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Abstract
In order to study the wall-crossing formula of Donaldson type invariants on the blown-up
plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams con-
necting the moduli space of torsion free framed sheaves on projective plane, and that on
its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the mini-
mal model program. Furthermore, we obtain a fully-faithful embedding between the derived
categories of these moduli spaces.
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2380 N. Koseki

1 Introduction

1.1 Main result

The wall crossing formulas of Donaldson-type invariants have been investigated in various
papers. For example, the behavior of Donaldson invariants of the moduli spaces of rank
two stable sheaves on rational surfaces under the variations of polarizations are studied by
Ellingsrud and Göttsche [10], Friedman and Qin [11]. As another example, Nakajima and
Yoshioka [21–23] studied the difference of invariants of framed sheaves on the projective
plane P

2 and that on its blow-up P̂
2 at a point. To do so, they constructed a sequence of

diagrams

· · · Mm(v)

ξ−
m

Mm+1(v)

ξ+
m

· · ·

Mm,m+1(v)

(1.1)

connecting the moduli space on P
2 and that on the blow-up P̂

2. The intermediate models
Mm(v) also havemodular interpretations; they are themoduli spaces ofm-stable sheaves (see
Definition 3.1). Similarly, the space Mm,m+1(v) parametrizes m-stable and (m + 1)-stable
sheaves with various Chern characters.

In these examples, the moduli spaces appearing in wall crossing diagrams are smooth
and birational to each other. In fact, in the case studied in [10,11], the moduli spaces are
connected by standard flips. In the case of [21–23], their geometry is more complicated.
Indeed, Nakajima–Yoshioka proved that the contracted loci of the morphisms ξ±

m have strat-
ifications (called Brill–Noether stratifications) such that each stratum has the structure of a
Grassmannian bundle.

The aim of this paper is the further study of birational geometric properties of the diagram
(1.1). In particular, we show that it is an instance of the minimal model program.

Theorem 1.1 (Theorem 4.7) The diagram (1.1) realizes a minimal model program for the
moduli space of framed torsion free sheaves on the blow-up P̂

2. The program ends with the
minimal model, the moduli space of framed torsion free sheaves on P

2, which is a hyper-
Kähler manifold.

We will also verify Bondal–Orlov [5], Kawamata’s [15] D/K equivalence conjecture for
these moduli spaces:

Theorem 1.2 (Theorem 4.9) For each integer m ∈ Z≥0, we have a fully faithful embedding

Db(Mm(v)) ↪→ Db(Mm+1(v))

between the derived categories. In particular, we have an embedding

Db(MP2) ↪→ Db(M
P̂2

),

where MP2 , MP̂2
denote the moduli spaces of torsion free framed sheaves on P2, P̂2, respec-

tively.

So we get an interesting relationship among wall-crossing formulas for Donaldson type
invariants, birational geometry, and derived categories.

We can also consider the moduli space of Gieseker stable sheaves on a smooth projective
surface and that on its blow-up (see Theorem 4.10 for the precise statement):
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Birational geometry of moduli spaces of perverse coherent… 2381

Theorem 1.3 Let S be a smooth projective surface, Ŝ the blow-up of S at a point. Under
certain numerical conditions, the MMP for the moduli space MŜ of Gieseker stable sheaves

on Ŝ is reduced to MMP for the moduli MS on S. Furthermore, there exists a fully faithful
embedding

Db(MS) ↪→ Db(MŜ)

between their derived categories.

For instance, we can apply the above theorem when S is a del Pezzo surface.

1.2 Strategy of the proof

To prove our main result Theorem 1.1, we will compute the normal bundles of the fibers
explicitly, following the idea from [10,11]. Although the geometry of the diagram (1.1) is
more complicated compared to the one considered in [10,11], it turns out their method still
works in our setting. Actually, we are able to describe the normal bundle of each Brill–
Noether stratum explicitly. Then we will see that the diagram realizes the MMP when we
decrease the stability parameter m ∈ Z≥0.

Furthermore, the normal bundle computation enables us to reduce the construction of the
fully faithful embedding between derived categories to the formal local case; the latter is
already handled in the paper [8] and hence we can prove Theorem 4.9.

1.3 Relation to existing works

In [17], the author studied birational geometry of the Hilbert scheme of two points on blow-
ups. The main result of the present paper is an extension to the completely general setting.

There are severalworks investigating birational geometry and derived categories ofmoduli
spaces. For a standard flip betweenmoduli spaces obtained in [10,11], Ballard [4] constructed
a semi-orthogonal decomposition (SOD) of their derived categories.

Recently, Toda [24,25] introduced the notion of d-critical birational geometry, which is a
certain virtual analogue of usual birational geometry. It is shown that if two smooth varieties
are connected by a simple d-critical flip, then we have an SOD of their derived categories.
See [18,25] for interesting examples of d-critical flips.

The SODs obtained in the papers [4], [25] can be considered as categorifications of
wall crossing formulas for Donaldson type invariants, Donaldson–Thomas type invariants,
respectively. It would be interesting to describe the semi-orthogonal complements of the
embedding in our Theorem 4.9, which would give a categorification of Nakajima–Yoshioka’s
wall crossing formula.

1.4 Organization of the paper

The paper is organized as follows. In Sect. 2, we collect some terminology and useful lemmas
from birational geometry and derived categories. In Sect. 3, we recall the result of Nakajima–
Yoshioka. In Sect. 4, we prove our main results. In Sect. 5, we give some explicit examples.
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2382 N. Koseki

Notation and convention

In this paper, we always work over the complex number field C.

• For a variety X , we denote by Db(X) := Db(Coh(X)) the bounded derived category of
coherent sheaves on X .

• For a proper morphism f : M → N between varieties and objects E, F ∈ Db(M), we
denote by Extqf (E, F) the q-th derived functor of Hom f (E, F) := f∗Hom(E, F).

• For coherent sheaves E, F on a variety, we define hom(E, F) := dimHom(E, F) and
exti (E, F) := dim Exti (E, F).

• For a vector bundle V on a variety and an integer i > 0, we denote by Gr(i,V) the
Grassmann bundle of i-dimensional subbundles of V .

2 Preliminaries

2.1 Terminologies from birational geometry

In this subsection, we recall some notions from birational geometry. The standard reference
for this subsection is [16].

Definition 2.1 Let φ : X → Z be a projective morphism between normal quasi-projective
varieties. We say that φ is a K-positive (resp. K -negative) contraction if the following
conditions hold:

(1) φ∗OX ∼= OZ ,
(2) the canonical divisor KX (resp. the anti-canonical divisor −KX ) is φ-ample.

Definition 2.2 Let φ : X → Z be a K -negative contraction.

(1) φ is called a divisorial (resp. flipping) contraction if it is birational and the φ-exceptional
locus has codimension one (resp. at least two).

(2) φ is called aMori fiber space if we have dim X > dim Z .
(3) Assume that φ is a flipping contraction. Then a flip of φ is a K -positive birational

contraction φ+ : X+ → Z . We also call the birational map X ��� X+ a flip.

Definition 2.3 Let X be a quasi-projective variety with at worst terminal singularities. A
minimal model program of X is a sequence of birational maps

X = X0 ��� X1 ��� · · · ��� XN ,

such that

(1) each birational map Xi ��� Xi+1 is either a divisorial contraction or a flip,
(2) the variety XN is either a minimal model (i.e. KXN is nef) or has a structure of a Mori

fiber space.

We do not give the definition of a terminal singularity, aswe only consider smooth varieties
in this paper. For the precise definition, see [16, Definition 2.34].

