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Abstract
In this paper we study super-isolated abelian varieties, that is, abelian varieties over finite
fields whose isogeny class contains a single isomorphism class. The goal of this paper is
to (1) characterize whether a product of super-isolated varieties is super-isolated, and (2)
characterize which super-isolated abelian varieties admit principal polarizations, and how
many up to polarized isomorphisms.

1 Introduction

An abelian variety A/Fq is super-isolated if its Fq -isogeny class contains only the isomor-
phism class of A. Hence a super-isolated A/Fq is determined up to isomorphism by the
characteristic polynomial of its Frobenius endomorphism. In [18], the second author intro-
duced super-isolated elliptic curves and surfaces in the context of cryptography, and in [19]
this was generalized to higher dimensional simple super-isolated abelian varieties. In this
paper we continue on this path. In particular we focus on two questions:

1. When is the product of super-isolated varieties super-isolated?
2. When does a super-isolated variety admit a principal polarization and, if that is the case,

how many are there up to polarized isomorphism?

In [18] it is shown that simple super-isolated abelian varieties are rare, in the sense that the
for most finite fields Fq there are no super-isolated varieties over Fq . Trying to generalize this
statement to non-simple abelian varieties leads to the first question. Our methods show that
super-isolated products are even rarer and can be enumerated as efficiently as super-isolated
simple varieties.

The second question is related to the problem of determining whether an abelian variety
is the Jacobian of a curve. This is in general a difficult question, see [14] for the case of
abelian surfaces. In the case of super-isolated abelian varieties all the arithmetic information
is encoded in theWeil polynomial determining the isogeny class. Since every Jacobian admits
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a canonical principal polarization, the second question is a first step towards characterizing
super-isolated Jacobians.

In this paper, we first present some general results about products of super-isolated abelian
varieties, see Sect. 3.1. Then, in order to give answers to our questions, we focus on a class
of abelian varieties that we call ideal, see Definition 14. For the category of such abelian
varieties, we have functorial descriptions in terms of finitely generated free Z-modules with
a “Frobenius-like” endomorphism, see [3,4]. In the ordinary case, we can describe also dual
varieties and polarizations, see [8]. We exploit these descriptions in Theorem 16 where we
exhibit a criterion to answer Question 1. It turns out that the technology developed to prove
Theorem 16 in Sects. 2 and 3 allows us to show that, for any fixed dimension, there are only
finitely many super-isolated ideal abelian varieties that are not simple, see Corollary 19. In
Sect. 3.3 we give an algorithm to enumerate them and we produce complete lists of such
abelian varieties that are a product of elliptic curves and surfaces, seeAlgorithm1 andTable 1.

In Sect. 4, we characterize which simple ordinary super-isolated varieties admit a principal
polarization, see Theorem 27.We also show that if such a polarization exists, then it is unique,
see Theorem 35.Moreover in Corollary 36 andRemark 37we discuss the product case. These
results give an answer to Question 2.

In Sect. 5 we apply the theory developed in the previous sections to prove some properties
of super-isolated Jacobians, see Proposition 38.

In this paper, all morphisms between abelian varieties over a field k are defined over the
same field k.

2 Products of Weil generators

Weil generators in CM fields have been studied in [18,19]. They represent the Frobenius
endomorphism of a super-isolated abelian variety. The purpose of this section is to generalize
the notion of a Weil generator to a product of CM fields and give quantitative results. For a
CM field K we will denote its CM involution by ·̄.
Definition 1 Let K be a product of CM fields K = K1 × · · · × Kn . We say α ∈ K is aWeil
generator for K if αα ∈ Z and OK = Z[α, α], where OK = ∏OKi . That is, αα lies in
the image of the diagonal embedding Z → K , and the subring generated by α and α is the
integral closure of Z in K .

Let K be a CM-field. Denote by F the fixed field of the CM involution of K . Fix γ ∈ K
satisfying OK = OF [γ ]. Let R be the set of all η ∈ F such that OF = Z[η]. Choose a
set T ⊂ R of representatives of R/ ∼, where η1 ∼ η2 if η1 − η2 ∈ Z. If γ does not exist
or T = ∅, then K has no Weil generators. Indeed, if α is a Weil generator for K then we
could choose γ = α and (α + α) ∈ R, see [19, Lemma 3.13]. Given the order OF , the set T
is always finite and can be effectively computed, see [5]. By [19, Lemma 3.15] every Weil
generator α ∈ K can be written as

α = u(γ − γ ) + η + a

2
(1)

for a unique triple (u, η, a) ∈ O×
F × T × Z.

Example 2 Let K = Q(i) and put γ = i and T = {0}. Then every Weil generator is of the
form (±2i + a)/2 for some integer a ∈ Z. Alternatively, every Weil generator can also be
written as b ± i for some b ∈ Z.
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Example 3 Let K = Q(ζ5) and put γ = ζ5 and T = {(1+ √
5)/2, (1− √

5)/2}. Then every
generator can be expressed as (u(ζ5 − ζ̄5) + (1 ± √

5)/2 + a)/2 for some u ∈ O×
Q(

√
5)
and

a ∈ Z.

Lemma 4 Let K be a CM field with maximal real subfield F, and α ∈ K a Weil generator
of K . Fix η ∈ T and a ∈ Z as in Eq. (1). If q = αα, then

NormF/Q

(
(η + a)2 − 4q

) = DiscK/Q

Disc2F/Q

.

Proof Let g = deg F and β = α + α. By [11, Ch.2 Ex. 23],

DiscK/Q(1, . . . , βg−1, α, . . . , αβg−1) = DiscF/Q(β)2 NormF/Q DiscK/F (α).

But {1, α} is a OF -basis for OK and {1, β, . . . , βg−1} is a Z-basis for OF , so this reduces to
DiscK = Disc2F NormF/Q DiscK/F (α). The result follows because

DiscK/F (α) = det

(
TraceK/F (1) TraceK/F (α)

TraceK/F (α) TraceK/F (α2)

)

= (α − α)2 = (η + a)2 − 4q.

