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Abstract
This paper is concerned with the qualitative analysis of solutions to the following class of
quasilinear problems

{−��u = f (x, u) in �,

u = 0 on ∂�,
(P)

where ��u = div (ϕ(x, |∇u|)∇u) and �(x, t) = ∫ |t |
0 ϕ(x, s)s ds is a generalized N-

function. We assume that � ⊂ R
N is a smooth bounded domain that contains two open

regions �N ,�p with �N ∩ �p = ∅. The features of this paper are that −��u behaves
like −�Nu on �N and −�pu on �p , and that the growth of f : � × R → R is like that

of eα|t | N
N−1 on �N and as |t |p∗−2t on �p when |t | is large enough. The main result estab-

lishes the existence of solutions in a suitable Musielak–Sobolev space in the case of high
perturbations with respect to the values of a positive parameter.
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1 Introduction

In this paper we study the existence of solutions for the following class of quasilinear prob-
lems {−��u = f (x, u) in �,

u = 0 on ∂�,
(P)

where � ⊂ R
N (N ≥ 2) is a smooth bounded domain, ��u = div (ϕ(x, |∇u|)∇u) is the

�-Laplace operator, where �(x, t) = ∫ |t |
0 ϕ(x, s)s ds, ϕ : � × [0,+∞) → [0,+∞) and

f : �×R → R are continuous functions that satisfy some hypothesis that will be mentioned
later on.

Before proceeding further, let us go through some known results associated to the �-
Laplace equations. In the recent past, the study of such equations concerning the existence
theory has been a research topic of considerable interest. This nonhomogeneous differential
operator extends the standard p-Laplace operator, the variable exponent p-Laplace operator,
the weighted p-Laplace operator, and the p, q-Laplace operator.

When � is independent of x , solutions of problem (P) are investigated in the Orlicz–
Sobolev space [40], and we refer the reader to Alves et al. [4], Alves et al. [5], Fukagai et
al. [26], Carvalho et al. [13], Fukagai and Narukawa [27], Harjulehto and Hästö [32], and
their references for the study of such PDEs. When � also depends on x , we are led to study
the problems in variable exponent Sobolev spaces [22,36] or in Musielak–Sobolev spaces
[17,33,38,40]. Differential equations in variable exponent Sobolev spaces have been studied
extensively in the last years, most part of them involving the p(x)-Laplacian operator, see
Alves and Barreiro [2], Alves and Ferreira [3], Alves and Souto [6], Alves and Rădulescu
[7], Chabrowski and Fu [16], Fan and Zhang [24], Fan [25], Rădulescu and Repovš [41] and
the references therein. However, differential equations in general Musielak–Sobolev spaces
have been studied very little, see for instance, Azroul et al. [8], Benkirane and Sidi El Vally
[11], Fan [23], Liu and Zhao [37], Wang and Liu [43] and the references therein.

In the present paper we will apply some recent results involvingMusielak–Sobolev spaces
to study the existence of nontrivial solutions for problem (P).

We now state our main hypotheses on the functions � and ϕ:

(ϕ1) For each x ∈ �, ϕ(x, .) is a C1 function in the interval (0,+∞).
(ϕ2) ϕ(x, t), ∂t (ϕ(x, t)t) > 0, for x ∈ � and t > 0.
(ϕ3) There exist 1 < p < N < q < p∗ such that

p ≤ ϕ(x, |t |)|t |2
�(x, |t |) ≤ q, for x ∈ � and t �= 0.

Using some ideas developed by Fukagai et al. [26], we can show that if ϕ satisfies condi-
tions (ϕ1)−(ϕ3), then � is a generalized N-function.

The complementary function �̃ associatedwith� is given by theLegendre transformation,
that is,

�̃(x, s) = max
t≥0

{st − �(x, t)}, x ∈ � and s ∈ R. (1.1)

The functions� and �̃ are complement of each other and �̃ is also a generalized N-function.
Hereafter, we also assume that for some constant d1,

(ϕ4) infx∈� �(x, 1) = d1 > 0.

123



High perturbations of quasilinear problems with double criticality 1877

(ϕ5) For each t0 �= 0, there is c0 > 0 such that

�(x, t)

t
≥ c0 and

�̃(x, t)

t
≥ c0 for t ≥ t0 and x ∈ �.

The conditions (ϕ1)−(ϕ5) are very important in our approach, because they permit to con-
clude that both theMusielak–Orlicz space L�(�) and theMusielak–Sobolev spaceW 1,�(�)

are reflexive and separable Banach spaces; see Sect. 2 for more details.
Next, we will state more conditions on the function ϕ. Hereafter, we will suppose that

there are three smooth domains �N ,�q ,�p ⊂ � with nonempty interior such that

� = �N ∪ �q ∪ �p

and there is δ > 0 such that

(�N )δ ∩ (�p)δ = ∅.

Hereafter, if A ⊂ �, we denote by Aδ to be the δ-neighbourhood of A restricted to �, that
is,

Aδ = {x ∈ � : dist (x, A) < δ}.
Associated with the sets �N ,�q and �p , we will consider three continuous functions
ηN , ηq , ηp : � → [0, 1] satisfying:

ηN (x) = 1, ∀x ∈ �N ,

ηp(x) = 1, ∀x ∈ �p,

and

ηq(x) = 1, ∀x ∈ �q = �\(�N ∪ �p),

ηN (x) = 0, ∀x ∈ (�N )cδ, ηp(x) = 0, ∀x ∈ (�p)
c
δ,

ηq(x) > 0, ∀x ∈ (�q)δ, ηq(x) = 0, ∀x ∈ (�q)
c
δ

and for some positive constant c4,

ηq(x) ≤ c4dist(x, ∂(�q)δ ∩ �p)
l , ∀x ∈ �p ∩ (�q)δ,

where l > q and dist(x, ∂(�q)δ ∩ �p) = inf{|x − y| : y ∈ ∂(�q)δ ∩ �p}.
We assume that the continuous function f : �×R → R has one of the following forms:

f (x, t) = ληN (x)|t |β−2teα|t | N
N−1 + η̃q(x)g(x, t) + ηp(x)|t |p∗−2t, ∀ (x, t) ∈ � × R,

( f1)

or

f (x, t) = ηN (x)|t |β−2teα|t | N
N−1 + η̃q(x)g(x, t) + ηp(x)(λ|t |r−2t ( f2)

+ |t |p∗−2t), ∀ (x, t) ∈ � × R,

where λ is a positive parameter, α > 0, p∗ > r > q > N > p > N
2 ,β > q , where

p∗ = Np
N−p , g : � × R → R and η̃q : �̄ → [0, 1] are continuous functions such that

η̃q(x) = 1, ∀x ∈ �q = �\(�N ∪ �p)
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1878 C. O. Alves et al.

and

η̃q(x) = 0, ∀ x ∈ (�q)
c
δ/2.