The following lemma is useful for our purpose:

Lemma 2.4 [1, Proposition 3.7] Let X be a smooth variety, φ : X → Z a K-negative con-
traction, and F ⊂ X a smooth φ-fiber. Assume that the following conditions hold:
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Birational geometry of moduli spaces of perverse coherent… 2383

• the conormal bundle N∨ := N∨
F/X is nef,

• H1(F, TF ⊗ Symi (N∨)) = H1(F,N ⊗ Symi (N∨)) = 0 for i ≥ 1.

Then the formal neighborhood of F in X is isomorphic to that of F in the total space of
N , embedded as the zero section.

2.2 Fourier–Mukai functors

In this subsection, we recall the definition and basic properties of Fourier–Mukai functors.
The standard reference is [13].

Definition 2.5 Let X , Y be smooth quasi-projective varieties, and P ∈ Db(X × Y ) be an
object whose support is proper over Y . The Fourier–Mukai (FM) functor with kernel P is
the functor �P : Db(X) → Db(Y ) defined by

Db(X) 
 E �→ �P (E) := RpY∗
(
p∗
X E ⊗L P

)
∈ Db(Y ),

where pX : X × Y → X , pY : X × Y → Y denote the projections.

Note that, in the above definition, we assume the object P has proper support over Y to
ensure the associated FM functor �P preserves bounded complexes.

Let us give a trivial example:

Example 2.6 LetO�X be the structure sheaf of the diagonal�X ⊂ X×X . Then the associated
FM functor �O�X coincides with the identity functor idDb(X).

Let � = �P : Db(X) → Db(Y ) be a FM functor with kernel P . By [13, Proposition
5.9], the right adjoint functor�R : Db(Y ) → Db(X) is given by the FM functor with kernel

PR := P∨ ⊗ p∗
XωX [dim X ].

Similarly, the composition of two FM functors is again a FM functor: let �Q : Db(Y ) →
Db(Z) be another FM functor. Then the composition �Q ◦ �P : Db(X) → Db(Z) is a FM
functor with kernel

P ∗ Q := RpXZ∗
(
p∗
XYP ⊗L p∗

Y ZQ
)

∈ Db(X × Z),

where pXY : X ×Y × Z → X ×Y , pY Z : X ×Y × Z → Y × Z , pXZ : X ×Y × Z → X × Z
denote the projections, see [13, Proposition 5.10].

Now let us consider the adjoint map

�O�X = idDb(X) → �PR ◦ �P = �PR∗P . (2.1)

The following result tells us that it lifts to the morphism between FM kernels:

Proposition 2.7 [2, Theorem 3.2, Proposition 3.6] Let� = �P : Db(X) → Db(Y ) be a FM
functor. Then there exists a morphism

O�X → PR ∗ P (2.2)

in Db(X × X), which induces the adjoint map (2.1).

We will use the following lemma in the proof of the main result:
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2384 N. Koseki

Lemma 2.8 Let X , Y be smooth quasi-projective varieties, X → U, Y → U projective
morphisms to a variety U. Take an object P ∈ Db(X × Y ) supported on the fiber product
X ×U Y . Denote by Q ∈ Db(X × X) the cone of the morphism O�X → PR ∗ P in (2.2).
The following statements hold:

(1) The FM functor � = �P is fully faithful if and only if Q = 0.
(2) For a point p ∈ U, denote by Ûp the completion of U at p. Denote by X̂ p the base

change of X → U along Ûp → U. Then Q = 0 if and only if Q ⊗OX×X OX̂ p×X̂ p
= 0

for every p ∈ U.

In particular, the FM functor �P is fully faithful if and only if the FM functors �P∧
p are

fully faithful for all p ∈ U, where we put P∧
p := P ⊗OX×Y OX̂ p×Ŷp

.

Proof (1) First observe that the functor � is fully faithful if and only if the adjoint map (2.1)
is an isomorphism. Let us take an object E ∈ Db(X). By applying �(−)(E) to the exact
triangle

O�X → PR ∗ P → Q,

in Db(X × X), we obtain an exact triangle

E → �R ◦ �(E) → �Q(E) (2.3)

in Db(X). Hence if Q = 0, we have an isomorphism E
∼=−→ �R ◦ �(E) for all E ∈ Db(X),

i.e., � is fully faithful.
For the converse, assume that Q �= 0. Then there exists a point x ∈ X such that Qx :=

Q|{x}×X �= 0. In particular, we have �Q(Ox ) = Qx �= 0 and hence Ox �= �R ◦ �(Ox ) by
the exact triangle (2.3), i.e., the functor � is not fully faithful.

(2) The second assertion follows from the fact that the completion Ûp → U is faithfully
flat. ��

2.3 Grassmannian flip

Here we recall about geometry and the derived categories ofGrassmannian flips, which play
important roles in this paper. We refer [3, Chapter II] for the details (see also [8, Section 1]).
Let W± be vector spaces. Take a positive integer i ≤ min{dimW±}.

Then the determinantal variety is defined to be

Z = Zi := {
a ∈ Hom

(
(W−)∨,W+) : rk(a) ≤ i

}
,

and its Springer resolution is defined as

Y+ = Y+
i := {

(a, V ) ∈ Hom
(
(W−)∨,W+) × Gr(i,W+) : Image(a) ⊂ V

}
.

We have the following projections:

Y+ h+

φ+

Gr(i,W+)

Z .

The fiber of h+ : Y+ → Gr(i,W+) over a point V ∈ Gr(i,W+) is

Hom
(
(W−)∨, V

) ∼= V ⊗ W−.
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Hence we have an isomorphism

Y+ ∼= TotGr(i,W+)

(
S+ ⊗ W−)

,

where S+ denotes the universal subbundle on Gr(i,W+). This shows that the variety Y+ is
smooth of dimension i(dimW++dimW−−i).Moreover, the other projectionφ+ : Y+ → Z
is isomorphism over the open locus

Zo := {a ∈ Z : rk(a) = i},
therefore Y+ → Z is actually a resolution of singularities.

On the other hand, we have canonical isomorphisms

Hom
(
(W+)∨,W−) ∼= W− ⊗ W+ ∼= Hom

(
(W−)∨,W+)

,

hence by replacing the roles of W± in the above construction, we get a second resolution of
singularities of the variety Z :

Y− ∼= TotGr(i,W+)

(
S+ ⊗ W−) h−

φ−

Gr(i,W−)

Z ,

where S− denotes the universal subbundle of Gr(i,W−).
Hence we obtain the diagram

Y− Y+

Z ,

which we call the Grassmannian flip. The following lemma justifies this notion:

Lemma 2.9 Assume that dimW+ > dimW−. Then the following statements hold:

(1) The canonical bundles of Y± are given as

ωY± = h±∗ (
det(S±)⊗±(dimW+−dimW−)

)
.

In particular, the morphism φ+ (resp. φ−) is a K -negative (resp. K -positive) contraction.
(2) When i = dimW−, the morphism φ+ is a divisorial contraction and the morphism φ−

is an isomorphism.
(3) When i < dimW−, the birational map Y+ ��� Y− is a flip.

Proof (1) We have the following exact sequence

0 → h±∗ (
S± ⊗ W∓) → TY± → h±∗TGr(i,W±) → 0,

and the tangent bundle of the Grassmannian variety is given by TGr(i,W±)
∼= S±∗ ⊗ Q±,

where Q± denotes the universal quotient bundle of Gr(i,W±). Hence we obtain

ωY± ∼= h±∗ (
det

(
S±)⊗−dimW∓ ⊗

(
det(S±)⊗(dimW±−i) ⊗ det(Q±∗)⊗i

))

∼= h±∗ (
det(S±)⊗(dimW±−dimW∓) ⊗ (

det(S±) ⊗ det(Q±)
)⊗−i

)
.