�	

The expression in Lemma 4 can be viewed as the equation of a plane curve by replacing
a and 4q with formal variables. Lemma 5 below together with the substitutions

NormF/Q

(
(η + a)2 − 4q

) =
∏

σ :F→C

(
(a + σ(η))2 − 4q

)

and t = −DiscK /Disc2F shows that this curve is geometrically irreducible.

Lemma 5 Let t, a1, . . . , an ∈ C and

P(x, y) =
n∏

i=1

(
(x − ai )

2 − y
) + t .

If the ai are distinct and t 
= 0, then P(x, y) is irreducible.

Proof Suppose that P(x, y) = h(x, y)g(x, y) and that h(x, y) is non-constant. Let
Li (x, y) = (x − ai )2 − y so that P(x, y) = ∏n

i=1 Li (x, y) + t . For any point Q with
Li (Q) = 0, we have P(Q) = t . Hence h(x, (x − ai )2) must be constant, say ci . Because Li

and L j both vanish at ((ai + a j )/2, ((ai − a j )/2)2), it follows that c1 = c2 = · · · = cn . Let
c denote this value. Since h(x, y) − c is zero whenever Li (x, y) is, it follows that Li (x, y)
divides h(x, y) − c for every i = 1, . . . , n. As the Li (x, y) are distinct and irreducible,
we must have that their product also divides h(x, y) − c. But h(x, y) is non-constant, so
h(x, y) − c 
= 0 and therefore deg h(x, y) = deg P(x, y). It follows that g(x, y) is constant.

�	

Proposition 6 Let K = K1 × · · · × Kn be a product of CM fields. For i = 1, . . . , n pick an
algebraic integer αi ∈ OKi and put α = (α1, . . . , αn). For each i denote by gi (x) ∈ Z[x] the
minimal polynomial of αi +αi . Then Z[α, α] = ∏

Z[αi , αi ] if and only if |Res(gi , g j )| = 1
for all i 
= j .
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Proof First we will show thatZ[α, α] = ∏
Z[αi , αi ] if and only ifZ[α+α] = ∏

Z[αi +αi ].
Let ei be the i-th orthogonal idempotent of K = ∏

Ki . Observe that Z[α + α] is the
subset of Z[α, α] that is fixed by complex conjugation. Moreover, for every i = 1, . . . , n,
we have ei = ēi . The claim follows from the following chain of equivalences: we have
Z[α, α] = ∏

Z[αi , αi ] if and only if ei ∈ Z[α, α] for all i = 1, . . . , n if and only if
ei ∈ Z[α + α] for all i = 1, . . . , n if and only if Z[α + α] = ∏

Z[αi + αi ].
Next we claim that Z[α + α] = ∏

Z[αi + αi ] if and only if |Res(gi , g j )| = 1 for all
i 
= j . The map Z[x] → Z[α+α] sending x to α+α is surjective. Therefore, it is equivalent
to show that Z[x]/lcm(gi ) ∼= ∏

Z[x]/gi if and only if |Res(gi , g j )| = 1. The former holds
if and only if the ideals giZ[x] are coprime. By [24, Lem. 11.3] (see also [16, p. 420] for a
slightly stronger version), this holds if and only if the pairwise resultants of the gi are units.

�	

Corollary 7 Let K = K1 × · · · × Kn be a product of CM fields. Let α = (α1, . . . , αn) ∈ K,
and gi be the minimal polynomial for αi +αi . Then α is a Weil generator for K if and only if
each αi is a Weil generator for Ki , α1α1 = · · · = αnαn, and |Res(gi , g j )| = 1 for all i 
= j .

Proof Suppose that α is a Weil generator for K Then α1α1 = · · · = αnαn ∈ Z. Moreoever,
OK = Z[α, α]. Because OK = ∏OKi , it follows that OKi = Z[αi , αi ] for all i . So the
resultant condition in the statement follows from Proposition 6.

Suppose that the latter conditions hold. By Proposition 6, we have Z[α, α] =∏
Z[αi , αi ] = ∏OKi = OK . Since αiαi is the same for each i , we also have that αα

lies in the diagonal Z → K . Therefore α is a Weil generator for K . �	

Example 8 In Corollary 7, both the condition that |Res(gi , g j )| = 1 for all i 
= j , and the
condition that α1α1 = · · · = αnαn are necessary. To see this, let K1 = Q(

√−11) and
K2 = Q(

√−19). Then α1 = (3 − √−11)/2 and α2 = (1 − √−19)/2 are Weil generators
with norm 5 for K1 and K2 respectively. However, |Res(g1, g2)| = |Res(x −3, x −1)| = 2.
Therefore the ring Z[(α1, α2), (α1, α2)] 
= OK1×K2 , so (α1, α2) is not a Weil generator for
K1 × K2.

If we instead set K2 = Q(
√−13) and α2 = 2 − i

√
13 then |Res(g1, g2)| = |Res(x −

3, x − 4)| = 1 but Norm(α2) = 17. So in this case, (α1, α2) is not a Weil generator because
its norm does not lie in the diagonal embedding Z → K1 × K2.

Lemma 9 Let K1 and K2 be CM fields. Then there are finitely many Weil generators in
K1 × K2.

Proof For i = 1, 2, choose γi and Ti for Ki as in the beginning of Sect. 2. If for some i , γi
does not exist or Ti = ∅, then Ki does not have any Weil generators and we are done. So we
will assume that γ1, γ2 exist and both T1 and T2 are nonempty. Now we may write any Weil
generator αi in Ki as in Eq. (1), that is, there is a unique triple (ui , ηi , ai ) ∈ O×

Fi
× Ti × Z

such that

αi = ui (γi − γ i ) + ηi + ai
2

.
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Products and polarizations of super-isolated abelian varieties 449

For each pair (η1, η2) ∈ T1 × T2, let Xη1,η2 denote the affine variety cut out by the following
equations in Q[x1, x2, y]:

∏

σ :F1→C

(
(σ (η1) + x1)

2 − 4y
) = DiscK1

Disc2F1
(2)

∏

τ :F2→C

(
(τ (η2) + x2)

2 − 4y
) = DiscK2

Disc2F2
(3)

∏

σ :F1→C

τ :F2→C

((σ (η1) + x1) − (τ (η2) + x2))
2 = 1. (4)

By [5] the sets Ti are finite, so there are a finite number of the Xη1,η2 . Let X denote their
union.

