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Abstract
We develop a new framework for the study of generalized Killing spinors, where every
generalizedKilling spinor equation, possiblywith constraints, can be formulated equivalently
as a system of partial differential equations for a polyform satisfying algebraic relations in the
Kähler–Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying
manifold. At the core of this framework lies the characterization, which we develop in detail,
of the image of the spinor squaring map of an irreducible Clifford module � of real type as
a real algebraic variety in the Kähler–Atiyah algebra, which gives necessary and sufficient
conditions for a polyform to be the square of a real spinor.We apply these results to Lorentzian
four-manifolds, obtaining a new description of a real spinor on such a manifold through a
certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give
global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-
dimensional supersymmetric configurations of heterotic supergravity. In particular, we find
new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting
real Killing spinors, some of which are deformations of the metric of AdS4 space-time.
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1 Introduction

1.1 Background and context

Let (M, g) be a pseudo-Riemannian manifold of signature (p, q), equipped with a bundle
of irreducible real Clifford modules S. If (M, g) admits a spin structure, then S carries a
canonical connection ∇S which lifts the Levi-Civita connection of g. This allows one to
define the notions of parallel and Killing spinors, both of which were studied extensively in
the literature [8,16,58,77,88]. Developments in supergravity and differential geometry (see
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references cited below) require the study of more general linear first-order partial differential
equations for spinor fields. It is therefore convenient to develop a general framework which
subsumes all such spinorial equations as special cases. In order to do this, we assume that
S is endowed with a fixed connection D : �(S) → �(T ∗M ⊗ S) (which in practice will
depend on various geometric structures on (M, g) relevant to the specific problem under
consideration) and consider the equation:

Dε = 0 (1)

for a real spinor ε ∈ �(S). Solutions to this equation are called generalized Killing spinors
with respect toD or simplyD-parallel spinors on (M, g).We also consider linear constraints
of the form:

Q(ε) = 0, (2)

where Q ∈ �(Hom(S,W⊗ S)), withW a vector bundle defined on M . Solutions ε ∈ �(M)

of the system of Eqs. (1) and (2) are called constrained generalized Killing spinors on (M, g).
The study of generalized Killing spinors can be motivated from various points of view,

such as the theory of spinors on hypersurfaces [9,23,29,33,78] or Riemannian geometry
with torsion [31,60]. There is nowadays an extensive literature on the existence and prop-
erties of manifolds admitting generalized Killing spinors for specific connections D and in
the presence of various spinorial structures, see for example [2,3,32,55,57,59,76,79,80] and
references therein.

Generalized Killing spinors play a fundamental role in supergravity and string theory
[45,84,85]. They occur in these physics theories through the notion of “supersymmetric con-
figuration”, whose definition involves spinors parallel under a connection D on S which is
parameterized by geometric structures typically defined on fiber bundles, gerbes or Courant
algebroids associated to (M, g) [28,51,81]. This produces the notion of supergravity Killing
spinor equations—particular instances of (systems of) constrained generalizedKilling spinor
equations which are specific to the physics theory under consideration. Pseudo-Riemannian
manifolds endowedwith parameterizing geometric structures for which such equations admit
non-trivial solutions are called supersymmetric configurations. They are called supersymmet-
ric solutions if they also satisfy the equations of motion of the given supergravity theory. The
study of supergravity Killing spinor equations was pioneered by Tod [84,85] and later devel-
oped systematically in several references, including [7,10,11,19,27,40–43,63–66,70,71]. The
study of supersymmetric solutions of supergravity theories provided an enormous boost to the
subject of generalized Killing spinors and to spinorial geometry as a whole, which resulted
in a large body of literature both in physics and mathematics, the latter of which is largely
dedicated to the case of Euclidean signature in higher dimensional theories. We refer the
reader to [1,26,31,38,51,81] and references therein for more details and exhaustive lists of
references.

Supergravity Killing spinor equations pose a number of new challenges when compared
to simpler spinorial equations traditionally considered in the mathematics literature. First,
supergravity Killing spinor equations must be studied for various theories and in various
dimensions and signatures (usually Riemannian and Lorentzian), for real as well as complex
spinors. In particular, this means that every single case in the modulo eight classification
of real Clifford algebras must be considered, adding a layer of complexity to the problem.
Second, such equations involve spinors parallel under non-canonical connections coupled
to several other objects such as connections on gerbes, principal bundles or maps from the
underlyingmanifold into a Riemannianmanifold of special type. These objects, together with
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the underlying pseudo-Riemannian metric, must be treated as parameters of the supergravity
Killing spinor equations, yielding a highly nontrivial non-linearly coupled system.Moreover,
the formulation of supergravity theories relies on the Dirac–Penrose1 rather than on the
Cartan approach to spinors. As a result, spinors appearing in such theories need not be
associated to a spin structure or other a priory classical spinorial structure but involve the
more general concept of a (real or complex) Lipschitz structure (see [35,67–69]). The latter
naturally incorporates the ‘R-symmetry’ groupof the theory and is especiallywell-adapted for
geometric formulations of supergravity. Third, applications require the study of the moduli
space of supersymmetric solutions of supergravity theories, involving the metric and all
other geometric objects entering their formulation. This set-up yields remarkably nontrivial
moduli problems for which the automorphism group(oid) of the system is substantially more
complicated than the more familiar infinite-dimensional gauge group of automorphisms of
a principal bundle or the diffeomorphism group of a compact manifold. Given these aspects,
the study of supergravity Killing spinor equations and of moduli spaces of supersymmetric
solutions of supergravity theories requires methods and techniques specifically dedicated to
their understanding [22,38,42,48,52–54,63,66–70]. Developing suchmethods in a systematic
manner is one of the goals of this article.

1.2 Main results

One approach to the study of supergravity Killing spinor equations is the so-called “method
of bilinears” [42,84,85], which was successfully applied in various cases to simplify the
local partial differential equations characterizing certain supersymmetric configurations and
solutions. The idea behind this method is to consider the polyform constructed by taking
the ‘square’ of the Killing spinor (instead of the spinor itself) and use the corresponding
constrained generalized Killing spinor equations to extract a system of algebraic and partial
differential equations for this polyform, thus producingnecessary conditions for a constrained
generalizedKilling spinor to exist on (M, g). These conditions can also be exploited to obtain
information on the structure of supersymmetric solutions of the supergravity theory at hand.
The main goal of the present work is to develop a framework inspired by these ideas aimed
at investigating constrained generalized Killing spinors on pseudo-Riemannian manifolds by
constructing a mathematical equivalence between real spinors and their polyform squares.

Whereas the fact that the ‘square of a spinor’ [5,15,56] (see Definition 3.16 in Sect. 3)
yields a polyform has been known for a long time (and the square of certain spinors with
particularly nice stabilizers is well-known in specific—usually Riemannian—cases [15]),
a proper mathematical theory to systematically characterize and compute spinor squares
in every dimension and signature has been lacking so far. In this context, the fundamental
questions to be addressed are2:

(1) What are the necessary and sufficient conditions for a polyform to be the square of a
spinor, in every dimension and signature?

1 When constructing such theories, one views spinors as sections of given bundles of Clifford modules. The
existence of such bundles on the given space-time is postulated when writing down the theory, rather than
deduced through the associated bundle construction from a specific classical spinorial structure assumed on
to exist on that spacetime.
2 A systematic approach of this type was first used in references [64,65] for generalized Killing spinor equa-
tions in certain 8-dimensional flux compactifications of M-theory, using the Kähler–Atiyah bundle approach
to such problems developed previously in [63,66,70].
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(2) Canwe (explicitly, if possible) translate constrainedgeneralizedKilling spinor equations
into equivalent algebraic and partial differential equations for the square polyform?

In this work, we solve both questions for irreducible real spinors when the signature
(p, q) of the underlying pseudo-Riemannian manifold satisfies p− q ≡8 0, 2, i.e. when the
corresponding Clifford algebra is simple and of real type. We solve question (1) by fully
characterizing the space of polyforms which are the (signed) square of spinors as the set of
solutions of a system of algebraic equations which define a real affine variety in the space
of polyforms. Every polyform solving this algebraic system can be written as the square of
a real spinor which is determined up to a sign factor—and vice-versa. Following [63,66,70],
the aforementioned algebraic system can be neatly written using the geometric product.
The latter quantizes the wedge product, thereby deforming the exterior algebra to a unital
associative algebra which is isomorphic to the Clifford algebra. This algebraic system can
be considerably more complicated in indefinite signature than in the Euclidean case. On the
other hand, we solve question (2) in the affirmative by reformulating constrained generalized
Killing spinor equations on a spacetime (M, g) of such signatures (p, q) as an equivalent
system of algebraic and partial differential equations for the square polyform. Altogether, this
produces an equivalent reformulationof the constrainedgeneralizedKilling spinor problemas
a more transparent and easier to handle system of partial differential equations for a polyform
satisfying certain algebraic equations in the Kähler–Atiyah bundle of (M, g). We believe that
the framework developed in this paper is especially useful in pseudo-Riemannian signature
and in higher dimensions, where the spin group does not act transitively on the unit sphere
in spinor space and hence representation theory cannot be easily exploited to understand
the square of a spinor in purely representation theoretic terms. One of our main results (see
Theorem 4.26 for details and notation) is:

Theorem 1.1 Let (M, g) be a connected, oriented and strongly spin pseudo-Riemannian
manifold of signature (p, q) and dimension d = p+ q, such that p− q ≡8 0, 2. LetW be a
vector bundle on M and (S, �,B ) be a paired real spinor bundle on (M, g)whose admissible
pairing has symmetry and adjoint types σ, s ∈ {−1, 1}. Fix a connection D = ∇S −A on S
(whereA ∈ �1(M, End(S))) and amorphism of vector bundlesQ ∈ �(End(S)⊗W). Then
there exists a nontrivial generalized Killing spinor ε ∈ �(S) with respect to the connection
D which also satisfies the linear constraint Q(ε) = 0 iff there exists a nowhere-vanishing
polyform α ∈ �(M) which satisfies the following algebraic and differential equations:

α � β � α = 2
d
2 (α � β)(0) α, (π

1−s
2 ◦ τ)(α) = σ α, (3)

∇gα = Â � α + α � (π 1−s
2 ◦ τ)(Â), Q̂ � α = 0 (4)

for every polyform β ∈ �(M), where Â ∈ �1(M,∧T ∗M) and Q̂ ∈ �(∧T ∗M⊗W) are the
symbols of A and Q while π , τ are the canonical automorphism and anti-automorphism of
the Kähler–Atiyah bundle (∧T ∗M,�) of (M, g). If ε is chiral of chirality μ ∈ {−1, 1}, then
we have to add the condition:

∗(π ◦ τ)(α) = μα,

where ∗ is the Hodge operator of (M, g). Moreover, any such polyform α determines a
nowhere-vanishing real spinor ε ∈ �(S), which is unique up to a sign and satisfies the
constrained generalized Killing spinor equations with respect to D and Q.
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When (M, g) is a Lorenzian four-manifold, we say that a pair of nowhere-vanishing one-
forms (u, l) defined on M is parabolic if u and l are mutually orthogonal with u null and
l spacelike of unit norm. Applying the previous result, we obtain (see Theorem 4.32 and
Sect. 4.6 for detail and terminology):

Theorem 1.2 Let (M, g) be a connected and spin Lorentzian four-manifold of “mostly plus”
signature such that H1(M,Z2) = 0 and S be a real spinor bundle associated to the spin
structure of (M, g) (which is unique up to isomorphism). Then there exists a natural bijec-
tion between the set of global smooth sections of the projective bundle P(S) and the set of
trivializable and co-oriented distributions (�,H) of parabolic 2-planes in T ∗M. Moreover,
there exist natural bijections between the following two sets:

(a) The set �(Ṡ)/Z2 of sign-equivalence classes of nowhere-vanishing real spinors ε ∈
�(S).

(b) The set of strong equivalence classes of parabolic pairs of one-forms (u, l) ∈ P(M, g).

In particular, the sign-equivalence class of a nowhere-vanishing spinor ε ∈ �(S) determines
and is determined by a parabolic pair of one-forms (u, l) considered up to transformations
of the form (u, l)→ (−u, l) and l → l + cu with c ∈ R.

Weuse this result to characterize spinLorentzian four-manifolds (M, g)with H1(M, g) =
0 which admit real Killing spinors and supersymmetric bosonic heterotic configurations
associated to “paired principal bundles” (P, c) over such a manifold through systems of
partial differential equations for u and l, which we explore in specific cases. Taking (M, g)
to be of signature (3, 1), we prove the following results (see Theorems 5.3 and 6.6), where ∗
and d∗ denote the Hodge operator and codifferential of (M, g) while ∇g denotes the action
of its Levi-Civita on covariant tensors:

Theorem 1.3 (M, g) admits a nontrivial real Killing spinor with Killing constant λ
2 ∈ R iff

it admits a parabolic pair of one-forms (u, l) which satisfies:

∇gu = λ u ∧ l, ∇gl = λ (l ⊗ l − g)+ κ ⊗ u

for some κ ∈ �1(M). In this case, u� ∈ X(M) is a Killing vector field with geodesic integral
curves.

Theorem 1.4 A bosonic heterotic configuration (g, ϕ, H , A) of (M, P, c) is supersymmetric

iff there exists a parabolic pair of one-forms (u, l)which satisfies (here ρ
def.= ∗H ∈ �1(M)):

ϕ ∧ u = ∗(ρ ∧ u), ϕ ∧ u ∧ l = −g∗(ρ, l) ∗ u, − g∗(ϕ, l) u = ∗(l ∧ u ∧ ρ),

g∗(u, ϕ) = 0, g∗(u, ρ) = 0, g∗(ρ, ϕ) = 0, FA = u ∧ χA,

∇gu = 1

2
u ∧ ϕ, ∇gl = 1

2
∗ (ρ ∧ l)+ κ ⊗ u, d∗ρ = 0

for some one-form κ ∈ �1(M) and some gP-valued one-form χA ∈ �1(M, gP ) which is
orthogonal to u. In this case, u� ∈ X(M) is a Killing vector field.