(2.4)
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2386 N. Koseki

Moreover, the tautological sequence

0 → S± → W± ⊗ OGr(i,W±) → Q± → 0

shows that

det(S±) ⊗ det(Q±) ∼= OGr(i,W±).

Now Eq. (2.4) becomes

ωY± ∼= h±∗ (
det(S±)⊗(dimW±−dimW∓)

)

as required.
To prove (2) and (3), we need to determine the dimensions of the φ±-exceptional loci.

First note that we have a sequence of closed immersions

{0} = Z0 ⊂ Z1 ⊂ · · · Zi−1 ⊂ Zi = Z ,

and we have dim(φ±)−1(Z j ) ≤ dim(φ±)−1(Zi−1) for all j ≤ i − 1.
Let us take a point a ∈ Zi−1 \ Zi−2. By definition, the subspace Va := Image(a) ⊂ W±

has dimension i − 1. The fibers Y±
a := (φ±)−1(a) are

Y±
a

∼= {
V ∈ Gr(i,W±) : Va ⊂ V

} ∼= Gr(1,W±/Va).

Hence we have

dim Exc(φ±) = dim Zi−1 + dimGr(1,W±/Va)

= dim Y±
i−1 + dimGr(1,W±/Va)

= (i − 1)(dimW± + dimW∓ − i + 1) + (dimW± − (i − 1) − 1)

= i(dimW± + dimW∓ − i) + i − dimW∓ − 1

= dim Y± − (dimW∓ + 1 − i),

and the assertions (2) and (3) hold. ��
For the derived categories of Y±, we have the following result:

Theorem 2.10 [8, Theorem D] Assume that dimW+ > dimW−. Then the FM functor

�OW : Db(Y−) ↪→ Db(Y+)

is fully faithful, where we put W := Y− ×Z Y+.

Remark 2.11 When dimW− = dimW+, the canonical bundles of Y± are trivial, and we call
the birational map Y+ ��� Y− the Grassmannian flop. In this case, the FM functor �OW is
an equivalence, which is treated also in [9].

2.4 Bott type vanishing

For later use, we prove some vanishing results on cohomology groups of certain vector
bundles on the Grassmannian varieties. LetW be a vector space of dimension n, and i ∈ Z>0

be a positive integer with i < n. We consider the Grassmannian variety G = Gr(i,W ).
Denote by S, Q the universal sub and quotient bundles, respectively.
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An element β = (β1, . . . , βs) ∈ Z
⊕s is called a weight if it satisfies β1 ≥ β2 ≥ · · · ≥

βs−1 ≥ βs . For a given pair α = (β, γ ) of weights β ∈ Z
⊕i and γ ∈ Z

⊕n−i , we define the
vector bundle V (α) as

V (α) := Kβ(S∨) ⊕ Kγ (Q∨),

where Kβ(−), Kγ (−) denote theWeyl functors (cf. [26, Section 2.1]).

Example 2.12 (1) For α = (k, 0, . . . , 0) ∈ Z
⊕n with k ≥ 0, we have V (α) = Symk(S∨).

(2) For α = (0, . . . , 0,−1) ∈ Z
⊕n , we have V (α) = Q.

We will use the following version of Bott vanishing:

Theorem 2.13 Assume that an element α = (β1, . . . , βi , γi+1, . . . , γn) ∈ Z
⊕n satisfies β1 ≥

. . . βi ≥ γi+1 ≥ · · · ≥ γn. Then we have the vanishing

H j (G, V (α)) = 0

for all j > 0.

Proof This is a special case of [26, Corollary 4.1.9 (2)]. ��
As an application of the above Bott type vanishing, we have the following:

Lemma 2.14 We have the following vanishing of cohomology groups:

(1) H1
(
G, TG ⊗ Symk(S∨)

) = 0 for all k ≥ 0.
(2) H1

(
G, S ⊗ Symk(S∨)

) = 0 for all k > 0.
(3) H1

(
G,Symk(S∨)

) = 0 for all k > 0.

Proof Weonly prove the first assertion, since the other can be proved by similar computations.
Recall that we have TG ∼= S∨ ⊗ Q, and hence

TG ⊗ Symk(S∨) ∼= S∨ ⊗ Symk(S∨) ⊗ Q.

Moreover, by Pieri formula (cf. [26, Corollary 2.3.5]), we have

S∨ ⊗ Symk(S∨) ∼= Kν1(S
∨) ⊕ Kν2(S

∨),

where ν1 = (k, 1, 0, . . . , 0), ν2 = (k + 1, 0, . . . , 0) ∈ Z
⊕i (see also [26, Proposition 2.1.18]

for the relation between the Schur and the Weyl functors). Hence we have

TG ⊗ Symk(S∨) ∼= V (α1) ⊕ V (α2),

where we put αt = (νt , 0, . . . , 0,−1) ∈ Z
⊕n for t = 0, 1. Hence by Theorem 2.13, we

obtain the vanishing H1
(
G, TG ⊗ Symk(S∨)

) = 0 as required. ��

3 Framed sheaves on the blow-up

3.1 ADHM description and wall crossing

Let us consider the projective plane P2 = C
2 ∪ l∞ and its blow-up f : P̂2 → P

2 at the origin
0 ∈ C

2. Denote by C ⊂ P
2 the f -exceptional curve. In this subsection, we recall the notion

of m-stable sheaves on P̂
2 with framing at l∞ studied by Nakajima–Yoshioka [21].
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Definition 3.1 Fix a non-negative integerm ∈ Z≥0. Let (E,�) be a framed sheaf on P̂2, i.e.,

let E be a coherent sheaf on P̂
2 and � : E |l∞

∼=−→ O⊕ ch0(E)
l∞ a framing at l∞. We say that

(E,�) is m-stable if the following conditions hold:

(1) Hom(E(−mC),OC (−1)) = 0,
(2) Hom(OC , E(−mC)) = 0,
(3) E is torsion free outside C .

Remark 3.2 Let E be an m-stable framed sheaf. By [22, Proposition 1.9 (1)], the condition
(1) in the above definition implies that the sheaf E(−mC) is an object of the category
Per(P̂2/P2) of perverse coherent sheaves introduced by Bridgeland [6]. Hence we may also
think of m-stable sheaves as stable objects in the category Per(P̂2/P2) ⊗ O(mC).

We denote by Mm(v) the fine moduli space ofm-stable framed sheaves on P̂2 with Chern
character v. Let us recall the ADHM description of framed sheaves on P̂

2; Consider the
following quiver Q

0
d

1
B1,B2

j

∞
i

with the relation

I : B1dB2 − B2dB1 + i j = 0.

For a given Chern character

v = (r ,−kC, ch2) ∈
2⊕

i=0

H2i (P̂2,Q),

we associate the dimension vector �d = (d0, d1, d∞) by the following formula:

d∞ = r , k = d0 − d1, ch2 = −1

2
(d0 + d1). (3.1)

Theorem 3.3 [21] Let us fix a Chern character v = (r ,−kC, ch2) ∈ H2∗(P̂2,Q) with
r > 0, k ≥ 0, and associate the vector �d ∈ Z

⊕3
≥0 as in (3.1). Then, in the region � :={

(ζ0, ζ1) ∈ R
2 : ζ0 > 0

}
of King’s stability parameters for (Q, I )-representations, the walls

are classified as

Wm := {(ζ0, ζ1) ∈ � : mζ0 + (m + 1)ζ1 = 0} , m ∈ Z≥0.

