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Abstract
We describe a compactification by stable pairs (also known as KSBA compactification) of
the 4-dimensional family of Enriques surfaces which arise as the Z

2
2-covers of the blow up

of P
2 at three general points branched along a configuration of three pairs of lines. Up to

a finite group action, we show that this compactification is isomorphic to the toric variety
associated to the secondary polytope of the unit cube. We relate the KSBA compactification
considered to the Baily–Borel compactification of the same family of Enriques surfaces. Part
of the KSBA boundary has a toroidal behavior, another part is isomorphic to the Baily–
Borel compactification, and what remains is a mixture of these two. We relate the stable pair
compactification studied here with Looijenga’s semitoric compactifications.

Keywords Moduli space · Compactification · Stable pair · Enriques surface

Mathematics Subject Classification 14J10 · 14J28 · 14D06

1 Introduction

In the study of moduli spaces, it is important to provide compactifications which are functo-
rial and with meaningful geometric and combinatorial properties. A leading example in this
sense is the Deligne–Mumford and Knudsen compactification of the moduli space of smooth
n-pointed curves. Another relevant example is Alexeev’s compactification of the moduli
space of principally polarized abelian varieties, which extended previous work of Mumford,
Namikawa, and Nakamura [3,7,32,33]. Another case that was intensely studied is that of
K3 surfaces, especially in degree 2 see [6,21,28,29,38,41]. Similarly, compactifications of
the moduli space of degree 2 Enriques surfaces were studied by Sterk [44,45], who com-
pared Shah’s GIT compactification for degree 2 Enriques surfaces in [42] with a semitoric
Looijenga compactification [30]. In this paper, we study a special 4-dimensional family of
Enriques surfaces. By using the theory of stable pairs [1,2,25,26], we produce a geometric
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1820 L. Schaffler

compactification which we describe explicitly and relate to other standard compactifications,
such as the Baily–Borel.

Enriques surfaces were classically constructed as the normalization of the vanishing locus
in P

3 of the following equation:

aW 2
0W

2
1W

2
2 +bW 2

0W
2
1W

2
3 + cW 2

0W
2
2W

2
3 + dW 2

1W
2
2W

2
3

+W0W1W2W3q(W0,W1,W2,W3) = 0,

where q is a non-degenerate quadratic form.We consider the case where q is diagonal, which
is an alternative description of the four dimensional family of Enriques surfaces studied in
[34]. These arise as follows. Let Bl3 P

2 be the blow up of P
2 at three general points. We

have three distinct fibrations πi : Bl3 P
2 → P

1, i = 1, 2, 3, and we choose two distinct
irreducible rulings �i , �

′
i for each fibration. Then an appropriate Z

2
2-cover branched along

∑3
i=1(�i + �′

i ) gives an Enriques surface (see Definition 2.1). These Enriques surfaces occur
in connection with Campedelli surfaces (see Remark 2.4), and Oudompheng described the
Baily–Borel compactification of their period domain. In the current paper, we construct a
geometric compactification of the moduli space M for such Enriques surfaces via Kollár–
Shepherd-Barron–Alexeev (KSBA) stable pairs.

Since Enriques surfaces are not of general type, we cannot use [26] directly, but we
can do so by choosing a natural divisor transforming them into pairs of log general type:
namely, we consider stable pairs (S, εR), where R is the ramification divisor of the above
Z
2
2-cover S → Bl3 P

2 and ε is a small positive rational number. Now the KSBA machinery
applies, enabling us to construct a compactification M with geometric meaning. We have a
complete description of the structure of this compactification and of the degenerate surfaces
parametrized by the boundary.

Theorem 1.1 (Theorem 6.6 and Corollary 6.8) The boundary ofM consists of two divisorial
irreducible components and another irreducible component of codimension 3. The surfaces
parametrized by the general point of each one of these components are

(1) the gluing of three del Pezzo surfaces of degree 2 so that the dual complex is a 2-simplex
and the double locus consists of three smooth rational curves;

(2) the gluing of two weak del Pezzo surfaces of degree 1 along an elliptic curve;
(3) the gluing of P

1 × P
1 and an elliptic ruled surface along a (2, 2) curve and a reduced

fiber.

For a full description of the stratification of the boundary of M and the degenerations
parametrized by it, see Sects. 6.2 and 6.3.

The first main tool in the proof of the above theorem is [9], which allows us to study degen-

erations of the pairs
(
Bl3 P

2, 1+ε
2

∑3
i=1(�i + �′

i )
)
instead. The corresponding degenerations

of Enriques surfaces can be obtained after taking an appropriateZ
2
2-cover. Similar ideas were

used in [8] for Campedelli surfaces, which are closely related to our example, and in [6] for
degree 2 K3 surfaces. Now, the study of moduli compactifications of such pairs is related
to the compactification of six lines in P

2, for which the theory of hyperplane arrangements
applies [5,22]. However, as we work with Bl3 P

2, the stability condition in our situation is
somewhat different, yielding a different compactification (see also Remark 6.7). Therefore,
instead of the theory of hyperplane arrangements, we use the theory of stable toric pairs in
[3], which in turn gives an explicit global description of the stable pair compactificationM as
we will soon see. More precisely, denote by � the toric boundary of (P1)3 and let B ⊆ (P1)3
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The KSBA compactification of the moduli… 1821

be a general effective divisor of class (1, 1, 1). Note that B is isomorphic to Bl3 P
2 and that

�|B consists of six lines. If Q denotes the unit cube, then ((P1)3, B) is a stable toric pair of
type Q according to Definition 3.10. Let MQ be the coarse moduli space parametrizing the
stable toric pairs ((P1)3, B) and their degenerations. We prove the following.

Theorem 1.2 (Theorem6.4)LetSym(Q) be the symmetry group of Q. ThenMQ/Sym(Q) ∼=
M. On a dense open subset, the isomorphism maps the Sym(Q)-class of a stable toric pair
(X , B) to the appropriate Z

2
2-cover of

(
B,

( 1+ε
2

)
�|B

)
, where � denotes the toric boundary

of X.

The main difficulty in the proof of Theorem 1.2 is that, away from the mentioned dense
open subset,

(
B,

( 1+ε
2

)
�|B

)
is not stable. This happens if and only if the polyhedral subdi-

vision of Q associated to (X , B) has what we call a corner cut (see Definition 4.1). This is
analyzed in Sect. 4, where we describe a modification of (X , B), denoted by (X•, B•), such
that

(
B•,

( 1+ε
2

)
�•|B•

)
is a stable pair. As MQ is the projective toric variety associated to

the secondary polytope of Q, the isomorphism in Theorem 1.2 yields an explicit description
ofM.

A different compactification can be constructed by Hodge theory. As for K3 surfaces, the
Enriques surfaces considered here can be characterized Hodge-theoretically as being D1,6-
polarized in the sense of Dolgachev [13]. The moduli space for Enriques surfaces, as for
K3 surfaces, is the quotient of a bounded Hermitian symmetric domain D of type IV by the
action of an appropriate arithmetic group �. In this case, there is a natural compactification
of D/�, namely the Baily–Borel compactification D/�

∗
. As previously mentioned, [34]

studied this particular situation and described the boundary ofD/�
∗
. Furthermore, Oudom-

pheng showed in [34, Sect. 4] that D/�
∗
is isomorphic to the quotient by a finite group of

the GIT compactification of the moduli space of six lines in P
2. The next theorem relates the

KSBA compactificationM with D/�
∗
.

Theorem 1.3 (Theorem 7.6) There exists a birational morphism M → D/�
∗
extending the

period map to the boundary ofM.

Let us take a closer look to the morphism M → D/�
∗
. Oudompheng showed that the

boundary of D/�
∗
consists of three 0-dimensional boundary components, called 0-cusps,

and two 1-dimensional boundary components, called 1-cusps. With reference to Fig. 8, we
observe that the boundary of the KSBA compactification M has a toroidal behavior in a
neighborhood of the preimage of the even 0-cusp, and is isomorphic to the Baily–Borel
compactification in a neighborhood of the preimage of the odd 0-cusp of type 2. Above
the middle odd 0-cusp of type 1 the behavior of M is not toroidal or Baily–Borel. These
considerations make us consider Looijenga’s semitoric compactifications (see [30]), which
generalize the Baily–Borel and toroidal compactifications in the case of type IV Hermitian
symmetric domains. A semitoric compactification (D/�)� depends on the choice of �,
which is an admissible decomposition of the conical locus (see Sect. 8.1). To construct � in
our case, for each 0-cusp we consider the associated hyperbolic lattice, and we consider the
subdivision of one connected component of x2 > 0 given by the mirrors of the reflections
with respect to the vectors of square−1. To study the stratification of (D/�)� we compute a
fundamental domain for the discrete reflection group generated by the reflectionswith respect
to the (−1)-vectors. This calculation is not included in the current paper, but it can be found
in [39, Sect. 8.6]. The next theorem gives a set-theoretic comparison of the boundaries ofM
and (D/�)� .
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1822 L. Schaffler

Theorem 1.4 (Theorem 8.2) The admissible decomposition � in Definition 8.1 produces
a semitoric compactification (D/�)� birational to M and whose boundary strata are in
bijection with the boundary strata ofM. This bijection preserves the dimensions of the strata
and the intersections between them.

We expect this to be an isomorphism, but we can not yet prove it. This will be object of
future investigation. We mention that in [6] a geometric compactifications of moduli of K3
surfaces is identified with a semitoric compactification which is not toroidal or Baily–Borel.

The paper is organized as follows. In Sect. 2 we define the Enriques surfaces of interest and
the moduli space we want to compactify. In Sect. 3 we briefly recall the theory of stable pairs
and stable toric pairs that we need. The technical results in Sects. 4 and 5 allow us to construct
the morphismMQ → M in Sect. 6, where we also describe the stable pairs parametrized by
the boundary ofM and its stratification. In Sect. 7 we construct the morphismM → D/�

∗
.

Finally, the connection with Looijenga’s semitoric compactifications is discussed in Sect. 8.
We work over C.

2 D1,6-polarized Enriques surfaces

2.1 Enriques surfaces andZ
2
2-covers

A variety is a connected and reduced scheme of finite type overC (in particular, a variety need
not be irreducible). A surface is a 2-dimensional projective variety. An Enriques surface Y is
a smooth irreducible surface with 2KY ∼ 0 and h0(Y , ωY ) = h1(Y ,OY ). These properties
are enough to imply that S is minimal with Kodaira dimension 0, h0(Y , ωY ) = 0, and
h1(Y ,OY ) = 0.

Definition 2.1 Let Bl3 P
2 be the blow up of P

2 at [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. Then
Bl3 P

2 comes with three genus zero pencils π1, π2, π3 : Bl3 P
2 → P

1. Denote by �i , �
′
i

two distinct irreducible elements in the i-th pencil, i = 1, 2, 3. Assume that the divisor∑3
i=1(�i + �′

i ) has no triple intersection points. In what follows, we use the general theory
of abelian covers developed in [35].

Let Z
2
2 = {e, a, b, c}, where e is the identity element, and let {χ0, χ1, χ2, χ3} be the

characters of Z
2
2 with χ0 = 1 and χ1(b) = χ1(c) = χ2(a) = χ2(c) = χ3(a) = χ3(b) = −1.

Define Da = �1 + �′
1, Db = �2 + �′

2, Dc = �3 + �′
3. Consider the building data (see [35,

Definition 2.1]) consisting of the divisors Da, Db, Dc and the line bundles Lχ1 , Lχ2 , Lχ3

satisfying

2Lχ1 = Db + Dc, 2Lχ2 = Da + Dc, 2Lχ3 = Da + Db.

