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Abstract

Let G/K be an irreducible non-compact Hermitian symmetric space and let D be a K-
invariant domain in G/K. In this paper we characterize several classes of K-invariant
plurisubharmonic functions on D in terms of their restrictions to a slice intersecting all
K -orbits. As applications we show that K -invariant plurisubharmonic functions on D are
necessarily continuous and we reproduce the classification of Stein K -invariant domains in
G /K obtained by Bedford and Dadok. (J Geom Anal 1:1-17, 1991).
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1 Introduction

Let G/K be an irreducible non-compact Hermitian symmetric space of rank r. By the
polydisk theorem the space G/K contains a closed subspace A, biholomorphic to an r-
dimensional polydisk, with the property that G/K = K - A". If D isa K-invariant domain
in G/K,then D = K - R, where R := DN A" is a Reinhardt domain in A”". The polydisk
A" and R are invariant under the group 7 x S,, generated by rotations and coordinate
permutations.

As the Reinhardt domain R intersects all the K-orbits in D, it encodes all information
on the K-invariant objects in D. In this paper we focus on the K-invariant plurisubhar-
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monic functions. When D is Stein, we obtain the following characterization of the class
P Oo""(D)K of smooth, K-invariant, strictly plurisubharmonic functions on D :
f e PHDYK ifandonlyif flg € PoH(R)T*Sr,
where f|r is the restriction of f to R. Such result is later extended to wider classes
of plurisubharmonic functions as follows. Let P°(D)X denote the class of smooth, K-
invariant, plurisubharmonic functions and P (D)X (resp. P(D)X )theclass of K -invariant,
strictly plurisubharmonic (resp. plurisubharmonic) functions on D. One has:

Theorem 4.13 The restriction map f — f|r is a bijection between

(l) POO’+(D)K and POO,+(R)TD<Sr’
(i) P(D)X and P (R)TXS,
(iii) P®(D)X and P>®(R)T*Sr,
(iv) PT(D)X and PHR)TXS,

As a by-product we reproduce the classification of Stein K -invariant domains in G/K
obtained by Bedford and Dadok in some classical cases by direct computations [2] (see also
[5] for related results).

Corollary 4.8 Let D be a K-invariant domainin G/K.

(1) If G/K is of tube type, then D is Stein if and only if R is Stein and connected.
(i1) If G/K is not of tube type, then D is Stein if and only if R is Stein and complete. In
particular R contains the origin and it is connected.

The proof of our results is carried out as follows. Let g = €@ p be a Cartan decomposition
of the Lie algebra g of G, let a be amaximal abelian subspace of p, with Weyl group W, and
let G = KexpaK be the corresponding decomposition of G. Every K-invariant domain
D in G/K is uniquely determined by a W-invariant domain Dq in a by

D=KexpDys K/K .

Similarly, every smooth K-invariant function f on D isuniquely determined by the smooth
W-invariant function f on D, defined by

f(H) := f(exp(H)K), for H € Dg,
(cf. [4,6]).

As a first step we explicitly express the Levi form of f* in terms of the first and second
derivatives of f. This is achieved in Proposition 3.1 by means of a fine decomposition of
the tangent bundle of D, induced by the restricted root decomposition of g, and a simple
pluripotential argument which enable us to maximally exploit the symmetries at hand.

The Levi form computation is a key ingredient for our results. It leads to the following
characterization of smooth K-invariant strictly plurisubharmonic functions on a Stein K-
invariant domain D (Theorem4.5):

f e Pt ifandonlyif f € LogConv®+(Dy)",

where the latter class consists of smooth W-invariant functions on D, satisfy-
ing the appropriate differential positivity condition. We also show that f belongs to
LogConv® T (D) if and only if the corresponding T x S,-invariant function on the
associated Reinhardt domain R is smooth and strictly plurisubharmonic.

This fact, which may be of independent interest in the context of Reinhardt domains,
implies (i) in the above theorem. When extending such characterization to the non-smooth
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setting (Theorem4.12), it turns out that the K-invariant plurisubharmonic functions on D
are necessarily continuous.

In the appendix we explicitly determine a K -invariant potential of the Killing metric on
G/K in a Lie theoretical fashion (Proposition5.1) and we observe that, up to an additive
constant, it coincides with the logarithm of the Bergman kernel function.

Finally, we point out that our methods require no classification results, nor any distinction
between classical and exceptional cases.

We wish to thank our colleague Stefano Trapani for several useful discussions and sug-
gestions.

2 Preliminaries

Let g be a non-compact semisimple Lie algebra and let £ be a maximal compact subalgebra
of g.Let g = £®p be the Cartan decomposition of g with respect to €, with Cartan involution
6. Let a be a maximal abelian subspace in p. The dimension r of a is by definition the rank
of G/K.Letg = m@a®@P, .5 g“ be the restricted root decomposition of g, where m is the
centralizer of a in €, the joint eigenspace g* = {X € g |[H, X] = «(H)X, forall H € a}
is the a-restricted root space and the restricted root system X consists of those « € a*
for which g“ # {0}. Denote by B(-, -) the Killing form of g, as well as its holomorphic
extension to g€ (which coincides with the Killing form of g©).

For « € Z, consider the #-stable space glo] := g* ® g~ %, and denote by €[«] and p[o]
the projections of g[a] along p and &, respectively. Let =T be a choice of positive roots in
3. Then

t=ma P tla] and p=a® P pla] (1)

aext aext

are B-orthogonal decompositions of € and p, respectively.

Lemma 2.1 Every element X in p decomposes in a unique way as

Xa+ Zaei)* P,

where X, € a and P* € pla]. The vector P“ can be written uniquely as P* = X* —0X?,
where X% is the component of X in the root space g*. Moreover, [H, P*] = a(H)K*%,
where K% is the element in €[] defined by K¢ = X% + 0X“.

Proof By the restricted root decomposition, every X € g can be written as

X=Xm+Xoat+ Y X'4+X°

aext
Then X € pifandonly if Xy =0and 6(X* + X %) = —(X* + X7 %),forallo € ¥. In

particular X% = —X~%, and the lemma follows. O

The restricted root system of a simple Lie algebra g of Hermitian type is either of type
C, (if G/K is of tube type) or of type BC, (if G/K is not of tube type), i.e. there exists
abasis {eq,..., e} of a* for which

Tt ={2, 1<j<r, eete, 1 <k<Il<r}), fortypeCy,
>t = {lej, 2ej, 1 <j=<r, exte, 1<k<l=<r}, ~fortypeBC,.

@ Springer



60 L. Geatti, A. lannuzzi

With such a choice of a positive system X7, the roots
2eq, ..., 2e,

form a maximal set of long strongly orthogonal positive restricted roots, i.e. such that 2e; 4
2¢; ¢ 2, for k # 1.

For j = 1,...,r, the root spaces gze-f are one-dimensional. Choose generators
EJ € g% such that the sl(2)-triples {E/, 0E/, A; := [0E/, E/]} are normalized as
follows

[Aj, E/1=2E/, for j=1,...,r. 2)

Denote by Io the G-invariant complex structure of G/K. We also assume that Io(E/ —
OE)) = A; (see [7], Def.2.1). By the strong orthogonality of 2ey, ..., 2e,, the vectors

A1, ..., A, form a B-orthogonal basis of a, dual to the basis e, ..., e, of a*, and the
associated sl(2)-triples pairwise commute. For j = 1, ..., r, define
K/ :=E/ +0E/ and P/ :=E/ —0F/. 3)

Denote by W the Weyl group of g, i.e. the quotient of the normalizer over the centralizer
of ain K. As g is of Hermitian type, W acts on a by signed permutations of the coordinates
determined by Ay, ..., A,.