Related to the function g, we assume the following conditions

g(x, t) = o(|t |q1−1), as t → 0, uniformly in x ∈ (�q)δ/2 (g1)

for some q1 > q and there is θ > q such that

0 < θG(x, t) ≤ g(x, t)t, ∀ x ∈ (�q)δ/2 (g2)

where G(x, t) = ∫ t
0 g(x, s) ds, for t ∈ R.

With these notations, we are ready to mention our last conditions on ϕ. If f is the form
( f1), we assume for each t > 0 the following:

(ϕ6) ϕ(x, t) ≥ t N−2, for x ∈ �N and c1t N−2 ≥ ϕ(x, t), x ∈ �N\(�q)δ.

(ϕ7) ϕ(x, t) ≥ τ1(x)tq−2, for x ∈ (�q)δ where τ1 : � → R is a continuous function
satisfying:

τ1(x) > 0, ∀x ∈ (�q)δ and τ1(x) = 0, ∀x ∈ ((�q)δ)
c.

(ϕ8) τ2(x)tq−2 + c2t p−2 ≥ ϕ(x, t) ≥ t p−2, x ∈ �p where τ2 : �p → R is a nonnegative
continuous function satisfying:

τ2(x) ≤ c3dist(x, ∂(�q)δ ∩ �p)
s, ∀x ∈ �p ∩ (�q)δ

for some s > q and

τ2(x) = 0, ∀x ∈ �p\(�q)δ,

for some constants ci > 0 with i = 1, 2, 3.

Now, if f is the form ( f2)wemake a little adjustment in the condition (ϕ6) of the following
way:

(ϕ6) ϕ(x, t) ≥ t N−2, for x ∈ �N .

As a model of a function that satisfies the conditions (ϕ1) − (ϕ8) is the function ϕ :
� × [0,+∞) → [0,+∞) defined by

ϕ(x, t) = ηN (x)t N−2 + ηq(x)t
q−2 + ηp(x)t

p−2, ∀ (x, t) ∈ � × [0,+∞) (1.2)

and so,

�(x, t) = ηN (x)

N
|t |N + ηq(x)

q
|t |q + ηp(x)

p
|t |p, ∀ (x, t) ∈ � × R. (1.3)

The reader is invited to observe that according tomodel (1.3), the operator�� has different
behaviors in the region�, it behaves like�p in one region and�N in another disjoint region,

where the nonlinearity f behaves like |t |p∗−2t and e|u| N
N−1 respectively, and so, the problem

(P) has double criticality. This type of phenomena is very interesting, because we will
work in the same problem with two types of nonlinearity that bring to the problem a lost
of compactness, and in this case, we need to control these terms by doing simultaneously
two different types of estimates. More precisely, in the present paper we will apply the
Concentration Compactness Lemma due to Lions in W 1,p(�p) found in Medeiros [21,
Lemma 3.1], to get good estimate involving the integrals with the function |t |p∗

, while
we will use a version of the Trudinger–Moser inequality in W 1,N (�N ) by Cianchi [18],
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High perturbations of quasilinear problems with double criticality 1879

see Lemma 3.3, to obtain a control in the integrals involving the exponential growth. One
difficulty that appears in our study is that we do not know if the trace of the functions on
∂�p and ∂�N are zero, hence we must use results that are applied in the study of problem
with Neumann boundary conditions. We believe that this is the first article where this type
of doubly criticality is studied in the literature.

An important fact that we would like to point out is that our study is strongly related to the
double-phase problems that have received a special attention in the last years. Asmentioned in
[7], the study of non-autonomous functionals characterized by the fact that the energy density
changes its ellipticity and growth properties according to the point that has been continued
by Mingione et al. [10,19,20], Bahrouni et al. [9], Cencelj et al. [14], Gasiński and Winkert
[29,30], Papageorgiou et al. [39], Zhang and Rădulescu [45], etc. These contributions are
in relationship with the work of Zhikov [46,47], which describe the behavior of phenomena
arising in nonlinear elasticity. In fact, variational problems with nonstandard integrands were
introduced at the beginning of the 1980’s and were studied in the context of averaging and
the Lavrent’ev phenomenon. Zhikov provided models for strongly anisotropic materials in
the context of homogenisation. In particular, he considered the following model functional

Pp,q(u) :=
∫

�

(|Du|p + a(x)|Du|q)dx, 0 ≤ a(x) ≤ L, 1 < p < q, (1.4)

where the modulating coefficient a(x) dictates the geometry of the composite made of two
differential materials, with hardening exponents p and q , respectively. In our case, the func-
tions ηN (x), ηp(x) and ηq(x) work like function a(x) in the papers due to Zhikov.

Our main result establishes the existence of solutions to problem (P) in the case of high
perturbations, that is, for large values of the positive parameter λ.

Theorem 1.1 Assume (g1), (g2) and (ϕ1)−(ϕ8). Then, if either ( f1) or ( f2) holds, there
exists λ∗ > 0 such that problem (P) has a nontrivial solution for all λ ≥ λ∗.