For m ≥ 1, denote by Cm the chamber between the walls Wm and Wm−1, and put
C0 := {

(ζ0, ζ1) ∈ R
2 : ζ0, ζ1 < 0

}
. The following statements hold:

(1) For each integer m ∈ Z≥0, and a stability condition ζ ∈ Cm, there exists an isomorphism
Mm(v) ∼= Mζ (Q, I ; �d). Here, Mζ (Q, I ; �d) denotes the moduli space of ζ -stable (Q,
I)-representations with dimension vector �d. Furthermore, these moduli spaces are either
empty or smooth quasi-projective varieties of dimension d∞(d0 + d1) − (d0 − d1)2.
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(2) We have a natural morphism

M0(v) → MP2(r , 0, ch2), E �→ f∗E,

which is an isomorphism when k = 0. Here, MP2(r , 0, ch2) denotes the moduli space of
torsion free framed sheaves on P2.

(3) There exists an integer m0 ∈ Z≥0 such that for every integer m ≥ m0, we have an
isomorphism

Mm(v) ∼= M
P̂2

(v),

where M
P̂2

(v) denotes the moduli space of torsion free framed sheaves on P̂
2.

(4) For each integer m ∈ Z≥0 and a stability condition ζ ∈ Wm, there exists a set-theoretic
bijection

Mζ (Q, I ; �d) = Mm,m+1(v) :=
⊔
i≥0

(
Mm(v − icm) ∩ Mm+1(v − icm)

)
,

where we put cm := ch(OC (−m − 1)).

Proof The classification of walls is explained in [21, Section 4.3]; The statements (1), (2), (3)
are proved in Theorems 1.5 and 2.5, Proposition 7.4, and Proposition 7.1 in [21], respectively.

Let us now consider the statement (4). By [21, Section 4.3, Proposition 5.3], the wallWm

corresponds to the destabilizing objectOC (−m − 1) in the following sense: for any stability
condition ζ ∈ Wm on the wall and any ζ -semistable object E , its S-equivalence class is
of the form OC (−m − 1)⊕i ⊕ E ′ for some non-negative integer i ≥ 0 and m-stable and
(m+1)-stable sheaf E ′ with ch(E ′) = v − icm . Hence as a closed point in the moduli space,
we have

[E] = [OC (−m − 1)⊕i ⊕ E ′] ∈ Mζ (Q, I ; �d),

i.e., the closed point [E] ∈ Mζ (Q, I ; �d) is uniquely determined by the sheaf E ′ ∈ Mm(v −
icm) ∩ Mm+1(v − icm). Hence we have the bijection as stated. ��

By the above theorem, we have the diagram as in (1.1) connecting the moduli spaces
MP2(r , 0, ch2) and M

P̂2
(r ,−kC, ch2).

3.2 Brill–Noether loci

Next we recall the Brill–Noether stratifications on the moduli spaces and the determination
of the fibers over ξ±

m . For each integer i ∈ Z≥0, let us consider the following locally closed
subschemes:

Mm(v)i := {
(E,�) ∈ Mm(v) : hom(OC (−m − 1), E) = i

}
,

Mm+1(v)i := {
(E,�) ∈ Mm+1(v) : hom(E,OC (−m − 1)) = i

}
.

We call them as the Brill–Noether strata. We also denote as Mm,m+1(v)i := Mm(v − icm)∩
Mm+1(v − icm).

Let us take an object E ∈ Mm(v). By [22, Proposition 3.15], we have the exact sequence

0 → Hom(OC (−m − 1), E) ⊗ OC (−m − 1)
ev−→ E → E ′ → 0 (3.2)

for some object E ′ ∈ Mm,m+1(v). By (the proof of) Theorem 3.3 (4), we have ξ−
m (E) = E ′,

where ξ−
m : Mm(v) → Mm,m+1(v) is themorphism in the diagram (1.1).Hence themorphism
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ξ−
m restricts to the morphism ξ−

m,i : Mm(v)i → Mm,m+1(v)i . Moreover, from the exact
sequence (3.2), we see that an m-stable sheaf E is (m + 1)-stable if and only if the vanishing
Hom(OC (−m − 1), E) = 0 holds. Hence we have

Mm(v)0 = Mm(v) ∩ Mm+1(v) ⊂ Mm(v)

and it is an open immersion.
Let us denote by

E ′
i ∈ Coh

(
P̂
2 × Mm,m+1(v)i

)

the universal family, and let

p : P̂2 × Mm,m+1(v)i → Mm,m+1(v)i , q : P̂2 × Mm,m+1(v)i → P̂
2

be the projections. The following theorem shows the structure of the morphism ξ±
m in terms

of the Brill–Noether strata:

Theorem 3.4 [22, Proposition 3.31, Proposition 3.32] The morphisms

ξ−
m,i : Mm(v)i → Mm,m+1(v)i ,

ξ+
m,i : Mm+1(v)i → Mm,m+1(v)i

are identified with the morphisms

Gr
(
i, Ext1p(E ′

i , q
∗OC (−m − 1))

)
→ Mm,m+1(v)i ,

Gr
(
i, Ext1p(q∗OC (−m − 1), E ′

i )
)

→ Mm,m+1(v)i ,

respectively. In particular, every fiber of the morphisms ξ±
m is the Grassmannian variety.

4 Birational geometry of moduli spaces

In this section, we will prove that the diagram (1.1) realizes the MMP. The key ingredient is
to compute the normal bundles of the fibers of ξ±

m , following the arguments of Ellingsrud and
Göttsche [10] and Friedman and Qin [11]. We keep the notations as in the previous section.
Fix integers m, i ∈ Z≥0. Let

E− ∈ Coh(P̂2 × Mm(v)), E+ ∈ Coh(P̂2 × Mm+1(v)) (4.1)

be the universal families, and let

W−
i := Ext1p(E ′

i , q
∗OC (−m − 1)), W+

i := Ext1p(q∗OC (−m − 1), E ′
i ) (4.2)

be vector bundles on Mm,m+1(v)i . We consider the Grassmannian bundles

π− : G−
i := Gr

(
i,W−

i

) → Mm,m+1(v)i ,

π+ : G+
i := Gr

(
i,W+

i

) → Mm,m+1(v)i ,
(4.3)

which are isomorphic to the Brill–Noether loci Mm(v)i , Mm+1(v)i , respectively, by Theo-
rem 3.4. On G±

i , we have the following tautological sequences:

0 → S±
i → π±∗W±

i → Q±
i → 0. (4.4)
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Let g± : P̂2×G±
i → G±

i , h
± : P̂2×G±

i → P̂
2 be the projections.We start with the following

lemma.

Lemma 4.1 There exists an exact sequence

0 → g−∗S−∨
i ⊗ h−∗OC (−m − 1) → E−|G−

i
→ π−∗

X E ′
i → 0 (4.5)

on Coh(P̂2 × G−
i ). Similarly, we have

0 → π+∗
X E ′

i → E+|G+
i

→ g+∗S+
i ⊗ h+∗O(−m − 1) → 0.

on Coh(P̂2 × G+
i ).

Proof Let us take an object E ′ ∈ Mm,m+1(v)i and an i-dimensional subspace V ⊂
Ext1(E ′,OC (−m − 1)). Then by [23, Proposition 4.7], the associated universal extension

0 → V∨ ⊗ OC (−m − 1) → E− → E ′ → 0

defines anm-stable sheaf E− ∈ Mm(v). Hence E−|G−
i
coincides with the universal extension

on P̂
2 × G−

i , and the first assertion follows. The proof of the second assertion is similar. ��

4.1 Birational geometry of moduli spaces

The goal of this subsection is to prove the following:

Theorem 4.2 For any integers m, i ∈ Z≥0, we have isomorphisms

NG−
i /Mm (v)

∼= S−
i ⊗ π−∗W+

i ,

NG+
i /Mm+1(v)

∼= S+
i ⊗ π+∗W−

i .