Wewill now construct a finite-to-onemapψ fromWeil generators of K1×K2 toX (Z). Let
(α1, α2) be aWeil generator in K1×K2. Then αi corresponds to a unique triple (ui , ηi , ai ) ∈
O×

Fi
× Ti × Z. Let q = α1α1 = α2α2. Define ψ by sending (α1, α2) �→ (a1, a2, q). The

image of ψ satisfies Eqs. (2) and (3) by Lemma 4, and Eq. (4) by Corollary 7. Next we
will show that ψ is finite-to-one. It suffices to show that for a given ai and q in Z, there
are finitely many ui ∈ O×

Fi
and ηi ∈ Ti such that αi = (ui (γi − γ i ) + ηi + ai )/2 is a

Weil generator for Ki with αiαi = q . Every such Weil generator satisfies 4αiαi = 4q =
u2i NormKi /Fi (γi − γ i ) + (ηi + ai )2. In particular, ui is determined up to sign by ai , q , and
ηi . Since Ti is finite, there are only finitely many possible ηi . Hence there are only finitely
many possible ui as well.

It suffices to show that each component Xη1,η2 has dimension 0, as this implies that X (Z)

is finite. Let (η1, η2) ∈ T1 × T2, and let X = Xη1,η2 . Notice that Eq. (4) is a polynomial
equation in x1 − x2. Therefore there are complex numbers βk for k = 1, . . . , k̃, with k̃ =
2[K1 : Q][K2 : Q], such that

⎛

⎜
⎜
⎝

∏

σ :F1→C

τ :F2→C

(x1 − x2 + σ(η1) − τ(η2))
2

⎞

⎟
⎟
⎠ − 1 =

k̃∏

k=1

(x1 − x2 − βk). (5)

Hence we can write X as a union of subvarieties Xk , for k = 1, . . . , k̃, where Xk is the
intersection of the geometrically irreducible surfaces (see Lemma 5) defined by Eqs. (2) and
(3) and by

x1 − x2 − βk = 0.

In particular we can eliminate x2 and describe Xk as the intersection of the two irreducible
plane curves

∏

σ :F1→C

(
(σ (η1) + x1)

2 − 4y
) − DiscK1

Disc2F1
= 0, (6)

∏

τ :F2→C

(
(τ (η2) + x1 − βk)

2 − 4y
) − DiscK2

Disc2F2
= 0. (7)

By Bézout’s theorem, the intersection of two geometrically irreducible plane curves has
dimension 0 as long as the curves are distinct. So it is sufficient to show that the polynomials
in Eqs. (6) and (7) are not proportional. We will prove this by contradiction.
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Suppose that the two polynomials in Eqs. (6) and (7) are proportional. By comparing
the highest degree monomial in y we must have that Eqs. (6) and (7) are equal. Note that
this also implies [K1 : Q] = [K2 : Q]. Setting x1 = −(σ (η1) + τ(η2) − βk)/2 and
y = (σ (η1) + x1)2/4 for any choice of σ and τ will zero out the products in Eqs. (6) and
(7), which shows that DiscK1 /Disc2F1 = DiscK2 /Disc2F2 . Setting y = 0 leads to

∏

σ :F1→C

(σ (η1) + x1)
2 =

∏

τ :F2→C

(τ (η2) + x1 − βk)
2 .

By comparing the zeros we see that, for each k, there is a bijection σ �→ τσ,k such that
σ(η1) = τσ,k(η2) − βk . Fix a 1 ≤ k0 ≤ k̃ substituting σ(η1) = τσ,k0(η2) − βk0 and
x2 = x1 − βk0 in Eq. (5) yields

k̃∏

k=1

(
x1 − (x1 − βk0) − βk

) =
(

∏

σ,τ

x1 − (x1 − βk0) + τσ,k0(η2) − βk0 − τ(η2)

)2

− 1

0 =
(

∏

σ,τ

(
τσ,k(η2) − τ(η2)

)2
)

− 1

Since the product is taken over all embeddings σ (and τ ) we have that the right hand side is
equal to −1, which is a contradiction. �	
Theorem 10 Let K = K1 × · · · × Kn be a product of CM fields. If n > 1 then K has finitely
many Weil generators.

Proof This follows directly from Lemma 9 and the fact that every Weil generator for K
projects to a Weil generator for each product Ki × K j , with i 
= j . �	

3 Products of super-isolated varieties

In this section, we study products of super-isolated abelian varieties. Recall that the Weil
polynomial h of a d-dimensional abelian variety A/Fq is defined as the characteristic poly-
nomial of the Frobenius endomorphism of A. The polynomial h lies in Z[x], it has degree 2d
and all its complex roots have absolute value

√
q . Also we define the real Weil polynomial

of A the unique polynomial g in Z[x] such that h(x) = xdg(x + q/x). In particular if h is
irreducible and π is a root of h, then g is the minimal polynomial of π + q/π .

3.1 Glueing exponent and super isolated abelian varieties

Lemma 11 Let A1 and A2 be abelian varieties over a finite field Fq . Assume that A1 and A2

have no isogeny factor in common. If the product A1 × A2 is super-isolated, then both A1

and A2 are super-isolated.