The proof of Theorem 1.1 is done via Variational Methods, more precisely we have used
the mountain pass theorem without (PS) condition found in Willem [44] to establish our
main results, althoughwe face several difficulties. Asmentioned above, due to the exponential
critical behavior, we establish several auxiliary results (Lemmas 3.4, 3.5 and Corollary 3.6)
ofMoser-Trudinger type which captures the nonzero Dirichlet boundary value Sobolev func-
tions and become very useful in our setting. To handle the critical exponent term, we use a
Lions concentration compactness principle (Lemma 3.1) for the nonzero Dirichlet boundary
value Sobolev functions.

This paper is organised as follows. In Sect. 2, we make a brief review about the Musielak–
Orlicz and Musielak–Sobolev spaces, while in Sect. 3 we discuss some technical results that
are crucial to overcome the lost of compactness involving the terms with critical growth and
exponential critical growth. Finally, in Sect. 4, we prove our main result.

2 A brief review about theMusielak–Sobolev spaces

In this section, we recall some results on Musielak–Orlicz and Musielak–Sobolev spaces.
For more details we refer to [17,23,32,38] and their references.

Let� ⊂ R
N be a smooth bounded domain and�(x, t) = ∫ |t |

0 ϕ(x, s)s ds be a generalized
N-function, that is, for each t ∈ R, the function �(., t) is measurable, and for a.e. x ∈ �, the
function �(x, .) is an N-function. For the reader’s convenience, we recall that a continuous
function A : R → [0,+∞) is an N-function if
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1880 C. O. Alves et al.

(i) A is convex.
(ii) A = 0 ⇔ t = 0.
(iii) limt→0

A(t)
t = 0 and limt→+∞ A(t)

t = +∞ .
(iv) A is even.

The Musielak–Orlicz space L�(�) is defined by

L�(�) =
{
u : � → R

∣∣∣∣ u is measurable and ∃ τ > 0 such that
∫

�

�

(
x,

|u|
τ

)
dx < +∞

}

endowed with the Luxemburg norm

|u|� = inf

{
λ > 0

∣∣∣∣
∫

�

�

(
x,

|u|
λ

)
dx ≤ 1

}
.

We say that an N-function � satisfies the weak �2-condition, denote by � ∈ �2, if there
are K > 0 and a nonnegative function h ∈ L1(�) such that

�(x, 2t) ≤ K�(x, t) + h(x) for x ∈ � and t ∈ R,

When h = 0, we say that � satisfies the �2-condition. Arguing as in [40, Theorem 4.4.4], it
follows that � satisfies the �2-condition if, and only if,

sup
(x,t)∈�×(0,+∞)

ϕ(x, |t |)|t |2
�(x, |t |) < +∞.

Moreover, an important inequality involving � and its complementary function �̃ (see
(1.1)) is a Young’s type inequality given by

st ≤ �(x, s) + �̃(x, t), x ∈ � and ∀s, t ≥ 0. (2.1)

Using the above inequality, it is possible to prove a Hölder type inequality, that is,

∣∣∣
∫

�

uvdx
∣∣∣ ≤ 2‖u‖�‖v‖�̃ ∀ u ∈ L�(�) and ∀ v ∈ L�̃(�).

Arguing as in [26], if (ϕ3) holds, we derive that

q

q − 1
≤ ϕ̃(x, |t |)|t |2

�̃(x, |t |) ≤ p

p − 1
, x ∈ � and t �= 0,

where

�̃(x, t) =
∫ |t |

0
ϕ̃(x, s)s ds,

and

ϕ̃(x, s) = sup{t : ϕ(x, t)t ≤ s}, x ∈ � and s ≥ 0.

Hence, if (ϕ3) holds, we have �̃ also satisfies the �2-condition.
Arguing as in [26, Lemma A2], it is possible to prove that � and �̃ satisfy the following

inequality
�̃(x, ϕ(x, t)t) ≤ �(x, 2t), x ∈ � and t ≥ 0. (2.2)
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High perturbations of quasilinear problems with double criticality 1881

The condition (ϕ3) is very interesting, because following the ideas of [26, Lemmas 2.1
and 2.5], it is possible to prove the following: Setting the functions

ξ0(t) = min{t p, tq}, ξ1(t) = max{t p, tq}, ξ3(t) = min{t p
p−1 , t

q
q−1 } and

ξ4(t) = max{t p
p−1 , t

q
q−1 },

we have

ξ0(s)�(x, t) ≤ �(x, st) ≤ ξ1(s)�(x, t) for s, t ≥ 0, (2.3)

ξ0(|u|�) ≤
∫

�

�(x, |u|) dx ≤ ξ1(|u|�) for u ∈ L�(�), (2.4)

ξ3(s)�̃(x, t) ≤ �̃(x, st) ≤ ξ4(s)�̃(x, t) for s, t ≥ 0, (2.5)

and

ξ3(|u|�̃) ≤
∫

�

�̃(x, |u|) dx ≤ ξ4(|u|�̃) for u ∈ L�̃(�). (2.6)

The Musielak–Sobolev space W 1,�(�) can be defined by

W 1,�(�) = {
u ∈ L�(�)

∣∣ |∇u| ∈ L�(�)
}

with the norm

‖u‖1,� = |u|� + |∇u|� .

The conditions (ϕ1)−(ϕ5) ensure that the spaces L�(�) and W 1,�(�) are reflexive and
separable Banach spaces, for more details see [23, Propositions 1.6 and 1.8]. In what follows,
W 1,�

0 (�) is defined as the closure of C∞
0 (�) in W 1,�

0 (�) with respect to the above norm.

Moreover, ‖u‖ = |∇u|� is a norm inW 1,�
0 (�), and if (ϕ1)−(ϕ5) holds, by [31, Lemma 5.7],

‖ ‖ is equivalent to the norm ‖u‖1,� in W 1,�
0 (�).

As a consequence of (2.4) we have the lemma below that will be used later on.

Proposition 2.1 The functional ρ : W 1,�
0 (�) → R defined by

ρ(u) =
∫

�

�(x, |∇u|) dx, (2.7)

has the following properties:
(i) If ‖u‖ ≥ 1, then ‖u‖p ≤ ρ(u) ≤ ‖u‖q .
(ii) If ‖u‖ ≤ 1, then ‖u‖q ≤ ρ(u) ≤ ‖u‖p.