See (4.2), (4.3), and (4.4) for the notations used in the above theorem.We divide the proof
of the theorem into several lemmas.

Lemma 4.3 There exists a natural morphism

δ : TMm (v)|G−
i

→ S−
i ⊗ π−∗W+

i .

Proof By the deformation-obstruction theory for framed sheaves (cf. [7, Theorem 4.3]), the
tangent bundle of Mm(v) is given as

TMm (v)
∼= Ext1pM

(
E−, E−(−l∞ × Mm(v))

)
.

Now, applying the functor Homg−(E−|G−
i
, (−) ⊗ O(−l∞ × G−

i )) to the exact sequence
(4.5), we get the morphism

δ1 : Ext1g−
(
E−|G−

i
, E−|G−

i
(−l∞ × G−

i )
)

→ Ext1g−
(
E−|G−

i
, π−∗E ′

i (−l∞ × G−
i )

)
.

On the other hand, applying the functor Homg−(−, π−∗E ′
i (−l∞ × G−

i )) to the exact
sequence (4.5), we get the morphism

δ2 : Ext1g−
(
E−|G−

i
, π−∗E ′

i (−l∞ × G−
i )

)
→

Ext1g−
(
g−∗S−∨

i ⊗ h−∗OC (−m − 1), π−∗E ′
i

)
,
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since OC (l∞) = OC . Note that we have

Ext1g−
(
g−∗S−∨

i ⊗ h−∗OC (−m − 1), π−∗E ′
i

) ∼= S−
i ⊗ π−∗W+

i .

By the above arguments, we have a morphism

δ := δ2 ◦ δ1 : TMm (v)|G− → S−
i ⊗ π−∗W+

i .

��
In the following lemma, we show that our morphism δ is surjective, by checking it on

the fibers of the morphism π− : G−
i → Mm,m+1(v)i in (4.3). By abuse of notation, we also

denote by δ1, δ2 their restrictions to the π−-fibers.

Lemma 4.4 Let us take an object E ′ ∈ Mm,m+1(v)i and put W− := Ext1(E ′,OC (−m−1)),
W+ := Ext1(OC (−m − 1), E ′). Take also an i-dimensional subspace V ⊂ W−, and let
E− ∈ Mm(v) be the associated universal extension. Then we have the following exact
sequences:

Hom(V ,W−/V )
α1−→ Ext1(E−, E−(−l∞))

δ1−→ Ext1(E−, E ′(−l∞)) → 0,

Ext1(E ′, E ′(−l∞))
α2−→ Ext1(E−, E ′(−l∞))

δ2−→ V ⊗ W+ → 0.
(4.6)

Proof By replacing theobject E ′ ∈ Mm,m+1(v)i with E ′⊗O
P̂2

(−mC) ∈ Mm,m+1(v.e−mC )i ,
we may assume m = 0. Let us take an object E ′ ∈ M0,1(v)i and an i-dimensional subspace
V ⊂ Ext1(E ′,OC (−1)). Let

0 → V∨ ⊗ OC (−1) → E− → E ′ → 0 (4.7)

be the associated universal extension. By applying the functor Hom(E−, (−) ⊗ O(−l∞)),
we have the exact sequence

Ext1(E−, V∨ ⊗ OC (−1)) → Ext1(E−, E−(−l∞))
δ1−→ Ext1(E−, E ′(−l∞))

→Ext2(E−, V∨ ⊗ OC (−1)).

Note that we have used the fact thatOC (−l∞) = OC . By Serre duality and the 0-stability of
E−, we have the vanishing

Ext2(E−,OC (−1)) ∼= Hom(OC , E−)∨ = 0

and hence δ1 is surjective. Furthermore, by applying the functor Hom(−,OC (−1)) to the
exact sequence (4.7) we have the exact sequence

0 → V → W− → Ext1(E−,OC (−1)) → Ext1(V∨ ⊗ OC (−1),OC (−1)) = 0.

Hence we have

Ext1(E−, V∨ ⊗ OC (−1)) ∼= Hom(V ,W−/V )

as required.
Similarly, applying the functor Hom(−, E ′(−l∞)) to the exact sequence (4.7), we obtain

Ext1(E ′, E ′(−l∞))
α2−→ Ext1(E−, E ′(−l∞))

δ2−→ V ⊗ W+

→ Ext2(E ′, E ′(−l∞)).

By Lemma 4.5 below, we have the vanishing Ext2(E ′, E ′(−l∞)) = 0 and hence δ2 is
surjective. ��
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Lemma 4.5 Let F be a 0-stable sheaf. Then we have the vanishing

Ext2(F, F(−l∞)) = 0.

Proof By Serre duality, we have

Ext2(F, F(−l∞)) ∼= Hom(F(−l∞), F ⊗ ω
P̂2

)∨.

Moreover, as in the proof of [22, Lemma 3.6], we have an injection

Hom
P̂2

(F(−l∞), F ⊗ ω
P̂2

) ↪→ HomP2
(
( f∗F)∨∨(−l∞), ( f∗F)∨∨ ⊗ ωP2

)
,

where f : P̂2 → P
2 is the blow-up morphism. Putting G := ( f∗F)∨∨, it is enough to show

Hom(G(−l∞),G ⊗ ωP2) = Hom(G,G(−2)) = 0.

By applying the functor Hom(G,−) to the exact sequence

0 → G(−3) → G(−2) → G(−2)|l∞ → 0, (4.8)

we obtain

0 → Hom (G,G(−3)) → Hom (G,G(−2)) → Hom
(
G,G(−2)|l∞

)
. (4.9)

On the other hand, as G is a framed sheaf on P
2, we have G|l∞ ∼= O⊕ ch0(G)

P2
. Hence we

have

Hom
(
G,G(−2)|l∞

) ∼= Hom
(
G|l∞ ,G(−2)|l∞

)

∼= Hom
(
Ol∞ ,Ol∞(−2)

)⊕ ch0(G)2

= 0.

Combining with the exact sequence (4.9), we conclude that

Hom(G,G(−2)) ∼= Hom(G,G(−3)).

By tensoring the exact sequence (4.8) with OP2(−i) and repeating the above argument,
we can inductively prove the isomorphism

Hom(G,G(−2)) ∼= Hom(G,G(−i − 3))

for all i ≥ 0. By Serre duality, we obtain

Hom(G,G(−i − 3)) ∼= H2(G ⊗ G∨(i))∨,

and the right hand side vanishes for sufficiently large i > 0, since OP2(1) is ample. We
conclude that Hom(G,G(−2)) = 0 as required. ��

We also need the following:

Lemma 4.6 We have the equalities

dim Mm(v) = dimG−
i + rk

(
S−
i ⊗ π−∗W+

i

)
,

dim Mm+1(v) = dimG+
i + rk

(
S+
i ⊗ π+∗W−

i

)
.
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Proof We only prove the first equality. By the dimension formula for the framed moduli
space in Theorem 3.3 (1), we have

dim Mm(v) = d∞(d0 + d1) − (d0 − d1)
2

= −2r ch2 −k2,
(4.10)

where the vector (d0, d1, d∞) is defined as in (3.1). On the other hand, for any object E ′ ∈
Mm,m+1(v)i , we have

dimG−
i = dim Mm,m+1(v)i + i

(
ext1(E ′,OC (−m − 1)) − i

)