Proof Let B1 and B2 be abelian varieties isogenous to A1 and A2, respectively. Since A1×A2

is super-isolated then there exists an isomorphism ϕ : A1 × A2 → B1 × B2. Observe that

HomFq (A1 × A2, B1 × B2) = HomFq (A1, B1) × HomFq (A2, B2),

because A1 and A2 have no isogeny factor in common. Hence there are isomorphisms ϕ1 :
A1 → B1 and ϕ2 : A2 → B2 such that ϕ = ϕ1 × ϕ2. In particular A1 and A2 are super-
isolated. �	
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Products and polarizations of super-isolated abelian varieties 451

Definition 12 (cf. [6, Def. 2.1]) Let A1 and A2 be abelian varieties over Fq . The glueing
exponent e(A1, A2) of A1 and A2 is the greatest common divisor of the exponent of �,
where � ranges over all finite group schemes that embed in both a variety isogenous to A1

and a variety isogenous to A2.

Lemma 13 Let A1 and A2 be abelian varieties over a finite field Fq . If A1 and A2 are
super-isolated and e(A1, A2) = 1 then the product A1 × A2 is super-isolated.

Proof It is a direct application of [6, Lemma 2.3]. �	
Observe that A1 and A2 have no isogeny factor in common if and only if e(A1, A2) < ∞.

See also [6, after Def. 2.1]. In view of this consideration, Lemmas 11 and 13 allow us to
understand super-isolated products in terms of the glueing exponent. In general the glueing
exponent is tricky to compute. Nevertherless one can use [6, Prop.2.8] to show that for
abelian varieties A and B over Fq with no isogeny factor in common the glueing exponent
divides the resultant of the radicals of the real Weil polynomials gA and gB of A and B.
In particular if such a resultant is 1 then also e(A, B) = 1. In particular Corollary 7 can be
considered as a reformulation in terms ofWeil generators (restricted to ideal abelian varieties,
see Definition 14 below) of Lemma 13.

In what follows wewill use a different strategy:Wewill restrict ourselves to a subcategory
of abelian varieties and give conditions for them (and their products) to be super-isolated in
terms of Weil generators. The upshot of this approach is that it is more computationally
friendly, since Weil generators can be enumerated. Moreover, in such a subcategory, we will
be able to study powers of super-isolated abelian varieties.

3.2 Weil generators and super isolated abelian varieties

From now on we will focus on squarefree varieties. That is, abelian varieties whose Weil
polynomial is squarefree. Our main tool is the equivalence of categories between certain
abelian varieties A/Fq and Z-modules with extra structure.

Definition 14 Let A/Fq be an abelian variety, and let h denote its Weil polynomial. Let p be
the characteristic of Fq . Then A is ideal if the following holds:

1. the polynomial h factors into distinct irreducible factors.
2. the polynomial h has no real roots.
3. the polynomial h is ordinary (meaning half of the roots of h are p-adic units) or q is prime.

Suppose that A/Fq is ideal. Then there is an isogeny

A ∼ A1 × · · · × An,

where the Ai are simple and pairwise non-isogenous abelian varieties. ByHonda–Tate theory,
see [7] and [22], the Weil polynomial factors into h = h1 . . . hn , where hi is the Weil
polynomial of Ai . Because of the ordinary condition (or the condition that q is prime),
the polynomials hi are irreducible. In particular, if we let πi denote a root of hi and put
Ki = Q(πi ), then Ki is a CM field of degree 2 dim Ai . Let K = ∏

Ki and consider the
subring Z[π, π ] ⊆ K where π = (π1, . . . , πn) and π = (π1, . . . , πn) with π i = q/πi . We
will identify K with End A⊗Q. LetOK = ∏OKi , that is, the integral closure ofZ in K . Note
thatOK andZ[π, π ] are free finitely generatedZ-modules of rank dimQ(K ). In particular we
have a finite-index inclusion Z[π, π ] ⊆ OK and one can show that Z[π, π] ⊆ End A ⊆ OK .
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By [13, Thm. 4.3] the ideal abelian varieties can be functorially described in terms of frac-
tional Z[π, π ]-ideals. Such a description builds on the equivalences of categories established
in [3,4].

Theorem 15 If A/Fq is ideal and simple, then A is super-isolated if and only if K has class
number 1 and Z[π, π] = OK . Equivalently, A is super-isolated if and only if K has class
number 1 and π is a Weil generator for K .

Proof The result for ordinary varieties is given in [19, Thm. 7.4]. The extension to the case
where q is prime is [18, Thm. 16]. �	
Theorem 16 If A/Fq is ideal, then A is super-isolated if and only if each Ai is super-isolated
and Z[π, π] = OK . Equivalently, A is super-isolated if and only if Pic(OK ) is trivial and π

is a Weil generator for K .

Proof By [13, Thm. 4.3] we have that A is super-isolated if and only if Z[π, π ] = OK and
Pic(OK ) is trivial. Moreover by Theorem 15 we have that each simple factor Ai is super-
isolated if and only if Z[πi , π i ] = OKi and Pic(OKi ) is trivial. The result follows from the
equality Pic(OK ) = ∏

Pic(OKi ). �	
By using Theorem 16 it is easy to construct super-isolated products of big dimension as

shown in the following example.

Example 17 Consider the polynomials

h1(x) = (x4 − 2x3 + 3x2 − 4x + 4),

h2(x) = (x6 − 4x5 + 9x4 − 15x3 + 18x2 − 16x + 8),

h3(x) = (x6 − 3x5 + 6x4 − 9x3 + 12x2 − 12x + 8),

h4(x) = (x8 − 5x7 + 12x6 − 20x5 + 29x4 − 40x3 + 48x2 − 40x + 16),

h5(x) = (x8 − 5x7 + 13x6 − 25x5 + 39x4 − 50x3 + 52x2 − 40x + 16),

h6(x) = (x8 − 4x7 + 5x6 + 2x5 − 11x4 + 4x3 + 20x2 − 32x + 16).

One can check that each factor hi determines a Weil generator αi for a CM field Ki =
Q[x]/hi , and that (α1, . . . , α6) is a Weil generator for the product K1 × · · · × K6. Therefore
h = ∏

i hi is the Weil polynomial for a 20-dimensional super-isolated variety over F2.