Let H be the Poincaré half plane with coordinates x ∈ R, y ∈ R>0. Using the last result
above, we show (see Sect. 5.4) that the following one-parameter family of metrics defined
on R

2 ×H :

ds2g = F (dxv)2 + dxvdxu

y2
+ (dx)2 + (dy)2

λ2y2
(λ ∈ R)
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(where R
2 has Cartesian coordinates xv, xu) admits real Killing spinors for every F ∈

C∞(H). We also show that these metrics are Einstein with Einstein constant � = −3λ2
when F has the form:

F = (a1 + a2x)

(
a3y + a4

y2

)
or F = (a1e

cx + a2e
−cx ) [a3BY(cy)+ a4BJ(cy)] ,

where BY and BJ are the spherical Bessel functions and a1, . . . , a4 ∈ R. These give defor-
mations of the AdS4 spacetime of cosmological constant �, which obtains for a1 = a2 =
a3 = a4 = 0.

1.3 Open problems and further directions

Theorem 1.1 refers exclusively to real spinors in signature p − q ≡8 0, 2, for which the
irreducible Clifford representation map is an isomorphism. It would be interesting to extend
this result to the remaining signatures, which encompass twomain cases, namely real spinors
of complex andquaternionic type (the latter ofwhich canbe reducible). Thiswould yield a rich
reformulation of the theory of real spinors through polyforms subject to algebraic constraints,
which could be used to study generalized Killing spinors in all dimensions and signatures. It
would also be interesting to extend Theorem 1.1 to other types of spinorial equations, such
as those characterizing harmonic or twistor spinors and generalizations thereof, investigating
if it is possible to develop an equivalent theory exclusively in terms of polyforms.

Some important signatures satisfy the condition p − q ≡8 0, 2, most notably signatures
(2, 0), (1, 1), (3, 1) and (9, 1). The latter two are especially relevant to supergravity theo-
ries and one could apply the formalism developed in this article to study moduli spaces of
supersymmetric solutions in these cases. Several open problems of analytic, geometric and
topological type exist regarding the heterotic system in four and ten Lorentzian dimensions,
as the mathematical study of its Riemannian analogue shows [38]. Most problems related to
existence, classification, construction of examples and moduli are open and give rise to inter-
esting analytic and geometric questions on Lorentzian four-manifolds and ten-manifolds.
In this direction, we hope that Appendix B can serve as a brief introduction to heterotic
supergravity in four Lorentzian dimensions for mathematicians who may be interested in
such questions. The local structure of ten-dimensional supersymmetric solutions to heterotic
supergravity was explored in [49,50,82], where that problem was reduced to a minimal set
of partial differential equations on a local Lorentzian manifold of special type.

1.4 Outline of the paper

Section 2 gives the description of rank-one endomorphisms of a vector space which are (anti-
)symmetric with respect to a non-degenerate bilinear pairing assumed to be symmetric or
skew-symmetric. Section 3 develops the algebraic theory of the square of a spinor culminating
in Theorem 3.20, which characterizes it through a system of algebraic conditions in the
Kähler–Atiyah algebra of the underlying quadratic vector space. In Sect. 4, we apply this
to real spinors on pseudo-Riemannian manifolds of signature (p, q) satisfying p − q ≡8

0, 2, obtaining a complete characterization of generalized constrained Killing spinors as
polyforms satisfying algebraic and partial differential equations which we list explicitly.
Section 5 applies this theory to real Killing spinors in four Lorentzian dimensions, obtaining
a new global characterization of such. In Sect. 6, we apply the same theory to the study of
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supersymmetric configurations of heterotic supergravity, whose mathematical formulation is
explained briefly in an appendix.
Notations and conventions Throughout the paper, we use Einstein summation over repeated
indices. We let R× denote the group of invertible elements of any commutative ring R. In
particular, the multiplicative group of non-zero real numbers is denoted by R

× = R. For any
positive integer n, the symbol≡n denotes the equivalence relation of congruence of integers
modulo n, while Zn = Z/nZ denotes the corresponding congruence group. All manifolds
considered in the paper are assumed to be smooth, connected and paracompact, while all
fiber bundles are smooth. The set of globally-defined smooth sections of any fiber bundle F
defined on a manifold M is denoted by �(F). We denote by G0 the connected component of
the identity of any Lie group G. Given a vector bundle S on a manifold M , the dual vector
bundle is denoted by S∗ while the bundle of endomorphisms is denoted by End(S) � S∗⊗S.
The trivial real line bundle on M is denoted by RM . The space of globally-defined smooth
sections of S is denoted by �(S), while the set of those globally-defined smooth sections of S

which do not vanish anywhere onM is denoted by
·
�(S). The complement of the origin in any

R-vector space� is denoted by �̇ while the complement of the image 0S of the zero section

of a vector bundle S defined on a manifold M is denoted by Ṡ. The inclusion
·
�(S) ⊂ ·

�(S)
is generally strict. If A is any subset of the total space of S, we define:

�(A)
def.= {s ∈ �(S) | sm ∈ A ∩ Sm ∀m ∈ M} ⊂ �(S). (5)

Notice the relation
·
�(S) = �(Ṡ). All pseudo-Riemannian manifolds (M, g) are assumed to

have dimension at least two and signature (p, q) satisfying p − q ≡8 0, 2; in particular, all
Lorentzian four-manifolds have “mostly plus” signature (3, 1). For any pseudo-Riemannian
manifold (M, g), we denote by 〈, 〉g the (generally indefinite) metric induced by g on the

total exterior bundle�(M)
def.= ∧T ∗M = ⊕dim M

k=0 ∧k T ∗M . We denote by∇g the Levi-Civita
connection of g and use the same symbol for its action on tensors. The equivalence class of an
element ξ of an R-vector space � under the sign action of Z2 on � is denoted by ξ̂ ∈ �/Z2

and called the sign equivalence class of ξ .

2 Representing real vectors as endomorphisms in a paired vector space

Let � be an R-vector space of positive even dimension N ≥ 2, equipped with a non-
degenerate bilinear pairing B : � × � → R, which we assume to be either symmetric or
skew-symmetric. In this situation, the pair (�,B ) is called a paired vector space. We say
that B (or (�,B )) has symmetry type σ ∈ {−1, 1} if:

B (ξ1, ξ2) = σB (ξ2, ξ1) ∀ ξ1, ξ2 ∈ �.

Thus B is symmetric if it has symmetry type +1 and skew-symmetric if it has symmetry
type−1. Let (End(�), ◦) be the unital associative R-algebra of linear endomorphisms of�,
where ◦ denotes composition of linear maps. Given E ∈ End(�), let Et ∈ End(�) denote
the adjoint of E taken with respect to B , which is uniquely determined by the condition:

B (ξ1, E(ξ2)) = B (Et (ξ1), ξ2) ∀ξ1, ξ2 ∈ �.

The map E → Et is a unital anti-automorphism of the R-algebra (End(�), ◦).
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Spinors of real type as polyforms and the generalized Killing equation 1359

2.1 Tame endomorphisms and the squaringmaps

Definition 2.1 An endomorphism E ∈ End(�) is called tame if its rank satisfies rk(E) ≤ 1.

Thus E is tame iff it vanishes or is of unit rank. Let:

T := T (�)
def.= {E ∈ End(�) | rk(E) ≤ 1} ⊂ End(�)

be the real determinantal variety of tame endomorphisms of � and:

Ṫ := Ṫ (�)
def.= T \ {0} = {E ∈ End(�) | rk(E) = 1}

be its open subset consisting of endomorphisms of rank one. We view T as a real affine
variety of dimension 2N − 1 in the vector space End(�) � R

N2
and Ṫ as a semi-algebraic

variety. Elements of T can be written as:

E = ξ ⊗ β,

for some ξ ∈ � and β ∈ �∗, where �∗ = Hom(�,R) denotes the vector space dual to �.
Notice that tr(E) = β(ξ). When E ∈ T is non-zero, the vector ξ and the linear functional
β appearing in the relation above are non-zero and determined by E up to transformations
of the form (ξ, β)→ (λξ, λ−1β) with λ ∈ R

×. In particular, Ṫ is a manifold diffeomorphic
with the quotient (RN \ {0})× (RN \ {0})/R×, where R

× acts with weights +1 and −1 on
the two copies of R

N \ {0}.
Definition 2.2 The signed squaring maps of a paired vector space (�,B ) are the quadratic
maps E± : �→ T defined through:

E±(ξ) = ±ξ ⊗ ξ∗ ∀ξ ∈ �,

where ξ∗ def.= B (−, ξ) ∈ �∗ is the linear map dual to ξ relative to B . The map E+ is called
the positive squaring map of (�,B ), while E− is called the negative squaring map of
(�,B ).

Let κ ∈ {−1, 1} be a sign factor and consider the open semi-algebraic set �̇
def.= �\ {0}.

Notice that E±(ξ) = 0 iff ξ = 0, hence E±(�̇) ⊂ Ṫ . Let Ė± : �̇ → Ṫ be the restrictions of
E± to �̇. The proof of the following lemma is immediate.

Lemma 2.3 For each κ ∈ {−1, 1}, the restricted quadratic map Ėκ : �̇ → Ṫ is two-to-one,
namely:

Ė−1κ ({κ ξ ⊗ ξ∗}) = {−ξ, ξ} ∀ξ ∈ �̇.

Moreover, we have Eκ (ξ) = 0 iff ξ = 0 and hence Eκ is a real branched double cover of its
image, which is ramified at the origin.

2.2 Admissible endomorphisms

The maps E± need not be surjective. To characterize their images, we introduce the notion
of admissible endomorphism. Let (�,B ) be a paired vector space of type σ .

Definition 2.4 An endomorphism E of� is calledB -admissible if it satisfies the conditions:

E ◦ E = tr(E)E and Et = σ E .
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1360 V. Cortés et al.

Let:

C := C(�,B )
def.= {

E ∈ End(�) | E ◦ E = tr(E)E, Et = σ E
}

denote the real cone of B -admissible endomorphisms of �.

Remark 2.5 Tame endomorphisms are not related to admissible endomorphisms in any simple
way. A tame endomorphism need not be admissible, since it need not be (anti-)symmetric
with respect to B . An admissible endomorphism need not be tame, since it can have rank
larger than one (as shown by a quick inspection of explicit examples in four dimensions).

Let:

Z := Z(�,B )
def.= T (�) ∩ C(�,B ) (6)

denote the real cone of those endomorphisms of E which are both tame and B -admissible

and consider the open set Ż def.= Z\ {0}.
Lemma 2.6 We have:

Z = Im(E+) ∪ Im(E−) and Im(E+) ∩ Im(E−) = {0}.
Hence an endomorphism E ∈ End(�) belongs to Ż iff there exists a non-zero vector ξ ∈ �̇

and a sign factor κ ∈ {−1, 1} such that:

E = Eκ (ξ).

Moreover, κ is uniquely determined by E through this equation while ξ is determined up to
sign.

Proof Let E ∈ Ż . Since E has unit rank, there exists a non-zero vector ξ ∈ � and a non-zero
linear functional β ∈ �∗ such that E = ξ ⊗ β. Since B is non-degenerate, there exists a
unique non-zero ξ0 ∈ � such that β = B (−, ξ0) = ξ∗0 . The condition Et = σ E amounts
to:

B (−, ξ0)ξ = B (−, ξ)ξ0.
SinceB is non-degenerate, there exists χ ∈ � such thatB (χ, ξ) �= 0, which by the previous
equations also satisfies B (χ, ξ0) �= 0. Hence:

ξ0 = B (χ, ξ0)

B (χ, ξ)
ξ = B (ξ0, χ)

B (ξ, χ)
ξ

and:

E = B (ξ0, χ)

B (ξ, χ)
ξ ⊗ ξ∗.

Using the rescaling ξ �→ ξ ′ def.=
∣∣∣∣B (ξ0,χ)
B (ξ,χ)

∣∣∣∣
1
2

ξ , the previous relation gives E = κ ξ ′ ⊗ (ξ ′)∗ ∈
Im(Eκ ), where κ

def.= sign
(
B (ξ0,χ)
B (ξ,χ)

)
. This implies the inclusion Z ⊆ Im(E+) ∪ Im(E−).

Lemma 2.3 now shows that ξ ′ is unique up to sign. The inclusion Im(E+) ∪ Im(E−) ⊆ Z
follows by direct computation using the explicit form E = κ ξ ⊗ ξ∗ of an endomorphism
E ∈ Im(Eκ ), which implies:

E ◦ E = B (ξ, ξ)E, Et = σ E, tr(E) = B (ξ, ξ).
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Combining the two inclusions above gives Z = Im(E+) ∪ Im(E−). The relation Im(E+) ∩
Im(E−) = {0} follows immediately from Lemma 2.3. ��
Definition 2.7 The signature κE ∈ {−1, 1} of an element E ∈ Ż with respect to B is the
sign factor κ determined by E as in Lemma 2.6. When E = 0, we set κE = 0.

Remark 2.8 Notice that κ−E = −κE for all E ∈ Z.

In view of the above, define:

Z± := Z±(�,B )
def.= Im(E±). (7)

Then:

Z− = −Z+, Z = Z+ ∪ Z− and Z+ ∩ Z− = {0}.
Let Z2 � {−1, 1} act on � and on Z ⊂ End(E) by sign multiplication. Then E+ and E−
induce the same map between the quotients (which is a bijection by Lemma 2.6). We denote
this map by:

Ê : �/Z2
∼→ Z/Z2. (8)

Definition 2.9 The bijection (8) is called the class squaring map of (�,B ).