On p = T,x G/K the complex structure I coincides with the adjoint action of the element
Zy € Z(€) given by

Zo=So+5Y ;- K/, ()

for some element Sp in a Cartan subalgebra s of m. In the tube case, one has Sy = 0 (see
[7], Lem. 2.2). The complex structure Iy permutes the blocks of the decomposition (1) of p
(cf. [11]), namely

lpa = @P[Zej], loplej + el =plej —el, lople;] = ple;]. ©)
j=1

The next lemma gives a more detailed description of the complex structure Iy on p. In
order to state it, we need to recall a few more facts. Let g© = h* @ @ uena 8" be the root

decomposition of gc with respect to the maximally split Cartan subalgebra h = s @ a of g.
Let o be the conjugation of g€ with respect to g. Let 6 denote also the C-linear extension of
0 to g(c. One has o = 06. Write Z :== o0 Z,for Z € gc. As o and 6 stabilize b, they induce
actions on A, defined by u(H) := w(H) and Ou(H) := w(6(H)), for H € b, respectively.
Fix a positive root system AT compatible with ©+, meaning that u|, = Re(n) € T
implies 4 € AT. Theno AT = AT,

Given a restricted root @ € X, the corresponding restricted root space g* decomposes
into the direct sum of ordinary root spaces with respect to the Cartan subalgebrah = s @ a
as follows

= P g ed.
HEA, p#
Re(u)=
where A € A is possibly a root satisfying A = A and Re(}) = .

Lemma2.2 (a) For j =1,...,r, let Aj and P/ be asin (2) and (3). One has IpP! = A;
and IpA; = —P/.
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(b) Let P = X — 0X € plej + ¢/], where X = ZH + ZW e géita, with Z* € gM, and
w e AV is a root satisfying Re(u) = ej + e (if L =, we may assume Z" = ZK* and
set X = Z"). Then Iy)P =Y — 0Y, where Y = [K!, X] € géiTe.

(c) Let P =X —0X € plej], where X = Z#* + ZW € g%, with Z* € gh, and w is a root
in A7 satisfying Re() = e (as dimple;] is even, one necessarily has i # ). Then
IoP =Y —0Y, where Y = i(Z* — ZW) € g%.

Proof (a) follows directly from (2) and (3).
Observe that Zy € Z () implies

[Zo, X] = —[Zp,0X], forevery X € g. (6)

(b) By (4),(5)and the fact that [ Sy, g"] C g", forevery u €A, the action of Sp is necessarily
trivial on p[e; + ¢;]. Moreover, if X € g%t then [K', X —0X] =0, foralli # j, I,
implying that

[Zo, X —0X]=[3(K/ + K), X —6X].

Denote by A the root in A with real part e; — ¢; and the same imaginary part as (. By
comparing terms in the same root spaces in (6), one obtains the relations

(K, 2" = —[K/, 02" e g [K' . ZFl=—[K/,0Z"] € g,
K/, 2" = —[K', 02" e > [KI, ZF = —[K' 0Z1] e g°*.
It follows that [Zg, X —6X] =Y —0Y, withY = [K!, X] € g% —¢, as claimed.
(c) If X € g%, then [K', X —6X] = 0, for all # J, implying that [Zp, X — 6X] =
[$K7 + So, X — 6X]. From (6) it follows
JIK7, X1+ [So. X1 = —3[K7,60X] — [So. 6X].
By comparing terms in the same root spaces, one obtains the relations
[S0. 2] = —%[Kf', 0Z" e gt [S.60Z"] = —%[Kf', z") e g™
[So, ZF] = —%[Kf, 0Zi e g"  [S0,0Z1] = —%[Kf,ﬁ] e g,
which imply
[Zo, X — 0X] = 2(=[S0, 0Z"] — [S0, 6 ZF] + [So, Z"] + [ S0, ZH]).
As i (So) =: ipno € iR, the above expression becomes
2u0i (ZH — ZK — 9(ZH — ZI)).

From Ig = —1Id, one obtains py = :I:%. Depending on the value 0, the pairs of roots
W, [ can be relabelled so that /o P has the desired expression. o

Remark 2.3 In view of Lemma 2.2, one can choose a Ip-stable basis of p, compatible with
the decomposition (1).

(a) Asabasisof a® @j p[2e/], take pairs of elements A ;, Pl = —lpAj,forj=1,...,r,
normalized as in (2) and (3);
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(b) As a basis of p[e; + /] ® ple; — ¢/], take 4-tuples of elements P, P’, IoP, IyP’,
parametrized by the pairs of roots i # it € AT satisfying Re() = e j + e; (with no
repetition). More precisely, one has

P=X-0X, P =X —-0X, IhP=Y-0Y, )P =Y —0Y, 7

where X = ZM + ZI, X' = i(Z* — Z1), Y = [K', X]and Y’ = [K!, X'], with Z* a
root vector in g. For i = i, one may assume Z* = Z/* and take the pair P, IoP.

(c) As abasis of p[e;] (non-tube case), take pairs of elements P, Ip P, parametrized by the
pairs of roots i # it € A" satisfying Re(u) = e j (with no repetition). More precisely,
onehas P=X—0Xand [P =Y —0Y,where X = ZH 4+ Z*, and Y = i(ZF — ZH),
with Z#* a root vector in g.

Lemma24 Let it eA* be a root satisfying Re(u) = e + e; and let Z* be a root vector in
gt Let X = ZM + ZH € g%t and Y = [K!, X] € g% ~%. Then

@) [V, X1+06[Y, X]=[Y, X1+6[Y, X' =rK/, for somer € R;

(b) [YV,0X]+0[Y,0X]=[Y,0X1+0[Y,0X]= sKl,for some s € R.
If i let X =i(ZF —Z*)y and Y' = [K!, X']. Then

© [Y,X]1+0[Y, X]=[Y,0X]+0[Y, 0X]=0.
Let ju be a root in AT, with Re(j1) = e;j (non-tube case) and let Z" be a root vector in
gt . Let X = ZH + ZF and Y = [Zo, X| = i(Z" — Z). Then

(d) [Y,X]+06[Y,X]=tK/, for somet € R,

(e) [Y,0X]1+0[Y,0X] e m.

Proof (a) One has [Y, X] = [Y’, X'] = 2Re[[0E!, Z*], Z*] € g*% . Since the root space
gzef is 1-dimensional, then

(Y. X]+6[Y, X]=[Y X140[Y . X1=rK/, forsomereR.
(b) Similarly, [Y,0X] = [Y',0X'] = 2Re[[0E', Z"],0ZF] € g~%¢, and
[Y.0X]+0[Y,0X]=[Y 0X'1+0[Y 0X']=sK' forsomeseR.
(c) One has
Y/, X] = [[K',iZ! —iZ"), ZV + ZF]
= i[lK', 2], ZM +illK', 2], ZF] — illK', ZF), Z*] = ilIK", ZF), ZF).

The first and the fourth terms of the above expression are both zero because otherwise
there would exist a root in A" with real part equal to 2¢; and non-zero imaginary part.
The second and the third term sum up to zero by the Jacobi identity and the fact that
[K', [z, ZM]] = 0.

One has

[[K!,izZ* —iZr], 0Z* + 0Z1]
—i[[K', ZM],0Z*] +i[[K!, Z"], 6 Z#] — i[[K", ZI], 0 Z*]
—i[[K', Z", 0ZM].

[Y',6X]

Arguing as in the previous case, the first and the fourth terms are equal to zero. The
second and the third terms sum up to ZIm([[K’, Z*1,6Z1]). Then

[Y,0X]+6[Y,0X] = 2Im([[K, Z"],0ZF] + O[[K', Z*], 0ZH]) =
= 2Im([[K!, Z"), 6ZF] + [[K", 0 Z"], ZI)). 8)
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By the Jacobi identity
[[K',0z"], Zr] = [[K', ZF], 0 Z*] + [K', (62", ZF]).