This building data determines a Z
2
2-cover π : S → Bl2 P

2 branched along
∑3

i=1(�i + �′
i ),

which is unique up to isomorphism ofZ
2
2-covers (see [35, Theorem 2.1]). By [35, Proposition

3.1] we have that S is smooth, and using [35, Proposition 4.2, formula (4.8)] one can compute
that χ(OS) = 1, which implies that h0(S, ωS) = h1(S,OS). If R denotes the ramification
divisor of the cover, then KS ∼ π∗(KBl3 P2) + R and 2R ∼ π∗(

∑3
i=1(�i + �′

i )) imply that
2KS ∼ 0, hence S is an Enriques surface. These are the Enriques surfaces studied in [34],
and to make a clear connection with Oudompheng’s paper we also call them D1,6-polarized
Enriques surfaces. The reason for this name is explained in Remark 2.3. Observe that the
ramification divisor of the Z

2
2-cover consists of six genus one curves.
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The KSBA compactification of the moduli… 1823

Remark 2.2 D1,6-polarized Enriques surfaces can be described in the following alternative
way. InP

2, consider six distinct lines �i , �
′
i , i = 1, 2, 3, so that the divisor

∑3
i=1(�i +�

′
i ) does

not have triple intersection points. Let S′ → P
2 be theZ

2
2-cover with building data analogous

to the one in Definition 2.1. Note that S′ is singular, and its singular locus consists of exactly
six A1 singularities: two above each intersection point �i ∩�

′
i . Theminimal resolution S → S′

is a D1,6-polarized Enriques surface.
Given this alternative definition, it is natural to ask what is the connection between the

Enriques surface S above and the K3 surface Z given by the minimal resolution of the
double cover of P

2 branched along
∑3

i=1(�i + �
′
i ). This can be understood by looking at

the universal K3 cover X → S. The K3 surface X can be viewed as the minimal resolution
of an appropriate Z

3
2-cover of P

2 branched along the six lines, and Z can be obtained as
the minimal resolution of the quotient of X by an appropriate order four subgroup of Z

3
2. It

turns out that the Néron–Severi lattice of a very general K3 surface X is not isometric to the
Néron–Severi lattice of a very general K3 surface Z , so these two families of K3 surfaces
are distinct. All this is studied in detail in [40].

Remark 2.3 Let D1,6 denote the index 2 sublattice of 〈1〉⊕〈−1〉⊕6 of vectors of even square.
Note that D1,6 is isometric toU⊕D5. Let e0, e1, . . . , e6 be the canonical basis of 〈1〉⊕〈−1〉⊕6.
According to [34], a D1,6-polarized Enriques surface S can be equivalently defined to be an
Enriques surface whose Picard group contains a primitively embedded copy of D1,6 such
that:

(1) The vector 2e0 corresponds to a nef divisor class H (which is the preimage of a general
line in Bl3 P

2 under the Z
2
2-cover);

(2) Let C1,C2,C3 be the exceptional divisors of the blow up Bl3 P
2 → P

2. The preimage
of Ci under the Z

2
2-cover consists of two disjoint smooth rational curves that we denote

by R+
i , R−

i . Then we ask for the vectors e1 ± e2, e3 ± e4, e5 ± e6 to correspond to the
six irreducible curves R±

1 , R±
2 , R±

3 respectively.

Note that for i = 1, 2, 3, the linear system |H − R+
i − R−

i | is a genus one pencil, and the
preimages in S of the lines �i , �

′
i in Definition 2.1 give the two half-fibers of this pencil (see

[10, Chapter VIII, §17] for the definition of half-fiber).

Remark 2.4 If S is a D1,6-polarized Enriques surface, then the divisorC = H +∑3
i=1(R

+
i +

R−
i ) is divisible by 2 in Pic(S). The Z2-cover of S branched along C has six (−1)-curves.

Blowing down these curves we obtain a Campedelli surface with (topological) fundamental
group Z

3
2 (these were considered in [8]). Conversely, such a Campedelli surface X can be

realized as the Z
3
2-cover of P

2 branched along seven lines. The minimal desingularization of
the quotient of X by the involution fixing pointwise the preimage of one of these lines is a
D1,6-polarized Enriques surface.

2.2 The family of D1,6-polarized Enriques surfaces

Definition 2.5 Let ((c000, c100, . . . , c111), ([X0X1], [Y0, Y1], [Z0, Z1])) be coordinates in
G

8
m × (P1)3. Let X ′′ ⊆ G

8
m × (P1)3 be the closed subscheme defined by the vanishing

of
∑

i, j,k=0,1

ci jk X
2
i Y

2
j Z

2
k = 0.

Let U ⊆ G
8
m be the dense open subset such that the corresponding fibers in X ′′ are smooth.

Let X ′ = X ′′|U. If X ⊆ X ′ is a fiber, then X is a smooth hypersurfaces of class (2,2,2) in
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1824 L. Schaffler

(P1)3. Therefore, X is a K3 surface (KX ∼ 0 by the adjunction formula and h1(X ,OX ) = 0
can be computed using the long exact sequence in cohomology associated to 0 → IX →
O(P1)3 → OX → 0). Moreover, X comes with a fixed-point-free involution given by

ι : ([X0 : X1], [Y0 : Y1], [Z0 : Z1]) �→ ([X0 : −X1], [Y0 : −Y1], [Z0 : −Z1]).
Hence, X/ι is an Enriques surface (see [11, Proposition VIII.17]). Let us show X/ι is a
D1,6-polarized Enriques surface. The restriction to X of the morphism

([X0 : X1], [Y0 : Y1], [Z0 : Z1]) �→ ([X2
0 : X2

1], [Y 2
0 : Y 2

1 ], [Z2
0 : Z2

1])
realizes X as a Z

3
2-cover of B ⊆ (P1)3 given by

∑

i, j,k=0,1

ci jk XiY j Zk = 0.

We have that B is a del Pezzo surface of degree 6 (hence, B ∼= Bl3 P
2), and the branch locus

of X → B is given by�|B , where� is the toric boundary of (P1)3. Observe that�|B consists
of six lines, two for each genus zero fibration B → P

1, without triple intersection points.
So X/ι → B is the Z

2
2-cover that gives a D1,6-polarized Enriques surface. Notice that there

are several ways to take the Z
2
2-cover of B branched along �|B by appropriately varying the

building data. However, these other choices produce rational surfaces or K3 surfaces. The
involution ι acts on the whole familyX ′, so thatX = X ′/ι → U is a family of D1,6-polarized
Enriques surfaces.

Remark 2.6 The general Enriques surface with degree 6 polarization can be realized as the
normalization of the vanishing locus in P

3 of the following equation:

aW 2
0W

2
1W

2
2 +bW 2

0W
2
1W

2
3 + cW 2

0W
2
2W

2
3 + dW 2

1W
2
2W

2
3

+W0W1W2W3q(W0,W1,W2,W3) = 0,

where q is a non-degenerate quadratic form (see [31, Sect. 4]). By [31, Proposition 4.1], the
universal K3 cover of such Enriques surfaces is an appropriate (2, 2, 2) hypersurface in (P1)3

invariant under the involution ι above. Under this correspondence, the K3 surfaces in Defini-
tion 2.5 are the universal covers of the degree 6Enriques surfaces forwhich the quadratic form
q is diagonal, providing an alternative description of the D1,6-polarized Enriques surfaces.
More explicitly, consider the sextic hypersurface S given by

c001W
2
0W

2
1W

2
2 + c010W

2
0W

2
1W

2
3 + c100W

2
0W

2
2W

2
3 + c111W

2
1W

2
2W

2
3

+ W0W1W2W3(c000W
2
0 + c011W

2
1 + c101W

2
2 + c110W

2
3 ) = 0.

Let X ⊆ (P1)3 be the K3 surface given by
∑

i, j,k=0,1 ci jk X
2
i Y

2
j Z

2
k = 0. The morphism

X → S is explicitly given by the restriction to X of

(P1)3 → P
3,

([X0 : X1], [Y0 : Y1], [Z0 : Z1]) �→ [X0Y0Z0 : X0Y1Z1 : X1Y0Z1 : X1Y1Z0].
The next proposition shows that the family X → U in Definition 2.5 captures all possible

D1,6-polarized Enriques surfaces, and illustrates which fibers are pairwise isomorphic.

Proposition 2.7 Consider Bl3 P
2 together with a divisor

∑3
i=1(�i + �′

i ) (see Definition 2.1)

without triple intersection points. Then there exists B = V
(∑

i, j,k=0,1 ci jk XiY j Zk

)
⊆
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The KSBA compactification of the moduli… 1825

(P1)3 with coefficients ci jk �= 0 such that
(
Bl3 P

2,
∑3

i=1(�i + �′
i )

)
is isomorphic to

(B,�|B).Moreover, such B ⊆ (P1)3 is uniquely determined up to the action ofG4
m�Sym(Q)

on the coefficients of B, where Q is the unit cube. Hence, U/(G4
m � Sym(Q)) is the moduli

space of D1,6-polarized Enriques surfaces with our choice of divisor.

Proof Consider the three projections πi : Bl3 P
2 → P

1, i = 1, 2, 3. Let �i = π−1
i ([a0i :

a1i ]) and �′
i = π−1

i ([a′
0i : a′

1i ]). The morphism (π1, π2, π3) : Bl3 P
2 → (P1)3 is an embed-

ding whose image is a divisor of class (1, 1, 1) (observe that the restriction of� to this divisor
gives the six (−1)-curves, each one with multiplicity 2). For each one of the three copies of
P
1 choose an automorphism ϕi , i = 1, 2, 3, sending [a0i : a1i ], [a′

0i : a′
1i ] to [1 : 0], [0 : 1]

respectively. Let B be the image of the composition of the embedding (π1, π2, π3) followed
by the automorphism (ϕ1, ϕ2, ϕ3). Then, under this morphism, Bl3 P

2 is isomorphic to B

and
∑3

i=1(�i + �′
i ) corresponds to �|B . Moreover, B = V

(∑
i, j,k=0,1 ci jk XiY j Zk

)
, where

the coefficients ci jk are nonzero, or otherwise �|B would have triple intersection points.
In the construction of B above we made some choices. The group Sym(Q) acts by per-

muting the three projections π1, π2, π3, and for each i it exchanges [a0i : a1i ] and [a′
0i : a′

1i ]
(note that Sym(Q) is isomorphic to the wreath product Z2  S3). Each ϕi is uniquely deter-
mined up to Gm , and an additional Gm acts by rescaling the coefficients ci jk . This describes
an action of G

4
m � Sym(Q) on the vector of coefficients (c000, c100, . . . , c111). Observe that

our construction of B is invariant under the action of Aut(Bl3 P
2) on the line arrangement

(see [14, Theorem 8.4.2] for the description of Aut(Bl3 P
2)).

To conclude, we show that B = V
(∑

i, j,k=0,1 ci jk XiY j Zk

)
⊆ (P1)3 with ci jk �= 0

such that
(
Bl3 P

2,
∑3

i=1(�i + �′
i )

) ∼= (B,�|B) is unique up to the above (G4
m � Sym(Q))-

action. But this is true because, up to G
4
m � Sym(Q), there is a unique way to realize Bl3 P

2

in (P1)3 so that the six (−1)-curves are given by the restriction of �, and this is given by
V (X0Y0Z0 − X1Y1Z1) (we omit the proof of this). ��

We now construct a compactification of U/(G4
m � Sym(Q)) using stable pairs.

3 Preliminaries: moduli of stable pairs and stable toric pairs

3.1 Stable pairs

Our main reference is [24].

Definition 3.1 Let X be a variety and let B = ∑
i bi Bi be a divisor on X where bi ∈ (0, 1]∩Q

and Bi is a prime divisor for all i . Then the pair (X , B) is semi-log canonical if the following
conditions are satisfied:

(1) X is S2 and every codimension 1 point is regular or a double crossing singularity (varieties
satisfying these properties are also called demi-normal);

(2) If ν : Xν → X is the normalization with conductors D ⊆ X and Dν ⊆ Xν (see [24,
Sect. 5.1]), then the support of B does not contain any irreducible component of D;

(3) KX + B is Q-Cartier;
(4) The pair (Xν, Dν + ν−1∗ B), where ν−1∗ B denotes the strict transform of B under ν, is

log canonical (see [24, Definition 2.8]).