Example 18 Let A/F5 be the product of the elliptic curves E1 : y2 = x3 + 4x + 2 and
E2 : y2 = x3 + 3x + 2. The Weil polynomials of E1 and E2 are h1 = x2 − 3x + 5 and
h2 = x2 − x + 5, respectively. Using Corollary 7 and Theorem 16, it is straightforward to
check that E1 and E2 are super-isolated, but A is not, see also Example 8. Therefore A must
be isogeneous, but not isomorphic, to some other abelian surface over F5. One way to verify
this claim is to observe thatZ[π, π̄ ] � OK = Z[π1]×Z[π2] = EndF5(A).By [13, Thm. 4.3]
we have that there exists an abelian variety A′ isogenous to A with EndF5(A

′) = Z[π, π̄].
In particular A is not isomorphic to A′. More precisely, since OK is the unique over-order
of Z[π, π̄ ] and Pic(Z[π, π̄ ]) � Z/3Z, by using [13, Thm. 4.3] we can conclude that the
isogeny class of A contains exactly 4 isomorphism classes of abelian varieties, 3 of which
have endomorphism ring Z[π, π̄ ].
Corollary 19 Let g be a positive integer. There are only finitely many ideal super-isolated
abelian varieties of dimension g that are not simple. In particular, there are only finitely
many finite fields Fq for which such a variety may exist.
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Proof By Theorem 16 it is sufficient to count Weil generators in products of CM fields with
class number 1. In [20, Thm. 2, p. 136], Stark showed that for any fixed degree, there are
finitely many CM fields with class number 1 with that degree. Hence there are finitely many
products K1 × · · · × Kn with

∑
deg Ki = 2g such that each Ki is a CM field with class

number 1. By Theorem 10, any such product of fields contains only finitely many Weil
generators. �	

3.3 Products of super-isolated elliptic curves and abelian surfaces

In this section we outline a general strategy to enumerate certain products of super-isolated
varieties.

Algorithm 1 Enumerate Weil Generators
Require: A product K of CM fields K1 and K2, with maximal totally real subfields F1 and F2, respectively.
Ensure: All Weil generators for K .
1: F ← F1 × F2
2: Find γi such thatOK = OF [γi ]
3: Ti ← a complete set of ηi ∈ Fi such that OFi = Z[ηi ] up to integer translation
4: for all (η1, η2) ∈ T1 × T2 do
5: Xη1,η2 ← the variety defined in the proof of Lemma 9
6: for all P ∈ Xη1,η2 (Q) do
7: for all ui ∈ O×

Fi
with u2i NormK/F (γi − γ i ) + (ηi + Pxi )

2 = 4Py do

8: αi ← (
ui (γi − γ i ) + ηi + Pxi

)
/2

9: if α1 ∈ OK1 and α2 ∈ OK2 then
10: print (α1, α2)
11: end if
12: end for
13: end for
14: end for

Proposition 20 Let K beaproduct ofCMfields K1 and K2, withmaximal totally real subfields
F1 and F2, respectively. Algorithm 1 exactly outputs all Weil generators for K1 × K2.

Proof As seen in the proof of Lemma 9, every Weil generator (α1, α2) of K corresponds to a
rational point on one of the varieties Xη1,η2 for some η1, η2 ∈ T1 × T2. The algorithm ranges
over all rational points on all such varieties and finds all possible pairs (α1, α2) which could
be Weil generators. This means that the output will include all Weil generators.

It remains to show that everything the algorithm outputs is a Weil generator for K1 × K2.
Suppose that the algorithm outputs (α1, α2) from a point on Xη1,η2 for some (η1, η2) ∈
T1 × T2. It is straightforward to check that if αi ∈ OKi then it is indeed a Weil generator
for Ki using [19, Lem. 3.13]. By construction of Xη1,η2 , it follows that (α1, α2) satisfies the
resultant condition in Corollary 7. Therefore (α1, α2) is a Weil generator for K1 × K2. �	
Remark 21 Algorithm 1 can be extended to arbitrary products K1×· · ·×Kn in a straightfor-
ward way: First compute the setWi, j of allWeil generators in the sub-product Ki ×K j for all
1 ≤ i, j ≤ n. Then search for tuples (α1, . . . , αn) with (αi , α j ) ∈ Wi, j for all 1 ≤ i, j ≤ n.

Using Tables of CM fields of degree 2 and 4 with class number one, we can enumerate all
ideal superisolated abelian varieties that factor into products of elliptic curves and surfaces.
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Table 1 The number of ideal
super-isolated products of elliptic
curves and abelian surfaces over
each finite field Fq

q 1× 1 1× 2 1× 1× 2 1× 2× 2 2× 2
2 4 24 10 12 18
3 4 24 6 12 18
4 2
5 2 12 2 6
7 8
8 2
9 2
11 2 8 2 4 4
13 6
17 2 8 2
19 2
32 2
41 2
47 4
59 2
61 2
83 2
101 2
173 2
227 2
257 2
283 2
383 2
1523 2
1601 2
18131 2

Each column represents a decomposition type, so for example 1 × 1
represents the product of two non-isogenous elliptic curves. If the cell is
empty, it means there is no super-isolated abelian variety over Fq with
the prescribed decomposition type

Corollary 22 There are 240 ideal super-isolated abelian varieties that factor into a product
of curves and surfaces. A summary of some of their characteristics are given in Table 1. 1

Proof We implemented Algorithm 1 in Sage and found all ideal super-isolated abelian
varieties that decompose into a product of curves and surfaces. This was done by first finding
a complete list of CM fields with class number 1 and degree ≤ 4 (see [19, Tbl. 3] for
references). For each pair Ki , K j of such fields, we computed the set of Weil generatorsWi, j

in Ki ×K j .We filtered theWeil generators whoseminimal polynomials satisfy the conditions
in Definition 14, as these correspond to simple ideal varieties. Next we organized the data
into a graph G as follows. The vertex set of G is given by all Weil generators appearing as
part of a pair in some Wi, j . We add an edge between α1 and α2 if (α1, α2) ∈ Wi, j for some
i, j . That is, the edge set of G is the union of the Wi, j . Finally, we used standard methods to
enumerate all complete subgraphs (cliques) of size ≥ 2 in G. �	

Remark 23 Observe that by [19, Cor. 7.6], for every fixed dimension g > 2 we have only
finitely many (ordinary) super-isolated abelian varieties. This was shown by mapping Weil

1 The raw data collected and source code can be found at https://github.com/tscholl2/siav-polarizations-
products.
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generators to integral points on degree g plane curves. Given a way to enumerate the integral
points on such a curve, it is straightforward to enumerate super-isolated abelian varieties of
dimension g. However, computing integral points on high degree curves (which often have
high genus) is a difficult problem. If instead we restrict to enumerating non-trivial products
of super-isolated g-folds, then Algorithm 1 only requires enumerating points on a dimension
0 variety (of degree ≈ g3). This seems to suggest that finding products of super-isolated
varieties is easier than finding singletons.