2.3 Themanifold Ż and the projective squaringmap

Given any endomorphism A ∈ End(�), define a (possibly degenerate) bilinear pairing B A

on � through:

B A(ξ1, ξ2)
def.= B (ξ1, A(ξ2)) ∀ξ1, ξ2 ∈ �. (9)

Notice that B A is symmetric iff At = σ A and skew-symmetric iff At = −σ A.

Proposition 2.10 The open set Ż has two connected components, which are given by:

Ż+
def.= Im(Ė+) = Im(E+) \ {0} and Ż−

def.= Im(Ė−) = Im(E−) \ {0},
and satisfy:

Ż+ = {E ∈ Z|κE = +1} ⊂ {E ∈ Z | B E ≥ 0} ,
Ż− = {E ∈ Z|κE = −1} ⊂ {E ∈ Z | B E ≤ 0} .

Moreover, the maps Ė± : �̇→ Ż± define principal Z2-bundles over Ż±.

Proof By Lemma 2.6, we know that Ż = Ż+ ∪ Ż− and Ż+ ∩ Ż− = ∅. The open set �̇ is
connected because N = dim� ≥ 2. Fix κ ∈ {−1, 1}. Since the continuous map Eκ surjects
onto Żκ , it follows that Żκ is connected. Let E ∈ Żκ . The pairing B E is symmetric since
Et = σ E . By Lemma 2.6, we have E = κ B (−, ξ0)ξ0 for some non-zero ξ0 ∈ � and hence:

B E (ξ, ξ) = B (ξ, E(ξ)) = κ|B (ξ, ξ0)|2 ∀ ξ ∈ �.

Since ξ0 �= 0 and B is non-degenerate, this shows that B E is nontrivial and that it is
positive-semidefinite when restricted to Ż+ and negative-semidefinite when restricted to
Ż−. The remaining statement follows from Lemmas 2.3 and 2.6. ��
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Proposition 2.11 Ż(�,B ) is amanifold diffeomorphic toR
××RP

N−1 (where N = dim�).

Proof Let | · |20 denotes the norm induced by any scalar product on �. Then the diffeomor-
phism:

Ż ∼−→ R
× × RP

N−1, κ ξ ⊗ ξ∗ �→ (κ |ξ |20, [ξ ])
satisfies the desired properties. ��

The maps Ė± : �̇→ End(�) \ {0} induce the same map:

PE : P(�)→ P(End(�)), [ξ ] �→ [ξ ⊗ ξ∗],
between the projectivizations P(�) and P(End(�)) of the real vector spaces� and End(�).

Setting PZ(�,B )
def.= Ż(�,B )/R× ⊂ PEnd(�), Proposition 2.11 gives:

Proposition 2.12 The map PE : P(�)→ PZ(�,B ) is a diffeomorphism.

Definition 2.13 PE : P(�)
∼→ PZ(�,B ) is called the projective squaring map of (�,B ).

2.4 Tamings ofB

The bilinear formB A defined in Eq. (9) is non-degenerate iff the endomorphism A ∈ End(�)

is invertible. The following result is immediate:

Proposition 2.14 Let B ′ be a non-degenerate symmetric pairing on �. Then there exists a
unique endomorphism A ∈ GL(E) (called the operator ofB ′ with respect toB ) such that
B ′ = B A. Moreover, A is invertible and satisfies At = σ A. Furthermore, the transpose ET

of any endomorphism E ∈ End(�) with respect to B ′ is given by:

ET = (A−1)t Et At = A−1Et A (10)

and in particular we have AT = At = σ A.

Remark 2.15 Replacing ξ2 by A−1ξ2 in the relation B ′(ξ1, ξ2) = B (ξ1, Aξ2) gives:

B (ξ1, ξ2) = B ′(ξ1, A−1ξ2), (11)

showing that A−1 is the operator of B with respect to B ′.

Definition 2.16 We say that A ∈ End(�) is a taming of B if B A is a scalar product.

Let A ∈ End(�) be a taming ofB and denote by (−,−) def.= B A the corresponding scalar
product. Relation (11) shows that the matrix B̂ ofB with respect to a ( , )-orthonormal basis
{e1, . . . , eN } of � is the inverse of the matrix Â of A in the the same basis. Distinguish the
cases:

1. WhenB is symmetric, its operator B with respect to ( , ) and the taming A = B−1 ofB
are ( , )-symmetric and can be diagonalized by a (−,−)-orthogonal linear transformation
of �. If (p, q) is the signature of B , Sylvester’s theorem shows that we can choose the
basis {ei } such that:

Â = diag(+1, . . . ,+1,−1, . . . ,−1),
with p positive and q negative entries. With this choice, we have A2 = Id.
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2. When B is skew-symmetric, we have:

B (ξ1, ξ2) = −(ξ1, J (ξ2)), i.e. (ξ1, ξ2) = B (ξ1, J (ξ2)),

where J is a (−,−)-compatible complex structure on�. This gives A−1 = −J and hence
A = J , which is antisymmetric with respect to both (−,−) and B . Setting N = 2n,
we can choose {e1, . . . , en} to be a basis of � over C which is orthonormal with respect
to the Hermitian scalar product defined by (−,−) and J and take en+i = Jei for all
i = 1, . . . , n. Then the basis {e1, . . . , eN } over R is (−,−)-orthonormal while being a
Darboux basis for B and we have:

Â = Ĵ =
[

0 In
−In 0

]
,

where In is the identity matrix of size n.

Proposition 2.17 Let B ′ be a non-degenerate symmetric pairing on �, A be its operator
with respect to B and E ∈ End(�) be an endomorphism of �. Then the endomorphism

EA
def.= E ◦ A ∈ End(�) is B ′-admissible iff the following relations hold:

Et = σ E and E ◦ A ◦ E = tr(E ◦ A)E . (12)

Proof Let T denote transposition of endomorphisms with respect to B ′. By definition, EA

is B ′-admissible if:

ET
A = EA and E2

A = tr(EA)EA. (13)

Since A is invertible, the second of these conditions amounts to the second relation in (12).
On the other hand, we have:

ET
A = (E A)T = AT ET = At = At (A−1)t Et At = Et At = σ Et A,

where we used Proposition 2.14. Hence the first condition in (13) is equivalent with σ Et A =
E A, which in turn amounts to Et = σ E since A is invertible. ��

2.5 Characterizations of tame admissible endomorphisms

The following gives an open subset of the cone C of admissible endomorphisms which
consists of rank one elements.

Proposition 2.18 Let E ∈ C(�,B ) be a B -admissible endomorphism of �. If tr(E) �= 0,
then E is of rank one.

Proof Define P
def.= E

tr(E)
. Then P2 = P (which implies rk(P) = tr(P)) and tr(P) = 1,

whence rk(E) = rk(P) = tr(P) = 1. ��
Define

K0
def.= {ξ ∈ � | B (ξ, ξ) = 0} , Kμ

def.= {ξ ∈ � | B (ξ, ξ) = μ} ,
where μ ∈ {−1,+1}. When B is symmetric, the set K0 ⊂ � is the isotropic cone of
B and Kμ are the positive and negative unit “pseudo-spheres” defined by B . When B is
skew-symmetric, we have K0 = � and Kμ = ∅. Lemma 2.6 and Proposition 2.18 imply:

123



1364 V. Cortés et al.

Corollary 2.19 Assume that B is symmetric (i.e. σ = +1). For any μ ∈ {−1, 1}, the set
E+(Kμ) ∪ E−(Kμ) is the real algebraic submanifold of End(�) given by:

E+(Kμ) ∪ E−(Kμ) =
{
E ∈ End(�) | E ◦ E = μ E, Et = E, tr(E) = μ

}
.

Proposition 2.20 IfB is a scalar product, then every non-zeroB -admissible endomorphism
E ∈ C \ {0} is tame, whence Z = C. In this case, the signature of E with respect to B is
given by:

κE = sign(tr(E)). (14)

Proof Let E ∈ C. By Proposition 2.18, the first statement follows if we can show that
tr(E) �= 0 when E �= 0. Since E is admissible, it is symmetric with respect to the scalar
product B and hence diagonalizable with eigenvalues λ1, . . . , λN ∈ R. Taking the trace of
equation E2 = tr(E) E gives:

tr(E)2 =
N∑
i=1

λ2i .

Since the right-hand side is a sum of squares, it vanishes iff λ1 = · · · = λN = 0, i.e. iff
E = 0. This proves the first statement. To prove the second statement, recall from Lemma 2.6
that any non-zero tame admissible endomorphism E has the form E = κEξ ⊗ ξ∗ for some
ξ ∈ �̇. Taking the trace of this relation gives:

tr(E) = κEξ
∗(ξ) = κEB (ξ, ξ),

which implies (14) since B (ξ, ξ) > 0. ��
A quick inspection of examples shows that there exist nontrivial admissible endomor-

phisms which are not tame (and thus satisfy tr(E) = 0) as soon as there exists a totally
isotropic subspace of � of dimension at least two. In these cases we need to impose further
conditions on the elements of C in order to guarantee tameness. To describe such conditions,
we consider the more general equation:

E ◦ A ◦ E = tr(A ◦ E)E ∀ A ∈ End(�),

which is automatically satisfied by every E ∈ Im(E+) ∪ Im(E−).

Proposition 2.21 The following statements are equivalent for any endomorphism E ∈ C
which satisfies the condition Et = σ E:

(a) E is B -admissible and rk(E) = 1.
(b) We have E2 = tr(E)E and there exists an endomorphism A ∈ End(�) satisfying:

E ◦ A ◦ E = tr(E ◦ A)E and tr(E ◦ A) �= 0. (15)

(c) E �= 0 and the relation:

E ◦ A ◦ E = tr(E ◦ A)E, (16)

is holds for every endomorphism A ∈ End(�).

Proof We first prove the implication (b)⇒ (a). By Proposition 2.18, it suffices to consider
the case tr(E) = 0. Assume A ∈ End(�) satisfies (15). Define:

Aε = Id+ ε

tr(E ◦ A) A,
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where ε ∈ R>0 is a positive constant. For ε > 0 small enough, Aε is invertible and the

endomorphism Eε
def.= E ◦ Aε has non-vanishing trace given by tr(Eε) = ε. The first relation

in (15) gives:

Eε ◦ Eε = εEε .

Hence P
def.= 1

ε
Eε satisfies P2 = P and tr(P) = 1, whence rk(Eε) = rk(P) = 1. Since Aε

is invertible, this implies rk(E) = 1 and hence (a) holds.
The implication (a) ⇒ (c) follows directly from Lemma 2.6, which shows that E ∈

Im(Eκ ) for some sign factor κ . For the implication (c)⇒ (b), notice first that setting A = Id
in (16) gives E2 = tr(E). Non-degeneracy of the bilinear form induced by the trace on the
space End(�) now shows that we can choose A in Eq. (16) such that tr(E ◦ A) �= 0. ��

Proposition 2.22 Let A be a taming of B and let B ′ def.= B A be the corresponding scalar
product on �. Then the following statements are equivalent for any endomorphism E ∈
End(�):

(a) E is B -admissible and rk(E) = 1.
(b) E satisfies Et = σ E as well as conditions (15) with respect to A.

In this case, there exists a non-zero vector ξ ∈ � such that:

E = κ ξ ⊗ ξ∗ = κ ′ ξ ⊗ ξ∨,

where ξ∨ = σξ∗ ◦ A denotes the linear functional dual to ξ with respect B ′ while:

κ ′ = sign(tr(E ◦ A)) ∈ {−1, 1}
is the signature of E ◦ A with respect to B ′ and:

κ = σ κ ′ = σ sign(tr(E ◦ A)) ∈ {−1, 1} (17)

is the signature of E with respect to B .

Proof Set EA
def.= E ◦ A. To prove the implication (a)⇒ (b), assume that E isB -admissible

and of rank one. Then Proposition 2.21 shows that we have E ◦ A ◦ E = tr(E ◦ A)E .
Since A is B -admissible, we also have Et = σ E . It follows that EA is B ′-admissible by
Proposition 2.17. SinceB ′ is a scalar product, Proposition 2.20 implies that EA is tame and
hence tr(EA) �= 0 since EA is non-zero. Thus tr(E ◦ A) �= 0. Combining everything, this
shows that (b) holds.

To prove the implication (b) ⇒ (a), assume that E satisfies Et = σ E as well as (15).
By Proposition 2.17, this implies that EA is B ′-admissible. Since tr(EA) = tr(E ◦ A) �= 0,
Proposition 2.18 implies rk(EA) = 1. Hence EA is nonzero, tame and admissible with
respect to the scalar productB ′. We thus have EA = κ ′ξ ⊗ ξ∨, where κ ′ = sign(tr(EA)) =
sign(tr(E ◦ A)) (see Proposition 2.20) and ξ ∈ � is a non-zero vector. Here ξ∨ ∈ �∗ is the
dual of ξ with respect to B ′, which is given by:

ξ∨(ξ ′) def.= B ′(ξ ′, ξ) = B (ξ ′, Aξ) = B (Atξ ′, ξ) = ξ∗(Atξ ′) = σξ∗(Aξ ′),

i.e. ξ∨ = σξ∗ ◦ A. Thus E ◦ A = EA = σκAξ ⊗ ξ∗ ◦ A and hence E = κξ ⊗ ξ∗ (with
κ

def.= σ κ ′) because A is invertible. Thus E belongs to Im(Eκ ) and hence is B -admissible
and of rank one. ��
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Remark 2.23 When A is a taming ofB , Proposition 2.22 shows that conditions (15) and the
condition Et = σ E automatically imply E2 = tr(E)A and hence tameness of E . In this case,
Proposition 2.21 shows that E also satisfies E ◦ B ◦ E = tr(E ◦ B)E for any B ∈ End(�).