Observe that [Z*, 0ZF] € adis. Since K! centralizes 5, one has that [K!, [0 Z*, Z]] €
p. It follows that the expression in (8) reduces to

2Am([[K', Z*], 6 ZK*] + [[K', Z*],6Z"]) = 0,

as desired.
(d) Since [V, X] € g*¢i

[Y,X]+6[Y,X]=tK’/, forsometcR.
(e) Since [Y,0X] € ¢°,
[Y,0X]+06[Y,0X] € m. o

For X € g, denote by X the vector field induced on G /K by the left G-action, namely

X, = expsX -z, ©))

d
E‘s:O

for z € G/K. Given a smooth K -invariant function f: G/K — R, define dp :=dp o Iy,
where I is the G-invariant complex structure of G/K . Then one has 2i99 0 f = —dd f. For
X € &, consider the function uX : G/K — R givenby u*(z) := a’Cf(X ).
One has
du* = —1zdd° f . (10)

The above identity was proved in [9], Lemma 7.1, for f strictly plurisubharmonic. How-
ever the same argument works for arbitrary smooth K -invariant functions. This result will
be used to compute the Levi form of an arbitrary smooth K -invariant function on G/K.

When the function f is strictly plurisubharmonic, then —dd¢ f is a K-invariant Kéhler
form and the map u : G/K — t*, defined by

w(@(X) =d° f(X.), forX et (1)

is a moment map. It is referred to as the moment map associated with f.

We conclude the preliminaries with a lemma which is needed in the next section. Let A
be the unit disc in C. Consider the (T x S)-action on the bidisk A2, where 7 = (S1)? acts
by rotations and S, by permutations of the coordinates. Let W2 = (Z2)? x S, be the group
acting on R? by signed permutations of the coordinates.

Lemma25 Let f : A> — R be a smooth T x S»-invariant strictly plurisubharmonic
Junction and let r, s be real numbers. Consider the Wg2-invariant function f : R > R
given by f (a1, az) = f(tanhay, tanh ap) and define

rsmh(Qa])aul (ay,a2)— sslnh(2az)3a2 (ay,a2)

Gjlar, ar) =

sinh? ay —sinh? a»
Then
(i) (al ap) > 0, foreveryay > 0, and (a1 ap) < 0, forevery ay < 0. In particular
3a1
aa1 (O a) =0, for every ay € R.

(ii) Baz (al,az) 8a1 (az,al) In particular af (a1,0) =0, for every a; € R.
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(iii) If G 7 extends continuously to a strictly positive function on R?, thenr = s > 0 and,
consequently, G f(a 1, a2) is Wga-invariant as well.

Proof (i) For a; > 0, write tanh a; = ¢*!, for some s; € (—o0, 0). Since f is T-invariant
and strictly plurisubharmonic, the function s; — f(e*!, tanh ay) is strictly convex and
the limit limy, , o f (e, tanhaz) = f(0,tanhay) is finite. Hence the function is
strictly increasing and its derivative e*! g—{l (e’!, tanh ap) is strictly positive. As

o

1 0
gar a1, a2) = 3z

cosh? aj 9x

(tanh ap, tanh ay) ,

and tanh a; = €°!, the ﬁ{gt part of statement (i) follows. The second one follows from
the (Z,)%-invariance of f.
(ii) The Sy-invariance of f implies that

~a,aJrs ~a+8,a
0f(162 ) 0f(z£ 1)’

limg_, = limg_,

and (ii) follows. >
rsinh(2ap) 7 (a1,0)

sinh? a;

(iii) Let a; > 0. From (ii) it follows that Gf(al ,0) = . Since such quan-

tity is assumed to be strictly positive and %(al, 0) > 0, thenr > 0. By takinga; =0
and ap > 0, one obtains that s > 0.

Next we show that » = s. For a; > ap > 0 one has sinh? a; — sinh? a; > 0. Then the
positivity of G f(al, ap) implies that

sinh(2a2) 524 (a1.a2)

@l

> BN ) N
sinh(2ay) Bar (ay,a2)

Consequently, for a; converging to a fixed a; > 0, statements (i) and (i) imply £ >

1. An analogous argument, with 0 < a; < ap, implies % < 1. As a consequence,

L=1. O
s

3 The Levi form of a K-invariant function

Let G/K be an irreducible non-compact Hermitian symmetric space of rank r. From the
decomposition G = K expa K, every K-invariant domain D in G/K is uniquely deter-
mined by a W-invariant domain Dy in a by

D =KexpDyK/K . (12)

Similarly, every K -invariant function f : D — R is uniquely determined by the W -invariant
function f : Dy — R, given by

F(H) = f(exp(H)K). (13)
The goal of this section is to express the real symmetric ly-invariant bilinear form
hy(-, ) i=—ddf(-, o)

of a smooth K -invariant function f on a K -invariant domain D C G/K in terms of the first
and second derivatives of the function f on D,. This will enable us to characterize smooth
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K -invariant strictly plurisubharmonic functions on a Stein K -invariant domain D in G/K
by an appropriate differential positivity condition on the corresponding functions on Dy (see
Theorem 4.5 and Corollary 4.6). As f is K-invariant, &y is K-invariant as well. Therefore
it will be sufficient to carry out the computations along the slice exp Dy K, which meets all
the K-orbits in D.

For z = aK , with a = exp(H) and H € a, one has

X, =a.F,X, (14)

forall X € g, where F,: g — p is the map givenby F, := g o Ad,-1,and g : g — p is
the linear projection along €. One can verify that

K. = —a,sinha(H)P, (15)
forall K = X% 4 X% € t[a], witha € ZT and P = X% — X“ € pla].
Denote by ay, ..., a, the coordinates induced on a by the basis Ay, ..., A, of a (cf.
Remark 2.3(a)).

Proposition3.1 Let D C G/K be a K-invariant domain. Let f : D — R be a smooth
K -invariant function. Fix a = exp H, with H = Zj ajAj € Dq. Then, in the basis of p
defined in Remark 2.3, the form hy at z = aK € D is given as follows.

(i) The spaces asa, axloa, asple; + e], asple; — e/] and aple;] are pairwise h -
orthogonal.

As the form hy is ly-invariant, by (5) it is determined by its restrictions to the blocks aya,
asple; + ei] and aiple;). The non-zero entries of hy on each of these blocks are given as
follows.
(il) For Aj. Al € aone has hy(a,A;, awA;) = 2coth(2a;) 2L C(H)Sj1 + gt Ba/ " (H).
(iii) For P, P’ € ple; + e/ as in Remark 2.3(b) one has
hf(a*P, ayP) = hf(a*P/,a*P/)
_B.P) I (slnh(Za DL F (H)— sinh(2a;) 2L A (H))

b sinh? (aj)— sinh? (a;)

where b := B(A1, A1) = --- = B(A,, A}). In particular, with respect to the basis of
asple; + e] defined in Remark 2.3(b), the form h s is diagonal.
(iv) (non-tube case) For P € ple;] as in Remark 2.3 (c) one has

hyf(asP,a,P) = 22.F) coth(aj)aa (H).

In particular, with respect to the basis of asple;] defined in Remark 2.3 (c), the form
h ¢ is diagonal.