In particular, ρ(u) = 1 if and only if ‖u‖ = 1 and if (un) ⊂ W 1,�
0 (�), then ‖un‖ → 0 if

and only if ρ(un) → 0.

Remark 1 For the functional ξ : L�(�) → R given by

ξ(u) =
∫

�

�(x, |u|) dx ,

the conclusion of Proposition 2.1 also holds, for example, if (un) ⊂ L�(�), then |un |� → 0
if and only if ξ(un) → 0.
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1882 C. O. Alves et al.

From the definition ofW 1,�(�) and properties of �, we have the continuous embedding

W 1,�(�) ↪→ W 1,q((�q)ω)

for all ω ∈ (0, δ) and the compact embedding

W 1,q((�q)δ) ↪→ C((�q)ω),

because q > N , from where it follows that

W 1,�(�) ↪→ C((�q)ω), (2.8)

is compact, which is crucial in our approach.
Next we would like to state our last result found in [23, Theorem 2.2], which says the

operator −�� : W 1,�
0 (�) → (W 1,�

0 (�))∗ belongs to the Class (S+).

Lemma 2.2 Assume the conditions (ϕ1)−(ϕ8). If un⇀u in W 1,�
0 (�) and

lim
n→+∞

∫
�

〈ϕ(x, |∇un |)∇un,∇un − ∇u〉 dx = 0,

then un → u in W 1,�
0 (�).

3 Some technical results

The main goal of this section is to recall and prove some technical results that are crucial
in the proof of our main result. Since we are going to work with double criticality, which
involves the exponential critical growth and the critical growth p∗, the next two results are
crucial in our approach. The first one is a Concentration Compactness Lemma due to Lions
for W 1,p(�) explored in Medeiros [21], where � ⊂ R

N is a smooth bounded domain .

Lemma 3.1 Let (un) be a sequence in W 1,p(�) with 1 < p < N and un⇀u in W 1,p(�). If

(i) |∇un |p → μ weakly-∗ in the sense of measure,
and

(ii) |un |p∗ → ν weakly-∗ in the sense of measure,

then for at most a countable index set J , we have
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) ν = |u|p∗ + ∑
j∈J ν jδx j , ν j ≥ 0.

(b) μ ≥ |∇u|p + ∑
j∈J μ jδx j , μ j ≥ 0.

(c) If x j ∈ �, then Spν
p
p∗
j ≤ μ j .

(d) If x j ∈ ∂�, then
Sp

2p/N
ν

p
p∗
j ≤ μ j ,

where p∗ = Np
N−p and Sp denotes the best constant of the embedding D

1,p(RN ) ↪→ L p∗
(RN )

given by

Sp = inf
u ∈ D1,p(RN )

u �= 0

∫
RN |∇u|p dx(∫
RN |u|p∗ dx

) p
p∗

. (3.1)

The proof of the above lemma follows by combining the arguments explored in Struwe
[42, Chapter I, Section 4] and the following Cherrier’s inequality [15] below.
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High perturbations of quasilinear problems with double criticality 1883

Lemma 3.2 Let � ⊂ R
N be a smooth bounded domain and p ∈ (1, N ). Then for each

τ > 0, there is Mτ > 0 such that[
Sp

2
p
N

− τ

]
‖u‖p

L p∗ (�)
≤ ‖∇u‖p

L p(�) + Mτ‖u‖p
L p(�), ∀ u ∈ W 1,p(�).

The second result thatwewould like to point out is a version ofTrundiger–Moser inequality
in W 1,N (�) due to Cianchi [18, Theorem 1.1].

Lemma 3.3 Let � ⊂ R
N be a smooth bounded domain for N ≥ 2 and u ∈ W 1,N (�). Then,

there is a constant C(�) > 0 such that

∫
�

e
αN

(
|u−u� |

‖∇u‖
LN (�)

)N ′

dx ≤ C(�), (3.2)

where N ′ = N
N−1 , u� = 1

|�|
∫
�
u dx is the mean value of u in �, αN = N

(
wN
2

) 1
N and

wN is the volume of sphere SN−1. The integral on the left-hand of (3.2) is finite for each
u ∈ W 1,N (�) even if αN is replaced by any other small positive number, but no inequality
of type (3.2) can hold with a large constant in the place of αN .

From Lemma 3.3, for each u ∈ W 1,N (�), we have

et |u|N ′ ∈ L1(�), ∀ t ≥ 0. (3.3)

For the reader interested in Trudinger–Moser inequality for functions in W 1,N (�), we
would like to cite the papers due to Adimurthi and Yadava [1], Kaur and Sreenadh [35] and
their references.

As a consequence of Lemma 3.3, we have the following two results.

Lemma 3.4 Given t > 1 and α > 0, there is r ∈ (0, 1) and C = C(t, r , N ) > 0 such that

sup

{∫
�

etα|u|N ′
dx : u ∈ W 1,N (�), ‖∇u‖LN (�) ≤ r and ‖u‖L1(�) ≤ r

}
≤ C . (3.4)

Proof Note that if u ∈ W 1,N (�), we have∫
�

etα|u|N ′
dx ≤ et2

N ′
α|u�|N ′ ∫

�

et2
N ′

α|u−u�|N ′
dx .

Since

|u�| ≤ 1

|�|
∫

�

|u| dx ≤ r

|�|
it follows that

∫
�
etα|u|N ′

dx ≤ K
∫
�
e
t2N

′
α‖∇u‖N ′

LN (�)

(
|u−u� |

‖∇u‖
LN (�)

)N ′

dx

≤ K
∫
�
e
t2N

′
αr N

′
(

|u−u� |
‖∇u‖

LN (�)

)N ′

dx,

where K = e
t2N

′
α
(

r
|�|

)N ′

. Fixing r of such way that t2N
′
αr N

′ ≤ αN , the result follows by
employing Lemma 3.3. ��
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Lemma 3.5 Let α > 0 and (un) ⊂ W 1,N (�) be a sequence satisfying ‖∇un‖N ′
LN (�)

≤ τ

2N ′
αN
α

and ‖un‖L1(�) ≤ M for some τ ∈ (0, 1) and M > 0. Then, there is t > 1 with t ≈ 1 such
that

sup
n∈N

∫
�

etα|un |N ′
dx < +∞. (3.5)

Hence, the sequence fn(x) = eα|un(x)|N ′
is a bounded sequence in Lt (�).