Definition 3.2 A pair (X , B) is stable if the following conditions are satisfied:
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1826 L. Schaffler

(1) Singularities: (X , B) is a semi-log canonical pair;
(2) Numerical: KX + B is ample.

The following is our main example of interest.

Lemma 3.3 Let S be a D1,6-polarized Enriques surface and let π : S → Bl3 P
2 be the corre-

spondingZ
2
2-cover ramified at E = ∑3

i=1(Ei +E ′
i ) and branched along L = ∑3

i=1(�i +�′
i )

(see Definition 2.1). Then

KS + εE ∼Q π∗
(

KBl3 P2 +
(
1 + ε

2

)

L

)

.

In particular, (S, εE) is a stable pair if and only if
(
Bl3 P

2,
( 1+ε

2

)
L
)
is a stable pair.

Proof We have that KS ∼ π∗(KBl3 P2) + E and 2E ∼ π∗(L). This implies that KS ∼Q

π∗(KBl3(P2))+ 1
2π

∗(L), and by adding εE ∼Q
ε
2π

∗(L) to both sideswe obtainwhat claimed.
For the last statement about stability, we have that (S, εE) is semi-log canonical if and only
if

(
Bl3 P

2,
( 1+ε

2

)
L
)
is semi-log canonical by [9, Lemma 2.3], and KS + εE is ample if and

only if KBl3 P2 + ( 1+ε
2

)
L is ample as π is finite and surjective. ��

3.2 Moduli of stable pairs

In what follows we compactify U/(G4
m � Sym(Q)) by taking its Zariski closure inside an

appropriate projective moduli space of stable pairs. Our main references are [5,25].

Definition 3.4 The Viehweg’s moduli stack Md,N ,C,b is defined as follows. Let us fix con-
stants d, N ∈ Z>0, C ∈ Q>0, and b = (b1, . . . , bn) with bi ∈ (0, 1] ∩ Q and Nbi ∈ Z for
all i = 1, . . . , n. For any reduced scheme S over C, Md,N ,C,b(S) is the set of proper flat
families X → S together with a divisorB = ∑

i biBi satisfying the following properties:

(1) For all i = 1, . . . , n, Bi is a codimension one closed subscheme such that Bi → S is
flat at the generic points of Xs ∩ SuppBi for every s ∈ S;

(2) Every geometric fiber (X , B) is a stable pair of dimension d with (KX + B)d = C ;
(3) There exists an invertible sheaf L on X such that for every geometric fiber (X , B) one

has L |X ∼= OX (N (KX + B)).

Definition 3.5 Consider the moduli stackM6ε2 = Md,N ,C,b with d = 2, b = (b1, b2, b3) =
( 1+ε

2 , 1+ε
2 , 1+ε

2

)
(because we want three pairs of divisors, and we do not distinguish divi-

sors in the same pair) where 0 < ε � 1 is a fixed rational number and C = 6ε2. The
reason for this coefficient is because if

(
Bl3 P

2,
( 1+ε

2

)
L
)
is as in Proposition 2.7, then

(
KBl3 P2 + ( 1+ε

2

)
L
)2 = 6ε2. For a suitably chosen positive integer N depending on d, b

and C (which does not need to be specified, see [2, 3.13]), the Viehweg’s moduli functor
M6ε2 is coarsely represented by a projective scheme, which we denote byM6ε2 . This is true
because we are working with surface pairs (d = 2) and our coefficients are strictly greater
than 1

2 (see [5, Theorem 1.6.1, case 2]).

Observation 3.6 The group S3 has a natural action on the Viehweg moduli stackM6ε2 given
by permuting the labels of the three divisorsB1,B2,B3. In particular, we have an induced
S3-action on the coarse moduli spaceM6ε2 .
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Definition 3.7 With reference to Definition 2.5, let B′ be the closed subscheme of U× (P1)3

given by the vanishing of the equation
∑

i, j,k=0,1

ci, j,k XiY j Zk = 0.

Let L′ be the restriction to B′ of the toric boundary of G
8
m × (P1)3. Then the family of stable

pairs
(B′,

( 1+ε
2

)L′) → U descends to a family of stable pairs
(B,

( 1+ε
2

)L) → U/(G4
m �

Sym(Q)).
Then there is an inducedmorphism f : U/(G4

m�Sym(Q)) → M6ε2/S3 which is injective
by Proposition 2.7. We define M to be the normalization of the closure of the image of f .
We refer toM as the KSBA compactification as the moduli space of D1,6-polarized Enriques
surfaces.

Remark 3.8 With the notation introduced in Lemma 3.3, we claim that studying the degener-
ations of the stable pairs (S, εE) is equivalent to studying of the degenerations of the stable
pairs

(
Bl3 P

2,
( 1+ε

2

)
L
)
. To prove this, let K be the field of fractions of a DVR (A,m), where

m is the maximal ideal of A. Let (S◦, E◦) (resp. (B◦,L◦)) be a family of stable pairs over
Spec(K ) with fibers isomorphic to (S, εE) (resp.

(
Bl3 P

2,
( 1+ε

2

)
L
)
). Let S◦ → B◦ be the

appropriate Z
2
2-cover ramified at E◦ and branched along L◦.

Let (S, E) be the completion of (S◦, E◦) to a family of stable pairs over Spec(A), or a
ramified base change of it (see [4, Theorem 2.1]). Denote by (Sm, Em) the central fiber of
(S, E). Similarly, define (B,L) and (Bm,Lm) for (B◦,L◦).Wewant to show that (Sm, Em)

is aZ
2
2-cover of (Bm,Lm). This is automatic if we can show that theZ

2
2-action onS

◦ extends
toS, because the quotient ofS byZ

2
2 is isomorphic toB by the uniqueness of the completion

ofB◦ over Spec(A).
Fix any g ∈ Z

2
2 and consider the corresponding action αg : S ��� S. If we resolve the

indeterminacies

S′

S S,

α′
g

αg

then α′
g corresponds to a morphism αg from the log canonical model of (S′, E ′) to S ([24,

Definition 1.19]). But the log canonical model of (S′, E ′) is (S, E), so αg : S → S is the
desired extension of αg .

To study M we apply techniques from [3], which we now recall.

3.3 Stable toric pairs

Fix a torus T over C and let M be its character lattice. Let MR denote the tensor product
M ⊗Z R. Although our main interest is over C, note that the theory of stable toric pairs we
are about to review works in any characteristic.

Let X be a variety with T -action.We say that X is a stable toric variety if X is seminormal
and its irreducible components are toric varieties under the T -action. The toric boundary of
a stable toric variety is defined to be the sum of the boundary divisors of each irreducible
component which are not in common with other irreducible components. If X is projective
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and L is an ample and T -linearized invertible sheaf on X , we say that the pair (X ,L ) is a
polarized stable toric variety.

Assume that we have a polarized stable toric variety (X ,L ). Then we can associate to
each irreducible component Xi of X a lattice polytope Pi . These polytopes can be glued
together in the same way as X is the union of its irreducible components. This results into
a topological space ∪i Pi which is called the topological type of X . The topological type
comes together with a finite map ∪i Pi → MR, called the reference map, which embeds
each Pi as a lattice polytope in MR. The set of faces of the polytopes Pi , together with the
identifications coming from the gluing, is a complex of polytopes. Up to isomorphism, there
is a 1-to-1 correspondence between polarized stable toric varieties (for a fixed torus T ) and
the following data:

(1) A complex of polytopes P;
(2) A reference map ∪P∈P P → MR;
(3) An element of the cohomology group we are about to describe. For each P ∈ P , let

CP be the saturated sublattice of Z ⊕ M generated by (1, P), and let TP be the torus
Hom(CP , C

∗). The tori TP for P ∈ P define a sheaf of abelian groups T on the poset
P with the order topology. An element of H1(P, T ) describes the way the irreducible
components of X are glued together.

For more details see [3, Theorem 1.2.6] and [4, Sect. 4.3] .

Definition 3.9 Let (X ,L ) be a polarized stable toric variety and let Q ⊆ MR be a lattice
polytope. We say that X has type Q if the complex of polytopes P associated to X is a
polyhedral subdivision of the marked polytope (Q, Q ∩ M). In this case the reference map
is given by the inclusion of Q in MR. Furthermore, the toric boundary of X is the sum of the
divisors corresponding to the facets in P contained in the boundary of Q.

Definition 3.10 A stable toric pair is a polarized stable toric variety (X ,L ) together with
an effective Cartier divisor B which is the divisor of zeros of a global section of L . Also,
we require that B does not contain any torus fixed point (or equivalently any T -orbit). We
denote such stable toric pair simply by (X , B) asL ∼= OX (B). Two stable toric pairs (X , B)

and (X ′, B ′) are isomorphic if there exists an isomorphism f : X → X ′ that preserves the T -
action and such that f ∗B ′ = B. We say that a stable toric pair has type Q if the corresponding
polarized stable toric variety has type Q.

Remark 3.11 Let (X , B) be a stable toric pair and let P be the complex of polytopes corre-
sponding to the polarized stable toric variety (X ,OX (B)). If Xi is an irreducible component
of X , then the restriction B|Xi can be described combinatorially as follows (see [3, Theorem
1.2.7] in combinationwith [3, Lemma2.2.7, part 2]). Consider themarking on the correspond-
ing lattice polytope Pi given by Pi ∩ M . The lattice points in Pi correspond to monomials
as M is the character lattice of the torus T . Now, B|Xi is determined (not uniquely) by a
function f : Pi ∩ M → C

∗, which assigns to each monomial a corresponding coefficient,
which we want to be nonzero because B does not contain torus fixed points.

Example 3.12 Let B ⊆ (P1)3 be a smooth divisor of class (1, 1, 1) not containing torus
fixed points. Then ((P1)3, B) is a stable toric pair of type Q, where Q denotes the unit cube.
Recall that an appropriateZ

2
2-cover of B branched along�|B gives a D1,6-polarized Enriques

surface.
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3.4 The stack of stable toric pairs

Given a locally noetherian scheme S over C, a family of stable toric pairs (X,B) → S is a
proper flat morphism of schemes π : X → S together with a compatible TS = (T ×C S)-
action onX and an effective Cartier divisorB ⊆ X such thatπ |B is flat and the fiber (Xs,Bs)

over every geometric point s → S is a stable toric pair with the action induced by TS . Two
families of stable toric pairs over the same base are isomorphic if there exists an isomorphism
of pairs over S preserving the torus action. Given a lattice polytope Q, we say that a family
of stable toric pairs has type Q if every geometric fiber has type Q.

Remark 3.13 Let (X,B) → S be a family of stable toric pairs. Denote by π the morphism
X → S and let L = OX(B). Following [3, Proof of Lemma 2.10.1], for d ≥ 0 the sheaves
π∗L⊗d are locally free, and the torus action gives a decompositionπ∗L⊗d = ⊕

m∈M R(d,m)

into sheaves that are also locally free. This results into a locally free (Z ⊕ M)-graded OS-
algebra R = ⊕

(d,m)∈Z⊕M R(d,m) together with a section θ of R ofZ-degree 1 corresponding
to B. Conversely, a pair (R, θ), where R is a locally free graded OS-algebra and θ a degree
1 section, uniquely determines a family of stable toric pairs up to isomorphism (see [3, Proof
of Theorem 2.10.8] and [4, Sect. 4]).

Given a lattice polytope Q, we have a notion of stack MQ over C, whose objects are
families of stable toric pairs of type Q. The following theorem is due to Alexeev.