Proof We compute the form hy by exploiting relation (10). We begin by determining
a’Cf(X ), for X € tand z € G/K. By the K-invariance of f and of Iy one has

d° f(Xp) = d° F(Adg1 X.) (16)

forevery z € G/K and k € K. Thus it is sufficient to take z = a K in exp Dy K. We first
assume that «(H) # O for all « € X, and later obtain the complete result by passing to the
limit for H approaching the hyperplanes {« = 0} in a.
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On the blocks of decomposition (1) of £, one has

—sinh(2a;) f (H), for X = K/

7a;

0, for X € t[a], witha # 2eq, ..., 2e,.

df(X;) = { (17)

Indeed, for M € m, one has MZ = 0 and therefore dcf(ﬁz) =0.

Let K = X + 60X € €[], for some X € g% with o # 2e;,...,2¢,. Set P = X —
60X € pla]. Then [pP = Y — @Y € p[B], for some Y € g, with B € T (cf.(5)). Set
C =Y 4 0Y € ¥[B]. Then, by (15) and the K -invariance of f and of Iy, one has

d° f(K.) = —df (Ipas sinha(H)P) = —df (a, sinh o (H) Iy P)

_ sinha(H) ~ | _
= df (eI E) =0,

Finally, let K/ € €[2¢;], for j = 1,... r (cf.(3)). One has

d“f(l?fz) = —df (loax sinh(2a;) P/) = —df (as sinh(2a;)A )
= — 4| _ f(exp(H + sinh(2a;)s A )K) = — sinh(2a;) 2L (H).

J

Proof of statement (i). As a first step we show that a,p[a] and a.p[y] are h p-orthogonal
for any distinct roots @ € £ and y € {0} U (2% \ {2ey, ..., 2e,}), with the convention

p[0] := a.
Let P € pla]and Q € p[y]. Write P = X — 60X, with X € g%, and [pQ = Y —0Y, with
Y € gP, for some B € T+ (cf.(5)). Then by (15) we have

1z s C
axP = —grae Kz and - a:10Q = — g Ce

for K =X+4+6X € t[a]and C =Y + 0Y € ¢[B], respectively. Therefore

hy(axP,a,Q) = —dd° f(a.P, a,loQ) = m%hzoulqexptc 9]

_ 1 d - 7
= sinha(H) sinh B(H) E|t=odcf(Kexpr'Z)

which, by (16), becomes

1 d —
hy(axP,asQ) = mm‘,zodcf(l\dexp—tc[(z)

_ 1 d (T P 2
= Soha(H) simh B(H) Gilizod F(K: = 11C, K1 + 0(1%))

= — sracmsmrpan d FUC, K1) . (18)
The brackets
[C,K]= (Y, X]+06[Y, XD+ (Y,0X]+06[Y,0X]),

liein €[a+B]+Ela—B]. Sincea € Z+and y € {0JU(ZT\{2ey, ..., 2¢,}) are distinct, the
spaces ¢[a + 8] and £[a — B] have trivial intersection with & ;£[2e; ]. Then the expression (18)
vanishes by (17), i.e. the spaces a.p[a] and a.p[y ] are h -orthogonal. By the / invariance
of hy, also a.lpa is h p-orthogonal to ayIpp[a], for all & € T, This concludes the proof
of (i).

Next we examine the form / ¢ on the blocks aa, asple; + ¢;] and a,p[e;].

(ii) The form 7 ; on a.qa.
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Let Aj, A; € a. Since IpA; = — P!, one has
hy(acAj, acAp) = —dd° f(a,P', a.A}) = gty dde f((K)z, (A))2)

_ 1 d K! ) _ 1 d - ol
~ SinhQap) E‘tzoﬂ (exptA;j - 2) = — gy E}t:()dcf(K exprA;-z)

= m%!tzodf(lo(exp(H +1A;)).sinh2¢;(H +tA;)P!

sty ok |, o sinh 2e; (H + zAj)%(H +14))

1 af . 22 f
= ShGan (2 COSh(za[)%(H)Sj’[ + smh(ZaI)—aajga[ (H)) .

The above expression is well defined also for those H = }_;a;A; with some zero

coordinate. Assume for example @; = 0. As it is W-invariant, f is an even function of the
coordinate a;. Consequently its derivative % vanishes for ¢; = 0 and

of _ F

limgy, 0 2 coth(2a;) B = 9a?

smoothly extends to the hyperplane @; = 0. This concludes the proof of (ii).

(iii) The form / s on a.p[e; + ¢;].

Let P, O € ple; + ¢;] be elements of the basis of Remark 2.3 (b), arising from roots
wu, v € AT, respectively, with v # w, ji. Then hy(ax P, a,Q) = 0, because [ ZH +ZKr, 7V +
ZV]1 =0, forall Z"* € g* and ZV € g".

Next, let P, P’ € plej + ¢/] and IoP, IpP’' € ple; — ¢/] be elements of the basis of
Remark 2.3 (b), arising from the same root . € A™.

From (18) it follows that

hy(a.P,a.P) = d° f([C. K1),

1
~ sinh (aj+ar) sinh (aj—ar) (

where K = X +60X and C =Y 4 60Y, for X and Y as in (7). By Lemma 2.4(a)(b) and (17),
the above expression equals

1 . = . -~
~ i a4 (KT 2) = sd f (K1)
1 : af . af
- m(” smh(zaj)ﬁf;(H) —s smh(2a;)3—£(H)), (19)
for some r, s € R. In a similar way, one obtains
hf(a*P/,a*P/):hf(a*Psa*P)’ (20

and, from Lemma 2.4(c),
hy(axP,asP’) =0.

Also, by (i), one has iy (axP, axIoP) = hy(axP, alyP’) = 0.

For the strictly plurisubharmonic potential p of the Killing metric of G/K given in Propo-
sition 5.1, the quantity in (19) smoothly extends to a strictly positive function on R?. Hence
(iii) of Lemma 2.5 implies that r = s > 0. Finally, as h,(as P, a+P) = B(P, P), a simple
computation shows that »r = B(P, P)/b. This concludes the proof of (iii).

(iv) The form £y on a.p[e;].
Let P, O € ple;] be elements of the basis of Remark 2.3 (c), arising from roOts i, v €
AT, respectively, with v # p, fi. Then hy(asP,a,Q) = 0, because [Z/ & ZI, ZV £
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ZV] = 0, for all Z* € gt and Z" € g". In addition, by the Iy-invariance of & ; one has
hy(asP,a.lgP) = 0.

In order to compute hf(asP,a,P), write P = X — 6X and IyP = Y — 0Y, with
X=2Zt+Zrand Y = i(Z"* — Z*) (Lemma 2.2 (c)). Then, from (18) it follows that

hp(asP.a,P) = ——L—d° f([C, K].).

- sinhz(aj)

for K =X+6Xand C =Y +60Y. By Lemma 2.4 (d)(e), one obtains

= ! KJ.) — AT
hr(ayP,a.P) = — Sinh2(aj)dcf(tl(fz) =2t coth(aj)Wj(H), for some ¢t € R.
The above formula smoothly extends to Dy, since % is identically zero on the hyperplane
J
aj = 0.

Finally, by computing the above quantity for the strictly plurisubharmonic potential p of
the Killing metric of G/K given in Proposition 5.1, one obtains that t = B(P, P)/b . This
completes the proof of statement (iv) and of the proposition. O

Remark 3.2 The Levi form L of f is given by
LT(Z, W) =2(hs (X, Y) +ihp(X, oY),

where Z = X —ilpX and W = Y — i [yY are elements in (p©)"-0. One easily sees that L(jg
is (strictly) positive definite if and only if / 7 is (strictly) positive definite.