Proof Arguing as in Lemma 3.4, we get

∫
�

etα|u|N ′
dx ≤ K

∫
�

e
t2N

′
α‖∇un‖N ′

LN (�)

(
|un−(un )� |

‖∇un‖
LN (�)

)N ′

dx,

where K = e
t2N

′
α
(

M
|�|

)N ′

and so,

∫
�

etα|u|N ′
dx ≤ K

∫
�

e
tταN

(
|un−(un )� |

‖∇un‖
LN (�)

)N ′

dx .

As τ ∈ (0, 1), we can take t > 1 with t ≈ 1 of such way that tτ ∈ (0, 1), and the result
follows again by using Lemma 3.3. ��

As a consequence of Lemma 3.5, we have the corollary below.

Corollary 3.6 Let (un) ⊂ W 1,N (�) be a sequence as in Lemma 3.5. If un(x) → u(x) a.e. in

�, then fn⇀ f in Lt (�) where f (x) = eα|u(x)|N ′
, that is,∫

�

fnϕ dx →
∫

�

f ϕ dx, ∀ ϕ ∈ Lt ′(�),

where 1
t + 1

t ′ = 1.

Our next result will help us to conclude that the energy functional associated with problem
(P) is C1(W 1,�

0 (�),R). Since it follows as in Bezerra do Ó, Medeiros and Severo [12,
Proposition 1], we will omit its proof.

Lemma 3.7 Let (un) ⊂ W 1,N (�) be a sequence such that un → u in W 1,N (�) for some
u ∈ W 1,N (�). Then, for some subsequence, still denoted by itself, there is v ∈ W 1,N (�)

such that:
(i) un(x) → u(x) a.e. in �.
(ii) |un(x)| ≤ v(x) a.e. in � for all n ∈ N.

The energy functional I : W 1,�
0 (�) → R associated to problem (P) is given by

I (u) =
∫

�

�(x, |∇u|) dx −
∫

�

F(x, u) dx,

where F(x, t) = ∫ t
0 f (x, s) ds, t ∈ R.

Lemma 3.8 The functional I belongs to C1(W 1,�
0 (�),R) and

I ′(u)v =
∫

�

ϕ(x, |∇u|)∇u∇v dx −
∫

�

f (x, u)v dx, ∀u, v ∈ W 1,�
0 (�).
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Proof In what follows we will only do the proof by supposing that f is of the type ( f1),
because the type ( f2) can be done of a similar way. Note that functional I can be written of
the form

I (u) = �0(u) − �1(u) − �2(u) − �3(u)

where

�0(u) =
∫

�

�(x, |∇u|) dx,

�1(u) =
∫

(�q )δ/2

F(x, u) dx,

�2(u) = λ

∫
�N \(�q )δ/2

F1(x, u) dx,

where F1(x, t) = ∫ t
0 |s|β−2seα|s|N ′

ds, and

�3(u) = 1

p∗

∫
�p\(�q )δ/2

|u|p∗
dx .

Since for each x ∈ �, we have �(x, .) ∈ C1([0,+∞), [0,+∞)), a well known argument
ensures that �0 ∈ C1(W 1,�

0 (�),R) with

� ′
0(u)v =

∫
�

ϕ(x, |∇u|)∇u∇v dx, ∀u, v ∈ W 1,�
0 (�).

Now, by (ϕ6)−(ϕ8), we know that the space W 1,�
0 (�) is continuously embedded into

C((�q)δ/2),W 1,�(�N\(�q)δ/2) andW 1,�(�p\(�q)δ/2). Therefore, it is easy to prove that
the functionals �1, �2 and �3 also belong to C1(W 1,�

0 (�),R) with

� ′
1(u)v =

∫
(�q )δ/2

f (x, u)v dx, ∀ u, v ∈ W 1,�
0 (�),

� ′
2(u)v = λ

∫
�N \(�q )δ/2

|u|β−2ueα|u|N ′
v dx, ∀ u, v ∈ W 1,�

0 (�)

and

� ′
3(u)v =

∫
�p\(�q )δ/2

|u|p∗−2uv dx, ∀u, v ∈ W 1,�
0 (�).

This proves the desired result. Here, Lemma 3.7 plays an important rule in the proof that �2

belongs to C1(W 1,�
0 (�),R) ��

Next, our goal is to prove that I satisfies the mountain pass geometry and the well known
(PS) condition.

Lemma 3.9 The functional I satisfies the mountain pass geometry for λ ≥ 1, that is,

(a) There are r , ρ > 0 such that

I (u) ≥ ρ for ‖u‖ = r .

(b) There is ψ ∈ W 1,�
0 (�)\Br (0), independent of λ ≥ 1, such that I (ψ) < 0.
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Proof In what follows we will assume that f is of the type ( f1), because if ( f2) holds the
argument is similar. In fact when f is of the type ( f2) the result follows for any λ > 0. As
in the proof of Lemma 3.8, we are going to write I of the form

I (u) =
∫

�

�(x, |∇u|) dx − �1(u) − �2(u) − �3(u), ∀ u ∈ W 1,�
0 (�).

The embedding (2.8) together with the definition of f and (g1) ensures that if r is small,
we have∫

(�q )δ/2

|F(x, u)| dx ≤ C
∫

(�q )δ/2

(|u|q1 + |u|β + |u|p∗
) dx, for ‖u‖ = r ,

for some positive constant C and q1 > q . Here, we have used the fact that β, p∗ > q . Thus,

�1(u) ≤ C(‖u‖q1 + ‖u‖β + ‖u‖p∗
) (3.6)

for some C > 0.
From definition of �2, f , (3.3) and Hölder inequality, we get

�2(u) ≤ λ

(∫
�N

|u|2β dx

) 1
2
(∫

�N

e2α|u|N ′
dx

) 1
2

.