= dim Mm(v − icm) − i
(
χ(E ′,OC (−m − 1)) + i

)
,

(4.11)

where the first equality follows from the fact thatπ− : G−
i → Mm,m+1(v)i is aGrassmannian

bundle defined as in (4.3). For the second equality, first observe that we haveχ(E ′,OC (−m−
1)) = − ext1(E ′,OC (−m − 1)) since E ′ is m-stable and (m + 1)-stable. Moreover, the
inclusion

Mm,m+1(v)i = Mm(v − icm) ∩ Mm+1(v − icm) ⊂ Mm(v − icm)

is an open immersion and hence the second equality in (4.11) holds. Similarly, by using the
m-stability and (m + 1)-stability of E ′, we have

rk
(
S−
i ⊗ π−∗W+

i

) = i ext1(OC (−m − 1), E ′)
= −i · χ(OC (−m − 1), E ′)

(4.12)

(see (4.2) and (4.4) for the definitions of W+
i and S−

i ). Combining the equalities (4.10),
(4.11) and (4.12), we obtain

dimG−
i + rk

(
S−
i ⊗ π−∗W+

i

)

= dim Mm(v − icm) − i
(
i + χ(E ′,OC (−m − 1)) + χ(OC (−m − 1), E ′)

)

= −2r

(
ch2 +i

(
m + 1

2

))
− (k + i)2

− i2 − i
(
χ(E ′,OC (−m − 1)) + χ(OC (−m − 1), E ′)

)

= −2r ch2 −k2 = dim Mm(v),

where the second equality holds since we have

v − icm = v − i ch(OC (−m − 1)) =
(
r ,−(k + i)C, ch2 +i

(
m + 1

2

))
,

and for the third equality, we use the Serre duality χ(E ′,OC (−m − 1)) = χ(OC (−m), E ′),
together with the Riemann–Roch theorem

−χ(OC (−m), E ′) = rm + k + i .

��
Now we begin the proof of Theorem 4.2.

Proof of Theorem 4.2 We only prove the first assertion. By Lemmas 4.3 and 4.4, we have a
surjective morphism

δ : TMm (v)|G−
i

→ S−
i ⊗ π−∗W+

i .
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We need to show the isomorphism

TG−
i

∼= ker(δ).

Let the notations be as in Lemma 4.4. By Lemma 4.6, the vector spaces TE−G−
i and ker(δE−)

are of the same dimension. Hence it is enough to show that the composition

TE−G−
i ↪→ TE−Mm(v)

δE−−−→ Ext1(V ⊗ OC (−m − 1), E ′)

is zero. Indeed, if this is the case, then we have TE−G−
i = ker(δE−), which induces a

surjection TG−
i

� ker(δ) between torsion free sheaves of the same rank: it should be an
isomorphism.

We have the exact sequence

0 → Hom(V ,W−/V ) → TE−G−
i → TE ′Mm,m+1(v)i → 0.

We can see that the composition

Hom(V ,W−/V ) → TE−G−
i → TE−Mm(v)

coincides with the morphism α1 in the exact sequence (4.6). In particular, it becomes zero
after composing with δ1. Hence the morphism

TE−G−
i ↪→ TE−Mm(v)

δ−→ V ⊗ W+

factors through TE ′Mm,m+1(v)i . Similarly, the morphism TE ′Mm,m+1(v)i → V ⊗ W+
coincides with δ ◦ α2, which is zero by the second exact sequence in (4.6). We conclude that
TE−G−

i = ker(δE−) as required. ��
Now we have the following theorem:

Theorem 4.7 Fix a Chern character of the form v = (r , 0, ch2) ∈ H2∗(P̂2,Q). Then the
diagram (1.1) is a minimal model program for the moduli space M

P̂2
(v) of framed torsion

free sheaves on the blow-up P̂2. The program ends with the minimal model, the moduli space
MP2(r , 0, ch2) of framed torsion free sheaves on P

2, which is a hyper-Kähler manifold.

Proof We claim that for each m ∈ Z≥0, the morphism ξ+
m (resp. ξ−

m ) is a K -negative (resp.
K -positive) contraction (cf. Definition 2.1). By Lemma 2.9 and Theorem 4.2, it is enough to
show the inequality

rkW+
i > rkW−

i

(see (4.2) for the difinitions of W±
i ), which is equivalent to the inequality

ext1(OC (−m − 1), E ′) > ext1(E ′,OC (−m − 1)).

Now the assertion directly follows from the Riemann–Roch theorem. Explicitly, we have

ext1(OC (−m − 1), E ′) − ext1(E ′,OC (−m − 1))

= χ(E ′,OC (−m − 1)) − χ(OC (−m − 1), E ′)
= r .

(4.13)

To see that the moduli space MP2(r , 0, ch2) is hyper-Kähler, recall that the space
MP2(r , 0, ch2) is isomorphic to Nakajima’s quiver variety associated with the quiver with
one vertex and one loop [20, Chapter 2]. By the general fact that Nakajima’s quiver varieties
are hyper-Kähler [12,19], so is the variety MP2(r , 0, ch2). ��
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From the arguments above, we can also deduce the following result:

Proposition 4.8 Let us take a Chern character v = (r , 0, ch2) ∈ H2∗(P̂2,Q). The following
statements hold.

(1) For every integer m ≥ 1, the morphism ξ±
m is a small contraction.

(2) The morphism ξ+
0 is a divisorial contraction.

Proof By Lemma 4.6 and Eq. (4.13), we have the inequality dimG+
i > dimG−

i . Hence it is
enough to estimate the dimension of G+

i . By Lemma 4.6, we have

codim(G+
i , Mm+1(v)) = rk

(
S+
i ⊗ π+∗W−

i

)

= i ext1(E ′,OC (−m − 1)) = rim + i2.

It follows that for each m ≥ 1, the morphism ξ±
m is a small contraction, while ξ+

0 is a
divisorial contraction. ��

4.2 Fully faithful embedding between derived categories

As an application of Theorem 4.2, we show the existence of the fully faithful embed-
ding between the derived categories of the moduli spaces Mm(v), Mm+1(v). Let Wm :=
Mm(v) ×Mm,m+1(v) M

m+1(v) be the fiber product.

Theorem 4.9 Let us fix a Chern character v = (r , 0, ch2) ∈ H2∗(P̂2,Q). Then for each
integer m ∈ Z≥0, we have the fully faithful functor

� = �OWm : Db(Mm(v)) ↪→ Db(Mm+1(v))

whose Fourier–Mukai kernel is OWm . In particular, we have a fully faithful embedding

Db(MP2(r , 0, ch2)) ↪→ Db(M
P̂2

(r , 0, ch2)).

Proof By Lemma 2.8, we can reduce the statement to the formal completion at a point
[E ′] ∈ Mm,m+1(v).

We claim that the diagram (1.1) is formally locally isomorphic to the Grassmannian flip
appered in Sect. 2.3, by using Lemma 2.8. Let us take an object [E ′] ∈ Mm,m+1(v)i and put
U := Ext1(E ′(−l∞), E ′),W− := Ext1(E ′,OC (−m−1)),W+ := Ext1(OC (−m−1), E ′).
Recall that the fibers of ξ±

m are the Grassmannian varieties

(ξ±
m )−1([E ′]) = G±(E ′) := Gr(i,W±).

By Theorem 4.2, their normal bundles are given as

NG−(E ′)/Mm (v) = S− ⊗ W+ ⊕ O⊕ dimU ,

NG+(E ′)/Mm+1(v) = S+ ⊗ W− ⊕ O⊕ dimU .