4 K-invariant psh functions vs. W-invariant logcvx functions

Let G/K be an irreducible non-compact Hermitian symmetric space of rank r and let D C
G/K be a Stein, K -invariant domain. The goal of this section is to prove a characterization
of various classes of K -invariant plurisubharmonic functions on D by appropriate conditions
on the corresponding functions on D, (see (12) and (13)). In the smooth case we prove that a
smooth K -invariant function f of D is strictly plurisubharmonic if and only if the associated
function f satisfies a positivity condition arising from Proposition 3.1(ii).

As an application, in Corollary 4.8, we reproduce the characterization of Stein K -invariant
domains in G/K outlined in [2], Thm.3’ and Thm. 4.

Denote by A" the orbit of the base pointeK € G /K under the product of the » commuting
copies of SU(1, 1) determined by (2) and (3). One has A" = T expaK, where T = (sHr
is the r-dimensional torus in K whose Lie algebra is generated by K, ..., K" It is well-
known that A" may be identified with the unit polydisk in C" (cf. [13], p.280), and under
this identification

exp(ai, ...,a,)K = (tanh(ay), ..., tanh(ay)), for (aj,...,a,) € a.

The polydisk A" is a “thick slice” for the K -actionin G/K,in the sense that G/K = K - A".
If D is a K-invariant domain in G/K, then

R:=DNA"

is by definition the Reinhardt domain associated to D and satisfies D = K - R..

We will show that if D is Stein, then R is necessarily connected. It should be remarked that,
despite its appellation, a Reinhardt domain is open in C" but need not be connected (in our
context the quotient of R under the action induced by the Weyl group is always connected).
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For a Reinhardt domain R in A", define the set
D={(ai,...,a,) € R" : (tanhay,...,tanha,) € R},
and note that the image of the map
D— R (ay,...,a;) — (tanhay, ..., tanha,)

coincides with R N R”. One has R = T - (RNRY), with T = (SH". Given a smooth
T-invariant function f: R — R, define f :D — R by

f(ai,...,a) = f(tanhay, ..., tanha,).

As f is T-invariant, the function f is (Z*)"-invariant.
Denote by LogConv"o’*(D)(Zz)r the class of smooth functions on D which are even in
each variable and such that the form defined in (ii) of Proposition 3.1, i.e.

. -
200th(2aj)§7];(H)8j1 + #g‘al(m, 1)

for j,I = 1,...,r, is strictly positive definite, for every H € D. The next proposition
characterizes T'-invariant smooth strictly plurisubharmonic functions on R by elements in
LogConv(’o'*(D)(Zzy. It is an intermediate step in the proof of the main theorem in the
smooth case, but it may be of independent interest in the context of Reinhardt domains.

Proposition 4.1 Let f be a smooth T-invariant function on a Reinhardt domain R in A"
Then f is strictly plurisubharmonic if and only if f belongs to LogConv™+ (D)%),

Proof In polar coordinates (pj,0;),withz; = pjeief = 0, one has

—if;
0 = S5 (pjdp; —ide) 3 = ) i SE(pj o, +i04,)

One easily sees that, for z;z; # 0,

2 i©:—0) 0f
gtda @z = gk (o p)Sj + SO (o) (2D)
As itis T-invariant, f is an even function in each of the variables p1, ..., p,. Consequently,

the above quantity extends smoothly through the hyperplanes z; = 0 (and therefore to the
whole domain) whenever j = [, while

432 an(zl,...,z,)zo, forj #1 and z;z; = 0.

For p; =tanhay, ..., p, = tanha,, one has
x a
%(d], N a,) = —(tanhay,..., tanha,)iz, (23)
j 0p; cosh” a;
27 92 1
33'3); (H) = f (tanhay,..., tanha,)ﬁ
jodi 0p;op; cosh” a; cosh” g
af 2sinha;
—5j[ — (tanhay,..., tanh ar)73, (24)
0p; cosh” a;

and likewise

8a i)al (H) =0, forj#1[ and aja; = 0.
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A simple computation combining formulas (23) and (24) with (22), shows that

92 f L.
43z 57 (21, ... 2r) is given by

- -
cosh4aj (200th(2aj)§T’;(a1, oo ap) + %(al, .. .,ar)), forj =1,

. . 27
cosh? aj €% cosh? q; et %(dl, s, ay), forj # [l and z;z; # 0,
0, forj #1 and z;z; = 0.
Then, for (z1, ..., z-) € R, one has

a2 —
(4%),’1 C(aa dar +5112°0th(2"1)aa) c,

dz;j0z1/,
where C is the diagonal matrix with diagonal entries
coshz(aj)eig-f, for z; #0,
i = {coshz(aj), for z; = 0.

It follows that f is strictly plurisubharmonic if and only if f belongs to the class
LogConv®*(D)%2)" ]

Let R be a Reinhardt domain in (A*)" and let
Diog := {(s1, ..., s,) € R 1 (e, ..., e") e R}

be the logarithmic image of its slice R N (R>%)". For a T-invariant function f on R, define
f: Diog = Rby R

fGs1,...,8:) = f(e', ..., e"). (25)
It is well known that if f is smooth, then it is strictly plurisubharmonic if and only if fhas

strictly positive definite Hessian. The next remarks elucidate the significance of the class
LogConv®*(D)%2)"

Remark 4.2 Let R be a Reinhardt domain in (A*)" and let f be a smooth T -invariant function
on R. Then f belongs to LogConv°°*+(D)(ZZ)r if and only if the smooth function f has
everywhere strictly positive Hessian.

Proof One has

af 9 .

E,Tf/.(m, e S) = Tf.(es‘, o e)et (26)

92 f 92 f : Cg } -

st 1) = (e eneet £ 8l et e @)
Then, by letting ¢*! = tanhay,...,e" = tanha,, with ay,...,a, > 0, and combining

formulas (26) and (27) with (23) and (24), one obtains

I 27 27
2coth(2a)) g (H)8j1 + 5042 (H) = G o ot (515 +++57).

j sinh2a; s s

Hence f € LogConv®>™* (D)%) if and only if f has everywhere strictly positive Hessian.
]

Remark 4.3 Let R be an arbitrary Reinhardt domain and let f|grn(a+) denote the restriction
of f to R N (A*)". The strict positivity of the Hessian of f|rn(a*)- on R N (A*)" does not
imply the strict plurisubharmonicity of f on the coordinate hyperplanes (and therefore on
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the whole R). For instance, despite the fact that it has strictly positive Hessian on R N A*,
the function g(z) = |z|* is not plurisubharmonic at z = 0. In contrast, this fact is detected
by the vanishing of the form

2~ ~
% (@) + 2 coth2a) % (a) = 16474

da? cosh*a

at a = 0, which shows that the associated function g(a) = tanh?*(a) does not belong to
LogConv®T(R)@),

Let R C A" be a Reinhardt domain associated to a K -invariant domain in G/K. In this
case, R is also invariant under the coordinate permutations induced by the Weyl group action
on a. If such a Reinhardt domain is Stein, then there are two possibilities:

(a) R intersects the coordinate hyperplanes. Then it is complete (cf. [3], Thm.2.12). In
particular, it contains the origin and it is connected.

(b) R does not intersect the coordinate hyperplanes, i.e. R C (A*)". Then R is logarith-
mically convex.

The next proposition shows that a Stein Reinhardt domain R associated to a Stein K-
invariant domain D C G /K is necessarily connected (even in case (b), when 0 ¢ R), a fact
already pointed out in [2, Thm. 3'].

Proposition 4.4 Let D and R be as above and let f : D — R be a smooth, K-invariant
strictly plurisubharmonic exhaustion function of the Stein domain D.

(i) If R contains the origin, then R is connected and f has a unique minimum point at

the origin of Dq.
(ii) If R does not contain the origin, then f has a unique minimum point on the intersection
DqN{ay = --- = a, > 0}. In particular R is connected. In this case G/K is

necessarily of tube type.