Theorem 3.14 [3, Theorem 1.2.15] Let Q be a lattice polytope and let MQ be the stack of
stable toric pairs of type Q. Then the following hold:

(1) MQ is a proper Deligne–Mumford stack with finite stabilizers;

(2) MQ has a coarse moduli spaceM
′
Q which is a projective scheme;

(3) The boundary ofM
′
Q is stratified according to the polyhedral subdivision of (Q, Q∩M);

(4) The normalization MQ of the main irreducible component of (M
′
Q)red is isomorphic to

the toric variety associated to the secondary polytope �(Q ∩ M).

Remark 3.15 Let Q be the unit cube. The moduli space of stable toric pairsMQ parametrizes
in a dense open subset the stable toric pairs ((P1)3, B) in Example 3.12. In this particular case,
the moduli spaceMQ is irriducible because, if P is any polyhedral subdivisions of (Q, Q ∩
Z
3), then P is regular and H1(P, T ) = {1} (this cohomology group was introduced earlier

in Sect. 3.3). To prove the former, we know from [37, Corollary 2.9] that a marked polytope
with a nonregular subdivision has a nonregular triangulation. But all the triangulations of
(Q, Q ∩ Z

3) are regular by [12, Theorem 3.2]. For the proof that H1(P, T ) = {1}, we refer
to [39, Sect. 6.3].

Since MQ is the toric variety associated to the secondary polytope �(Q ∩ Z
3), we also

know that dim(MQ) = #(Q ∩ Z
3) − dim(Q) − 1 = 4 [20, Chapter 7, Theorem 1.7].

Proposition 3.16 Let Q be the unit cube. Then there exists a rational mapMQ ��� M whose
fibers are Sym(Q)-orbits.

Proof LetP be the complex of polytopes given by Q and its faces. LetC be the set of vertices
of Q. Following [3, Definition 2.6.6], let MPfr[P,C](C) be the groupoid of stable toric pairs
((P1)3, B) over C with the linearized line bundle O(P1)3(B) in which the arrows are the
isomorphisms identical on the torus T . By [3, Lemma 2.6.7], we have that MPfr[P,C](C)

is equivalent to the quotient stack [G8
m/G

4
m], where G

8
m represents the space of coefficients
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of the divisor B = V
(∑

i, j,k=0,1 ci jk XiY j Zk

)
on (P1)3 and (λ, μ1, μ2, μ3) ∈ G

4
m acts on

G
8
m as follows:

(λ, μ1, μ2, μ3) · (. . . , ci jk, . . .) = (. . . , λμi
1μ

j
2μ

k
3ci jk, . . .).

Observe that the quotient G
8
m/G

4
m exists as a scheme and it is isomorphic to G

4
m . The sta-

bilizers of the action G
4
m � G

8
m are trivial. It follows that the quotient stack [G8

m/G
4
m]

is finely represented by G
8
m/G

4
m . This gives a dense open subset A of MQ , namely the

maximal subtorus G
4
m , with a universal family which can be realized as the quotient of

(G8
m × (P1)3, V (

∑
i, j,k=0,1 ci jk XiY j Zk)) by the G

4
m-action on the coefficients ci jk . There-

fore, we have an induced morphism MQ ��� M defined on A. ��

4 Stable replacement in one-parameter families

To realize the stable pair compactificationM as a finite quotient of the toric varietyMQ , we
first want to show that the rational map ϕ : MQ ��� M from Proposition 3.16 is defined over
MQ . To achieve this we use [19, Theorem 7.3]: let x ∈ MQ and let (A,m) be a DVR with
field of fractions K . Let g : Spec(K ) → MQ with image in the torus of MQ such that, if
g : Spec(A) → MQ is the unique extension of g by the valuative criterion of properness,
then x = g(m). Likewise, ϕ ◦ g has a unique extension ϕ ◦ g as an A-point of M. We want
to show that ϕ ◦ g(m) only depends on x , and that it is independent from the choice of g. To
prove this, we need (1) an explicit description of one-parameter families of stable toric pairs,
and (2) to compute the stable pair parametrized by ϕ ◦ g(m) ∈ M. Part (1) is contained in [3],
and we recall it in Sect. 4.1. The work in the current section and Sect. 5 addresses (2), which
is not automatic from knowing the limiting stable toric pair. We will need a modification:
namely, remove what we call corner cuts, see Sect. 4.2.

4.1 Families of stable toric pairs (X,B) over a DVR

Let (A,m) be a DVR with field of fractions K , uniformizing parameter t , and residue field
our fixed base field C. Let T be a torus over C with character lattice M . Let Q ⊆ MR be a
lattice polytope. Define

θ =
∑

m∈Q∩M

cm(t)th(m)x (1,m),

where, for all m ∈ Q ∩ M , cm(t) ∈ A, cm(0) ∈ C
∗, and h(m) ∈ Z. Observe that the map

m �→ h(m) gives a height function h : Q ∩ M → Z. Let Q+ ⊆ MR ⊕ R be the convex hull
of the half-lines (m, h(m) + R≥0), m ∈ Q ∩ M , and let Cone(Q+) ⊆ R ⊕ MR ⊕ R be the
cone over (1, Q+) with vertex at the origin. Then h defines the following (Z ⊕ M)-graded
A-algebra:

R = A[t�x (d,m) | (d,m, �) ∈ Cone(Q+) ∩ (Z ⊕ M ⊕ Z)].
Observe that θ ∈ R is an element of Z-degree 1. Let (X,B) → Spec(A) be the family of
stable toric pairs associated to (R, θ) (see Remark 3.13). If η is the generic point of Spec(A),
then Xη = Y × Spec(K ), where Y is the toric variety associated to the polytope Q. The
central fiber (Xm,Bm) is a stable toric pair whose corresponding polyhedral subdivision of
(Q, Q ∩ M) is induced by the height function h, and hence it is a regular subdivision. The
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Fig. 1 Modification P• of the
polyhedral subdivision P

equation ofBm is given by
∑

m∈Q∩M

cm(0)x (1,m) = 0.

For more details about this construction we refer to [3, Sect. 2.8].

4.2 Corner cuts

Definition 4.1 Let Q be the unit cube. We call corner cut a subpolytope of Q which is equal
to the convex hull of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) up to a symmetry of Q
(see Fig. 1 on the left). We call apex the vertex of the corner cut which is at the intersection
of three edges of the cube.

Notation 4.2 Let P be a polyhedral subdivision of a lattice polytope Q. We denote by Pi the
set of i-dimensional faces in P .

Definition 4.3 Let P be a polyhedral subdivision of (Q, Q ∩ Z
3). We define a polyhedral

subdivision P• of (Q, Q ∩ Z
3) via the following algorithm:

(1) R = P;
(2) If R contains no corner cut, define P• = R and stop. Otherwise, go to step (3);
(3) Let P ∈ R be a corner cut and let R ∈ R be that unique polytope sharing exactly a facet

with P . Define S = (R3 \ {P, R}) ∪ {P ∪ R}. Then redefine R to be the polyhedral
subdivision of Q generated by S. Go to step (2).

In Fig. 1 we give an explicit example of P• given P .

4.3 Themodified family (X•,B•)

Let Q be the unit cube and let (X,B) be a family of stable toric pairs of type Q over
Spec(A). Define X = Xm, B = Bm, and assume that the fiber of X over the generic point
is isomorphic to (P1)3K , where recall K is the field of fractions of A. Observe that the pair
(
B,

( 1+ε
2

)
�|B

)
may be not stable: first of all, the restriction �|B can be defined if � is

Q-Cartier (see Proposition 5.2). Therefore, we want to define a new family (X•,B•) which
is isomorphic to the original one in the complement of the central fiber, and such that the new
central fiber (X•, B•) satisfies that

(
B•,

( 1+ε
2

)
�•|B•

)
is a stable pair, where �• denotes the

toric boundary of X•. The stability of the pair
(
B•,

( 1+ε
2

)
�•|B•

)
is proved in Sect. 5.

To construct (X•,B•) we define another (Z ⊕ M)-graded A-algebra induced by θ as fol-
lows.Denote byP the regular polyhedral subdivision of (Q, Q∩Z

3) associated to (Xm,Bm).
Assume that P ∈ P3 is a corner cut and let P ′ ∈ P be that unique polytope sharing exactly
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one facet with P . Denote by L the unique hyperplane in R
3 ⊕ R containing the points

(m, h(m)) for m ∈ P ′ ∩ Z
3. If m is the apex of the corner cut P , then there exists a unique

positive rational number qm such that (m, h(m)− qm) ∈ L . Moreover, up to a finite ramified
base change, we can assume that qm is integral. Let us consider the height function

h•(m) =
{
h(m) − qm if m is the apex of a corner cut,
h(m) otherwise.

Define a new (Z⊕M)-graded A-algebra R• as we did in Sect. 4.1, but using h• in place of h.
Observe that R ⊆ R• is a degree preserving embedding of graded algebras. Therefore θ ∈ R•
is an element of Z-degree 1 and the pair (R•, θ) corresponds to a family X• → Spec(A) of
stable toric varieties together with a Cartier divisor B• ⊆ X• given by the vanishing of θ .
Observe that (Xη,Bη) and ((X•)η, (B•)η) are isomorphic over Spec(K ) by construction.
The equation of (B•)m is given by

∑

m∈Q∩M,
m is not an apex

cm(0)x (1,m) = 0.

So, in other words, we set equal to zero the coefficients of a monomials if it correspond to
the apex of a corner cut in P . For this reason, the central fiber ((X•)m, (B•)m) is not a stable
toric pair if and only if P contains a corner cut. On the other hand, ((X•)m,O((B•)m))

is always a polarized stable toric variety whose corresponding polyhedral subdivision of
(Q, Q ∩ Z

3) is P• (see Definition 4.3). Finally, observe that if P has no corner cuts, then
(X,B) = (X•,B•).

Remark 4.4 With the same notation introduced above, denote by (X , B) (resp. (X•, B•)) the
central fiber of (X,B) (resp. (X•,B•)). Then (X•, B•) only depends on (X , B) and it is
independent from the whole family (X,B) → Spec(A).

Definition 4.5 Let (X , B) be a stable toric pair of type Q. Define (X•, B•) to be the central
fiber of (X•,B•), where (X,B) → Spec(A) is a one-parameter family of stable toric pairs
with central fiber (X , B) and smooth generic fiber (such a family exists because MQ is
irreducible, hence (X , B) is smoothable). The pair (X•, B•) is well defined by Remark 4.4.
Observe that, if P has no corner cuts, then (X , B) = (X•, B•).

5 Analysis of stability

In the current section we continue the strategy outlined at the beginning of Sect. 4. More
precisely, with the same notation of Sect. 4.3, we show that (B•,

( 1+ε
2

)
�•|B•

P
) is a stable

pair.

5.1 Preliminaries

Notation 5.1 Consider a stable toric pair (X , B) of type Q and let P be the corresponding
polyhedral subdivision of (Q, Q ∩ Z

3). Let �P∈P3XP → X be the normalization of X ,
where XP is the toric variety corresponding to the polytope P . Then we denote by �P the
toric boundary of XP , by DP ⊆ XP the conductor divisor, and by BP the restriction to XP of
the preimage of B under the normalization morphism. Define X•

P ,�•
P , D•

P , B•
P analogously

with (X•, B•) instead of (X , B).
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(a) (b) (c) (d)

Fig. 2 Possible maximal dimensional polytopes in P• up to symmetries of Q

Proposition 5.2 Let (X , B) be a stable toric pair of type Q and let P be the associated
polyhedral subdivision of (Q, Q ∩Z

3). If P does not contain a corner cut, then � is Cartier.
If P contains a corner cut, then � is not Q-Cartier.

Proof Define a piecewise linear function on the normal fan of each maximal dimensional
polytope P ∈ P as follows. If uρ is the Z-generator of a ray ρ, then associate to uρ the
integer −dρ , where dρ is the lattice distance between the facet of 2P normal to the ray and
the lattice point (1, 1, 1). Observe that this number is 0 if the facet contains (1, 1, 1), and −1
otherwise. If P has no corner cuts, then this gives a Cartier divisor on X equal to �.