Proposition 2.22 gives the following characterization of PZ.

Corollary 2.24 Let A be a taming of B . Then the image of the projective squaring map PE
is the real algebraic submanifold of P(End(�)) given by:

PZ(�,B ) = {
E ∈ P(End(�)) | E ◦ E = tr(E)E , Et = σ E, E ◦ A ◦ E = tr(E ◦ A)E}

.

2.6 Two-dimensional examples

Let � be a two-dimensional R-vector space with basis �
def.= {ei }i=1,2. Any vector ξ ∈ �

expands as:

ξ = ξ1e1 + ξ2e2 with ξ1, ξ2 ∈ R.

Let Eξ
def.= Eκ (ξ)

def.= κξ ⊗ ξ∗ ∈ End(�), where κ ∈ {−1, 1}. For any S ∈ End(�), let Ŝ
denote the matrix of S in the basis �.

Example 2.25 Let B be a scalar product on � having � as an orthonormal basis. Then:

Êξ = κ

(
ξ21 ξ1ξ2
ξ1ξ2 ξ22

)

and the relations E2
ξ = tr(Eξ )Eξ and Et

ξ = Eξ follow from this form. Let E ∈ End(�)

satisfy E2 = tr(E)E and Et = E . The second of these conditions implies:

Ê =
(
k1 b
b k2

)
(with b, k1, k2 ∈ R).

Condition E2 = tr(E)E amounts to b2 = k1k2, implying that k1 and k2 have the same
sign unless at least one of them vanishes (in which case b must also vanish). Since E is
B -symmetric (and hence diagonalizable), its trace tr(E) = k1 + k2 vanishes iff E = 0.
Assume E �= 0 and set:

κ
def.= sign(tr(E)) = sign(k1 + k2), ξ1

def.= √|k1|, ξ2
def.= sign(b)κ

√|k2|.
Then k1 = κξ21 , k2 = κξ22 and b = κξ1ξ2, showing that E = Eξ for some ξ ∈ � \ {0}.
Hence conditions E2 = tr(E)E and E = Et characterize endomorphisms of the form Eξ .

Example 2.26 Let B be a split signature inner product on � having � as an orthonormal
basis:

B (e1, e1) = 1, B (e2, e2) = −1, B (e1, e2) = B (e2, e1) = 0.

Then B is tamed by the operator A with matrix Â = diag(+1,−1), which corresponds to
the scalar product (−,−) defined on � through:

(e1, e1) = (e2, e2) = 1, (e1, e2) = (e2, e1) = 0.

We have:

Êξ = κ

(
ξ21 −ξ1ξ2
ξ1ξ2 −ξ22

)
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and the relations E2
ξ = tr(Eξ )Eξ and Et

ξ = Eξ follow directly from this form, where t

denotes the adjoint taken with respect to B . Let E ∈ End(�) satisfy Et = E . Then:

Ê =
(
k1 −b
b k2

)
and Ê Â =

(
k1 b
b −k2

)
(with b, k1, k2 ∈ R).

Direct computation shows that the conditions E2 = tr(E)E and E ◦ A ◦ E = tr(E ◦ A)E
are equivalent to each other in this two-dimensional example and amount to the relation
b2 = −k1k2, which implies that E vanishes iff k1 = k2. Let us assume that E �= 0 and set:

κ
def.= tr(E ◦ A) = sign(k1 − k2), ξ1

def.= √|k1|, ξ2
def.= sign(b)κ

√|k2|,
where sign(b)

def.= 0 if b = 0. Then it is easy to see that k1 = κξ21 , k2 = −κξ22 and b = κξ1ξ2,
which implies E = Eξ . In this example endomorphisms E that can be written in the form
Eξ are characterized by the condition Et = E , together with either of the two equivalent
conditions E2 = tr(E)E or E ◦ A ◦ E = tr(E ◦ A)E . Notice that tr(E) = k1+ k2 can vanish
in this case. However, in this low-dimensional example, the conditions E ◦ E = tr(E)E and
Et = E suffice to characterize endomorphisms of the form Eξ , including those which satisfy
tr(E) = 0.

Example 2.27 Let B a symplectic pairing on � having � as a Darboux basis:

B (e1, e1) = B (e2, e2) = 0, B (e1, e2) = −B (e2, e1) = 1.

The complex structure A of � with matrix given by:

Â =
(

0 1
−1 0

)

tames B to the scalar product (−,−) defined through:
(e1, e1) = (e2, e2) = 1, (e1, e2) = (e2, e1) = 0.

We have:

Êξ = κ

(
ξ1ξ2 −ξ21
ξ22 −ξ1ξ2

)
, (18)

which implies E2
ξ = 0 and Et

ξ = −Eξ , where t denotes transposition with respect toB . Let
E ∈ End(�) be an endomorphism satisfying Et = −E . This condition implies:

Ê =
(
k −b
c −k

)
, Ê Â =

(
b k
k c

)
(with k, b, c ∈ R).

Notice that tr(E) = 0. Direct computation shows that the conditions E2 = 0 and E ◦ A◦E =
tr(E ◦ A)E are equivalent to each other in this two-dimensional example and amount to the
relation k2 = bc, which in particular shows that E vanishes iff b = −c. Assume that E �= 0
and set:

κ
def.= tr(E ◦ A) = sign(b + c), ξ1

def.= √|b|, ξ2
def.= sign(k)κ

√|c|,
where sign(k)

def.= 0 if k = 0. Then it is easy to see that b = κξ21 , c = κξ22 and k = κξ1ξ2,
which shows that E = Eξ . Hence endomorphism which can be written in this form are
characterized by the condition Et = −E together with either of the conditions E2 = 0 or
E ◦ A◦E = tr(E ◦ A)E , which are equivalent to each other in this low-dimensional example.
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2.7 Including linear constraints

The following result will be used in Sects. 3 and 4.

Proposition 2.28 Let Q ∈ End(�) and κ ∈ {−1, 1} be a fixed sign factor. A real spinor
ξ ∈ � satisfies Q(ξ) = 0 if and only if Q ◦ Eκ (ξ) = 0 or, equivalently, Eκ (ξ) ◦ Qt = 0,
where Qt is the adjoint of Q with respect to B .

Proof Take ξ ∈ � and assume Q(ξ) = 0. Then:

(Q ◦ Eκ (ξ))(χ) = κ Q(ξ) ξ∗(χ) = 0 ∀χ ∈ �

and hence Q ◦ Eκ (ξ) = 0. Conversely, assume that Q ◦ Eκ (ξ) = 0 and pick χ ∈ � such
that ξ∗(χ) �= 0 (which is possible sinceB is non-degenerate). Then the same calculation as
before gives:

Q(ξ) ξ∗(χ) = 0,

implying Q(ξ) = 0. The statement for Qt follows from the fact that B -transposition is an
anti-automorphism of the R-algebra (End(�), ◦), upon noticing that the relation Eκ (ξ)t =
σEκ (ξ) implies (Q ◦ Eκ (ξ))t = σEκ (ξ) ◦ Qt . ��
Example 2.29 Let (�,B ) be a two-dimensional Euclidean vector space with orthonormal
basis � as in Example 2.25. Let Q ∈ End(�) have matrix:

Q̂ =
(
q 0
0 0

)
(with q ∈ R

×)

in this basis. Given ξ ∈ �, Example 2.25 gives:

Êξ = κ

(
ξ21 ξ1ξ2
ξ1ξ2 ξ22

)
, Q̂ Êξ = κ

(
ξ21 q qξ1ξ2
0 0

)
.

Thus Q ◦ Eξ vanishes iff ξ1 = 0, i.e. iff Q(ξ) = 0.

3 From real spinors to polyforms

3.1 Admissible pairings for irreducible real Cliffordmodules

Let V be an oriented d-dimensional R-vector space equipped with a non-degenerate metric
h of signature p− q ≡8 0, 2 (hence the dimension d = p+ q of V is even) and let (V ∗, h∗)
be the quadratic space dual to (V , h), where h∗ denotes the metric dual to h. Let Cl(V ∗, h∗)
be the real Clifford algebra of this dual quadratic space, viewed as a Z2-graded associative
algebra with decomposition:

Cl(V ∗, h∗) = Clev(V ∗, h∗)⊕ Clodd(V ∗, h∗).

In our conventions, the Clifford algebra satisfies (notice the sign !):

θ2 = +h∗(θ, θ) ∀θ ∈ V ∗. (19)

Let π denote the standard automorphism of Cl(V ∗, h∗), which acts as minus the identity on
V ∗ ⊂ Cl(V ∗, h∗) and τ denote the standard anti-automorphism, which acts as the identity
on V ∗ ⊂ Cl(V ∗, h∗). These two commute and their composition is an anti-automorphism
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Spinors of real type as polyforms and the generalized Killing equation 1369

denoted by τ̂ = π ◦ τ = τ ◦ π . Let Cl×(V ∗, h∗) denote the group of units Cl(V ∗, h∗).
Its twisted adjoint action is the morphism of groups Âd : Cl×(V ∗, h∗)→ Aut(Cl(V ∗, h∗))
defined through:

Âdx (y) = π(x) y x−1 ∀ x, y ∈ Cl×(V ∗, h∗).

We denote by
L
(V ∗, h∗) ⊂ Cl(V ∗, h∗) the Clifford group, which is defined as follows:

L
(V ∗, h∗) def.= {

x ∈ Cl×(V ∗, h∗) | Âdx (V ∗) = V ∗
}
,

This fits into the short exact sequence:

1→ R
× ↪→ L

(V ∗, h∗) Âd−→ O(V ∗, h∗)→ 1, (20)

where O(V ∗, h∗) is the orthogonal group of the quadratic space (V ∗, h∗). Recall that the pin
and spin groups of (V ∗, h∗) are the subgroups of L

(V ∗, h∗) defined through:

Pin(V ∗, h∗) def.= {
x ∈ L

(V ∗, h∗) | N (x)2 = 1
}
,

Spin(V ∗, h∗) def.= Pin(V ∗, h∗) ∩ Clev(V ∗, h∗),

where N : L(V ∗, h∗)→ R
× is the Clifford norm morphism, which is given by:

N (x)
def.= τ̂ (x) x ∀x ∈ L

(V ∗, h∗).

We have N (x)2 = N (π(x))2 for all x ∈ L
(V ∗, h∗). For pq �= 0, the groups SO(V ∗, h∗),

Spin(V ∗, h∗) and Pin(V ∗, h∗) are disconnected; the first have two connected components
while the last has four. The connected components of the identity in Spin(V ∗, h∗) and
Pin(V ∗, h∗) coincide, being given by:

Spin0(V
∗, h∗) = {

x ∈ L
(V ∗, h∗) | N (x) = 1

}
andwe have Spin(V ∗, h∗)/Spin0(V ∗, h∗) � Z2 and Pin(V ∗, h∗)/Spin0(V ∗, h∗) � Z2×Z2.

Let � be a finite-dimensional R-vector space and γ : Cl(V ∗, h∗) → End(�) a Clifford
representation. Then Spin(V ∗, h∗) acts on � through the restriction of γ and (20) induces
the short exact sequence:

1→ Z2 → Spin(V ∗, h∗) Âd−→ SO(V ∗, h∗)→ 1, (21)

which in turn gives the exact sequence:

1→ Z2 → Spin0(V
∗, h∗) Âd−→ SO0(V

∗, h∗)→ 1.

Here SO0(V ∗, h∗) denotes the connected component of the identity of the special orthogonal
group SO(V ∗, h∗). In signatures p − q ≡8 0, 2 (the “real/normal simple case” of [70]),
the algebra Cl(V ∗, h∗) is simple and isomorphic (as a unital associative R-algebra) to the

algebra of square realmatrices of size N = 2
d
2 . In such signatures Cl(V ∗, h∗) admits a unique

irreducible real left module �, which has dimension N . This irreducible representation is

faithful and surjective, hence in such signatures the representation map γ : Cl(V ∗, h∗) �−→
End(�) is an isomorphism of unital R-algebras.

We will equip� with a non-degenerate bilinear pairing which is compatiblewith Clifford
multiplication. Ideally, such compatibility should translate into invariance under the natural
action of the pin group. However, this condition cannot be satisfied when if pq �= 0. Instead,
we consider the weaker notion of admissible bilinear pairing introduced in [4,5] (see [63,66,
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70] for applications to supergravity), which encodes the best compatibility condition with
Clifford multiplication that can be imposed on a bilinear pairing on� in arbitrary dimension
and signature. The following result of [56] summarizes the main properties of admissible
bilinear pairings.

Theorem 3.1 [56, Theorem 13.17] Suppose that h has signature p − q ≡8 0, 2. Then the
irreducible real Clifford module � admits two non-degenerate bilinear pairings B+ : � ×
� → R and B− : � × � → R (each determined up to multiplication by a non-zero real
number) such that:

B+(γ (x)(ξ1), ξ2) = B+(ξ1, γ (τ (x))(ξ2)),
B−(γ (x)(ξ1), ξ2) = B−(ξ1, γ (τ̂ (x))(ξ2)), (22)

for all x ∈ Cl(V ∗, h∗) and ξ1, ξ2 ∈ �. The symmetry properties of B+ and B− are as

follows in terms of the modulo 4 reduction of k
def.= d

2 :

k mod 4 0 1 2 3

B+ Symmetric Symmetric Skew-symmetric Skew-symmetric
B− Symmetric Skew-symmetric Skew-symmetric Symmetric

In addition, if B s (with s ∈ {−1, 1}) is symmetric, then it is of split signature unless
pq = 0, in which case B s is definite.