Proof The minimum set of a K-invariant exhaustion function f of D intersects R = T -
exp Dy K in a non-empty T -invariant set. Moreover, exp(H)K € R is a minimum point of
[ 1R, the restriction of f to R, if and only if H € Dy is a minimum point of f.

(1) As R intersects the coordinate hyperplanes, it is complete, as mentioned above. Assume

that f has a minimum point H = (ay, ..., a,), different from the origin. Then f|g
has aminimum pointin P = exp(H)K.For ¢ > 0 small enough there is a holomorphic
immersion

t:Aj4e > R, z—zP,

where A4, denotes the disc of center O and radius 1 4 ¢ in C. The pull-back f o
of f via ¢ is a smooth strictly subharmonic S!-invariant function on A .. It has a
minimum point in 0 and, by construction, in 1. Then f o is necessarily constant,
contradicting the fact that it is strictly subharmonic.

(ii) Let H = (a1, ..., a;), with a; > 0, be a minimum point of f As R does not
intersect the coordinate hyperplanes, all a;’s are different from 0. As a consequence

2 coth(aj)%(H) =0,forj =1, ..., r.Inthe non-tube case this contradicts the strict
plurisubharmonicity of f by (iv) of Proposition 3.1, implying that the space G/K
is necessarily of tube type. The strict plurisubharmonicity of f along with (iii) of
Proposition 3.1, implies that a; = a forevery j,k =1,...,r. Hence H lies on the

positive diagonal of a. Consider the Weyl chamber a* = {a] > a > --- > a, >
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0}. Since Dy N a™ is connected by the connectedness of D and H belongs to the
boundary of every Weyl chamber in {(ay,...a,) €a : a; >0, j =1,...,r},it
follows that R N (]R>0)’ is connected (as well as Dj,z). Hence the Relnhardt domam
R =T -(RN(R>%") is connected. The uniqueness of the minimum point of f follows
from standard arguments as in [1], or from the following direct argument.

The region Dj, is convex by the Steinness of D. By Remark 4.2, the associated function
S has everywhere strictly positive definite Hessian. In particular its restriction to the diagonal

DiogN{s1 = --- = s,} is astrictly convex exhaustion function. Consequently it has a unique
minimum point, implying that f has a unique minimum pointon DyN{a; = --- = a, > 0}.
O

Consider the following classes of functions:

- C%Dy)Y: continuous W-invariant functions on Dq,
C®(Dy)W : smooth W-invariant functions on Dy,
- C O(D)K : continuous K -invariant functions on D,

- C®® (D)K : smooth K-invariant functions on D.

Since the K-action on D is proper and every K-orbit intersects the slice exp DqK in a
W-orbit, the map f — f is a bijection from C%(D)X onto C%(D,)W. By Theorem 4.1 in
[6] (see also [4]) such a map is also a bijection from C% (D)X onto C®(Dy)Y. Define:

— LogConv® T (Dy)": smooth, W-invariant functions on D, such that the form (21) is
strictly positive definite,

— P+ (D)X: smooth, K-invariant, strictly plurisubharmonic functions (i.e. with strictly
positive definite Levi form) on D.

Our first result is the following theorem.

Theorem 4.5 Let D be a Stein K-invariant domain in an irreducible non-compact Her-
mitian symmetric space G/K of rank r. Then f € P (D)X if and only if f €
LogConv® T (Dy)V.

Proof By (ii) of Proposition 3.1, if f is strictly plurisubharmonic on D, then f S
LogConv®>t(Dy)V.

Conversely, assume that f € LogConv®>® 1 (Dg)W. We need to show that the terms in
(iii) and (iv) of Proposition 3.1 are strictly positive (the ones in (iii) occurring only if r > 1,
the ones in (iv) occurring only in the non-tube case).

For the terms in (iii), without loss of generality, it is sufficient to consider the case
r=2,and H = (aj,a2) € at, with a; > ay > 0. Assume first a; > a» > 0. Then
(tanh ay, tanh ap) = (%!, e%2) € R*, where R is the Reinhardt domain associated to D. Let
do < 0 and ¢ty > 0 be real numbers defined by (s1, s2) = (do + to, do — t0)-

From now on, refer to the smooth functions with everywhere positive definite Hessian
as SSC (smooth stably convex). By Remark 4.2, the function f , which is invariant under
coordinate permutations, is SSC. Therefore g(¢) := f (do + t,do — t) is even and SSC.
Consequently, for 7y as above, the inequality

g/(to) — %(ed0+to’ ed()—lo)edo+l() _ %(ed0+fo’ edo—l())edo—t() >0 ,
holds true. This, combined with formulas (23), implies

g ) = (s1nh(2a2) Baf (H) — sinh(2a1)%(H)) >0,
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giving the desired positivity.
Next consider H = (a,a), with a # 0. Set tanha = e and (tanh ap, tanhap) =

(e®+1 ¢d0=1) Recall that g’(0) = 0. Then the corresponding term in (iii) of Proposition 3.1
is the limit

Yim, o = 40! i 8O oD —(do—1
2 =0 Sinh(a+ay) sinh@@—a2) ~ 4,50 " ¢ sinh(a; + ap) sinh(a] — a2)
_ l Q) logtanha; —logtanhay _ 4
= IShCa cosh@a) M@ —a)~0 — a=a, = 8§ (0c(@),

which is positive since c(a) is a positive real number and g”(0) > 0 (g is even and SSC).
If H = (a1,0) € Dg, with a; > 0, then the Reinhardt domain R associated to D is
necessarily complete and the term to be evaluated reduces to

smh(2a1) (a1 0).

smh2 ay

2 coth(2ay) "f (1.0) + 2 f(a1 0) > 0,

the function 51 — f(e*!, 0) is SSC (cf.Rem.4.2). Since R is complete, then limg, . _
f(e*', 0) is finite. As a consequence s1 — f(e’1,0) is strictly increasing and so is a; —
f(al, 0) = f(tanhay, 0). Hence aa (a1 0) is positive, as wished.

Finally, for a; = a» = 0, the analytlc extension of our term is given by

2"f(0 0)_2 (0 0),

which is strictly positive by assumption.
We are left to examine the terms in (iv), which only appear in the non-tube case. The
arguments are similar to the ones used in the previous case. By Proposition 4.4, the Reinhardt

domain R associated to D is complete. Then limsjﬁ,Oo f(Gst,...,8j,...sr)1is finite. Since
f is SSC, the function s; — f(s1,...,Sj,...s;) is strictly increasing and so is a; —
f(al, R . a;). Hence

200th(aj)337f/(a1,...ar) >0, fora;>0.

The limit
~ NV . —2?f
alj'1£>n02coth(aj)m(a1, ce @y, ) = 2@(611, ..,0,...,a)
is strictly positive as well, by assumption. This completes the proof of the theorem. O

Consider the (T x S,)-action on A", where S, denotes the group of coordinate permuta-
tions. From Proposition 4.1 one deduces the following corollary.

Corollary 4.6 Let D bea Stein K -invariant domain in an irreducible non-compact Hermitian
symmetric space G/K and let R be the associated Reinhardt domain. The map f — f|r
is a bijection between Pt (D)X and Pt (R)T%Sr,

Remark 4.7 If R does not contain the origin, then, by Remark 4.2, the condition f €
P71 (D)X is also equivalent to requiring that the smooth invariant function f has strictly
positive definite Hessian on D, .
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Corollary 4.8 (See [2, Thm.3' and Thm.4]) Let D be a Stein K -invariant domain in an
irreducible non-compact Hermitian symmetric space G/K and let R be the associated
Reinhardt domain. Then

(i) If G/K is of tube type, then D is Stein if and only if R is Stein and connected.
(ii) If G/K is not of tube type, then D is Stein if and only if R is Stein and complete. In
particular R contains the origin and is connected.