3.4 Powers of super-isolated abelian varieties

In the case where A is isogenous to a power, we can apply the results from [12] to prove the
following Theorem.

Theorem 24 Let A/Fq be an ideal abelian variety. If A is super-isolated, then An is super-
isolated for every n ≥ 1. Conversely, if there exists n ≥ 1 such that An is super-isolated then
A is super-isolated.

Proof By Theorem 15 we have that A is super-isolated if and only if K has class number
1 and Z[π, π] = OK . By Steinitz theory, see [21], this is equivalent to having a unique
isomorphism class of torsion-free Z[π, π ]-modules of rank n (for any n ≥ 1), which is
represented by

On
K = OK ⊕ . . . ⊕ OK .

Using the classification given in [12, Theorem 4.1], one sees that this happens if and only if
An is super-isolated. �	

4 Principal polarizations

In general, (principal) polarizations of abelian varieties in an ordinary square-free isogeny
class can be computed up to polarized isomorphisms using [13, Alg. 3]. However, in this
section we show that if the isogeny class is super-isolated, then the situation is much simpler.
For a CM type 
 of a CM field K we denote by N
 the associated norm, that is,

N
(α) =
∏

ϕ∈


ϕ(α),

for every α ∈ K .

4.1 Existence of principal polarizations

Lemma 25 Let K be a CM field of degree 2g with maximal totally real subfield F. Let 


be a CM type of K , and α ∈ K satisfying OK = OF [α]. Then the following statements are
equivalent:

1. K/F is unramified at all finite primes.
2. α − α ∈ O×

K .
3. NormK/Q(α − α) = 1.
4. N
(α − α) = ±1.

Moreover, if any of the statements holds then g is even.
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Proof Observe that we have

NormK/Q(α − α) = N
(α − α)N
(α − α) = (−1)gN
(α − α)2. (8)

By [17, Ch. III, Prop. 2.4], (α − α)OK is the relative different ideal DiffK/F . So K/F is
unramified at all finite primes if and only if α − α ∈ O×

K . As all norms in CM fields are
non-negative, this is equivalent to NormK/Q(α −α) = 1. Hence we have proved that (1), (2)
and (3) are equivalent. Using Eq. (8) we get that (3) is also equivalent to

1 = (−1)gN
(α − α)2.

If K/F is unramified at all finite primes, then g is even by [8, Lem. 10.2] and we get that
N
(α−α) = ±1. Conversely if N
(α−α) = ±1 then by Eq. (8) we get NormK/Q(α−α) =
(−1)g . Since norms are positive inCM-fields,wededuce that g is even and K/F is unramified.
This concludes the proof. �	

Let A/Fq be a simple ordinary super-isolated abelian variety of dimension g. Let h be
the Weil polynomial of A. Put K = Q[x]/h = Q(π). Fix an isomorphism j : Qp � C and
let 
 be the set of embeddings φ : K → C such that ν(φ(π)) > 0, where ν is the p-adic
valuation on C induced by j . Since A is ordinary, precisely half of the roots of h are p-adic
units. Therefore 
 is a CM-type of K .

Lemma 26 The abelian variety A does not admit a principal polarization if and only if
N
(π − π) = −1.

Proof Suppose A does not admit a principal polarization. Then by [8, Cor. 11.4] we have
that K/F is unramified at all finite primes and N
(π − π) < 0. Because π is a Weil
generator for K , it follows thatOK = OF [π ] by [19, Lem. 3.13]. So by Lemma 25, we have
N
(π − π) = −1.

Conversely, suppose that N
(π − π) = −1. By Lemma 25 it follows that K/F is
unramified at all finite primes, and that (π − π̄) ∈ O×

K . In particular there is no prime of F
dividing (π − π̄) which is inert in K/F . It now follows from [8, Cor. 11.4] that A does not
admit a principal polarization. �	
Theorem 27 The abelian variety A does not admit a principal polarization if and only if
NormK/Q(π − π) = 1 and the middle coefficient ag of the Weil polynomial is −1 mod q if
q > 2 and −1 mod 4 if q = 2.

Proof ByLemmas25 and26, it is enough to show that if K/Q is unramified at all finite primes,
then N
(π − π) = −1 if and only if ag satisfies the congruence condition in the statement.
By [8, Prop. 11.5], if K/F is unramified at all finite primes then N
(π − π) ≡ ag mod q if
q > 2 and N
(π − π) ≡ ag mod 4 if q = 2. As these moduli are enough to distinguish ±1,
the result follows. �	
Example 28 Let π denote a root of h(x) = x8+x7−3x6−x5+7x4−2x3−12x2+8x+16.
Then π is a Weil generator for the CM field K = Q(π) of degree 8. So π corresponds to a
super-isolated abelian fourfold A over F2. One can check that NormK/Q(π − π) = 1. Also,
the middle coefficient of h(x) is 7 ≡ −1 mod 4, so A does not admit a principal polarization.

Example 29 We will show that the two conditions in Theorem 27 are independent. Let α1

denote a root of h1 = x2 − x + 3 and α2 a root of h2 = x4 − 5x2 + 9. Then α1 and α2

are Weil generators for the CM fields Ki = Q(αi ). Let qi = αiαi . One can compute that
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NormK1/Q(α1 − α1) = 11 and NormK2/Q(α2 − α2) = 1. The middle coefficients of h1 and
h2 are −1 mod q1 and 1 mod q2 respectively. Therefore α1 satisfies the second hypothesis
but not the first of Theorem 27, while α2 satisfies the first but not the second.