Here, S± denotes the tautological subbundles onG±(E ′). First note that the conormal bundle
N∨
G+(E ′)/Mm+1(v)

is nef as it is globally generated. Combining with Lemma 2.14, we can

apply Lemma 2.8 to G+(E) ⊂ Mm+1(v). Moreover, its flip is unique by [16, Corollary 6.4].
We conclude that the formal completion of the diagram (1.1) is isomorphic to the formal

123



Birational geometry of moduli spaces of perverse coherent… 2397

completion of the diagram

Y− ×U Y+ ×U

Z ×U

(4.14)

at a point (0, 0) ∈ Z ×U . Here, varieties Y± and Z are defined as

Y− := TotG−(E ′)(S
− ⊗ W+),

Y+ := TotG+(E ′)(S
+ ⊗ W−),

Z := {
a ∈ Hom((W−)∨,W+) : rk a ≤ i

}

(see Sect. 2.3). By Theorem 2.10, we have the fully faithful functor

�loc : Db(Y−) ↪→ Db(Y+)

whose Fourier–Mukai kernel is the structure sheaf of the fiber product Y− ×Z Y+. Hence
globally, the functor � : Db(Mm(v)) → Db(Mm+1(v)) is fully faithful. ��

4.3 Projective case

Let S be a smooth projective surface, f : Ŝ → S be the blow-up at a point. Let H be an
ample divisor on S. In this setting, we can consider the m-stability for coherent sheaves E
on Ŝ (cf. [22]), by replacing the condition (3) in Definition 3.1 with

(3)’ f∗(E(−mC)) is μH -stable.

Let us fix a cohomology class w = (w0, w1, w2) ∈ H2∗(S,Q) which is in the image of
the Chern character map, and v := f ∗w ∈ H2∗(Ŝ,Q). Assume the following conditions
hold:

• KS .H < 0,
• w0 > 0,
• gcd(w0, H .w1) = 1.

Then by [22, Corollary 3.7], the moduli space Mm(v) of m-stable sheaves with Chern char-
acter v is smooth. Moreover, the analogous results as Theorems 3.3 and 3.4 hold. More
precisely, the moduli spaces Mm(v) satisfy the following properties:

• Mm(v) has the Brill–Noether stratification as in Sect. 3.2 by [22, Propositions 3.31 and
3.32].

• For m = 0, we have an isomorphism f∗ : M0(v)
∼=−→ MH (w), where MH (v) denotes the

moduli space of Gieseker stable sheaves on S with respect to the polarization H , by [22,
Proposition 3.3].

• For m � 0, we have an isomorphism Mm(v) ∼= M f ∗H−εC (v), where M f ∗H−εC (v)

denotes the moduli space of Gieseker stable sheaves on Ŝ with respect to the polarization
f ∗H − εC for sufficiently small ε > 0, by [22, Proposition 3.37].

In the projective setting, we can also prove the results in the previous subsections by using
the properties listed above. We omit the proof, since the arguments are very similar.
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Theorem 4.10 Let the notations be as above. Take a sufficiently small positive real number
0 < ε � 1. Then an MMP for the moduli space M f ∗H−εC (v) of Gieseker stable sheaves
on Ŝ is reduced to an MMP for the moduli MH (w) on S. Furthermore, there exists a fully
faithful embedding

Db(MH (w)) ↪→ Db(M f ∗H−εC (v))

between their derived categories.

5 Examples

In this section, we give some explicit examples.

5.1 Simplest example

As the first example, we consider the case when the Chern character is (r , 0,−1)with r ≥ 1.
In this case, the corresponding quiver representation is

C

d
C

B1,B2

j

C
r .

i

(5.1)

We begin with the following easy observation:

Lemma 5.1 The moduli spaces Mm(r , 0,−1) and Mm+1(r , 0,−1) are isomorphic for m ≥
1.

Proof Letm ≥ 0 and E ∈ Mm(r , 0,−1) be anm-stable sheaf. Assume that E is not (m+1)-
stable. Then we must have Hom(OC (−m − 1), E) �= 0, and obtain the exact sequence

0 → Hom(OC (−m − 1), E) ⊗ OC (−m − 1)
ev−→ E → E ′ → 0

as in (3.2), for some m-stable and (m + 1)-stable sheaf E ′.
On the other hand, by [21, Proposition 5.3], the sheaf OC (−m − 1) corresponds to the

quiver representation

C
m

0
C
m+1

B1,B2

0

(5.2)

with B1 = (1m, 0), B2 = (0, 1m), where 1m denotes the (m ×m) identity matrix. Hence the
representation (5.2) cannot have an injection into the representation (5.1) for m > 0. This
shows the inclusion Mm(r , 0,−1) ⊂ Mm+1(r , 0,−1) form > 0. A similar argument shows
that the opposite inclusion Mm+1(r , 0,−1) ⊂ Mm(r , 0,−1). ��

Furthermore, we can describe these moduli spaces explicitly:
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Lemma 5.2 We have the diagram

M0(r , 0,−1) M1(r , 0,−1)

M0,1(r , 0,−1)

and isomorphisms

MP2(r , 0,−1) ∼= M0(r , 0,−1) ∼= Tot
P(r−1)

(
O⊕2 ⊕ �

)
,

M
P̂2

(r , 0,−n) ∼= M1(r , 0,−1) ∼= Bl
P(r−1) M0(r , 0,−1),

where P(r−1) is embedded into M0(r , 0,−1) as the zero section.

Note that when r = 1, we recover the blow-up morphism Ĉ
2 → C

2 as the moduli spaces
(cf. [21, Theorem 2.16]).

Before starting the proof, let us recall the ADHM description of the framed sheaves on
P
2 (see [21, Section 1] and [20, Capter 2] for the details). Let V ,W be vector spaces. An

ADHM data is the data X := (B1, B2, i, j), where Bα ∈ End(V ), i ∈ Hom(W , V ), and
j ∈ Hom(V ,W ) satisfying the relation

[B1, B2] + i j = 0. (5.3)

An ADHM data X = (B1, B2, i, j) is called stable if there is no proper subspace T ⊂ V
such that Bα(T ) ⊂ T for α = 1, 2, and Image(i) ⊂ T . We have the moduli space of stable
ADHM data as the quotient of the stable locus inside the affine space

End(V )×2 × Hom(W , V ) × Hom(V ,W )

modulo the natural GL(V )-action.
Then themoduli spaceMP2(r , 0, ch2)of torsion free framed sheaves onP2 is isomorphic to

themoduli space of stable ADHMdatawith dim V = − ch2, dimW = r (cf. [20, Chapter 2])

Proof of Lemma 5.2 Let us put dim V = 1, dimW = r , and let X = (B1, B2, i, j) be a stable
ADHM data. Since dim V = 1, the relation (5.3) becomes i j = 0, and the stability condition
becomes i �= 0. Hence the stable locus is given as

(
End(V )×2 × (W∨ \ {0}) × W )

) ∩ μ−1(0),

where

μ : End(V )×2 × W∨ × W → C, (B1, B2, i, j) �→ i j

is the moment map. As GL(V ) = C
∗ acts trivially on End(V ), and on W by weight −1, we

have

MP2(r , 0,−1) ∼= Tot
P(r−1)

(
O⊕2 ⊕ �

)
.