Definition 3.2 The sign factor s appearing in the previous theorem is called the adjoint type
of B s , hence B+ is of positive adjoint type (s = +1) and B− is of negative adjoint type
(s = −1).

Relations (22) can be written as:

γ (x)t = γ ((π
1−s
2 ◦ τ)(x)) ∀x ∈ Cl(V ∗, h∗), (23)

where t denotes the B s-adjoint. The symmetry type of an admissible bilinear form B will
be denoted by σ ∈ {−1, 1}. If σ = +1 then B is symmetric whereas if σ = −1 then B is
skew-symmetric. Notice that σ depends both on s and on the mod 4 reduction of d

2 .

Definition 3.3 A (real) paired simpleCliffordmodule for (V ∗, h∗) is a triplet� = (�, γ,B ),
where (�, γ ) is a simple Cl(V ∗, h∗)-module andB is an admissible pairing on (�, γ ). We
say that � has adjoint type s ∈ {−1, 1} and symmetry type σ {−1, 1} if B has these adjoint
and symmetry types.

Remark 3.4 Admissible bilinear pairings of positive and negative adjoint types are related
through the pseudo-Riemannian volume form ν of (V ∗, h∗):

B+ = C B− ◦ (γ (ν)⊗ Id), (24)

for an appropriate non-zero real constantC . For specific applications, we will choose to work
with B+ or with B− depending on which admissible pairing yields the computationally
simplest polyform associated to a given spinor ξ ∈ �. When pq = 0, we will take B s to
be positive-definite (which we can always achieve by rescaling it with a non-zero constant
of appropriate sign). See [70] for a useful discussion of properties of admissible pairings in
various dimensions and signatures.
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Spinors of real type as polyforms and the generalized Killing equation 1371

Remark 3.5 Directly from their definition, the pairings B s satisfy:

B s(γ (π
1+s
2 (x))(ξ1), γ (x)(ξ2)) = N (x)B s(ξ1, ξ2) ∀ x ∈ Cl(V ∗, h∗) ∀ ξ1, ξ2 ∈ �.

This relation yields:

B s(γ (x)(ξ1), ξ2)+B s(ξ1, γ (x)(ξ2)) = 0 ∀ ξ1, ξ2 ∈ �

for all x = θ1 · θ2 with h∗-orthogonal θ1, θ2 ∈ V ∗. This implies that B s is invariant under
the action of Spin(V ∗, h∗) and hence also under Spin0(V ∗, h∗). If h is positive-definite, then
B+ is Pin(V ∗, h∗)-invariant, since it satisfies:

B+(γ (θ)(ξ1), γ (θ)(ξ2)) = B+(ξ1, ξ2) ∀ξ1, ξ2 ∈ �

for all θ ∈ V ∗ of unit norm. If h is negative-definite, then B− is Pin(V ∗, h∗)-invariant.

For completeness, let us give an explicit construction of B+ and B−. Pick an h∗-
orthonormal basis

{
ei

}
i=1,...,d of V ∗ and let:

K(
{
ei

}
)
def.= {1} ∪

{
±ei1 · · · · · eik | 1 ≤ i1 < · · · < ik ≤ d , 1 ≤ k ≤ d

}

be the finite multiplicative subgroup of Cl(V ∗, h∗) generated by the elements±ei . Averaging
over K(

{
ei

}
), we construct an auxiliary positive-definite inner product (−,−) on � which

is invariant under the action of this group. This product satisfies:

(γ (x)(ξ1), γ (x)(ξ2)) = (ξ1, ξ2) ∀x ∈ K({ei }) ∀ ξ1, ξ2 ∈ �.

Write V ∗ = V ∗+ ⊕ V ∗−, where V ∗+ is a p-dimensional subspace of V ∗ on which h∗ is positive
definite and V ∗− is a q-dimensional subspace of V ∗ on which h∗ is negative-definite. Fix an
orientation on V ∗+ (which induces a unique orientation on V ∗− compatible with the orientation
ofV ∗ induced from that ofV ) anddenote by ν+ and ν− the correspondingpseudo-Riemannian
volume forms. We have ν = ν+ ∧ ν−. For p (and hence q) odd, define:

B±(ξ1, ξ2) = (γ (ν±)(ξ1), ξ2) ∀ξ1, ξ2 ∈ �, (25)

whereas for p (and hence q) even, set:

B±(ξ1, ξ2) = (γ (ν∓)(ξ1), ξ2) ∀ξ1, ξ2 ∈ �. (26)

Then B± are admissible pairings in the sense of Theorem 3.1. Direct computation using
Eqs. (25) and (26) gives the following result, which fixes the constant C appearing in
Remark 3.4.

Proposition 3.6 The admissible pairings B+ and B− constructed above are related as
follows:

B+ = (−1)[ q2 ]B−(γ (ν)⊗ Id). (27)

Thus we can normalize B± such that the constant in (24) is given by C = (−1)[ q2 ].
Proposition 3.7 Let B be an admissible pairing on the real simple Cl(V ∗, h∗)-module
(�, γ ). Then B is invariant under the action of the group Spin0(V

∗, h∗) on � obtained
by restricting γ .
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Proof We have to show the relation:

γ (x)t ◦ γ (x) = Id ∀x ∈ Spin0(V
∗, h∗). (28)

Consider orthonormal basis {ei }i=1,...,d of (V ∗, h∗) such that h∗(ei , ei ) = +1 for i =
1, . . . , p and h∗(ei , ei ) = −1 for i = p+1, . . . , d . A simple computation using relation (23)
shows that (28) holds for x of the form ei1 ·· · ··ei2k ·e j1 ·· · ··e j2l , where 1 ≤ i1 ≤ · · · ≤ i2k ≤ p
and p + 1 ≤ j1 ≤ · · · ≤ j2l ≤ d with 0 ≤ 2k ≤ p and 0 ≤ 2l ≤ q . Since such elements
generate Spin0(V

∗, h∗), we conclude. ��

3.2 The Kähler–Atiyahmodel ofCl(V∗, h∗)

To identify spinors with polyforms, we will use an explicit realization of Cl(V ∗, h∗) as a
deformation of the exterior ∧V ∗. This model (which goes back to the work of Chevalley and
Riesz [20,21,83]) has an interpretation as a deformation quantization of the odd symplectic
vector space obtained by parity change from the quadratic space (V , h) (see [12,86]). It can
be constructed using the symbol map and its inverse, the quantization map. Consider first the
linear map f : V ∗ → End(∧V ∗) given by:

f(θ)(α) = θ ∧ α + ιθ�α ∀θ ∈ V ∗ ∀α ∈ ∧V ∗.
We have:

f(θ) ◦ f(θ) = h∗(θ, θ) ∀θ ∈ V ∗.

By the universal property ofClifford algebras, it follows that f extends uniquely to amorphism
f : Cl(V ∗, h∗)→ End(∧V ∗) of unital associative algebras such that f◦i = f, where i : V ∗ ↪→
Cl(V ∗, h∗) is the canonical inclusion of V in Cl(V ∗, h∗).

Definition 3.8 The symbol (orChevalley–Riesz)map is the linearmap l : Cl(V ∗, h∗)→ ∧V ∗
defined through:

l(x) = f(x)(1) ∀x ∈ Cl(V ∗, h∗),

where 1 ∈ R is viewed as an element of ∧0(V ∗) = R.

The symbol map is an isomorphism of filtered vector spaces. We have:

l(1) = 1, l(θ) = θ, l(θ1 · θ2) = θ1 ∧ θ2 + h∗(θ1, θ2) ∀θ, θ1, θ2 ∈ V ∗.

As expected, l is not a morphism of algebras. The inverse:

�
def.= l−1 : ∧ V ∗ → Cl(V ∗, h∗).

of l (called the quantization map) allows one to view Cl(V ∗, h∗) as a deformation of the
exterior algebra (∧V ∗,∧) (see [12,86]). Using l and �, we transport the algebra product of
Cl(V ∗, h∗) to an h-dependent unital associative product defined on ∧V ∗, which deforms the
wedge product.

Definition 3.9 The geometric product � : ∧V ∗ × ∧V ∗ → ∧V ∗ is defined through:
α1 � α2 def.= l(�(α1) ·�(α2)) ∀α1, α2 ∈ ∧V ∗,

where · denotes multiplication in Cl(V ∗, h∗).
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Spinors of real type as polyforms and the generalized Killing equation 1373

By definition, the map � is an isomorphism of unital associative R-algebras3 from
(∧V ∗,�) to Cl(V ∗, h∗). Through this isomorphism, the inclusion V ∗ ↪→ Cl(V ∗, h∗) corre-
sponds to the natural inclusion V ∗ ↪→ ∧V ∗. We shall refer to (∧V ∗,�) as theKähler–Atiyah
algebra of the quadratic space (V , h) (see [47,61]). It is easy to see that the geometric product
satisfies:

θ � α = θ ∧ α + ιθ�α ∀θ ∈ V ∗ ∀α ∈ ∧V ∗.
Also notice the relation:

θ � θ = h∗(θ, θ) ∀θ ∈ V ∗.

The maps π and τ transfer through� to the Kähler–Atiyah algebra, producing unital (anti)-
automorphisms of the latter which we denote by the same symbols. With this notation, we
have:

π ◦� = � ◦ π, τ ◦� = � ◦ τ. (29)

For any orthonormal basis {ei }i=1,...,d of V ∗ and any k ∈ {1, . . . , d}, we have e1 � · · · � ek =
e1 ∧ · · · ∧ ek and:

π(e1 ∧ · · · ∧ ek) = (−1)ke1 ∧ · · · ∧ ek, τ (e1 ∧ · · · ∧ ek) = ek ∧ · · · ∧ e1.

Let T (V ∗) denote the tensor algebra of the (parity change of) V ∗, viewed as a Z-graded
associative superalgebra whose Z2-grading is the reduction of the natural Z-grading; thus
elements of V have integer degree one and they are odd. Let:

Der(T (V ∗)) def.=
⊕
k∈Z

Derk(T (V ∗))

denote the Z-graded Lie superalgebra of all superderivations. The minus one integer degree
component Der−1(T (V ∗)) is linearly isomorphic with the space Hom(V ∗,R) = V acting
by contractions:

ιv(θ1 ⊗ · · · ⊗ θk) =
k∑

i=1
(−1)i−1θ1 ⊗ · · · ⊗ ιvθi ⊗ · · · ⊗ θk ∀v ∈ V ∀θ1, . . . , θk ∈ V ∗,

while the zero integer degree component Der0(T (V ∗)) = End(V ∗) = gl(V ∗) acts through:

L A(θ1 ⊗ · · · ⊗ θk) =
k∑

i=1
θ1 ⊗ · · · ⊗ A(θi )⊗ · · · ⊗ θk ∀A ∈ gl(V ∗).

We have an isomorphism of super-Lie algebras:

Der−1(T (V ∗))⊕ Der0(T (V ∗)) � V � gl(V ∗).

The action of this super Lie algebra preserves the ideal used to define the exterior algebra
as a quotient of T (V ∗) and hence descends to a morphism of super Lie algebras L� : V �

gl(V ∗) → Der(∧V ∗,∧). Contractions also preserve the ideal used to define the Clifford

3 Notice that the geometric product is not compatible with the grading of ∧V ∗ given by form rank, but only
with its mod 2 reduction, because the quantization map does not preserve Z-gradings. Hence the Kähler–
Atiyah algebra is not isomorphic with Cl(V ∗, h∗) in the category of Clifford algebras defined in [69]. As
such, it provides a different viewpoint on spin geometry, which is particularly useful for our purpose (see
[63,66,70,71]).
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algebra as a quotient of T (V ∗). On the other hand, endomorphisms A of V ∗ preserve that
ideal iff A ∈ so(V ∗, h∗). Together with contractions, they induce a morphism of super Lie
algebras LCl : V � so(V ∗, h∗)→ Der(Cl(V ∗, h∗)). The following result states that L� and
LCl are compatible with l and �.

Proposition 3.10 [75, Proposition 2.11] The quantization and symbol maps intertwine the
actions of V � so(V ∗, h∗) on Cl(V ∗, h∗) and ∧V ∗:

�(L�(ϕ)(α)) = LCl(ϕ)(�(α)), l(LCl(ϕ)(x)) = L�(ϕ)(l(x)),

for all ϕ ∈ V � so(V ∗, h∗), α ∈ ∧V ∗ and x ∈ Cl(V ∗, h∗).

This proposition shows that quantization is equivariant with respect to affine orthogonal
transformations of (V ∗, h∗). In signatures p− q ≡8 0, 2, composing � with the irreducible
representation γ : Cl(V ∗, h∗)→ End(�) (which in such signatures is a unital isomorphism
of algebras) gives an isomorphism of unital associative R-algebras4:

�γ
def.= γ ◦� : (∧V ∗,�) ∼→ (End(�), ◦). (30)

Since�γ is an isomorphismof algebras and (∧V ∗,�) is generated byV ∗, the identity together
with the elements �γ (ei1 ∧ · · · ∧ eik ) = γ (ei1) ◦ · · · ◦ γ (eik ) for 1 ≤ i1 < · · · < ik ≤ d and
k = 1, . . . , d form a basis of End(�).

Remark 3.11 We sometimes denote the action of a polyform α ∈ ∧V ∗ as an endomorphism
on � by a dot (this corresponds to Clifford multiplication through the isomorphism �γ ):

α · ξ def.= �γ (α)(ξ) ∀α ∈ ∧V ∗ ∀ξ ∈ �.

The trace on End(�) transfers to the Kähler–Atiyah algebra through the map �γ (see
[70]):

Definition 3.12 The Kähler–Atiyah trace is the linear functional:

S : ∧ V ∗ → R, α �→ tr(�γ (α)).