Remark 30 One can show that any abelian variety admits a principal polarization if and only
if its quadratic twist does. But for super-isolated varieties, this follows almost immediately
fromTheorem 27. If h(x) is theWeil polynomial of A/Fq , then h(−x) is theWeil polynomial
for its twist. Then because NormK/Q(π − π) = NormK/Q((−π) − (−π)) and h(x) and
h(−x) share the same middle coefficient, the criterion in Theorem 27 holds for one if and
only if it holds for the other.

Given any super-isolated abelian variety A, we can always construct one with a principal
polarization using Zarhin’s trick and Theorem 24.

Proposition 31 Let A be a super-isolated abelian variety. Then A8 is principally polarized.

Proof Since A is super-isolated it is isomorphic to its dual A∨. Hence there is an isomorphism
ϕ : A8 → (A× A∨)4. By Zahrin’s trick (see [26]), the product (A× A∨)4 admits a principal
polarization μ. Then ϕ∗μ = ϕ∨ ◦ μ ◦ ϕ is a principal polarization of A8, see for example
[15, p.143]. �	

4.2 Uniqueness of principal polarizations

In this section, we prove that if a super-isolated abelian variety admits a principal polarization,
then such a polarization is unique up to polarized isomorphism.

First, we set the following notation. For a number field L , we let UL denote the group of
units ofOL , and the group of totally positive units isU

+
L . TheHilbert class field of L is denoted

by HL , and the narrow Hilbert class field is H+
L . Recall that HL is the maximal unramified

abelian extension of L and that H+
L is the maximal abelian extension of L unramified outside

of the infinite primes2 (see [2, Ch. 5.C, Thm. 5.18] and [11, Ch. 8, p. 167]). Moreover, the
Galois group Gal(HL/L) is isomorphic to the class group of L , see [2, Ch. 5.C, Thm. 5.23].

Lemma 32 If F is a totally real field, then

[U+
F : U 2

F ] = [H+
F : HF ].

Proof If r is the number of real embeddings of F , then 2r = [UF : U+
F ][H+

F : HF ] by [10,
Thm. 3.1, p. 242]. Since F is totally real, 2r = [UF : U 2

F ] as UF ∼= Z/2Z × Z
r−1. �	

Lemma 33 Let K be a CM field with class number 1, and let F be the maximal totally real
subfield of K . Then NormK/F (UK ) = U+

F .

Proof By [11, Ch. 8, Ex. 27, p. 176], H+
F K ⊆ H+

K . Since K has no real embeddings because
it is a CM field, we have H+

K = HK because the infinite primes of K are unramified in
every extension. Moreover, the assumption that K has class number 1 means that HK = K .
Therefore we have that F ⊆ H+

F ⊆ K , and either H+
F = F or H+

F = K . By Lemma 32,U 2
F

has index 1 or 2 in U+
F depending on which equality holds.

If K/F is ramified at a finite prime, then H+
F = F . Hence by Lemma 32 we have

U+
F = U 2

F , and the conclusion follows from the fact that

U 2
F ⊆ NormK/F (UK ) ⊆ U+

F .

2 A real archimedean prime ramifies in an extension if it extends to a non-real embedding [2, Ch. 5.C, p. 94].
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It remains to consider the case where K/F is unramified. Here we have that H+
F = K ,

so [U+
F : U 2

F ] = 2. To prove the claim, we will show that there is a unit u ∈ UK such that
NormK/F (u) /∈ U 2

F .
By Kummer theory, K = F(

√−ε) for some totally positive element ε ∈ F . We claim
that for every prime p of F , the valuation vp(ε) is even. To see this, let P be a prime of K
lying over p. Since p is unramified in K/F , then we have vp(ε) = vP(ε). The latter is even
because vP(ε) = 2vP(

√−ε).

By above, we can write εOF = p
2e1
1 · · · p2ekk for primes p1, . . . , pk of F . Because K has

class number 1, so does F , see [25, Thm. 4.10]. So there are generators βi for each pi , and we
may write ε = ε′β2e1

1 . . . β
2ek
k for some ε′ ∈ UF . The extension F(

√−ε)/F depends only
on the residue of ε in F×/(F×)2. Therefore we may assume that ε = ε′, i.e. that ε ∈ UF .

Note that NormK/F (
√−ε) = ε. If ε /∈ U 2

F , then we are done. Otherwise, F(
√−ε) =

F(
√−1), so we may assume that ε = 1. In particular, it remains to consider the case where

K = F(i).
Let ζ be a primitive 2n th root of unity in K such that n is maximal (by above we know

that n ≥ 2). Then we have a tower of the form

K

Q(ζ ) F

Q(ζ + ζ ).

Recall that since ζ is a primitive 2n th root of unity, the rational prime 2 is totally ramified
in Q(ζ ). Moreover, 2OQ(ζ ) = b2

n−1
where b is the prime ideal generated by b = 1 − ζ [11,

Ch. 2, Ex. 34, p. 34]. In particular b = b. Put a = b ∩ Q(ζ + ζ ), which is the unique prime
ideal of Q(ζ + ζ ) above 2. Let a = bb. Observe that a ∈ Q(ζ + ζ ) and that a is a generator
of aOQ(ζ ) = b2. Therefore vb(a) = 2va(a), and vb(a) = 2 by construction. Hence a is a
generator of a. As mentioned above, the ramification index e(b/a) = 2. So, since K/F is
unramified, we deduce that there exists an ideal c of F such that c2 = aOF . Moreover since
F has class number 1, the ideal c admits a generator c ∈ F . Then c2 = au for some u ∈ UF .
Moreover we have that

c2OK = c2OK = aOK = b2OK = b2OK .

Hence c/b ∈ UK . Also, by construction,

NormK/F

( c

b

)
= au

a
= u.