Fixing ‖u‖ = r with r small enough, the Lemma 3.4 guarantees that

sup

{∫
�N

etα|u|N ′
dx : ‖u‖ ≤ r

}
≤ C .

Hence
�2(u) ≤ C |u|β

L2β (�N )
≤ C1‖u‖β. (3.7)

Now, a direct argument shows that

�3(u) ≤ C2‖u‖p∗
. (3.8)

From (3.7) and (3.8),

I (u) ≥
∫

�

�(x, |∇u|) dx − C‖u‖β − C1‖u‖q1 − C2‖u‖p∗
, for ‖u‖ = r .

Now, applying Proposition 2.1(ii) for r small enough, we find

I (u) ≥ ‖u‖q − C‖u‖β − C3‖u‖q1 − C4‖u‖p∗
, for ‖u‖ = r .

Now, (a) follows by using the fact that β, q1, p∗ > q .
In order to prove (b), as λ ≥ 1, note that

f (x, t) ≥ |t |β−2t, ∀x ∈ �N\(�q)δ and t ≥ 0.

From this, fixing a nonnegative function w ∈ C∞
0 (�N\(�q)δ)\{0} and t > 0 we find

I (tw) ≤ t N c1
N

∫
�N

|∇w|N dx − tβ

β

∫
�N

|w|β dx .

As β > N ,

I (tw) → −∞ when t → +∞,

and so, (b) follows with ψ = tw and t being large enough. ��
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In the sequel, we denote by d the mountain pass level associated with I , that is,

d = inf
h∈�

max
t∈[0,1] I (h(t)) ≥ ρ > 0

where

� =
{
γ ∈ C([0, 1],W 1,�

0 (�)) : γ (0) = 0 and γ (1) = ψ
}

,

and ψ was given in Lemma 3.9.
By using themountain pass theorem found inWillem [44, Theorem 1.15], there is a (PS)d

sequence (un) ⊂ W 1,�
0 (�) for I , that is,

I (un) → d and I ′(un) → 0 as n → +∞. (3.9)

Lemma 3.10 The sequence (un) is bounded in W 1,�
0 (�).

Proof Setting χ = min{θ, β, p∗} > q , it follows by definition of f that

0 < χF(x, t) ≤ f (x, t)t, ∀(x, t) ∈ � × (R\{0}), (3.10)

which says that f satisfies the famous Ambrosetti–Rabinowitz condition. Since (un) is a
(PS)d sequence for I , there are C1,C2 > 0 such that

I (un) − 1

χ
I ′(un)un ≤ C1 + C2‖un‖, ∀ n ∈ N. (3.11)

From definition of I and (ϕ3),

I (un) − 1

χ
I ′(un)un ≥

∫
�

�(x, |∇un |) dx − 1

χ

∫
�

ϕ(x, |∇un |)|∇un |2 dx

≥
(
1 − q

χ

) ∫
�

�(x, |∇un |) dx .

Therefore, (
1 − q

χ

) ∫
�

�(x, |∇un |) dx ≤ C1 + C2‖un‖, ∀n ∈ N.

If ‖un‖ ≥ 1, then Proposition 2.1(i) leads to(
1 − q

χ

)
‖un‖p ≤ C1 + C2‖un‖, ∀ n ∈ N,

from where it follows the boundedness of (un), finishing the proof. ��
Since W 1,�

0 (�) is reflexive and (un) ⊂ W 1,�
0 (�) is a bounded sequence, we assume that

for some subsequence, still denoted by itself, there is u ∈ W 1,�
0 (�) such that

un⇀u in W 1,�
0 (�),

and
un(x) → u(x) a.e. in �.

Lemma 3.11 There is λ∗ > 1, such that for λ ≥ λ∗, it holds

d <

(
1 − q

χ

)
min

{
1

N

(
αN

2N ′
α

)N−1

,
1

p
S

N
p
p

}
,

where χ = min{θ, β, p∗}.
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Proof Taking a nonnegative function ψ ∈ C∞
0 (�N\(�q)δ)\{0} and t > 0 as in the proof of

Lemma 3.9, we obtain

I (tψ) ≤ t N c1
N

∫
�N

|∇ψ |N dx − λtβ

β

∫
�N

|ψ |β dx .

A direct computation gives

max
t∈[0,+∞)

I (tψ) ≤ 1

λ
N

β−N

(
1

N
− 1

β

) (
c1‖∇ψ‖N

LN (�N )

) β
β−N

(
‖ψ‖β

Lβ (�N )

) N
β−N

.

Therefore, fixing the path γ1(s) = sψ for s ∈ [0, 1], we have γ1 ∈ �, and so,

d ≤ max
s∈[0,1] I (γ1(s)) ≤ max

t∈[0,+∞)
I (tψ) ≤ 1

λ
N

β−N

(
1

N
− 1

β

) (
c1‖∇ψ‖N

LN (�N )

) β
β−N

(
‖ψ‖β

Lβ (�N )

) N
β−N

.

Now, choosing λ∗ > 0 of such way that for all λ ≥ λ∗, we have

1

λ
N

β−N

(
1

N
− 1

β

) (
c1‖∇ψ‖N

LN (�N )

) β
β−N

(
‖ψ‖β

Lβ (�N )

) N
β−N

<

(
1 − q

χ

)
min

{
1

N

(
αN

2N ′
α

)N−1

,
1

p
S

N
p
p

}
.

Therefore,

d <

(
1 − q

χ

)
min

{
1

N

(
αN

2N ′
α

)N−1

,
1

p
S

N
p
p

}
, ∀λ ≥ λ∗,

which shows the desired result. ��
Corollary 3.12 The sequence (un) satisfies

lim sup
n→+∞

‖∇un‖
N

N−1

LN (�N )
<

αN

2N ′
α

.