Now, assume that P contains a corner cut P . Denote by R that unique polytope in P
sharing exactly a facet with P . Let �1, �2, �3 be the three edges of P which do not contain
the apex. Observe that �i , i = 1, 2, 3, can be contained in two or three maximal dimensional
polytopes in P , P and R included.

If some �i is contained in three maximal dimensional polytopes, then take a point x ∈ X
lying on the torus invariant line corresponding to �i . If � is Q-Cartier, then m� is given by
the vanishing of one equation in an open neighborhood of x for some m > 0. However, the
vanishing locus of this equation on XR has codimension 2, which cannot be.

Assume that each �i is only contained in P and R. Denote by ν : Xν → X the nor-
malization. If � is Q-Cartier, then (ν∗�)|XR = �R − DR is also Q-Cartier. But this is a
contradiction because there is no Q-piecewise linear function on the normal fan of R cor-
responding to �R − DR (to see this, consider the normal cone to a vertex of R in common
with P). ��

Theorem 5.3 Let Q be the unit cube and let (X , B) be a stable toric pair of type Q. Consider
(X•, B•) as in Definition 4.5. Then

(
B•,

( 1+ε
2

)
�•|B•

)
is a stable pair (we have that �• is

Q-Cartier by Proposition 5.2).

5.2 Proof of Theorem 5.3

Let P be the polyhedral subdivision of (Q, Q ∩ Z
3) associated to (X , B). We show that for

all P ∈ P•, the pair
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable. As shown in Fig. 2,

there are four possibilities for P up to symmetries of Q.

Definition 5.4 We say that P ∈ P• has type (a) (resp. (b), (c), (d)) if P is equal to the
polytope in Fig. 2a (resp. (b), (c), (d)) up to a symmetry of Q.

Proposition 5.5 Given P of type (a), then
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable.
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Proof We have X•
P = P

3 with coordinates [W0 : . . . : W3], D•
P = V (W0) + V (W1),

�•
P − D•

P = V (W2) + V (W3), and B•
P = V (a0W0 + · · · + a3W3), where ai �= 0 for

all i = 0, . . . , 3. To find the equation of B•
P we used Remark 3.11, and ai �= 0 for all i

because no corner cut can be contained in P (recall the construction in Sect. 4.3). Then B•
P is

isomorphic to P
2 and�•

P restricts to B•
P giving four lines in general linear position, implying

that
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is log canonical. Finally, if L denotes a general

line in B•
P , then

KB•
P

+ D•
P |B•

P
+

(
1 + ε

2

)

(�•
P − D•

P )|B•
P

∼ εL,

which is ample. ��
Observation 5.6 The following standard fact will be useful in the analysis that follows. Let
L1, L2, L3 be three distinct concurrent lines inA

2. Then thepair
(
A
2,

( 1+ε
2

)
(L1 + L2 + L3)

)

is log canonical.

Proposition 5.7 Given P of type (b), then
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable.

Proof Wehave X•
P = V (W0W1−W2W3) ⊆ P

4, D•
P = V (W0W1−W2W3,W0),�•

P−D•
P =

V (W0W1 −W2W3,W1)+V (W0W1 −W2W3,W4). Finally, B•
P = V (a0W0 +· · ·+a4W4)∩

X•
P , where ai �= 0 for i = 1, . . . , 4 and a0 can possibly vanish (we can have at most one

corner cut contained in P). B•
P

∼= P
1×P

1 because it is a hyperplane section of the projective
cone X•

P which does not pass through the vertex.
Now let us study the restrictions of D•

P and�•
P −D•

P to B•
P . This boils down to understand

how the coordinate hyperplanes Hi = V (Wi ), i = 0, . . . , 4, restrict to B•
P . First of all, observe

that Hi cuts on B•
P a curveC of divisor class (1, 1). To show this, denote by (a, b) the divisor

class of C = B•
P ∩ Hi . If H ′ = V (a0W0 + · · · + a4W4) and H is a general hyperplane in

P
4, then the self-intersection of C is given by

C2 = Hi |B•
P

· Hi |B•
P

= Hi · Hi · B•
P = Hi · Hi · X•

P · H ′ = Hi · Hi · 2H · H ′ = 2.

On the other hand, C2 = (a, b)2 = 2ab = 2, implying that (a, b) = (1, 1). For i �= 4,
Hi ∩ B•

P is always reducible, so it is given by two curves of divisor classes (1, 0) and (0, 1).
If a0 �= 0, then it is easy to check that H4 ∩ B•

P is smooth for a general choice of the
coefficients, but it can possibly break into two curves. In any case, �•

P restricts to B•
P giving

a simple normal crossing divisor, implying that
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is

log canonical.
If a0 = 0, then H4 ∩ B•

P is irreducible and it passes through the singular point of H1 ∩
B•
P . In this case we have that

(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is log canonical by

Observation 5.6.
Finally, observe that

KB•
P

+ D•
P |B•

P
+

(
1 + ε

2

)

(�•
P − D•

P )|B•
P

∼ (−2,−2) + (1, 1)

+
(
1 + ε

2

)

(2, 2) = ε(1, 1),

which is ample. ��
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Proposition 5.8 Given P of type (c), then
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable.

Proof We have X•
P = P

2 × P
1 with coordinates ([X0 : X1 : X2], [Y0 : Y1]), D•

P = V (X2),
�•

P − D•
P = V (X0X1Y0Y1), and B•

P = V ((a0X0 + a1X1 + a2X2)Y0 + (b0X0 + b1X1 +
b2X2)Y1), where a0, a1, b0, b1 �= 0 and at most one among a2 and b2 can be zero because
there is at most one corner cut contained in P . Let us start by assuming that a2b2 �= 0.

If B•
P is singular, then one can show that (b0, b1, b2) = λ(a0, a1, a2) for some λ ∈ C

∗.
Therefore, the equation of B•

P becomes

(a0X0 + a1X1 + a2X2)(Y0 + λY1) = 0,

where V (Y0 + λY1) ∼= P
2 and V (a0X0 + a1X1 + a2X2) ∼= P

1 × P
1 are glued along a

ruling of P
1 × P

1 and the line a0X0 + a1X1 + a2X2 = 0 in P
2. The restrictions of D•

P
and �•

P − D•
P to these two irreducible components are described in Remark 5.10 (c3). In

this case, to conclude that
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable, we reduce the

question to each connected component of the normalization of B•
P and we apply what we

already proved in the cases (a) and (b) above.
Now let us assume that B•

P is smooth (and hence irreducible). By the discussion above,
the two vectors (a0, a1, a2) and (b0, b1, b2) are not proportional. Denote by p the point of
intersection of the two lines a0X0 + a1X1 + a2X2 = 0 and b0X0 + b1X1 + b2X2 = 0 in
P
2. If π : B•

P → P
2 is the restriction to B•

P of the projection map P
2 × P

1 → P
2, then π

restricted to the complement of π−1(p) is an isomorphism, and π−1(p) ∼= P
1. This proves

that B•
P

∼= F1. In this case, let us explain how D•
P |B•

P
depends on the coefficients ai , b j . The

restriction D•
P |B•

P
has equation

{
X2 = 0,
(a0X0 + a1X1)Y0 + (b0X0 + b1X1)Y1 = 0.

By an argument analogous to what we did for B•
P , we have that this restriction is irreducible

if and only if (a0, a1) and (b0, b1) are not proportional. In this case, D•
P |B•

P
is a section of

B•
P with self-intersection 1. If (a0, a1) and (b0, b1) are proportional, then the equation of

D•
P |B•

P
becomes

{
X2 = 0,
(a0X0 + a1X1)(Y0 + λY1) = 0

for some λ ∈ C
∗. The irreducible component V (X2, a0X0 + a1X1) (resp. V (X2, Y0 +λY1))

is the exceptional section (resp. a fiber) of B•
P .We are left with understanding (�•

P −D•
P )|B•

P
,

and for this we need to study how V (Xi ), V (Yi ), i = 0, 1, restrict to B•
P . But V (Yi ) restricts

giving a fiber, and we can study V (Xi )|B•
P
in the same way we did for D•

P |B•
P
. Observe that

at most one among V (X0)|B•
P
, V (X1)|B•

P
, D•

P |B•
P
can be reducible (otherwise B•

P would be

reducible). We conclude that
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is log canonical.

Now we consider the case where exactly one among a2 and b2 is zero. It is easy to
check that B•

P is automatically smooth and a description similar to the one above applies,
with the only difference that the restriction (�•

P − D•
P )|B•

P
can acquire a triple intersection

point. In this case we know that
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is log canonical by

Observation 5.6.

123



1836 L. Schaffler

For the ampleness condition, let h be a section of self-intersection 1 on B•
P

∼= F1 and let
f be a fiber. Then

KB•
P

+ D•
P |B•

P
+

(
1 + ε

2

)

(�•
P − D•

P )|B•
P

∼ −2h − f + h

+
(
1 + ε

2

)

(2h + 2 f ) = ε(h + f ),

which is ample. ��

Proposition 5.9 Given P of type (d), then
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
is stable.

Proof We have X•
P = (P1)3 with coordinates ([X0 : X1], [Y0 : Y1], [Z0 : Z1]), D•

P = ∅,
�•

P = V (X0X1Y0Y1Z0Z1), and B•
P = V

(∑
i, j,k=0,1 ci jk XiY j Zk

)
, where any two distinct

coefficients ci jk and ci ′ j ′k′ cannot be simultaneously zero if (i, j, k) and (i ′, j ′, k′) are vertices
of the same edge of the cube. This is because inside Q we cannot fit two corner cuts with
apices lying on the same edge.

Let us first assume that B•
P is smooth (hence irreducible), which holds for a general

choice of the coefficients ci jk by Bertini’s Theorem. Then the anticanonical class −KB•
P

=
−(K(P1)3 + B•

P )|B•
P

= (1, 1, 1)|B•
P
is ample and K 2

B•
P

= 6, implying that B•
P

∼= Bl3 P
2 (see

[11, Exercise V.21(1)]). If all the ci jk are nonzero, then the restriction �•
P |B•

P
can be as in

Proposition 2.7 (general case), or some of these lines can break into the union of two incident
(−1)-curves. If some coefficients ci jk are zero, then the lines configuration �•

P |B•
P
acquires

triple intersection points. In any case, the pair
(
B•
P ,

( 1+ε
2

)
�•

P |B•
P

)
is log canonical, where

we use Observation 5.6 in the case of triple intersection points.
Now assume that B•

P is irreducible and singular. Let p ∈ B•
P be a singular point. We

prove that (1) p is a singularity of type A1, (2) that p is the only singular point of B•
P ,

and (3) that p lies on at most one irreducible component of �•
P . We can assume that p

is in the form ([1 : a], [1 : b], [1 : c]). The invertible change of coordinates X ′
0 = X0,

X ′
1 = X1 − aX0 and so on, sends B•

P to an isomorphic surface B ′
P which is singular at

p′ = ([1 : 0], [1 : 0], [1 : 0]). If we set x ′ = X ′
1

X ′
0
, y′ = Y ′

1
Y ′
0
, z′ = Z ′

1
Z ′
0
, then the equation of B ′

P

in this affine patch is in the form

c0x
′y′ + c1x

′z′ + c2y
′z′ + c3x

′y′z′ = 0.

The coefficients c0, c1, c2 are nonzero because B ′
P is irreducible. Therefore it is clear that

the singularity is of type A1, proving (1). After homogeneizing the above equation and by
checking all the affine patches, we can see that p′ is the only singularity of B ′

P , implying
(2). Finally, if we assume that p lies on two irreducible components of �•

P , then we can
compute that two coefficients ci jk, ci ′ j ′k′ are zero with (i, j, k), (i ′, j ′, k′) adjacent vertices
of the cube, which cannot be. So (3) holds as well. To prove that

(
B•
P ,

( 1+ε
2

)
�•

P |B•
P

)
is log

canonical, we show that
(
X•
P ,

( 1+ε
2

)
�•

P + B•
P

)
is log canonical and then we use inversion

of adjunction (see [23]). This is done in two steps.