Wewill see in a moment that S does not depend on γ or h. Since�γ is a unital morphism
of algebras, we have:

S(1) = dim(�) = N = 2
d
2 and S(α1 � α2) = S(α2 � α1) ∀α1, α2 ∈ ∧V ∗,

where 1 ∈ R = ∧0V ∗ is the unit element of the field R of real numbers.

Lemma 3.13 For any 0 < k ≤ d, we have:

S|∧k V ∗ = 0.

Proof Let
{
ei

}
i=1,...,d be an orthonormal basis of (V ∗, h∗). For i �= j we have ei � e j =

−e j � ei and hence (ei )−1 � e j � ei = −e j . Let 0 < k ≤ d and 1 ≤ i1 < · · · < ik ≤ d . If k
is even, then:

S(ei1 � · · · � eik ) = S(eik � ei1 � · · · � eik−1) = (−1)k−1S(ei1 � · · · � eik ),
4 This isomorphism identifies the deformation quantization (∧V ∗, �) of the exterior algebra (∧V ∗,∧) with
the operator quantization (End(�), ◦) of the latter.

123



Spinors of real type as polyforms and the generalized Killing equation 1375

and hence S(ei1 � · · · � eik ) = 0. Here we used cyclicity of the Kähler–Atiyah trace and the
fact that eik anticommutes with ei1 , . . . , eik−1 . If k is odd, let j ∈ {1, . . . , d} be such that
j /∈ {i1, . . . , ik} (such a j exists since k < d). We have:

S(ei1 � · · · � eik ) = S((e j )−1 � ei1 � · · · � eik � e j ) = −S(ei1 � · · · � eik ) = 0

and we conclude. ��
Let α(k) ∈ ∧kV ∗ denote the degree k component of α ∈ ∧V ∗. Lemma 3.13 implies:

Proposition 3.14 The Kähler–Atiyah trace is given by:

S(α) = dim(�) α(0) = 2
d
2 α(0) ∀α ∈ ∧V ∗.

In particular, S does not depend on the irreducible representation γ of Cl(V ∗, h∗) or on h.

Lemma 3.15 Let α ∈ ∧V ∗ and B be an admissible bilinear pairing of (�, γ ) of adjoint
type s ∈ {−1, 1}. Then the following equation holds:

�γ (α)
t = �γ (α

t ), (31)

where �γ (α)
t is the B -adjoint of �γ (α) and we defined the s-transpose of α through:

αt def.= (π
1−s
2 ◦ τ)(α).

Proof Follows immediately from (23) and relations (29). ��

3.3 Spinor squaringmaps

Definition 3.16 Let � = (�, γ,B ) be a paired simple Clifford module for (V ∗, h∗). The
signed spinor squaring maps of � are the quadratic maps:

E±�
def.= �−1γ ◦ E± : �→ ∧V ∗,

where E± : � → End(�) are the signed squaring maps of the paired vector space (�,B )

which were defined in Sect. 2. Given a spinor ξ ∈ �, the polyforms E+� (ξ) and E−� (ξ) =
−E+� (ξ) are called the positive and negative squares of ξ relative to the admissible pairing
B . A polyform α ∈ ∧V ∗ is called a signed square of ξ ∈ � if α = E+� (ξ) or α = E−� (ξ).

Consider the following subsets of ∧V ∗:
Z := Z(�)

def.= �−1γ (Z(�,B )), Z± := Z±(�)
def.= �−1γ (Z±(�,B )).

Since �γ is a linear isomorphism, Sect. 2 implies that E±� are two-to-one except at 0 ∈ �

and:

Z− = −Z+, Z+ ∩ Z− = {0}, Z = Z+ ∪ Z−.

Moreover, E±� induce the same bijective map:

Ê� : �/Z2
∼→ Z(�)/Z2. (32)

Notice that Z is a cone in ∧V ∗, which is the union of the opposite half cones Z±.

Definition 3.17 The bijection (32) is called the class spinor squaringmap of the paired simple
Clifford module � = (�, γ,B ).
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We will sometimes denote by αξ
def.= E+� (ξ) ∈ Z+(�) the positive polyform square of

ξ ∈ �.

Remark 3.18 The representationmap γ is an isomorphismwhen p−q ≡8 0, 2. This does not
hold in other signatures, for which the construction of spinor squaring maps is more delicate
(see [70]).

The following result is a direct consequence of Proposition 3.10.

Proposition 3.19 The quadratic maps E±� : �→ ∧V ∗ are Spin0(V ∗, h∗)-equivariant:
E±� (u ξ) = Adu(E±� (ξ)) ∀u ∈ Spin0(V

∗, h∗) ∀ξ ∈ �,

where the right hand side denotes the natural action of Adu ∈ O(V ∗, h∗) on ∧V ∗.
We are ready to give the algebraic characterization of spinors in terms of polyforms.

Theorem 3.20 Let � = (�, γ,B ) be a paired simple Clifford module for (V ∗, h∗) of sym-
metry type σ and adjoint type s. Then the following statements are equivalent for a polyform
α ∈ ∧V ∗:
(a) α is a signed square of some spinor ξ ∈ �, i.e. it lies in the set Z(�).
(b) α satisfies the following relations:

α � α = S(α) α, (π
1−s
2 ◦ τ)(α) = σ α, α � β � α = S(α � β) α (33)

for a fixed polyform β ∈ ∧V ∗ which satisfies S(α � β) �= 0.
(c) The following relations hold:

(π
1−s
2 ◦ τ)(α) = σ α, α � β � α = S(α � β) α (34)

for any polyform β ∈ ∧V ∗.
In particular, the set Z(�) depends only on σ , s and (V ∗, h∗).

In view of this result, we will also denote Z(�) by Zσ,s(V ∗, h∗).

Proof Since � : Cl(V ∗, h∗) → End(�) is a unital isomorphism algebras, α satisfies (34)
iff:

Et = σ E, E ◦ A ◦ E = tr(E ◦ A)E ∀ A ∈ End(�), (35)

where E
def.= �−1γ (α), A

def.= �−1γ (β) and we used Lemma 3.15 and the definition and
properties of the Kähler-Atiyah trace. The conclusion now follows from Proposition 2.21. ��

The second equation in (34) implies:

Corollary 3.21 Let α ∈ Zσ,s(V ∗, h∗). If k ∈ {1, . . . , d} satisfies:
(−1)k 1−s

2 (−1) k(k−1)
2 = −σ,

then α(k) = 0.

Polyform α ∈ Z±(�) admits an explicit presentation which first appeared in [63,66,70].
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Proposition 3.22 Let
{
ei

}
i=1,...,d be an orthonormal basis of (V ∗, h∗) and κ ∈ {−1, 1}.

Then every polyform α ∈ Zκ (�) can be written as:

α = κ

2
d
2

d∑
k=0

∑
i1<···<ik

B ((γ (eik )−1 ◦ · · · ◦ γ (ei1)−1)(ξ), ξ) ei1 ∧ · · · ∧ eik , (36)

where the spinor ξ ∈ � is determined by α up to sign.

Remark 3.23 We have:

γ (ei )−1 = h∗(ei , ei )γ (ei ) = h(ei , ei )γ (e
i ),

where {ei }i=1,...,d is the contragradient orthonormal basis of (V , h). For simplicity, set:

γ i def.= γ (ei ) and γi
def.= h(ei , ei )γ (e

i ),

so that (γ i )−1 = γi . Then the degree one component in (36) reads:

α(1) = κ

2
d
2

B (γi (ξ), ξ)e
i

and its dual vector field (α(1))� = κ

2
d
2
B (γi (ξ), ξ)ei is called the (signed) Dirac vector of

ξ relative to B . For spinors on a manifold (see Sect. 4), this vector globalizes to the Dirac
current.

Proof It is easy to see that the set:

P
def.= {Id} ∪

{
γ 1 ◦ · · · ◦ γ i1 ◦ · · · γ ik ◦ · · · ◦ γ d | 1 ≤ i1 < · · · < ik ≤ d, k = 1, . . . , d

}
,

gives an orthogonal basis of End(�)with respect to the nondegenerate and symmetric bilinear
pairing induced by the trace:

End(�)× End(�)→ R, (A1, A2) �→ tr(A1A2).

In particular, the endomorphism E
def.= �γ (α) ∈ Zκ (�) expands as:

E = 1

2
d
2

d∑
k=0

∑
i1<···<ik

tr((γ i1 ◦ · · · ◦ γ ik )−1 ◦ E) γ i1 ◦ · · · ◦ γ ik

= κ

2
d
2

d∑
k=0

∑
i1<···<ik

B ((γ i1 ◦ · · · ◦ γ ik )−1(ξ), ξ) γ i1 ◦ · · · ◦ γ ik ,

where ξ ∈ � is a spinor such that E = Eκ (ξ) andwe noticed that tr(B◦Eκ (ξ)) = κ tr(B(ξ)⊗
ξ∗) = κ ξ∗(B(ξ)) = κ B (Bξ, ξ) for all B ∈ End(�). The conclusion follows by applying
the isomorphism algebras �−1γ : (End(�), ◦)→ (∧V ∗,�) to the previous equation. ��

Lemma 3.24 The following identities hold for all α ∈ ∧V ∗:
α � ν = ∗ τ(α), ν � α = ∗ (π ◦ τ)(α). (37)
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Proof Since multiplication by ν is R-linear, it suffices to consider homogeneous elements
α = ei1 ∧ · · · ∧ eik with 1 ≤ i1 < · · · < ik ≤ d , where

{
ei

}
i=1,...,d is an orthonormal basis

of (V ∗, h∗). We have:

ei1 ∧ · · · ∧ eik � ν
= ei1 � · · · � eik � e1 � · · · � ed
= (−1)i1+···+ik (−1)ke1 � · · · � (ei1)2 � ei1+1 � · · · � (eik )2 � eik+1 � · · · � ed
= h∗(ei1 , ei1) · · · h∗(eik , eik ) (−1)i1+···+ik (−1)ke1 � · · · � ei1−1 �
ei1+1 · · · � eik−1 � eik+1 � · · · � ed
= (−1) k(k−1)

2 (−1)2(i1+···+ik )(−1)2k ∗ (ei1 ∧ · · · ∧ eik ) = ∗τ(α),
which implies α � ν = ∗ τ(α). Using the obvious relation α � ν = (ν � π)(α), we conclude.

��

The following shows that the choice of admissible pairing used to construct the spinor
square map is a matter of taste, see also Remark 3.4.

Proposition 3.25 Let ξ ∈ � and denote by α±ξ ∈ Z+ the positive polyform squares of ξ
relative to the admissible pairingsB+ andB− of (�, γ ), which we assume to be normalized
such that they are related through (27). Then the following relation holds:

∗α+ξ = (−1)[ q+12 ]+p(q+1)(−1)dc(α−ξ ).

where c : ∧ V ∗ → ∧V ∗ is the linear map which acts as multiplication by k!
(d−k)! in each

degree k.

Proof We compute:

∗(α+ξ )(k) = 1

2
d
2

B+((γik ◦ · · · ◦ γi1)(ξ), ξ) ∗ (ei1 ∧ · · · ∧ eik )

= (−1)[ q+12 ]+pq(−1) k(k−1)
2

√|h|
2

d
2 (d − k)!

B−((γ (ν) ◦ γi1 ◦ · · · ◦ γik )(ξ), ξ)εii1 ...ikak+1...ad eak+1 ∧ · · · ∧ ead

= (−1)[ q+12 ]+pq(−1) k(k−1)
2 (−1)k(d−k) k!

2
d
2 (d − k)!

B−(γ (ν)γ (∗(eak+1 ∧ · · · ∧ ed))(ξ), ξ)eak+1 ∧ · · · ∧ ed

= (−1)[ q+12 ]+pq(−1) k(k−1)
2 (−1) (d−k)(d+k+1)

2
k!

2
d
2 (d − k)!

B−((γ (ν)2 ◦ γ ak+1 ◦ · · · ◦ γ ad )(ξ), ξ)eak+1 ∧ · · · ∧ ed

= (−1)[ q+12 ]+p(q+1)(−1)k k!
(d − k)! (α

−
ξ )(d−k)

= (−1)[ q+12 ]+p(q+1)(−1)d k!
(d − k)!π(α

−
ξ )(d−k),

where we used the identity ν � α = ∗(π ◦ τ)(α) proved in Lemma 3.24. ��
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3.4 Linear constraints

The following result will be used in Sects. 3 and 4.

Proposition 3.26 A spinor ξ ∈ � lies in the kernel of an endomorphism Q ∈ End(�) iff:

Q̂ � αξ = 0,

where αξ
def.= E+� (ξ) is the positive polyform square of ξ and:

Q̂
def.= �−1γ (Q) ∈ ∧V ∗

is the dequantization of Q.

Remark 3.27 Taking the s-transpose shows that equation Q̂ � αξ = 0 is equivalent to:

αξ � (π 1−s
2 ◦ τ)(Q̂) = 0.

Proof Follows immediately from Proposition 2.28, using the fact that �γ : (∧V ∗,�) →
End(�) is an isomorphism of unital associative algebras. ��

3.5 Real chiral spinors

Theorem3.20 canbe refined for chiral spinors of real type,which exist in signature p−q ≡8 0.
In this case, the Clifford volume form ν ∈ Cl(V ∗, h∗) squares to 1 and lies in the center of
Clev(V ∗, h∗), giving a decomposition as a direct sum of simple associative algebras:

Clev(V ∗, h∗) = Clev+ (V ∗, h∗)⊕ Clev− (V ∗, h∗),

where we defined:

Clev± (V ∗, h∗)
def.= 1

2
(1± ν)Cl(V ∗, h∗).