Then, without lost of generality, we can assume that there is τ ∈ (0, 1) such that

‖∇un‖
N

N−1

LN (�N )
≤ ταN

2N ′
α

, ∀n ∈ N.

Proof First of all, we must recall that

I (un) − 1

χ
I ′(un)un = d + on(1)‖un‖ + on(1),

from where it follows that

d + on(1)‖un‖ + on(1) ≥
∫

�

(
(�(x, |∇un |) − 1

χ
ϕ(x, |∇un |)|∇un |2

)
dx

≥ 1

N

(
1 − q

χ

) ∫
�N

|∇un |N dx .
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Hence, by Lemma 3.11,

lim sup
n→+∞

1

N

(
1 − q

χ

) ∫
�N

|∇un |N dx ≤ d < min

(
1 − q

χ

) {
1

N

(
αN

2N ′
α

)N−1

,
1

p
S

N
p
p

}

leading to

lim sup
n→+∞

∫
�N

|∇un |N dx <

(
αN

2N ′
α

)N−1

,

which proves the lemma. ��
Lemma 3.13 The functional I verifies the (PS)d condition.

Proof In what follows, we will assume that f is of the type ( f1). Moreover, let us set

Pn =
∫

�

〈ϕ(x, |∇un |)∇un,∇un − ∇u〉 dx,

that is,

Pn = I ′(un)un +
∫

�

f (x, un)un dx − I ′(un)u −
∫

�

f (x, un)u dx .

Consequently

Pn =
∫

�

f (x, un)un dx −
∫

�

f (x, un)u dx + on(1).

From the definition of f together with embedding (2.8),

lim
n→+∞

∫
�

η̃q(x)g(x, un)un dx = lim
n→+∞

∫
�

η̃q(x)g(x, un)u dx

=
∫

�

η̃q(x)g(x, u)u dx,

lim
n→+∞

∫
�\�N

ηN (x)|un |βeα|un |N ′
dx =

∫
�\�N

ηN (x)|u|βeα|u|N ′
dx,

lim
n→+∞

∫
�\�N

ηN (x)|un |β−2unue
α|un |N ′

dx =
∫

�\�N

ηN (x)|u|βeα|u|N ′
dx,

lim
n→+∞

∫
�\�p

ηp(x)|un |p∗
dx =

∫
�\�p

ηp(x)|u|p∗
dx,

and

lim
n→+∞

∫
�\�p

ηp(x)|un |p∗−2unu dx =
∫

�\�p

ηp(x)|u|p∗
dx .

Consequently

Pn = λ

∫
�N

|un |βeα|un |N ′
dx − λ

∫
�N

|un |β−2unue
α|un |N ′

dx +
∫

�p

|un |p∗
dx

−
∫

�p

|un |p∗−2unu dx dx + on(1).
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By Corollary 3.12, the sequence (un) satisfies

‖∇un‖N ′
LN (�N )

≤ ταN

2N ′
α

, ∀n ∈ N,

for some τ ∈ (0, 1). Employing Corollary 3.6, there is t > 1 and t ≈ 1 such that the sequence

hn(x) = eα|un(x)|N ′
is weakly convergent to h(x) = eα|u(x)|N ′

in Lt (�N ) , that is,∫
�N

hnϕ dx →
∫

�N

hϕ dx, ∀ϕ ∈ Lt ′(�N ), (3.12)

where t ′ = t
t−1 . As

|un |β → |u|β in Lt ′(�N )

it follows that ∫
�N

hn |un |β dx →
∫

�N

h|u|β dx,

that is, ∫
�N

|un |βeα|un |N ′
dx →

∫
�N

|u|βeα|u|N ′
dx .

Now, using the fact that

|un |β−2unu → |u|β in Lt ′(�N )

we also derive that∫
�N

|un |β−2unue
α|un(x)|N ′

dx →
∫

�N

|u|β−2uueα|u(x)|N ′
dx .

The above analysis ensures that

lim
n→+∞

∫
�N

|un |βeα|un(x)|N ′
dx = lim

n→+∞

∫
�N

|un |β−2unue
α|un(x)|N ′

dx =
∫

�N

|u|βeα|u|N ′
dx,

and then,

Pn =
∫

�p

|un |p∗
dx −

∫
�p

|un |p∗−2unu dx + on(1).

By [34, Lemma 4.8],

lim
n→+∞

∫
�p

|un |p∗−2unu dx =
∫

�p

|u|p∗
dx,

then

Pn =
∫

�p

|un |p∗
dx −

∫
�p

|u|p∗
dx + on(1).

Now, we are going to use the Concentration Compactness Lemma 3.1 to the sequence
(un) ⊂ W 1,p(�p). From (ϕ7), for each open ball B ⊂ (�q)δ we have that the embed-
ding W 1,�(�) ↪→ C(B) is compact, then as (un) is a bounded (PS) for I , it is possible to
prove that for some subsequence there holds∫

B
〈ϕ(x, |∇un |)∇un,∇un − ∇u〉 dx → 0.
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Since from (ϕ6)−(ϕ8), the embeddingW 1,�(B) ↪→ L�(B) is compact, the last limit together
with the �2-condition implies that

un → u in W 1,�(B).

Now, recalling that the embedding W 1,�(B) ↪→ W 1,p(B) is continuous, we derive that

un → u in W 1,p(B),

from where it follows that xi ∈ �p\(�q)δ for all i ∈ J . Now, our goal is proving that J
must be a finite set. Have this in mind, we will consider J = J1 ∪ J2 where

J1 = {i ∈ J : xi ∈ �p\(�q)δ}
and

J2 = {i ∈ J : xi ∈ ∂(�q)δ ∩ �p}.
If i ∈ J1, the condition (ϕ8) says that c2t p−2 ≥ ϕ(x, t) ≥ t p−2 for x ∈ �p\(�q)δ . This

fact permits to repeat the same arguments explored in [28, Lemma 2.3] to conclude that J1
is finite. Now, if i ∈ J2, the situation is more subtle and we must be careful. In what follows
let us consider ψ̃ ∈ C∞

0 (RN ) such that

ψ̃ ≡ 1 on B(0, 1) and ψ̃ ≡ 0 on B(0, 2)c.