(i) First we show that
(
X•
P ,

( 1+ε
2

)
�•

P + B•
P

)
is log canonical in a neighborhood of a

quadruple intersection point q of �•
P + B•

P . Note that in this case q must be differ-
ent from the singular point p by (3) above. Assume without loss of generality that
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q = ([1 : 0], [1 : 0], [1 : 0]), and therefore c000 = 0. In an affine neighborhood of q the
equation of B•

P becomes

c100x + c010y + c001z + c110xy + c101xz + c011yz + c111xyz = 0,

where we must have c100, c010, c001 nonzero. The affine equations for �•
P at q are x =

0, y = 0, z = 0. Therefore, locally at q , the four irreducible components of�•
P + B•

P are
equivalent to hyperplanes in general linear position. It is a standard calculation to show
that this singularity of

(
X•
P ,

( 1+ε
2

)
�•

P + B•
P

)
is log canonical.

(ii)
(
X•
P ,

( 1+ε
2

)
�•

P + B•
P

)
is log canonical in the complement of the quadruple intersection

points. This is true in the complement of�•
P because B•

P has atmost an A1 singularity. Let
H ⊆ �•

P be an irreducible component. We show that
(
X•
P ,�•

P + B•
P

)
is log canonical

in a neighborhood of H away from the quadruple intersection points. But this follows
from inversion of adjunction because (H , (�•

P − H + B•
P )|H ) is log canonical away

from the quadruple intersection points. More in detail, H ∼= P
1 ×P

1, (�•
P − H)|H gives

the toric boundary of H , and B•
P |H is a (1, 1)-curve with no components in common

with the toric boundary.

We are left with the case B•
P reducible. Up to symmetries, decompositions into two

irreducible components are given by

(aX0Y0 + bX0Y1 + cX1Y0 + dX1Y1)(eZ0 + f Z1) = 0,

where the coefficients are nonzero and satisfy ad �= bc. Both irreducible components are
isomorphic to P

1 × P
1. Decompositions into three irreducible components are given by

(aX0 + bX1)(cY0 + dY1)(eZ0 + f Z1) = 0,

where the coefficients are nonzero. Note that up to Aut((P1)3) there is only one choice of
such coefficients. The three irreducible components are isomorphic to P

1×P
1. In both cases,

information about how the irreducible components are glued together and how �•
P restricts

to these can be found in Remark 5.10 (d2) and (d3). From these observations we can argue

that
(
B•
P ,

( 1+ε
2

)
�•

P |B•
P

)
is semi-log canonical.

To conclude, KB•
P

+ ( 1+ε
2

)
�•

P |B•
P
is ample because it is the pullback to B•

P of

KX•
P

+ B•
P +

(
1 + ε

2

)

�•
P ∼ ε(1, 1, 1),

which is ample. ��
The last proposition concludes the proof of Theorem 5.3. ��

Remark 5.10 The proof of Theorem 5.3 gives an explicit description of the possible stable

pairs
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

)
for all the stable toric pairs (X , B) of type Q.

Here we summarize these possibilities. In Fig. 3, a triangle (resp. trapezoid, parallelogram)
means B•

P
∼= P

2 (resp. F
1, P

1 × P
1). D•

P |B•
P
is represented by the thickened segments and

(�•
P − D•

P )|B•
P
by the colored segments. First, let us assume that P has no corner cuts, so

that (X , B) = (X•, B•). As a consequence of this, in the cases that follow the divisor�P |BP

is simple normal crossing.

(a) BP ∼= P
2 and DP |BP (resp. (�P − DP )|BP ) consists of two lines;

(b) BP ∼= P
1 ×P

1 and DP |BP consists of two incident rulings. (�P − DP )|BP is given by
two incident rulings and a curve of divisor class (1, 1)which can possibly be reducible;
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(a) (b)

(c1) (c2) (c3)

(d1) (d2) (d3)

Fig. 3 The pictures represent
(
B•
P , D•

P |B•
P

+
(
1+ε
2

)
(�•

P − D•
P )|B•

P

)
for P ∈ P• (see Remark 5.10). The

restriction (�•
P − D•

P )|B•
P
is in color and D•

P |B•
P
is thickened. In (d2) the two surfaces are glued along the

thickened curves

(c1) BP ∼= F1 and DP |BP is a line disjoint from the exceptional divisor. (�P − DP )|BP is
given by two fibers and two lines disjoint from the exceptional divisor. Exactly one of
these last two lines can possibly break into the union of the exceptional divisor and a
fiber;

(c2) BP ∼= F1 and DP |BP is the union of the exceptional divisor and a fiber. (�P −DP )|BP

is given by two fibers and two lines disjoint from the exceptional divisor;
(c3) BP is isomorphic to the union of P

2 and P
1 × P

1 glued along a line in P
2 and a ruling

in P
1 × P

1. DP |BP consists of a line in P
2 and a ruling in P

1 × P
1. (�P − DP )|BP

is given by two lines on the P
2 component and four rulings on P

1 × P
1 arranged as

shown in Fig. 3c3;
(d1) BP ∼= Bl3 P

2 and DP |BP = ∅.�P |BP is as in Proposition 2.7 (this is the general case),
or some lines can possibly break into two intersecting (−1)-curves;

(d1′) BP is a singular del Pezzo surface of degree 6 with exactly one A1 singularity. This
singularity can lie on at most one irreducible component of �P |BP ;

(d2) BP is isomorphic to the union of two copies of P
1 × P

1 glued along a ruling and
an irreducible curve of divisor class (1, 1). �P |BP is given by four rulings on one
component and six rulings on the other. These are arranged as shown in Fig. 3d2;

(d3) BP is isomorphic to the union of three copies of P
1 ×P

1 glued along rulings as shown
in Fig. 3d3. �P |BP consists of four rulings on each component as shown in the same
figure.

Now assume that P has a corner cut and let P ∈ P•. In this case, the possibilities for the pair(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
are as above, with the difference that (�•

P −D•
P )|B•

P

is allowed to have triple intersection points.
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6 Study of the KSBA compactification

We are now ready to combine the results from Sects. 4 and 5 to prove that the rational map
MQ ��� M extends to the wholeMQ (see Theorem 6.3). As a consequence, in Theorem 6.4
we realize the stable pair compactificationM as a finite quotient ofMQ . Finally, in Sect. 6.2
we study the structure of the boundary ofM and list the degenerations parametrized by it.

6.1 ThemorphismMQ → M

We start by recalling a result from [19].

Notation 6.1 Consider a map g : Spec(K ) → Y , where K is the field of fractions of a
DVR (A,m) with residue field our fixed base field C. Let Y be a proper scheme over a
noetherian scheme S. By the valuative criterion of properness, g uniquely extends to a map
g : Spec(A) → Y . We denote by lim g the point g(m).

Theorem 6.2 [19, Theorem 7.3] Suppose X1 and X2 are proper schemes over C with X1

normal. Let U ⊆ X1 be an open dense subset and consider a morphism f : U → X2. Then
f extends to a morphism f : X1 → X2 if and only if, for any point x ∈ X1, any DVR (A,m)

as in Notation 6.1, and any morphism g : Spec(K ) → U such that lim g = x, the point
lim( f ◦ g) in X2 only depends on x, and not on the choice of g.

Theorem 6.3 Let Q be the unit cube. Then there is a surjective morphism MQ → M which
on C-points is given by

(X , B) �→
(

B•,
(
1 + ε

2

)

�•|B•
)

.

Proof Let X1 = MQ and X2 = M. Let U = Asm, where Asm is the open subset of the torus
A ⊆ MQ in the proof of Proposition 3.16 parametrizing stable toric pairs ((P1)3, B) with B
smooth. We obtain a morphism X1 → X2 by extending f : U → X2 to the whole X1 using
Theorem 6.2.

Let x ∈ X and let (A,m) be any DVR. Consider a map g : Spec(K ) → U such that
lim g = x . Let (X , B) be the stable toric pair of type Q parametrized by x . Denote by
� the toric boundary of X . If we prove that lim( f ◦ g) corresponds to the stable pair(
B•,

( 1+ε
2

)
�•|B•

)
, then we are done by Theorem 6.2, because this shows that lim( f ◦ g)

only depends on x , and not from the choice of g (see Remark 4.4).
Let (U × (P1)3,S) → U be the restriction to U of the universal family of stable toric

pairs over A constructed in the proof of Proposition 3.16. Let ((P1
K )3,B◦) be the pullback

of (U × (P1)3,S) under the map g and denote by (X,B) its completion over Spec(A), or
a finite ramified base change of it, as a family of stable toric pairs. Note that by construc-
tion the central fiber of (X,B) is (X , B). Consider (X•,B•) and, if D denotes the toric
boundary of (P1)3, let DK be the closure of DK = D × Spec(K ) in X•. Then the central
fiber of

(
B•,

( 1+ε
2

)
DK |B•

)
, which is

(
B•,

( 1+ε
2

)
�•|B•

)
by construction, is the stable pair

corresponding to lim( f ◦ g). ��
Theorem 6.4 Let MQ → M be the morphism in Theorem 6.3. Then the induced morphism
MQ/Sym(Q) → M is an isomorphism.

Proof The group Sym(Q) acts onMQ becauseMQ is the projective toric variety associated
to the secondary polytope of (Q, Q ∩ Z

3). The modular interpretation of the action is the
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Fig. 4 Subpolytopes of Q which can be subdivided further only once in the proof of Theorem 6.4

following: Sym(Q) acts on the stable toric pair (X , B) by changing the torus action on it. In
particular, the morphismMQ → M is Sym(Q)-equivariant. Therefore, we have an induced
morphismMQ/Sym(Q) → M.

The fibers of the restriction of MQ → M to Asm are exactly Sym(Q)-orbits by Proposi-
tion 2.7, and hence the morphismMQ/Sym(Q) → M is bijective on a dense open subset. In
what follows,we show thatMQ → M is quasi-finite, which implies thatMQ/Sym(Q) → M
is an isomorphism by Zariski’s Main Theorem.

To prove that MQ → M is quasi-finite, it is enough to check that no 1-dimensional
boundary stratum of MQ is contracted. These strata correspond to the minimal elements of
the poset of regular polyhedral subdivisions of (Q, Q∩Z

3)which are not triangulations (recall
that the polyhedral subdivisions of (Q, Q∩Z) are regular, see the proof of Proposition 3.15). If
P is one of these polyhedral subdivisions, then it contains a subpolytope of Q with vertices in
Q∩Z

3 which can be subdivided further only once. A simple enumeration shows thatP has to
contain one of the polytopes listed in Fig. 4. Denote by P one of such polytopes and let (X , B)

be a stable toric pair with P as corresponding polyhedral subdivision of (Q, Q ∩ Z
3). Then,

as (X , B) varies among the stable toric pairs parametrized by the 1-dimensional boundary
stratum corresponding to P , (B•,

( 1+ε
2

)
�•|B•) describes a 1-dimensional family of stable

pairs. To see this, if P• ∈ P• is the polytope corresponding to P ∈ P , then the irreducible
component of (B•,

( 1+ε
2

)
�•|B•) corresponding to P• shows the variation of this parameter.

In conclusion, the 1-dimensional boundary stratum corresponding to P is not contracted. ��

6.2 Description of the boundary of M

Definition 6.5 The boundary of the moduli space M is the closed subset whose C-points
parametrize stable pairs (B, D)where B is reducible. Let (B, D) be a stable pair parametrized
by the boundary, and consider the locus of points in M parametrizing stable pairs (B ′, D′)
such that B ∼= B ′. We call the closure of such locus a stratum.