We decompose � accordingly:

� = �(+) ⊕�(−), where �(±) def.= 1

2
(Id± γ (ν))(�).

The subspaces �(±) ⊂ � are preserved by the restriction of γ to Clev(V ∗, h∗), which
therefore decomposes as a sum of two irreducible representations:

γ (+) : Clev(V , h)→ End(�(+)) and γ (−) : Clev(V , h)→ End(�(−))

distinguished by the value which they take on the volume form ν ∈ Clev(V ∗, h∗):

γ (+)(ν) = Id, γ (−)(ν) = −Id.
A spinor ξ ∈ � is called chiral of chirality μ ∈ {−1, 1} if it belongs to �(μ). Setting

αξ
def.= E+� (ξ), Proposition 3.26 shows that this amounts to the condition:

ν � αξ = μαξ .

For any μ ∈ {−1, 1} and κ ∈ {−1, 1}, define:
Z (μ)
κ := Z (μ)

κ (�)
def.= Eκ

�(�(μ)), Z (μ) := Z (μ)(�)
def.= Z (μ)

+ (�) ∪ Z (μ)
− (�).
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We have Z (μ)
− (�) = −Z (μ)

+ (�) and Z (μ)
+ (�) ∩ Z (μ)

− (�) = {0}. Moreover, Eκ
� restrict to

surjections E(μ),κ
� : �(μ) → Z (μ)

κ (�) (which are two to one except at the origin). In turn,

the latter induce bijections Ê(μ)
� : �(μ)/Z2

∼→ Z (μ)(�)/Z2. Theorem 3.20, Proposition 3.26
and Lemma 3.24 give:

Corollary 3.28 Let � be a paired simple Cl(V ∗, h∗)-module of symmetry type σ and adjoint
type s. The following statements are equivalent for α ∈ ∧V ∗, where μ ∈ {−1, 1} is a fixed
chirality type:

(a) α lies in the set Z (μ)(�), i.e. it is a signed square of a chiral spinor of chirality μ.
(b) The following conditions are satisfied:

(π
1−s
2 ◦ τ)(α) = σ α, ∗ (π ◦ τ)(α) = μα, α � α = S(α) α,

α � β � α = S(α � β) α (38)

for a fixed polyform β ∈ ∧V ∗ which satisfies S(α � β) �= 0.
(c) The following conditions are satisfied:

(π
1−s
2 ◦ τ)(α) = σα, ∗ (π ◦ τ)(α) = μα, α � β � α = S(α � β) α (39)

for every polyform β ∈ ∧V ∗.
In this case, the real chiral spinor of chirality μ which corresponds to α through the either
of the maps E(μ),+

� or E(μ),−
� is unique up to sign and vanishes iff α = 0.

In particular, Z (μ)(�) depends only on σ, s and (V ∗, h∗) and will also be denoted by
Z (μ)
σ,s (V ∗, h∗).

Corollary 3.29 Let α ∈ Z (+)
σ,s (V ∗, h∗) ∪ Z (−)

σ,s (V ∗, h∗). If k ∈ {1, . . . , d} satisfies:

−(−1)k s−1
2 (−1) k(k−1)

2 = σ,

then we have α(k) = 0 and α(d−k) = 0.

Proof Follows immediately from Corollary 3.21 and the second relation in (38). ��

3.6 Low-dimensional examples

Let us describe Z and Z (μ) for some low-dimensional cases.

3.6.1 Signature (2, 0)

Let (V ∗, h∗) be a two-dimensional R-vector space with a scalar product h∗. Its irreducible
Clifford module (�, γ ) is two-dimensional with an admissible pairing B which is a scalar
product. Theorem 3.20 with β = 1 shows that w ∈ ∧V ∗ is a signed square of ξ ∈ � iff:

α � α = 2 α(0) α, τ (α) = α. (40)

Writing α = α(0) ⊕ α(1) ⊕ α(2), the second of these relations reads:

α(0) + α(1) − α(2) = α(0) + α(1) + α(2).
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This gives α(2) = 0, whence the first equation in (40) becomes (α(0))2 = h∗(α(1), α(1)).
Hence α is a signed square of a spinor iff:

α = ±h∗(α(1), α(1))
1
2 ⊕ α(1) with α(1) ∈ V ∗.

Let
{
ei

}
i=1,2 be an orthonormal basis of (V ∗, h∗) and α = E+� (ξ) for some ξ ∈ �. Then:

2 α = B (ξ, ξ)+B (γi (ξ), ξ) e
i .

Thus:

4 h∗(α(1), α(1)) = B (ξ, ξ)2

and hence the norm of ξ determines the norm of one-form α(1) ∈ V ∗.

3.6.2 Signature (1, 1)

Let (V ∗, h∗) be a two-dimensional vector space V ∗ equipped with a Lorentzian metric
h∗. Its irreducible Clifford module (�, γ ) is two-dimensional with a symmetric admissible
bilinear pairingB of split signature and positive adjoint type (see Theorem 3.1). To guarantee
that α ∈ ∧V ∗ belongs to Z , we should in principle consider the first equation in (34) of
Theorem 3.20 for all β ∈ ∧V ∗. However, V ∗ is two-dimensional and Example 2.26 shows
that it suffice to take β = 1. Thus α belongs to the set Z+,+(V ∗, h∗) iff:

α � α = 2 α(0) α, τ (α) = α. (41)

Writing α = α0⊕ α(1)⊕ α(2), the second condition gives α(2) = 0, while the first condition
becomes:

(α(0))2 = h∗(α(1), α(1)).

In particular, α(1) is space-like or null. Hence α is a signed square of a spinor iff:

α = ±h∗(α(1), α(1))
1
2 + α(1) (42)

for a one-form α(1) ∈ V ∗. As in the Euclidean case, we have:

2α = B (ξ, ξ)+B (γi (ξ), ξ) e
i ,

whence:

4 h∗(α(1), α(1)) = B (ξ, ξ)2.

Thus α(1) is null iffB (ξ, ξ) = 0. In this signature the volume form squares to 1 and we have
chiral spinors. Fix μ ∈ {−1, 1}. By Corollary 3.28, α lies in the set Z (μ)

+,+(V ∗, h∗) iff it has
the form (42) and satisfies the supplementary condition:

∗ (π ◦ τ)(α) = μα.

This amounts to the following system, where νh is the volume form of (V ∗, h∗):

±h∗(α(1), α(1))
1
2 νh − ∗α(1) = ±μ h∗(α(1), α(1))

1
2 + μα(1).

Thus h∗(α(1), α(1)) = 0 and ∗α(1) = −μα(1). Hence a signed polyform square of a chiral
spinor of chirality μ is a null one-form which is anti-self-dual when μ = +1 and self-dual
when μ = −1. Notice that the nullity condition on α(1) is equivalent with (anti-)selfduality.
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3.6.3 Signature (3, 1)

This case is relevant for supergravity applications andwill arise in Sects. 5 and 6. Let (V ∗, h∗)
be aMinkowski space of “mostly plus” signature (3, 1). Its irreducibleCliffordmodule (�, γ )

is four-dimensional and both admissible pairings B± are skew-symmetric. We work with
the admissible pairing B = B− of negative adjoint type.

Definition 3.30 A parabolic pair of one-forms is ordered pair (u, l) ∈ V ∗ × V ∗ such that
u �= 0 and:

h∗(u, u) = 0, h∗(l, l) = 1, h∗(u, l) = 0, (43)

i.e. u is nonzero and null, l is spacelike of unit norm and u is orthogonal to l. Two parabolic
pairs of one forms (u, l) and (u′, l ′) are called:

• weakly equivalent, if there exist b ∈ R
×, c ∈ R and η ∈ {−1, 1} such that:

u′ = bu and l ′ = ηl + cu. (44)

• equivalent (and we write (u, l) ≡ (u′, l ′)) if there exist b ∈ R
× and c ∈ R such that:

u′ = bu and l ′ = l + cu. (45)

• strongly equivalent (and we write (u, l) ∼ (u′, l ′)) if there exist ζ ∈ {−1, 1} and c ∈ R

such that:

u′ = ζu and l ′ = l + cu. (46)

LetP(V ∗, h∗) denote the set of parabolic pairs of one-forms. The binary relations defined
above are equivalence relations on this set;moreover, strong equivalence implies equivalence,
which in turn implies weak equivalence.

Recall that a 2-plane� in V ∗ is called parabolic (with respect to h∗) if the restriction h∗�
of h∗ to� has one-dimensional kernel. This happens iff� is tangent to the light cone of the

Minkowski space (V ∗, h∗) along a null line. This line coincides with Kh(�)
def.= ker(h∗�)

and is called the null line of �. If � ⊂ V ∗ is a parabolic 2-plane, then any element of
� which does not belong to Kh(�) is spacelike. The two connected components of the
complement � \ Kh(�) are the spacelike half-planes of �. An orientation of the null line
Kh(�) is called a time orientation of�, while an orientation of the quotient line�/Kh(�) is
called a co-orientation of�. Notice that a co-orientation of� amounts to a choiceH of one
of the spacelike half-spaces of �. A co-oriented parabolic 2-plane in V ∗ is a pair (�,H),
where � is a parabolic two-plane in V ∗ andH is a co-orientation of�. The set of spacelike
unit norm elements of � has two connected components, each of which is an affine line
parallel to Kh(�). These two affine lines are related by the inversion of�with respect to the
origin. Notice that a co-orientationH of � amounts to a choice L of one of these two affine
lines. Namely, we associate to L that spacelike half-planeHL of� which contains L . Given
u ∈ Kh(�) \ {0}, a unit norm spacelike element l ∈ � is determined up to transformations
of the form l → ζ l + cu, where ζ ∈ {−1, 1} and c ∈ R.

Remark 3.31 Parabolic 2-planes correspond to degenerate complete flags in (V ∗, h∗) (see
Appendix A). Notice that a parabolic 2-plane� determines a short exact sequence of vector
spaces:

0→ K → �→ N → 0
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with K = Kh(�) and N = �/K and induces a scalar product on the quotient line N .
Conversely, giving a “parabolic” metric on a 2-plane � amounts to giving a short exact
sequence of this form together with a scalar product on N . A time orientation of � is
orientation of K while a co-orientation is an orientation of N . Since the determinant line
of � is given by det(�) = ∧2� = K ⊗ L , a time orientation and a co-orientation taken
together determine an orientation of �.

A basis of a parabolic 2-plane � ⊂ V ∗ is called parabolic if its two elements form a
parabolic pair. By Sylvester’s theorem, any parabolic plane � admits parabolic bases.

Proposition 3.32 The map (u, l)→ SpanR(u, l) induces a bijection between the set of weak
equivalence classes of parabolic pairs of one-forms and the set of all parabolic 2-planes in
(V ∗, h∗).

Proof If (u, v) is a parabolic pair, then SpanR(u, v) is a parabolic 2-plane, which depends
only on the weak equivalence class of (u, v). Conversely, it is easy to see that any two
parabolic bases of a parabolic 2-plane � in V ∗ are weakly-equivalent as parabolic pairs. ��

Proposition 3.32 implies:

Corollary 3.33 The map (u, l) → (SpanR(u, l),Hl) induces a bijection between the set
P(V ∗, h∗)/≡ of equivalence classes of parabolic pairs of one-forms and the set of all co-
oriented parabolic 2-planes in (V ∗, h∗), where Hl is the unique spacelike half-plane of the
parabolic 2-plane SpanR(u, l) which contains the vector l.

Theorem 3.34 A polyform α ∈ ∧V ∗ is a signed square of a nonzero spinor (i.e. it belongs
to the set Z−,−(V ∗, h∗)) iff it has the form:

α = u + u ∧ l (47)

for a parabolic pair of one-forms (u, l) ∈ P(V ∗, h∗). In this case, u is uniquely determined
by α while l is determined by α up to transformations of the form:

l → l + cu, (48)

where c ∈ R is arbitrary. Moreover, (u, l) is determined by the sign equivalence class of α
up to strong equivalence of parabolic pairs. This gives a natural bijection between the sets
Z−,−(V ∗, h∗)/Z2 and P(V ∗, h∗)/∼.

Proof Let:

α =
4∑

k=0
α(k) ∈ ∧V ∗ where α(k) ∈ ∧kV ∗ ∀k = 0, . . . , 4.

By Theorem 3.20, α lies in Z−,−(V ∗, h∗) iff the following relations hold for β = 1 and for
a polyform β such that (β � α)(0) �= 0:

α � β � α = 4 (β � α)(0) α, (π ◦ τ)(α) = −α. (49)

The condition (π ◦ τ)(α) = −α gives α(0) = α(3) = α(4) = 0. Thus α = u + ω, where

u
def.= α(1) ∈ ∧1V ∗ and ω

def.= α(2) ∈ ∧2V ∗. For β = 1, the first condition in (49) gives
(u+ω)�(u+ω) = 0, which reduces to the following relations upon expanding the geometric
product:

h∗(u, u) = 〈ω,ω〉h, ω ∧ u = 0. (50)
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Here 〈 , 〉h is the metric induced by h on ∧V ∗. The second condition in (50) amounts to
ω = u ∧ l for some l ∈ V ∗ determined up to the transformations (48). Using this in (50)
gives the condition:

(h∗(l, l)− 1) h∗(u, u) = h∗(u, l)2, (51)

which is invariant under the transformations (48). Forβ = u, the first equation in (49) amounts
to h∗(u, u) = 0, whence h∗(u, l) = 0 by (51). It remains to show that h∗(l, l) = 1. Since u
is non-zero and null, there exists a non-zero null one-form v ∈ V ∗ such that h∗(v, u) = 1.
Then (v � v)(0) = (v � (u + u ∧ l))(0) = h∗(v, u) = 1. For β = v, the first condition in (49)
reduces to:

(u + u ∧ l) � v � (u + u ∧ l) = 4 (u + u ∧ l).

