,1]2 α1
(
DbSi|nk

)

)

log
(
θα2

(
D�(σ nk+1i)Si|nk+1

))

=
1
nk

log L + 1
nk

logm([i|nk]) + (t−ε)
nk

log

(
α2

(
D�(σnk i)Si|nk

)

minb∈[0,1]2 α1
(
DbSi|nk

)

)

+ (t−ε)
nk

logMθ

1
nk

log θ + 1
nk+1

nk+1
nk

log
(
α2

(
D�(σ nk+1i)Si|nk+1

))

→ h(μ) + (t − ε)(χ2(μ) − χ1(μ))

χ2(μ)

as r → 0 (so k → ∞). Since ε > 0 was arbitrary, the lower bound is complete.
We now establish the corresponding upper bound. We begin by estimating

sup
(a1,a2),(b1,b2)∈Bn(x,α2(D�(σn (i))Si|n))

|a2 − b2|.

for each n ∈ N. For some a, b ∈ [0, 1] with the property that

| fi|n(b) − fi|n(a)| ≤ α2
(
D�(σ ni)Si|n

)
(28)

we can write

sup
(a1,a2),(b1,b2)∈Bn(x,α2(D�(σn (i))Si|n))

|a2 − b2| = |gi|n(b, 1) − gi|n(a, 0)|.

Note that

|gi|n(b, 1) − gi|n(a, 0)| ≤ |gi|n(b, 1) − gi|n(a, 1)| + |gi|n(a, 1) − gi|n(a, 0)|
≤ C | fi|n(b) − fi|n(a)| + |gi|n,y(c)|
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for some c ∈ [0, 1]2 where we have used (20) and the mean value theorem. Thus it follows
from (28) and Lemma 3.3 that

|gi|n(b, 1) − gi|n(a, 0)| ≤ Cα2
(
D�(σ ni)Si|n

) + Aα2
(
D�(σ ni)Si|n

)

= (A + C)α2
(
D�(σ ni)Si|n

)
.

It is now easy to see that

Bn(x, α2
(
D�(σ ni)Si|n

)
) ∩ F ⊆ Q2

(
x, 2(A + C)α2

(
D�(σ ni)Si|n

)) ∩ F .

Thus Lemma 4.1 implies

μ
(
Q2

(
x, 2(A + C)α2

(
D�(σ ni)Si|n

)))

≥ L−1m([i|n])π(μ)

(

Q1

(

π(�(σ ni)),
M−1Rn

maxb∈[0,1]2 α1
(
DbSi|n

)

))

, (29)

where here Rn = min
{
α2

(
D�(σ ni)Si|n

)
, diam

(
π Si|n([0, 1]2)

)}
. Note that by the mean

value theorem

diam
(
π Si|n([0, 1]2)

) = | fi|n(1) − fi|n(0)| = | fi|n,x (c)|
for some c ∈ [0, 1]. Applying the domination condition and Lemma 3.2 gives

| fi|n,x (c)| ≥ |gi|n,y(�(σ ni))| ≥ M−1α2
(
D�(σ ni)Si|n

)
,

so we can conclude that Rn ≥ M−1α2
(
D�(σ ni)Si|n

)
. Therefore (29) gives

μ
(
Q2

(
x, 2(A + C)α2

(
D�(σ ni)Si|n

)))

≥ L−1m([i|n])π(μ)

(

Q1

(

π(�(σ ni)),
M−2α2

(
D�(σ ni)Si|n

)

maxb∈[0,1]2 α1
(
DbSi|n

)

))

, (30)

Consider the subsequence (nk)k∈N guaranteed by applying Lemma 4.3 for r ′
n(i), which

was defined in (25). Since
(
α2

(
D�(σ ni)Si|n

))
n∈N is strictly decreasing and null, for any

r > 0 sufficiently small we can choose k ∈ N sufficiently large so that

2(A + C)α2

(
D�(σ nk+1i)Si|nk+1

)
≤ r < 2(A + C)α2

(
D�(σ nk i)Si|nk

)
. (31)

Let ε > 0. Let r > 0 be sufficiently small so that k ∈ N that satisfies (31) is sufficiently
large that (18) holds for ε. Therefore by using (10), (30) and (18) we get

logμ (Q2(x, r))
log r

≤
logμ

(
Q2

(
x, 2(A + C)α2

(
D�(σ nk+1i)Si|nk+1

)))

log
(
2(A + C)α2

(
D�(σ nk i)Si|nk

))

≤
log L−1m([i|nk+1 ]) + logπ(μ)

(

Q1

(

π(�(σ nk+1i)),
M−2α2

(
D

�(σ
nk+1 i)

Si|nk+1

)

maxb∈[0,1]2 α1

(
DbSi|nk+1

)

))

log
(
2(A + C)α2

(
D�(σ nk i)Si|nk

))

≤
log L−1m([i|nk+1 ]) + (t + ε) log

(
M−2α2

(
D

�(σ
nk+1 i)

Si|nk+1

)

maxb∈[0,1]2 α1

(
DbSi|nk+1

)

)

log
(
2(A + C)α2

(
D�(σ nk i)Si|nk

))
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=
1

nk+1
log L−1 + 1

nk+1
logm([i|nk+1 ]) + (t+ε)

nk+1
log

(
α2

(
D

�(σ
nk+1 i)

Si|nk+1

)

maxb∈[0,1]2 α1

(
DbSi|nk+1

)

)

+ (t+ε)
nk+1

logM−2

1
nk+1

log 2(A + C) + 1
nk

nk
nk+1

log
(
α2

(
D�(σ nk i)Si|nk

))

→ h(μ) + (t + ε)(χ2(μ) − χ1(μ))

χ2(μ)

as r → 0 (so k → ∞). Since ε > 0 was arbitrary, the upper bound follows. 
�
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