Proof By Proposition4.4,if D is Stein then the intersection R = DNA" is Stein, connected
and, in the non-tube case, complete. Conversely, let R be a Stein, connected Reinhardt
domain, invariant under coordinate permutations. In the non-tube case also assume R to be
complete. Let f be a smooth, strictly plurisubharmonic exhaustion function of R. After an
averaging process, f may be assumed to be invariant with respectto 7' and to the coordinate
permutations. Proposition 4.1 implies that the associated function f : Dq — R belongs
to LogConv® T (Dy)". By Theorem 4.5, f extends to a smooth, K-invariant, strictly
plurisubharmonic exhaustion function of D. Hence D is Stein. O

Remark 4.9 The envelope of holomorphy D of a K -invariant domain D in G /K is described,
without proof, in terms of the assoaate Remhardt domain R in Theorem 5 of [2]:

if G/K is of tube type, then D=K- R where R is the smallest connected Stein, Reinhardt
domain containing R;

if G/K is not of tube type, then D = K - R, where R is the smallest connected and complete
Stein, Reinhardt domain containing R.

If G/K is of tube type and R is connected, i.e. R intersects the diagonal line in C", then by
[3], Thm.2.12, R commdes with the envelope of holomorphy Rof R. Similarly, if G/K is not
of tube type, then R = R whenever R is connected and intersects the coordinate hyperplanes.

Our next goal is to extend the characterization of smooth, K -invariant, strictly plurisub-
harmonic functions on D obtained in Theorem 4.5 to the following classes of K -invariant
functions:

— P(D)K : plurisubharmonic, K -invariant functions on D,

— P®(D)X: smooth, plurisubharmonic, K -invariant functions on D,

— PT(D)X: functions which, on every relatively compact K -invariant domain C in D,
are the sum g + h, of some g € P(C)X and h € P+ (O)K.

In order to do that we need to define the corresponding appropriate classes of functions
on the associated domain Dy:

— LogConv(Dg, [—00, 00))W: limits of decreasing sequences in Log Conv®>+ (D)W (cf.
(21)),

— LogConv®(Dy)": smooth functions in LogConv(Dy, [—o0, co))WV,

— LogConv*(Dyq, [—00, oo W: function~s which, on every relatively compact W -invariant
domain C of Dg, are the sum g + h of some g € LogConv(C, [—0o0, oo))V and
h € LogConv>®>t(C)V.

Remark 4.10 (i) The class LogConvoo(Da)W coincides with the family of smooth W-
invariant functions on D, for which the form in (ii) of Proposition 3.1 is positive
semidefinite. One inclusion is clear. Conversely, if f is smooth and the form in (21) is
positive semidefinite, then f is the limit of the sequence fn (ar,...ar) = f (ar,...ar)+
% > a?. Hence f belongs to LogConv>(Dy)Y. In particular

LogConv>®*(Dg)V c LogConv>®(Dy)" .

@ Springer



Invariant plurisubharmonic functions... 75

(ii) The class P+ (D)X coincides with the family of K -invariant functions which are locally
the sum of some g plurisubharmonic and /4 smooth strictly plurisubharmonic, i.e. the
strictly plurisubharmonic functions according to the definition in [8, Def. 1, Sect.L,
p. 118]. Indeed, assume that f is K-invariant and strictly plurisubharmonic according
to such a definition. Fix a K -invariant, smooth strictly plurisubharmonic function ¢ on
D and let C be a relatively compact K -invariant domain of D. Then there exists ¢ > 0
such that g := f — ey is plurisubharmonic on C. Thatis, f = g 4+ ey, with g psh and
K -invariant on C.

The following lemma shows that all functions in the above classes are continuous.

Lemma4.11 Let R be a Reinhardt domain.

(i) Any T-invariant plurisubharmonic function f on R is continuous. Its pluripolar set is
the union of the intersections of R with some coordinate subspaces.
(ii) The class LogConv(Dyg, [—00, co)W is contained in C%(Dy, [—o0, co))W.

Proof (i) First consider the case r = 1. On R* = R \ {0} one has f(z) = f(log|z|), with f
convex. Hence the restriction of f to R* is continuos. As f is subharmonic, if 0 € R, then
one has f(0) = limsup,_, f(z). Assume by contradiction that

liminf f(z) < f(0).
z—0

Then there exists z; € R close to the origin such that f(z1) < f(0). By the submean value
property and the S'-invariance of f one has

FO) < 5= (27 £(el?21)d0 = f(21) < f(0),

which is a contradiction.

Let r = 2. The logarithmic convexity of f on R* = R N (A*)" implies its continuity
therein. It remains to prove its continuity on the coordinate lines {(z, w) € R : zw =0}
(on each line f can be constant and equal to —00). Assume by contradiction that there exists
(z0, 0) € R such that

limsup f(z,w)— liminf f(z w)>e>0. (28)

(z,w)—(20,0) (z,w)—> (20,0

As f is plurisubharmonic, one has lim sup, ,y_, (;,.0) f (2, w) = f(zo, 0). Moreover, since
f is continuous on the line w = 0, there exists a neighborhood B of zg in C such that

limsup f(z, w) —&/2 = f(20,0) — /2 < £(¢,0),

(z,w)—(20,0)

for every ¢ € B. By (28), we can choose (¢1, w) close to (zg, 0) such that {; € B and

f&Lwy) < llmlnf f(Z w) +e/2 < f(20,0) —&/2 < f(£1,0).

(z,w)— (20,0

Then, by the submean value property for subharmonic functions and by the 7'-invariance of
f one has

F(61.0) < 2 [57 f(e1,e®wnd = £, w) < f(61.0),

giving a contradiction.
The above argument also shows that the pluripolar set of f consists of either the origin,
or of the intersection of R with one or both the coordinate lines.

@ Springer



76 L. Geatti, A. lannuzzi

By proceeding inductively, one obtains the statement for » > 2.

(ii) By Theorem 4.5, to a decreasing sequence fn of functions in LogConv®+ (D)W
there corresponds a decreasing sequence f, in P°>t (D)X, whose limit f necessarily
belongs to P(D)X. The restriction f| of f to R is a plurisubharmonic T-invariant func-
tion. By part (i), the function f| is continuous. Consequently so is the corresponding f in
LogConv(Dg, [—00, 00))", which is the limit of the fn ]

Summarizing, the following inclusions hold true

LogConvt(Dq, [—00, 00))V C LogConv(Dq, [—00, co))V ¢ CO(Dy, [—o0, co))W
U U U
LogConv® T (Dg)V C LogConv>®(Dg)V C C®MDHV.

Our complete result is stated in the next theorem.

Theorem 4.12 Let D be a Stein K -invariant domain in an irreducible non-compact Hermitian
symmetric space G/K. The map f — f is a bijection between the following classes of
functions

(i) PH (D)X and LogConv® (D)W,

(ii) P(D)X and LogConv(Dq,[—00, o)V,
(iii) P®(D)X and LogConv>® D)V,

(iv) PT(D)X and LogConvt(Dg,[—00,00)".

In particular, from the above inclusions, it follows that the K -invariant plurisubharmonic
functions on D are continuous.

Proof (i) is the content of Theorem 4.5. By averaging over K, a K-invariant, plurisubhar-
monic functionon D is the decreasing limit of smooth K -invariant, strictly plurisubharmonic
functions (cf. [8, Sect.K]). Then (ii) follows from (i). As smooth K -invariant functions on
D correspond to smooth W-invariant functions on Dy, an analogous argument also proves
statement (iii). Finally (iv) follows from the definitions of LogCon vH(D)Y and PT (D)X,
by averaging the summands over W and K, respectively. O

Let T x S, act on A" as in Corollary 4.6. The previous theorem can be reformulated as
follows.

