Skip to main content
Log in

Cube sums of the forms 3p and \(3p^2\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(p\equiv 2,5\ \mathrm {mod}\ 9\) be a prime. In this paper, we prove that at least one of 3p and \(3p^2\) is a cube sum by constructing certain nontrivial Heegner points. We also establish the explicit Gross–Zagier formulae for these Heegner points and give variants of the Birch and Swinnerton–Dyer conjecture of the related elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkin, A.O.L., Lehner, J.: Hecke operators on \({\Gamma }_0({N})\). Math. Ann. 185, 134–160 (1970)

    Article  MathSciNet  Google Scholar 

  2. Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301–314 (1973)

    Article  MathSciNet  Google Scholar 

  3. Cox, D.A.: Primes of the Form \(x^2+n y^2\). Wiley, New York (1989)

    Google Scholar 

  4. Cai, L., Shu, J., Tian, Y.: Explicit Gross-Zagier and Waldspurger formulae. Algebra Number Theory 8(10), 2523–2572 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cai, L., Shu, J., Tian, Y.: Cube sum problem and an explicit Gross-Zagier formula. Am. J. Math. 139(3), 785–816 (2017)

    Article  MathSciNet  Google Scholar 

  6. Deligne, P.: Travaux de Shimura, volume 244 of Lect. Notes in Math. Séminaire Bourbaki, exposé 389, pp. 123–165 (1971)

  7. Dickson, L.E.: History of the Theory of Numbers: Diophantine analysis, volume 2. Courier Corporation (2013)

  8. Deligne, P., Rapoport, M.: Les Schémas de Modules de Courbes Elliptiques. Springer, Berlin, pp. 143–316 (1973)

  9. Dasgupta, S., Voight, J.: Heegner points and sylvester’s conjecture. Arithmetic Geometry: Clay Mathematics Institute Summer School, Arithmetic Geometry, July 17–August 11, Mathematisches Institut. Georg-August-Universität, Göttingen, Germany 8(91), 2009 (2006)

  10. Dasgupta, S., Voight, J.: Sylvester’s problem and mock heegner points. Proc. Am. Math. Soc. 146, 3257–3273 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gross, B.H.: Local orders, root numbers, and modular curves. Am. J. Math. 110(6), 1153–1182 (1988)

    Article  MathSciNet  Google Scholar 

  12. Gross, B.H., Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  Google Scholar 

  13. Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z. 56(3), 227–253 (1952)

    Article  MathSciNet  Google Scholar 

  14. Hu, Y., Shu, J., Yin, H.: An explicit Gross-Zagier formula related to the sylvester conjecture. Trans. Am. Math. Soc. 372(10), 6905–6925 (2019)

  15. Hu, Y.: Cuspidal part of an Eisenstein series restricted to an index 2 subfield. Res. Number Theory, 2:2:33 (2016)

  16. Katz, N.M.: p-adic ineterpolation of real analytic Eisenstein series. Ann. Math. 104(3), 459–571 (1976)

    Article  MathSciNet  Google Scholar 

  17. Kobayashi, S.: The \(p\)-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math. 191, 527–629 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kolyvagin, V.A.: Euler systems. In The Grothendieck Festschrift II, volume 87 of Progr. Math., Birkhauser Boston, MA, pp. 435–483 (1990)

  19. Lang, S.: Elliptic Functions, volume 112 of Graduate Texts in Mathematics. Springer, New York (1987)

  20. Lieman, D.: Nonvanishing of L-series associated to cubic twists of elliptic curves. Ann. Math. 140, 81–108 (1994)

    Article  MathSciNet  Google Scholar 

  21. Ligozat, G.: Fonction l des courbes modulaires. Séminaire Delange-Pisot-Poitou. Théorie des nombres, 11(1):1–10 (1969–1970)

  22. Liverance, E.: A formula for the root number of a family of elliptic curves. J. Number Theory 51(2), 288–305 (1995)

    Article  MathSciNet  Google Scholar 

  23. Ogg, A.P.: Modular Functions. In Santa Cruz Conference on Finite Groups, volume 37 of Proc. Sympos. Pure Math., pp. 521–532. Amer. Math. Soc., Providence (1980)

  24. Perrin-Riou, B.: Points de Heegner et derivées de fonctions L p-adiques. Invent. Math. 89, 455–510 (1987)

    Article  MathSciNet  Google Scholar 

  25. Ribet, K.A.: On modular representations of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) arising from modular forms. Invent. math. 100, 431–476 (1990)

  26. Saito, H.: On Tunnell’s formula for characters of \({GL}(2)\). Compos. Math. 85(1), 99–108 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Satgé, P.: Groupes de Selmer et corps cubiques. J. Number Theory 23(3), 294–317 (1986)

    Article  MathSciNet  Google Scholar 

  28. Satgé, P.: Un analogue du calcul de Heegner. Invent. Math. 87(2), 425–439 (1987)

    Article  MathSciNet  Google Scholar 

  29. Shimura, G.: Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ (1994). Reprint of the 1971 original, Kanô Memorial Lectures, 1

  30. Silverman, J.H.: The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York. Corrected reprint of the 1986 original (1992)

  31. Sylvester, J.J.: On certain tenary cubic-form equations. Am. J. Math. 2(3), 280–285 (1879)

    Article  Google Scholar 

  32. Sylvester, J.J.: On certain tenary cubic-form equations. Am. J. Math. 2(4), 357–393 (1879)

    Article  Google Scholar 

  33. Sylvester, J.J.: On certain tenary cubic-form equations. Am. J. Math. 3(1), 58–88 (1880)

    Article  Google Scholar 

  34. Sylvester, J.J.: On certain tenary cubic-form equations. Am. J. Math. 3(2), 179–189 (1880)

    Article  Google Scholar 

  35. Yuan, X., Zhang, S.-W., Zhang, W.: The Gross-Zagier formula on Shimura curves. Annals of Mathematics Studies, vol. 184. Princeton University Press, Princeton, NJ (2013)

  36. Zagier, D., Kramarz, G.: Numerical investigations related to the \(L\)-series of certain elliptic curves. J. Indian Math. Soc. (N.S.), 52:51–69, 1987 (1988)

Download references

Acknowledgements

The authors would like to thank professor Ye Tian for his long-term support and encouragement. The second-named author would like to thank professor Chen-Bo Zhu for his encouragement and support. We would like to thank John Voight for his suggestion to use the Kronecker congruence to compute the coordinates modulo p in the supersingular case. We also would like to thank Jinbang Yang for helpful discussions which lead a proof of Proposition 3.5, and Sheng Meng for valuable discussions on algebraic geometry. We thank the referee for the careful reading and the helpful advices. All the numerical computations are programed on the SageMath system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Shu is supported by NSFC-11701092; Xu Song is supported by the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) of the OCPC. Hongbo Yin is supported by NSFC-11701548 and The Young Scholars Program of Shandong University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, J., Song, X. & Yin, H. Cube sums of the forms 3p and \(3p^2\). Math. Z. 299, 2297–2325 (2021). https://doi.org/10.1007/s00209-021-02730-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02730-w

Navigation