Theorem 6.6 The boundary ofM is stratified as shown inFig. 6. For each stratumwe show the
degeneration of (Bl3 P

2, 1+ε
2

∑3
i=1(�i +�′

i )) parametrized by a general point in the stratum.
The strata are organized from bottom to top in increasing order of dimension. In particular,
the boundary consists of three irreducible components: two divisors D1,D2 and a curve C
with D1 ∩ C = ∅. If Q is the unit cube, the strata containing the leftmost 0-dimensional
stratum correspond bijectively to the polyhedral subdivisions of (Q, Q ∩Z

3) without corner
cuts up to symmetries of Q.

Proof By Theorem 6.4 any stable pair parametrized byM is in the form
(
B•,

( 1+ε
2

)
�•|B•

)

for some stable toric pair (X , B) parametrized byMQ . In Remark 5.10 we listed all the possi-

bilities for the pairs
(
B•
P , D•

P |B•
P

+ ( 1+ε
2

)
(�•

P − D•
P )|B•

P

)
, which can be glued together for
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Fig. 5 Polyhedral subdivisions of (Q, Q∩Z
3)without corner cuts up to symmetry and ordered by refinement.

The arrows indicate refinement

P ∈ P• to recover
(
B•,

( 1+ε
2

)
�•|B•

)
, whereP• is a polyhedral subdivisions of (Q, Q∩Z

3)

without corner cuts. These subdivisions are shown in Fig. 5 up to symmetries of Q. The end
result is shown in Fig. 6, where for each stratum we show the stable pair parametrized by
the general point in the stratum. The three colors used to draw the divisor have the following
meaning: lines sharing the same color come from the same pair of lines on the original Bl3 P

2.
Note that, even though we use three different colors, we do not distinguish the three pairs
because we quotiented by S3 in our definition ofM. Thickened segments indicate lines along
which two irreducible components are glued together. The claimed combinatorial interpre-
tation of the strata containing the leftmost 0-dimensional stratum follows after comparing
Figs. 5 and 6. ��

Remark 6.7 We compare the generic degenerations of Bl3 P
2 together with the three pairs of

weighted lines 1+ε
2

∑3
i=1(�i +�′

i ) parametrized by the boundary ofMwith the corresponding

stable degenerations of six lines 1+ε
2

∑3
i=1(�i + �

′
i ) in P

2 after contracting the three disjoint
exceptional curves. Let D1,D2, and C be the irreducible boundary components of M in
Theorem 6.6. Recall that the generic degenerations parametrized by these are in Fig. 6.

(1) The degeneration parametrized generically byD1 is obtained by letting the lines �1, �2, �3
break into two (−1)-curves, so that in the limit there are two double (−1)-curves. This
is illustrated in the top-left of Fig. 7. The corresponding degeneration of P

2 has �1 = �2

and �3 passes through �1 ∩ �
′
1. Its stable replacement is [5, Figure 5.12 (11)].

(2) The degeneration parametrized generically by D2 is obtained by letting the lines �1, �2
break into the gluing of two (−1)-curves, so that in the limit there is a double (−1)-curve.
This is illustrated in the top-middle of Fig. 7. The corresponding degeneration of P

2 has
�1 = �2, and its stable replacement is [5, Figure 5.12 (5)].
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Fig. 6 Stratification of the boundary ofM and degenerations of Bl3 P
2 with the three pairs of weighted lines

parametrized by it. The symbol “∪” between two surfaces indicates that the two surfaces are glued together
along the corresponding thickened curves. The arrows indicate specialization

Fig. 7 Degenerations of line arrangements in Bl3 P
2 and P

2 discussed in Remark 6.7

(3) The degeneration parametrized generically by C is obtained by letting two lines in one
pair collide, say �1 = �′

1 (see the top-right of Fig. 7). Then the correspondingdegeneration

of P
2 has �1 = �

′
1, and the stable replacement is again [5, Figure 5.12 (5)].

6.3 Degenerations of Enriques surfaces

After describing the degenerations of Bl3 P
2 together with the three pairs of weighted lines

parametrized byM, we discuss the overlying Z
2
2-covers, which correspond to degenerations

of Enriques surfaces.

(1) Consider the stable pair parametrized by the rightmost 0-dimensional stratum in Fig. 6.
Then its Z

2
2-cover is isomorphic to the quotient of

V ((X2
0 − X2

1)(Y
2
0 − Y 2

1 )(Z2
0 − Z2

1)) ⊆ (P1)3,
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by the involution ι (see Definition 2.5 and the proof of Proposition 5.9). This quotient
consists of three copies ofP

1×P
1 glued along rulings in such a way that its dual complex

gives a triangulation of the real projective plane.
(2) The stable pair parametrized by a general point in C has Z

2
2-cover isomorphic to the

quotient of

V ((X2
0 − X2

1)(Y
2
0 Z

2
0 + Y 2

1 Z
2
0 + Y 2

0 Z
2
1 + λY 2

1 Z
2
1)) ⊆ (P1)3, λ �= 0, 1,

by ι (see Definition 2.5 and the proof of Proposition 5.9). If we define

E = V (Y 2
0 Z

2
0 + Y 2

1 Z
2
0 + Y 2

0 Z
2
1 + λY 2

1 Z
2
1) ⊆ P

1 × P
1,

then the irreducible components of this Z
2
2-cover are a copy of P

1 × P
1, and an elliptic

fibration F over P
1 with fibers isomorphic to E and two double fibers. These surfaces

are glued along E ⊆ P
1 × P

1 and a reduced fiber of F .
(3) Consider the stable pair parametrized by a general point in the boundary divisor D2. Let

us describe the Z
2
2-cover X of one of the two irreducible components, which are both

isomorphic to F1. Let h be a section of self-intersection 1 and f a fiber. Then the building
data for the cover π : X → F1 is given by Da ∼ 2 f + h, Db ∼ Dc ∼ h, implying that

KX ∼Q π∗
(

KF1 + 1

2
(Da + Db + Dc)

)

∼Q −1

2
π∗(h).

This shows that −KX is big, nef, and K 2
X = 1. Therefore, X is a weak del Pezzo surface

of degree 1. The total degeneration is given by two of such weak del Pezzo surfaces
glued along an elliptic curve.

(4) Let X be theZ
2
2-cover of the P

1×P
1 in Fig. 3b. Denote by �1 and �2 two incident rulings.

Then the building data for the cover π : X → P
1 × P

1 is given by Da ∼ Db ∼ Dc ∼
�1 + �2. From this we obtain that KX ∼Q − 1

2π
∗(�1 + �2). It follows that −KX is ample

and K 2
X = 2. Hence, X is a del Pezzo surface of degree 2. Gluing together three of these

gives the surface parametrized by a general point in D1.
(5) Let us describe theZ

2
2-cover of theP

2 in Fig. 3a. If � denotes a line inP
2, then the building

data for the cover π : X → P
2 is Da ∼ Db ∼ 2�, Dc ∼ 0. Therefore, KX ∼Q −π∗(�),

implying that −KX is ample and K 2
X = 4. Hence, X is a del Pezzo surface of degree 4.

(6) Let us describe the Z
2
2-cover of the P

1 × P
1-component in Fig. 3c3. If �1 and �2 denote

two incident rulings, then the building data for the cover π : X → P
1 × P

1 is given by
Da ∼ 2�1 + �2, Db ∼ Dc ∼ �2. Therefore, KX ∼Q − 1

2π
∗(2�1 + �2), −KX is ample,

K 2
X = 4, and X is a del Pezzo surface of degree 4.

We summarize part (2), (3), and (4) of the calculations above in the next corollary.

Corollary 6.8 Let D1,D2, and C be the irreducible components of the boundary of M as
in Theorem 6.6. Then the surfaces parametrized by the general point of D1,D2, and C are
respectively

(1) the gluing of three del Pezzo surfaces of degree 2 so that the dual complex is a 2-simplex
and the double locus consists of three smooth rational curves;

(2) the gluing of two weak del Pezzo surfaces of degree 1 along an elliptic curve;
(3) the gluing of P

1 × P
1 and an elliptic ruled surface along a (2, 2) curve and a reduced

fiber.

Remark 6.9 A Coble surface is a smooth rational projective surface X with | − KX | = ∅
and | − 2KX | �= ∅ (see [15]). These are related to our degenerations of Enriques surfaces

123



1844 L. Schaffler

as follows. Let S be the appropriate Z
2
2-cover of Bl3 P

2 branched along
∑3

i=1(�i + �′
i ),

and assume that this line configuration has exactly one triple intersection point. Then S
has a quotient singularity of type (1,1)

4 over this triple intersection point, and the minimal
resolution S̃ of S is a Coble surface. This follows from Castelnuovo rationality criterion,
and from KS̃ = − 1

2 E , where E is the exceptional divisor over the quotient singularity. The
Zariski closure in M of the locus of points parametrizing these surfaces S defines a divisor.

7 Morphism from KSBA to Baily–Borel compactification

In what follows we construct a morphism from the KSBA compactificationM to the Baily–
Borel compactification ofD/�, whereD is the period domain parametrizing D1,6-polarized
Enriques surfaces (details in Sect. 7.2). Sect. 7.1 contains a technical result which is funda-
mental to construct such morphism.

7.1 Generalized type of degenerations of stable K3 surface pairs

Remark 7.1 In Sect. 7 our focus moves from Enriques surfaces to K3 surfaces. The reason
is that in Theorem 7.6 we compute the limits of one-parameter families of D1,6-polarized
Enriques surfaces in the Baily–Borel compactification of D/�. This is done by considering
the corresponding K3 covers.

Let � be the unit disk {t ∈ C | |t | < 1} and let �∗ = � \ {0}. We are interested in proper
flat families X∗ → �∗ with X∗ smooth and such that the fiber X∗

t is a smooth K3 surface for
all t ∈ �∗. Equip X∗ with an effective relative Cartier divisorH∗ such that (X∗,H∗) → �∗
is a family of stable pairs. Let X be a semistable degeneration with KX ∼ 0 completing X∗
over � (see [27,36]). We call X → � Kulikov degeneration for short. Recall that the central
fiber X0 can be of type I, II or III (see [27, Theorem II]). In type II, denote by j(X0) the
j-invariant of one of the mutually isomorphic elliptic double curves in X0. Then defineH to
be the closure of H∗ inside X (note that H is flat over �). On the other hand, we can define
a second completion of (X∗,H∗) over �, which we denote by (X′,H′), such that (X′

0, εH′
0)

is a stable pair for 0 < ε � 1.

Definition 7.2 With the notation introduced above, define the dual graph of X′
0 as follows.

Draw a vertex vi for each irreducible component Vi of X′
0. Then, given any two distinct

irreducible components Vi and Vj , draw one edge between vi and v j for each irreducible
curve in Vi ∩ Vj . If an irreducible component Vi self-intersects along a curve C , then draw
one loop on vi for each irreducible component of C . Denote by G(X′

0) the dual graph of X
′
0.

Definition 7.3 Let X′ as defined above. We say that X′
0 has generalized type I, II, or III if the

following hold:

• Type I: G(X′
0) consists of one vertex and X′

0 has at worst Du Val singularities;
• Type II: G(X′

0) is a chain and X′
0 has at worst elliptic singularities. If there are at least

two vertices and the double curves are mutually isomorphic elliptic curves, then denote
by j(X′

0) the j-invariant of one of these;
• Type III: otherwise.

The proof of the following theorem, which builds upon the proof of [28, Theorem 2.9],
was communicated to me by Valery Alexeev.
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Fig. 8 Boundary of the
Baily–Borel compactification
D/�

∗

Theorem 7.4 With the notation introduced above,X0 andX′
0 have the same type. In addition,

if X0,X
′
0 have type II and j(X′

0) can be defined, then j(X0) = j(X′
0).

Proof The proof of [28, Theorem 2.9] describes a procedure to construct the unique stable
model (X′, εH′) by modifying (X,H). This procedure consists of the following two steps:

• Step 1: ReplaceXwith another Kulikov degeneration such thatH is nef and does not con-
tain double curves or triple points. This may involve, among other things, base changes;

• Step 2: For n ≥ 4, the line bundle OX(nH) induces a birational morphism (X,H) →
(X′,H′) where X′ = Proj�

(⊕
n≥0 OX(nH)

)
(see [43, Theorem 2, part (i)]). This bira-

tional morphism contracts some components or curves in the central fiber X0.