Next we determine the variety M1(r , 0,−1). Recall that we have an isomorphism (cf.
[21, Proposition 7.4])

φ : M0(r , 0,−1)
∼=−→ MP2(r , 0,−1), (B1, B2, d, i, j) �→ (dB1, dB2, di, j). (5.4)

The locus blown-up by ξ+
0 is given by

M0(r , 0,−1)1 = {
E ∈ M0(r , 0,−1) : hom(OC (−1), E) = 1

}
. (5.5)
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As the sheaf OC (−1) corresponds to the representation (5.2) with m = 0, we see that the
locus (5.5) coincides with the subvariety

P
(r−1) ∼= L := (B1 = B2 = j = 0) ⊂ MP2(r , 0,−1)

under the isomorphism (5.4), which is nothing but the zero section. ��

5.2 Hilbert scheme of points

In this subsection, we consider the moduli spaces with Chern character (1, 0,−n). In this
case, the diagram (1.1) connects the Hilbert schemes of points Hilbn(C2) and Hilbn(Ĉ2). We
first analyze the stability of ideal sheaves IZ ∈ Hilbn(Ĉ2) (it is an ideal sheaf of a length n
subscheme Z ⊂ P̂

2 with Z ∩ l∞ = ∅).
Lemma 5.3 Let us take a point IZ ∈ Hilbn(Ĉ2) and let k be a length of Z ∩ C. Then IZ is
k-stable but not (k − 1)-stable. Furthermore, its destabilizing sequence for (k − 1)-stability
is given as

0 → IW (−C) → IZ → OC (−k) → 0

for some length (n − k) zero dimensional subscheme W ⊂ P̂
2 with W ∩ C = ∅.

Proof The first statement follows from the proof of [17, Lemma 6.1]. For the second state-
ment, let OW be the kernel of the surjection OZ → OZ∩C . Then we have the following
diagram.

0 0 0

0 IW (−C) O(−C) OW 0

0 IZ IZ∩C OW 0

OC (−k) OC (−k)

0 0

Furthermore, the sheaf IW (−C) is 0-stable since W ∩ C = ∅. Hence the second assertion
follows. ��

5.2.1. When n = 2, we have the following diagram:

M1(1, 0,−2)

ξ−
1ξ+

0

Hilb2(Ĉ2)

ξ+
1

Hilb2(C2) M0,1(1, 0,−2).

The properties of the diagram are summarized as follows (cf. [17, Theorem 1.4]):
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• ξ+
1 contracts Hilb2(C) ∼= P

2, and ξ−
1 contracts P1.

• The birational map Hilb2(Ĉ2) ��� M1(1, 0,−2) is a standard flip.
• ξ+

0 is the blow-up at the codimension two subvariety
{
IY ∈ Hilb2(C2) : Y 
 0

} ∼= Ĉ
2.

The derived category Db(Hilb(Ĉ2)) has the following semi-orthogonal decomposition:

Db(Hilb2(Ĉ2)) =
〈
Db(pt), Db(M1(1, 0,−2)

〉

=
〈
Db(pt), Db(Ĉ2), Db(Hilb2(C2))

〉

=
〈
Db(pt), Db(pt), Db(C2), Db(Hilb2(C2))

〉
.

5.2.2. Next we consider the case when n = 3. First let us analyze geometry of

M2(1, 0,−3)
ξ−
2−→ M2,3(1, 0,−3)

ξ+
2←− Hilb3(Ĉ2). (5.6)

By Lemma 5.3, we have Exc(ξ+
2 ) = Hilb3(C) ∼= P

3,

Exc(ξ−
2 ) ∼= P(Ext1(O(−C),OC (−3))) = P

2,

and the diagram (5.6) is a standard flip.
Next we analyze the geometry of the morphisms ξ±

1 . We have just seen that

M2(1, 0,−3) =
(
Hilb3(Ĉ2) \ Hilb3(C)

)
∪ PExt1(O(−C),OC (−3)).

Take a non-trivial extension

0 → OC (−3) → E2 → O(−C) → 0, (5.7)

which defines a 2-stable sheaf [E2] ∈ M2(1, 0,−3). We claim that we have the equality
hom(E2,OC (−2)) = 1. Indeed, by applying the functor Hom(−,OC (−2)) to the exact
sequence (5.7), we have the exact sequence

0 → Hom(E2,OC (−2)) → Hom(OC (−3),OC (−2)) → Ext1(O(−C),OC (−2)),

which proves the claim. By a standard diagram chasing, we can see that E2 fits into the exact
sequence

0 → Ip(−C) → E2 → OC (−2) → 0

for some point p ∈ C . Combining with Lemma 5.3, we conclude that

Exc(ξ+
1 ) =

⋃

p∈Ĉ2

P(Ext1(OC (−2), Ip(−C))),

Exc(ξ−
1 ) =

⋃

p∈Ĉ2

P(Ext1(Ip(−C),OC (−2))),

which are P2-bundle, P1-bundle over Ĉ2, respectively. The diagram

M1(1, 0,−3)
ξ−
1−→ M1,2(1, 0,−3)

ξ+
1←− M2(1, 0,−3)

is a family of standard flips parametrized by Ĉ2.
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Finally, let us consider the morphism ξ+
0 : M1(1, 0,−3) → Hilb3(C2). There are two

types of objects in M1(1, 0,−3):

(1) an ideal sheaf IZ , where Z ⊂ Ĉ
2 is a length 3 zero dimensional subschemewith Z∩C =

{pt}.
(2) an object E1 ∈ P(Ext1(Ip(−C),OC (−2))), where p ∈ Ĉ

2.

Let us consider a sheaf E1 of type (2). By a computation similar as above, we can see
that hom(E1,OC (−1)) ≤ 2. Again, by a simple diagram chasing, we have the following
possibilities:

• When hom(E1,OC (−1)) = 1, E1 fits into a exact sequence

0 → Ip,q(−C) → E1 → OC (−1) → 0

for some q ∈ C with q �= p.
• When hom(E1,OC (−1)) = 2, E1 fits into an exact sequence

0 → O(−2C) → E1 → OC (−1)⊕2 → 0.

As a summary,we list up the properties of themorphism ξ+
0 : M1(1, 0,−3) → Hilb3(C2):

• We have ξ+
0 (Exc(ξ+

0 )) = M1(1, 0,−2) ∩ M2(1, 0,−2) = M1,2(1, 0,−2), which has a
single singular point o ∈ M1,2(1, 0,−2).

• For a point p ∈ M1,2(1, 0,−2), the fiber of ξ+
0 is given as

(ξ+
0 )−1(p) ∼=

{
Fo := P

2 (p = o)

Fp := P
1 (p �= o).

• The normal bundles of fibers of ξ+
0 are given as

NFo/M1(1,0,−3)
∼= �P2(−1)⊕2,

NFp/M1(1,0,−3)
∼= OP1(−1) ⊕ O⊕4

P1
(p �= o).

• The moduli space M1(1, 0,−3) is isomorphic to BlM1,2(1,0,−2) Hilb
3(C2).

Using the semi-orthogonal decompositions for standard flips and blow-ups of codimension
two Cohen–Macaulay subschemes (cf. [14, 3.1.2]), we have

Db(Hilb3(Ĉ2))

=
〈
Db(pt), Db(pt), Db(pt), Db(C2), Db(C2), Db(Hilb2(C2)), Db(Hilb3(C2))

〉
.

5.2.3. We give the first example where the Grassmannian variety (which is not the projec-
tive space) appears as a fiber: let us consider a non-trivial extension

0 → O(−2C) → E → OC (−2)⊕2 → 0.

The sheaf E is 2-stable but not 1-stable, and has a Chern character (1, 0,−5). Noting that
ext1(OC (−2),O(−2C)) = 4, we have Gr(2, 4) ⊂ M2(1, 0,−5) and it is contracted by the
morphism ξ+

1 : M2(1, 0,−5) → M1,2(1, 0,−5).
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