Theorem 4.13 Let D be a Stein K -invariant domain in an irreducible non-compact Her-
mitian symmetric space G/K and let R be the associated Reinhardt domain. The map
f — flr is a bijection between

(i) P (D)X and  PoH(R)TXS,
(i) P(D)X and P (R)T*S,
(iii) P®(D)X and P>®(R)T*Sr,
(iv) PH(D)X and PT(R)TXS,

5 Appendix: A K-invariant potential of the Killing metric.
Let G/K be an irreducible non-compact Hermitian symmetric space. The Killing form B

of g, restricted to p, induces a G-invariant Kihler metric on G/K, which we refer to as the
Killing metric. In this section we exhibit a K-invariant potential p of this metric in a Lie
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theoretical fashion. We also show that such a K -invariant potential coincides, up to an additive
constant, with the logarithm of the Bergman kernel function (Remark 5.2 and Corollary 5.3).

In order to define p, according to the decomposition G = K exp a K, write an element
of G/K as kaK, where k € K and a =expH ,with H =} ;a;Aj € a.

oge o~ . . . -~ sht—1
Proposition 5.1 Let p be a real valued function satisfying p'(t) = 5. Then

(i) the K-invariant function p : G/K — R defined by
pkaK) = 13 9a;)B(Aj, A)),

is a potential of the Killing metric;
(ii) the moment map n : G/K — € associated with p is given by

ukaK)(X) = % 37 sinh(2a;)p"(2a;) B(Adj-1 X, K7).
where X € L.

Proof We first prove (ii). Resume the notation of Section 3. In the proof of Proposition 3.1,
it was shown that for z = a K one has

d‘p(X;) =0,
forall X € m @ P, ex+ tlal. Moreover, since p(H) = %Z;:lﬁ(Zaj)B(Aj, Aj), from

(x;é2€j
(17) it follows that for K/ € £[2¢;] one has

d°p(KJ,) = —Lsinh(2a,)5"(2a)) B(A}, A;). (29)

As B(Aj, A;) = —B(K/, K7), then (29), (11) and (16) imply (ii).
(i) We are going to show that on p x p
he(-, -) =BC(, ),

where i, (-, -) = —dd°p(-, Iy -). By the K-invariance of p and the orthogonality relations
proved in Proposition 3.1, it is sufficient to show that 4, (as P, a+ Q) = B(P, Q), for P, O
both in one of the blocks a,a, asple; + ¢;] and a,ple;].

The form 7, on aa.
Let Aj, A; € a, be as in (2). Then, by (15) and (10),

ho(Aj, A) = —ddpla,Aj, axloA) = —dd p(a,P', a,Aj)

1 d I
s—olt™ (expsA; - 2),

| ~
= ———dd°p((K")., (4)),) = ‘MEL

sinh(2a;)
where P! € p[2e¢;] and K! € €[2¢;] are asin (3). By (ii), (29) and (11), such quantity vanishes

if [ # j. For j = [, from the assumption p'(f) = %, we obtain
ho(Ar, Ar) : 1d| inh(2a; + 25)p" (2a1 + 25) B(A;, Ap)
, = ——————| _,sinh(2a s a s ,
P = Gnh(2ay) 2 ds 5= Lrsp s b
1
= ————(cosh(2a))p' (2a;) + sinh(2a))p " (2a1)) B(A;, A;) = B(A1. A) |
sinh(2a;)
as desired.
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Let o be arootin =1 \ {2¢;} and let P = X — 0X € pla], for some X € g*. Then
Q:=1IyP =Y —0Y € p[p], for some ¥ € gf with 8 € £T. Define K := X + 60X € {[a]
and C :=Y +0Y € {[Bl. As K/ = [IoA;, A;], by (18) and (ii),

holax P, axP) = = Groarsanpom 1 2k SithQ2an) 5’ 2ae) B(IC. K1, [loAr, Axl)

1 1

= ~ i) sioh B 2 Xk:sinh(Zak)p (a)B(K, [[IoAk, Arl, CJ).

From the Jacobi identity, one has

B(K, [[1oAx, Atl, C1) = —B(K, [[C, IoAi], Acl+ [[Ak, Cl, IoAx])
B([Ax. K1, [loAk, C1) — B([loAk. K1, [Ag, C])
a(ADB(P, IhlAx, C1) — B(AWB(Io[Ax, K1, Q)
= (a(AB(AL) + B(Aa(A)B(P, 1hQ) .

As IpQ = — P, one obtains
hp(@xP, axP) = s osmngamn ok SINh(2ap” Qag) («(Ax) B(Ar)
+B(Aa(AY)B(P, P).

We are left to specialize the above formula in the cases @ = ¢; + ¢; and @ = ¢}, for
j.l=1,...,r.

The form £, on a.ple; + ¢/].
Here o = ¢ + ¢ and B =e; —¢;. Then for P € p[e; + ¢], one has

hp(axP,a.P) = 2Smh(ajﬂl;Sm(aﬂ”)(sinh(zaj)ﬁ’(zaj) —sinh(2a;)p’ (2a;)) B(P, P)
cosh(2a;) — cosh(2

_ _coh@ay) —cosh@a) _pp py _ pep, p),
2sin(a; + ap) sin(a; — ap)

due to the identity cosh(2a;) — cosh(2a;) = 2sinh(a; + a;) sinh(a; — a;).

The form £, on a,p[e;].
Here o = B = e;. Then for P € ple;], one has

hy(asP, a,P) = sinh(2a;)p’(2a,;)B(P, P)

1
2 sinhz(aj)

= ZsTZ(aJ-)(COSh(zaj) —1)B(P, P) = B(P, P).

This concludes the proof of (i) and of the proposition. O

The following remark shows that a K -invariant potential of the Killing metric is unique,
up to an additive constant.

Remark 5.2 Let p; and pp be smooth K-invariant functions on G/K such that dd“p; =
dd€py. Then p; — p is constant.

Proof As p; — py is pluriharmonic and G/K is contractible, there exists a holomorphic
function f : G/K — C, such that Ref = p; — pa, which is unique up to an imaginary
constant (cf. [8, Sect.K]). By averaging f over K, its real part p; — pp does not change.
Hence f itself is K -invariant. Moreover, being holomorphic, f is also invariant with respect
to the induced local K C-action on G /K . Since K © acts locally transitively on an open subset
of G/K (cf. [13]), the function f is constant and so is its real part p; — p>. O
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Since the logarithm of the Bergman kernel function is a K -invariant potential of the Killing
metric (see [10], Vol.2, Exa.6.6, p. 162 and Thm. 9.6, p.262), one can draw the following
conclusion.

Corollary 5.3 Up to an addictive constant, the smooth K -invariant exhaustion function p
coincides with the logarithm of the Bergman kernel function.

Example 5.4 As an example, consider the unit disc A = G/K, where G = SU(1, 1) acts on
A by linear fractional transformations. Fix the basis of g, normalized as in (3):

L (i 0 _ (01 L (0 —i
K _<0—i)’ Al_(lo)’ P _(i 0)

Then expajAjK = tanha; = |z|. Take (1) = —In = which satisfies the differential
equation p’'(t) = C‘J:lll’lﬁjl . Since B(Aj, A;) = 8, then up to an addictive constant, the

logarithm of the Bergman kernel function is given by

plexpaiA1K) = — 310 g B(AL A))
sh? a; —sinh?
= —2In w = —21In(1 — |z|%) + const .
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