In step 1, the new Kulikov degeneration is obtained from the one we started by applying
elementary modifications of type 0, I, II (see [18, pages 12–15] for their definitions), base
changes, and blow ups of X0 along double curves or triple points. The elementary modifica-
tions and the blow ups do not change the type of the central fiber. A description of how the
central fiber is modified after a base change can be found in [17], and also in this case the
type does not change. In step 2, it follows from our definition of generalized type thatX′

0 has
the same type as X0.

This shows that if X0 has type I, II, or III, then X′
0 has type I, II, or III respectively. The

converse follows from this and from the uniqueness of the stable model. The claim about the
j-invariants also follows from our discussion. ��

7.2 Map to the Baily–Borel compactification

Let L be the lattice 〈2〉⊕2 ⊕ 〈−1〉⊕4. By [34, Sect. 4], we have that

D = {[v] ∈ P(L ⊗ C) | v · v > 0 and v2 = 0}
is the period domain for D1,6-polarized Enriques surfaces. If� denotes the isometry group of
L , then the Baily–Borel compactificationD/�

∗
was studied in [34, Sect. 7]. More precisely,

the boundary of D/�
∗
consists of two rational 1-cusps and three 0-cusps. The 1-cusps are

called even and odd. The 0-cusps are called even, odd of type 1, and odd of type 2. These
are arranged as shown in Fig. 8. In Theorem 7.6 we show there exists a birational morphism
M → D/�

∗
. Before this we need a preliminary lemma.

Lemma 7.5 There exists a compactification D/�
′
of D/� obtained from D/�

∗
by gluing

the three 0-cusps together and by gluing the two 1-cusps to a rational curve with one node
whose smooth points correspond to isomorphism classes of elliptic curves. Moreover,D/�

∗

is the normalization of D/�
′
.

Proof We use [16, Theorem 5.4], which we briefly recall. Let X ′ be a scheme, Y ′ a closed
subscheme of X ′, and Y ′ → Y a finite morphism. Consider the ringed space X = X ′ �Y ′ Y
and the cocartesian square
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Y ′ Y

X ′ X .

Let us assume that any finite sets of points in X ′ (resp. Y ) are contained in an open affine
subset of X ′ (resp. Y ). Then X is a scheme verifying the same property on finite sets of points,
the above diagram is cartesian, Y → X is a closed immersion, the morphism X ′ → X is
finite, and it induces an isomorphism X ′ \ Y ′ ∼= X \ Y .

Back to our case, denote by Ceven and Codd the two rational 1-cusps of the Baily–Borel
compactification D/�

∗
. Then by [34, Sect. 7.3] we have that Ceven and Codd are degree 3

covers of the modular curve X(1) ∼= P
1. So first consider the finite morphism Ceven → X(1)

and let X1 = D/�
∗ �Ceven X(1) (the hypothesis on finite sets of points is satisfied because

D/�
∗
and X(1) are projective). Repeat the gluing on X1 by considering Codd → X(1) to

obtain X2. Now glue together the two copies of X(1) in X2 to obtain X3. Finally, identify
the images in X3 of the three 0-cusps to obtain the claimed compactification D/�

′
. The

isomorphism between D/�
∗
and the normalization of D/�

′
follows from Zariski’s Main

Theorem becauseD/�
∗
is normal and the morphismD/�

∗ → D/�
′
is finite and birational.

��
Theorem 7.6 There exists a birational morphism M → D/�

∗
which maps the boundary of

M to the boundary of D/�
∗
.

Proof The GIT interpretation of D/�
∗
in [34] as quotient of the Grassmannian Gr(3, 6)

gives a birational map D/�
∗ ��� M (this morphism is defined at points corresponding to

arrangements of six lines in P
2 without triple intersection points). Recall the open subset

Asm ⊆ M parametrizing stable toric pairs ((P1)3, B) with B smooth, and consider the
composition Asm → M ��� D/�

∗
, which is regular. We show that this morphism extends

to MQ giving a Sym(Q)-equivariant morphism. This extension is induced by the universal
property of the normalization after we extend toMQ the composition ρ : Asm → D/�

∗ →
D/�

′
, where D/�

′
was constructed in Lemma 7.5. To extend ρ we use Theorem 6.2. So let

K be the field of fractions of a DVR (A,m) and consider any g : Spec(K ) → Asm. We show
that lim(ρ ◦ g) ∈ D/�

′
can be computed using only lim g ∈ MQ .

Let (X , B) be the stable toric pair parametrized by lim g ∈ MQ and consider the corre-
sponding stable pair

(
B•,

( 1+ε
2

)
�•|B•

)
. We distinguish the following three cases:

• Case I: B• is irreducible;
• Case II: B• has exactly two irreducible components glued along an irreducible curve;
• Case III: otherwise.

Denote by p0 (resp. C0) the image of the 0-cusps (resp. 1-cusps) under the morphism
D/�

∗ → D/�
′
. The point lim(ρ ◦ g) can be computed as follows. We have a family of K3

surfaces SK3 → Asm, which is induced by appropriately quotienting and restrictingX ′ → U
in Definition 2.5. We have that SK3 ⊆ Asm × (P1)3, and if � is the toric boundary of (P1)3,
then (SK3, ε(Asm × �)|SK3) is a family of stable K3 surface pairs. Now let Y ′ be the KSBA
completion over Spec(A) (or a finite ramified base change of it) of the restriction of SK3 to
Spec(K ), where we omitted the divisor for simplicity of notation. In particular, Y ′

m is the
Z
3
2-cover of B

• branched along �•|B• and it is the stable model of a degeneration of smooth
K3 surface pairs. Let Y be a Kulikov degeneration obtained from Y ′. Then Ym determines a
unique point in D/�

′
, which depends on the type of Ym as follows:
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• Type I: lim(ρ ◦ g) ∈ D/�
∗
is the image under the quotient D → D/� of the period

point corresponding to Ym;
• Type II: lim(ρ ◦ g) ∈ C0 and it corresponds to j(Ym);
• Type III: lim(ρ ◦ g) = p0.

We have that B• falls into case I (resp. II, III) if and only if Y ′
m has generalized type I

(resp. II, III). (In particular, by Remark 5.10 (d1), (d1′), note that if B• falls into case I, then
Y ′
m is smooth or it has isolated singularities of type A1 or A3.) The generalized type of Y ′

m
equals the type of Ym by Theorem 7.4. In addition, if we are in case II, then it makes sense
to define the j-invariant j(Y ′

m), and this equals j(Ym) again by Theorem 7.4. In conclusion,
we proved that lim(ρ ◦ g) only depends on lim g. ��
Remark 7.7 Consider the three 0-cusps of D/�

∗
(even, odd of type 1, and odd of type 2).

Going from left to right in Fig. 6, call the 0-dimensional strata ofM even, odd of type 1, and
odd of type 2. Let us show that a 0-dimensional boundary stratum of M maps to the 0-cusp
in D/�

∗
with the same label. It is enough to show that a given point in the interior of the

maximal 1-dimensional stratum C ofM is mapped to a point in Codd.
For this purpose, consider a smooth one-parameter familywith fibers isomorphic toBl3 P

2.
Equip this family with a divisor with coefficient 1+ε

2 cutting on each fiber the usual config-
uration of three pairs of lines without triple points, but in the central fiber two lines in the
same pair come together and the other four lines are general. The limit of this one-parameter
family inM lies onC. To show this, one has to compute the stable replacement of the central
fiber, and this is done by blowing up the double line and then contracting the strict transforms
of the two (−1)-curves intersecting the double line. On the other hand, the limit of the same
family in D/�

∗
was computed by Oudompheng, and it belongs to Codd (see [34, Figures 1

and 2]). In light of this and of the proof of Theorem 7.6, it is now clear where a given point
of the boundary ofM is mapped in D/�

∗
.

Remark 7.8 The compactificationM is isomorphic to the Baily–Borel compactification over
an open neighborhood of the odd 0-cusp of type 2. To prove this, observe that the morphism
M → D/�

∗
over this neighborhood is birational and finite, hence an isomorphism by

Zariski’s Main Theorem (recall that D/�
∗
is normal).

8 Looijenga’s semitoric compactifications

The behavior of the boundary of M suggests that M could be isomorphic to a semitoric
compactification (D/�)� . These compactifications were introduced in [30], and they depend
on a choice of �, which is called an admissible decomposition of the conical locus of D. In
this section we briefly recall Looijenga’s construction and find a � such that the boundary
of (D/�)� is combinatorially equivalent to the boundary of M. What follows is a sketch:
the full calculations are available in [39, Sect. 8.6].

8.1 Admissible decomposition of the conical locus

Following [30], let V = L ⊗Z C, where the lattice L = 〈2〉⊕2 ⊕ 〈−1〉⊕4 was introduced
in Sect. 7.2. We call Q-isotropic an isotropic subspace W ⊆ V which is defined over Q.
Denote by I (resp. J ) a Q-isotropic line (resp. plane) in V . Denote by CI ⊆ (I⊥/I )(R)

(resp.CJ ⊆ ∧2 J (R)) one of the two connected components of {x ∈ (I⊥/I )(R) | x · x > 0}
(resp.

∧2 J (R) \ {0}). There is a canonical choice for CI and CJ if we specify a connected
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component ofD, as it is explained in [30, Sections 1.1 and 1.2]. Denote byCI ,+ (resp. CJ ,+)
the convex hull of the Q-vectors in C I (resp. C J ). Then the conical locus of D is defined as

C(D) =
∐

W⊆V ,
W Q-isotropic

CW .

An admissible decomposition ofC(D) is a�-invariant locally rational decomposition ofCI ,+
for all Q-isotropic lines I , satisfying a certain compatibility condition (see [30, Definition
6.1]). Such an admissible decomposition provides a compactification of D/�: for example,
the Baily–Borel compactification D/�

∗
can be thought of as the semitoric compactification

associated to the trivial admissible decomposition of C(D) (see [30, Example 6.2]). We
consider the following admissible decomposition of C(D).

Definition 8.1 For any Q-isotropic line I , consider the decomposition of CI ,+ induced by
the mirrors of the reflections with respect to the vectors of square−1 in the hyperbolic lattice
(I⊥/I )(Z) (these vectors are called (−1)-vectors). Let � be the decomposition of C(D)

induced by these mirrors. It can be shown that this provides an admissible decomposition of
C(D) (see [39, Corollary 8.65]).

To understand the stratification of (D/�)� we need to study the decomposition �. There
are three choices ofQ-isotropic lines I ⊆ V up to isometries of L . In each case, the hyperbolic
lattice (I⊥/I )(Z) is computed in [34, Proposition 7.5]. For I corresponding to the odd 0-cusp
of type 2, we have that (I⊥/I )(Z) is an even lattice. Therefore, the decomposition of CI ,+
induced by � is given by CI ,+ itself. If I corresponds to the even 0-cusp or the odd 0-cusp
of type 1, then (I⊥/I )(Z) are odd lattices. In both cases we run Vinberg’s algorithm (see
[46, Sect. 1]) to determine a fundamental domain for �I , where �I is the discrete reflection
group generated by the reflections with respect to the (−1)-vectors in (I⊥/I )(Z). The details
of the computation can be found in [39, Sect. 8.6.2]. In summary, we obtain the following.

Theorem 8.2 [39, Theorem 8.67] Consider the two birational modificationsM → D/�
∗ ←

(D/�)� of the Baily–Borel compactification of D/�. Then these are isomorphic in a
neighborhood of the preimage of the odd 1-cusp of type 2. Moreover, there is an intersection-
preserving bijection between the boundary strata of M and (D/�)� , which also preserves
the dimensions of the strata.
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