For each ε > 0, we set

ψ(x) = ψ̃((x − xi )/ε), ∀x ∈ R
N .

Since (un) is a bounded sequence in W 1,�(�), the sequence (ψun) is also bounded in
W 1,�(�), and so, I ′(un)ψun = on(1). Hence,∫
�

ϕ(x, |∇un |)∇un∇(ψun) dx =
∫

�

η̃q(x)g(x, un)ψun dx +
∫

�

ηp(x)|un |p∗
ψ dx + on(1).

Now, given ξ > 0, the Young’s inequality (2.1) combined with (2.2) and�2-condition gives∫
�

|ϕ(x, |∇un |)|∇un ||un ||∇ψ | dx ≤ ξ

∫
�

�(x, |∇un |) dx + Cξ

∫
�

�(x, |∇ψ ||un |) dx,

for some Cξ > 0. Note that by (ϕ8),∫
�

�(x, |∇ψ ||un |) dx ≤ C1

(∫
B(xi ,2ε)

|∇ψ |p||un |p dx +
∫
B(xi ,2ε)

τ2(x)|∇ψ |q ||un |q dx
)

.

By Hölder inequality

lim sup
n→+∞

∫
B(xi ,2ε)

|un |p|∇ψ |p dx ≤ C2

(∫
B(xi ,2ε)

|u|p∗
dx

) N−p
N

from where it follows that

lim
ε→0

[
lim sup
n→+∞

∫
B(xi ,2ε)

|un |p|∇ψ |p dx
]

≤ lim
ε→0

C2

(∫
B(xi ,2ε)

|u|p∗
dx

) N−p
N = 0. (3.13)
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Arguing as above, we also have

lim sup
n→+∞

∫
�

τ2(x)|un |q |∇ψ |q dx ≤
⎛
⎝∫

B(xi ,2ε)

∣∣∣∣τ
1
q
2 (x)∇ψ

∣∣∣∣
qp∗
p∗−q

dx

⎞
⎠

p∗−q
p∗ (∫

B(xi ,2ε)
|u|p∗

dx

) q
p∗

.

By change of variable,

∫
B(xi ,2ε)

∣∣∣∣τ
1
q
2 (x)∇ψ

∣∣∣∣
qp∗
p∗−q

dx =
(
1

ε

) qp∗
p∗−q

∫
B(0,2)

∣∣∣∣τ
1
q
2 (εx + xi )∇ψ̃

∣∣∣∣
qp∗
p∗−q

dx

≤ C5

(
1

ε

) qp∗
p∗−q

∫
B(0,2)

∣∣∣∣τ
1
q
2 (εx + xi )

∣∣∣∣
qp∗
p∗−q

dx .

Since xi ∈ ∂(�q)δ ∩ �p , it follows that

τ2(εx + xi ) ≤ c3ε
s |x |s

and

∫
B(xi ,2ε)

∣∣∣∣τ
1
q
2 (x)∇ψ

∣∣∣∣
qp∗
p∗−q

dx ≤ C6ε
(s−q)p∗
p∗−q .

As s > q , it follows that

lim
ε→0

[
lim sup
n→+∞

∫
�

τ2(x)|un |q |∇ψ |q dx
]

= 0. (3.14)

Now, the boundedness of (un) in W 1,�(�) together with Proposition 2.1, (3.13) and (3.14)
ensures that

lim
ε→0

[
lim sup
n→+∞

∫
�

|ϕ(x, |∇un |)|∇un ||un ||∇ψ | dx
]

≤ ξC,

for some C > 0. Since ξ > 0 is arbitrary, we can deduce that

lim
ε→0

[
lim sup
n→+∞

∫
�

|ϕ(x, |∇un |)|∇un ||un ||∇ψ | dx
]

= 0.

The last limit together with the fact that ϕ(x, t) ≥ t p−2 for x ∈ �p permit to conclude as in
[28, Lemma 2.3], that J2 is also finite. Consequently, J is a finite set. However, in order to
conclude the proof of the lemma, we need to show that J is in fact an empty set. Seeking by
a contradiction, assume that there is i ∈ J . In this case, the argument explored in [28] also
says for us that

νi ≥ S
N
p
p .

Hence, by Lemma 3.1(d),

μi ≥ S
N
p
p .

As |∇un |p → μ weakly-∗ in the sense of measure, we have

lim inf
n→+∞

∫
�p

|∇un |p dx ≥ μi
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and so,

lim inf
n→+∞

∫
�p

|∇un |p dx ≥ S
N
p
p .

Now, using once more the equality

I (un) − 1

χ
I ′(un)un = d + on(1)‖un‖ + on(1),

we get

d + on(1)‖un‖ + on(1) ≥ 1

p

(
1 − q

χ

) ∫
�p

|∇un |p dx .

Taking the limit of n → +∞, we find the inequality below

d ≥ 1

p

(
1 − q

χ

)
S

N
p
p

that contradicts the Lemma 3.11, showing that J = ∅. Thereby, by Lemma 3.1(a), ν = |u|p∗

and ∫
�p

|un |p∗
dx →

∫
�p

|u|p∗
dx,

implying that Pn = on(1), that is,

lim
n→+∞

∫
�

〈ϕ(x, |∇un |)∇un,∇un − ∇u〉 dx = 0.

Now, it is enough to apply Lemma 2.2 to finish the proof. ��

4 Proof of themain result

Proof of Theorem 1.1 completed First of all, we recall that Lemmas 3.9 and 3.13 showed that
the energy functional I satisfies the mountain pass geometry and the (PS)d condition on
space W 1,�

0 (�). Hence, there is a nontrivial critical point u ∈ W 1,�
0 (�) of I such that

un → u in W 1,�
0 (�),

and so,

I (u) = d > 0 and I ′(u) = 0,

finishing the proof. ��
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