We conclude the proof by proving that u /∈ U 2
F . Indeed, assume that u = u20 for some

u0 ∈ UF . Then

(
bu0
c

)2

= b2

a
= bb(−ζ )

a
= −ζ.

This implies that bu0/c is a primitive 2n+1 root of unity in K , contradicting the maximality
of n. �	
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In the next example we show that the assumption on the class number of K is necessary
for Lemma 33 to hold.

Example 34 Let K = Q[x]/(x4 − x3 + x2 − 3x + 9), which has class number 2. Then K
is a CM field with maximal totally real subfield F = Q(

√
21). A fundamental unit of F

is ε = (5 − √
21)/2, which is totally positive. One can show that UK = UF . Therefore

ε /∈ NormK/F (UK ) = 〈ε2〉, so U+
F /NormK/F (UK ) ∼= Z/2Z.

Theorem 35 Let A be a simple super-isolated ordinary abelian variety over Fq which admits
a principal polarization. Then the polarization is unique up to polarized isomorphism.

Proof We have that End(A) = OK for a CM-number field K with class number 1. By [13,
Thm. 5.4.(a)], two principal polarizations of A differ by a totally positive unit in UF . By
[13, Thm. 5.4.(b)], two principal polarizations of A are isomorphic if and only if they differ
by an element of the form vv for a unit v ∈ UK . In other words, the number of principal
polarizations of A up to isomorphism is given by the size of the quotient

U+
F

NormK/F (UK )
,

and this is trivial by Lemma 33. �	

4.3 Products of principal polarizations

Let K be a CM field. Recall that for a CM type 
 of K we say that a totally imaginary
element λ ∈ K is 
-positive if �(ϕ(λ)) > 0 for every ϕ ∈ 
. Also, for a fractional ideal I
of some order R in K , we denote by I t its trace dual ideal, which is defined as

I t = {z ∈ K : TraceK/Q(x I ) ⊆ Z}.
Also, we define I as the image of I by the CM involution of K .

Corollary 36 Let A be an ordinary squarefree super-isolated abelian variety, say A = ∏n
1 Ai

with Ai simple. Then A admits a principal polarization if and only if each Ai does. If this is
the case, the principal polarization is unique up to polarized isomorphism.

Proof Let h (resp. hi ) be the Weil polynomial of A (resp. Ai ). Put K = Q[x]/h and Ki =
Q[x]/hi for each i , so that K = ∏n

i=1 Ki . For each i let Fi be the maximal totally real
subfield of Ki and put F = ∏

i Fi . Since the abelian variety A is ordinary, by [13, Thm. 5.4]
we have that A is principally polarized if and only there exist a λ ∈ K ∗ which is totally
imaginary, 
-positive, and such that

λOK = Ot
K . (9)

Since OK = ⊕iOKi and Ot
K = ⊕iOt

Ki
, if we write λ = (λ1, . . . , λn) with λi in Ki , then λ

is totally imaginary and 
-positive if and only if the same holds for each λi . Also, Eq. (9)
holds if and only if

λiOKi = Ot
Ki

for each i . The statement about the uniqueness follows from the equality

U+
F

NormK/F (UK )
=

n∏

i=1

U+
Fi

NormKi /Fi (UKi )
.
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�	
Remark 37 Let A be an ordinary simple super-isolated abelian variety admitting a principal
polarization. Then also An admits a principal polarization, but this is in general not unique,
see [12, Ex. 6.5, Ex. 6.6].

5 Jacobians

Proposition 38 Let C and C ′ be smooth, projective and geometrically integral curves of
genus g > 1 defined over Fq with the same zeta function. Assume that Jac(C) is ordinary,
ideal, and super-isolated. Then the curves C and C ′ are isomorphic.

Proof Observe that by assumption Jac(C ′) is isogenous to Jac(C), and hence isomorphic
since Jac(C) is super-isolated. Denote by θ and θ ′ the canonical principal polarizations of
Jac(C) and Jac(C ′), respectively. By Theorem 35 we deduce that (Jac(C), θ) is isomorphic
to (Jac(C ′), θ ′). Therefore by Torelli’s Theorem we deduce that C � C ′. �	

The next example shows that given aWeil generator π for a number field K = Q(π) with
non-trivial class group, we can have two non-isomorphic Jacobians as polarized abelian vari-
eties which are isomorphic as unpolarized abelian varieties in the isogeny class determined
by the minimal polynomial of π . For more examples and a general method to construct such
curves see [9].

Example 39 Consider the hyperelliptic curves over F3 defined by

C1 : y2 = 2x5 + 2x4 + x3 + 2x2 + 1 and C2 : y2 = 2x5 + x4 + x + 1.

Observe (or use Magma to verify) that C1 and C2 are not isomorphic. Their Jacobians lie in
the same isogeny class, which is determined by the Weil polynomial

h = x4 − x3 + x2 − 3x + 9.

Let K = Q[x]/(h) = Q(π), which is the same field as in Example 34. Note that π is a Weil
generator for K but that the isogeny class is not super-isolated because the class groupof K has
order two. Using [13, Thm. 4.3] we deduce that there are two isomorphism classes of abelian
varieties in the isogeny class, represented by say A and B. Using [13, Thm. 5.4], we compute
that one of the isomorphism classes admits two non-isomorphic principal polarizations, say
(A, θ1) and (A, θ2),while B is not principally polarized.Note that it is not surprising that A has
two non-isomorphic polarizations: indeed by [13, Thm. 5.4] the number of non-isomorphic
polarizations equals the size ofU+

F /NormK/F (UK ) and in Example 34 we showed that it is
2. Denote by θ ′

1 (resp. θ
′
2) the canonical polarization of Jac(C1) (resp. Jac(C2)). We deduce

that, after possibly relabelling θ1 and θ2, we have isomorphisms (Jac(C1), θ
′
1) � (A, θ1)

and (Jac(C2), θ
′
2) � (A, θ2). In particular we have Jac(C1) � Jac(C2) � A as unpolarized

abelian varieties.
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