Direct computation shows that this equation amounts to h∗(l, l) = 1 and we conclude. ��
Remark 3.35 Given v ∈ V ∗ with h∗(v, v) = −1, denote by Pv : V ∗ → Rv the orthogonal
projection onto the line Rv = SpanR(v). A canonical choice of l is obtained by imposing
the condition:

Pv(l) = 0.

Given l ∈ V ∗ of unit norm and orthogonal to u, there exists a unique c ∈ R such that Pv(l +
c u) = 0. This “choice of gauge” could be useful for spinors on time-oriented Lorentzian
four-manifolds.

Corollary 3.33 and Theorem 3.34 imply the following result.

Corollary 3.36 The projective spinor squaring map PE� induces a bijection between P(�)

and the set of all co-oriented parabolic 2-planes (�,H) in (V ∗, h∗). Moreover, there exist
natural bijections between the following three sets:

• The set �̇/Z2 of sign equivalence classes of nonzero spinors.
• The set P(V ∗, h∗)/∼ of strong equivalence classes of parabolic pairs of one-forms.
• The set of triples (�,H, û), where (�,H) is a co-oriented parabolic 2-plane in (V ∗, h∗)

and û is the sign equivalence class of a non-zero element u ∈ Kh(�).

Proof A line Rξ ∈ P(�) corresponds to the line Rα ∈ P(Z−,−(V ∗, h∗)) ⊂ P(∧V ∗). By
Theorem 3.34, α determines a null one-form u = α(1) and a line L of spacelike vectors

of unit norm which is parallel to the line SpanR(u) = Ru. Pick any l ∈ L and set �
def.=

Span(u, l) = Ru⊕ L . Then� is a parabolic 2-plane in V ∗ depending only Ru and L and we
have Kh(�) = Ru. Rescaling α by a non-zero real number corresponds to rescaling u = α(1)

by the same. Hence Rα determines the line Ru = Kh(�) and relation (47) shows that Rα

determines and is determined by the co-oriented parabolic 2-plane (�,HL). This proves the
first statement.

Now recall that the sign-equivalence class of a non-zero spinor ξ determines and is deter-
mined by the sign equivalence class of its square polyform α through the map Ê� . By (47),
the sign change α → −α corresponds to u → −u and l → l. Thus the sign equivalence
class of u is uniquely determined by that of α and hence by that of ξ . This establishes the
bijection between the three sets in the second statement. ��
Remark 3.37 A parabolic pair (u, l) and a polyform square α are recovered from the triplet
(�,H, û) by taking u to be any representative of the sign equivalence class û and l to be any
vector lying on the unit norm affine line L contained in H and setting α = u + u ∧ l.
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Spinors of real type as polyforms and the generalized Killing equation 1385

Let us count the degrees of freedom encoded in α = u+ u ∧ l. Apriori, the null one-form
u has three degrees of freedom while the space-like one-form l has four, which are reduced
to two by the requirement that l has unit norm and is orthogonal to u. Since l is defined only
up to l �→ l + c u (c ∈ R), its degrees of freedom further reduce from two to one. This
gives a total of four degrees of freedom, matching those of a real spinor in four-dimensional
Lorentzian signature.

3.6.4 Signature (2, 2)

Let (V ∗, h∗) be four-dimensional withmetric h∗ of split signature. Its Cliffordmodule (�, γ )

is four-dimensional and has a skew-symmetric admissible pairingB of positive adjoint type
(see Theorem 3.1). This dimension and signature admits chiral spinors. Let:

α =
4∑

k=0
α(k) ∈ ∧V ∗ with α(k) ∈ ∧kV ∗ ∀k = 1, . . . 4.

Fixing an orthonormal basis {ea}a=1,...,4 of (V ∗, h∗)with e1, e2 timelike, define timelike and
spacelike volume forms through ν− = e1∧e2 and ν+ = e3∧e4. By Corollary 3.28, we have
α ∈ Z (μ)

−,+(V ∗, h∗) iff:

α � α = 0, τ (α) = −α, ∗ π(τ(α)) = μα, α � β � α = 4 (β � α)(0) α (52)

for a polyform β ∈ ∧V ∗ such that (β � α)(0) �= 0. Here we used skew-symmetry of B ,
which implies α(0) = 0. The condition τ(α) = −α amounts to:

α(0) = α(1) = α(4) = 0,

whereas the condition ∗π(τ(α)) = μα is equivalent with:

∗α(2) = −μα(2), α(3) = 0.

Thus it suffices to consider α = ω, where ω is selfdual if μ = −1 and anti-selfdual if μ = 1.
In signature (2, 2), theHodge star operator squares to the identity and yields a decomposition:

∧2V ∗ = ∧2+V ∗ ⊕ ∧2−V ∗,
into self-dual and anti-selfdual two-forms. This corresponds to the decomposition so(2, 2) =
sl(2)⊕ sl(2) of the Lie algebra so(2, 2) = ∧2V ∗. Expanding the geometric product shows
that the first equation in (52) reduces to the following condition for a selfdual or anti-selfdual
two-form α = ω:

〈ω,ω〉h = 0.

For simplicity of exposition we set μ = −1 in what follows, in which case ω is self-dual
(analogous results hold for μ = 1). Consider the basis {ua}a=1,2,3 of ∧2+V ∗ given by:

u1
def.= e1 ∧ e2 + e3 ∧ e4, u2

def.= e1 ∧ e3 + e2 ∧ e4, u3
def.= e1 ∧ e4 − e2 ∧ e3,

and expand:

ω =
∑

kaua .
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We have:

ν− � u1 = u1 � ν− = −1+ νh, ν− � u2 = −u2 � ν− = −u3,
ν− � u3 = −u3 � ν− = u2,

which gives:

(ν− � ω)(0) = −k1.
Furthermore, we compute:

u1 � u3 = −u3 � u1 = 2 u2, u1 � u2 = −u2 � u1 = −2 u3,
u2 � u3 = −u3 � u2 = 2 u1,

u1 � u1 = −u2 � u2 = −u3 � u2 = −2+ 2 νh .

These products realize the Lie algebra sl(2,R) upon defining a Lie bracket by the commu-
tator:

[u1, u2] = u1 � u2 − u2 � u1 = −4 u3, [u1, u3] = u1 � u3 − u3 � u1 = 4 u2,

[u2, u3] = u2 � u3 − u3 � u2 = 4 u1.

Since ∧2+V ∗ = sl(2,R), the Killing form B of sl(2,R) gives a symmetric non-degenerate
pairing of signature (1, 2) on ∧2+V ∗, which can be rescaled to coincide with that induced
induced by h. Then:

B(ω, ω) = 〈ω,ω〉2h = 2
[
(k1)2 − (k2)2 − (k3)2

] ∀ω ∈ ∧2+V ∗.
Proposition 3.38 A polyform α ∈ ∧V ∗ is a signed square of a real chiral spinor ξ ∈ �(−)
of negative chirality iff α is a self-dual two-form of zero norm.

Proof It suffices to consider the case α �= 0. By the discussion above, a non-zero polyform
α �= 0 belongs to the set Z (−)

−,+(V ∗, h∗) only if α = ω is self-dual and of zero norm (which
is equivalent to the first three equations in (52)). Once these conditions are satisfied, the
only equation that remains to be solved is the fourth equation in (52). To solve it, we take
β = ν−. Since (ν− � ω)(0) = −4 k1 (as remarked above), we conclude that (ν− � ω)(0) �= 0
iff ω �= 0, whence taking β = ν− is a valid choice. A computation shows that this equation
is automatically satisfied and thus we conclude. ��
Remark 3.39 Section 3.6.2 together with Proposition 3.38 show that the square of a chiral
spinor in signatures (1, 1) and (2, 2) is given by an (anti-)self-dual form of zero norm in
middle degree. The reader can verify, through a computation similar to the one presented in
this subsection, that the same statement holds in signature (3, 3). It is tempting to conjecture
that the square of a chiral spinor in general split signature (p, p) corresponds to an (anti-
)self-dual p-form of zero norm, the latter condition being automatically implied when p is
odd. Verifying this conjecture would be useful in the study of manifolds of split signature
which admit parallel chiral spinors [25].

4 Constrained generalized Killing spinors of real type

To study constrained generalized Killing spinors of real type, we will extend the theory of
Sect. 3 to bundles of real irreducible Clifford modules equipped with an arbitrary connec-
tion. Throughout this section, let (M, g) denote a connected pseudo-Riemannian manifold of
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Spinors of real type as polyforms and the generalized Killing equation 1387

signature (p, q) and even dimension d = p+ q ≥ 2, where p− q ≡8 0, 2. Since M is con-
nected, the pseudo-Euclidean vector bundle (T M, g) is modeled on a fixed quadratic vector
space denoted by (V , h). For any point m ∈ M , we thus have an isomorphism of quadratic
spaces (TmM, gm) � (V , h). Accordingly, the cotangent bundle T ∗M (endowed with the
dual metric g∗) is modeled on the dual quadratic space (V ∗, h∗). We denote by Cl(M, g)
the bundle of real Clifford algebras of the cotangent bundle (T ∗M, g∗), which is modeled
on the real Clifford algebra Cl(V ∗, h∗). Let π and τ be the canonical automorphism and
anti-automorphism of the Clifford bundle, given by fiberwise extension of the corresponding
objects defined in Sect. 3 and set π̂ = π ◦ τ . We denote by (�(M),�) the exterior bundle
�(M) = ⊕d

j=0 ∧ j T ∗M , equipped with the pointwise extension � of the geometric product
of Sect. 3 (which depends on the metric g). This bundle of unital associative algebras is called
the Kähler–Atiyah bundle of (M, g) (see [66,70]). The map � of Sect. 3 extends to a unital
isomorphism of bundles of algebras:

� : (�(M),�) ∼→ Cl(M, g),

which allows us to view the Kähler–Atiyah bundle as a model for the Clifford bundle. We
again denote by π , τ and π̂ = π ◦ τ the (anti-)automorphisms of the Kähler-Atiyah bundle
obtained by transporting the corresponding objects from the Clifford bundle through�. The
Kähler-Atiyah trace of Sect. 3 extends to a morphism of vector bundles:

S : �(M)→ RM

whose induced map on smooth sections satisfies:

S(1M ) = N = 2
d
2 1M and S(ω1 � ω2) = S(ω2 � ω1) ∀ω1, ω2 ∈ �∗(M),

where 1M ∈ �(RM ) = �0(M) is the unit function defined on M . By Proposition 3.14, we
have:

S(ω) = 2
d
2 ω(0) ∀ω ∈ �(M).

In particular, S does not depend on themetric g. The following encodes a well-know property
of the Clifford bundle, which also follows from the definition of � (cf. [66,70]).
Proposition 4.1 The canonical extension to�(M) of the Levi-Civita connection∇g of (M, g)
to �(M) (which we again denote by ∇g) acts by derivations of the geometric product:

∇g(α � β) = (∇gα) � β + α � (∇gβ) ∀α, β ∈ �(M).

4.1 Bundles of real simple Cliffordmodules

Definition 4.2 A bundle of (real) Clifford modules on (M, g) is a pair (S, �), where S is a
real vector bundle on M and � : Cl(M, g) → End(S) is a unital morphism of bundles of
algebras (which we call the structure map).

Since M is connected, any bundle of Clifford modules (S, �) on (M, g) is modeled on a
Clifford representation γ : Cl(V ∗, h∗) → End(�) (called its model representation), where
� is a vector space isomorphic to the fiber of S. For every pointm ∈ M , the unital morphism
of associative algebras �m : Cl(T ∗mM, g∗m) → (End(Sm), ◦) identifies with the represen-
tation morphism γ upon composing appropriately with the unital algebra isomorphisms
Cl(T ∗m, g∗m) � Cl(V ∗, h∗) and End(Sm) � End(�) (the latter of which is induced by the
linear isomorphism Sm � �).
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Definition 4.3 We say that (S, �) is a bundle of simple real Clifford modules (or a real spinor
bundle) if its model representation γ is irreducible. In this case, a global section ε ∈ �(S) is
called5 a spinor on (M, g).

In the signatures p − q ≡8 0, 2 considered in this paper, a simple bundle of Clifford

modules satisfies rk S = dim V = 2
d
2 , where d is the dimension of M . Reference [69]

proves that (M, g) admits a bundle of simple real Clifford modules iff it admits a real
Lipschitz structure of type γ . In signatures p−q ≡8 0, 2, the latter corresponds to an adjoint-
equivariant (a.k.a. “untwisted”) Pin(V ∗, h∗)-structureQ on (M, g) and (S, �) is isomorphic
(as a unital bundle of algebras) with the bundle of real Clifford modules associated to Q

through the natural representation of Pin(V ∗, h∗) in�. The obstructions to existence of such
structures were given in [69]; when p − q ≡8 0, 2, they are a slight modification of those
given in [62] for ordinary (twisted adjoint-equivariant) Pin(V ∗, h∗)-structures.

Proposition 4.4 Let (S, �) be a bundle of real Clifford modules on (M, g), L a real line

bundle on M and set SL
def.= S ⊗ L. Then there exists a natural unital morphism of bundles

of algebras �L : Cl(M, g) → End(S ⊗ L). Hence the modification (SL , �L) of (S, �) by
L is a bundle of Clifford modules, which is a real spinor bundle iff (S, L) is. In particular,
the real Picard group Pic(M) acts naturally on the set of isomorphism classes of bundles of
real Clifford modules defined over (M, g).

Proof There exists a unique trivialization ψL : End(L) � RM of the line bundle End(L)
which is a unital isomorphism of bundles of R-algebras—namely that trivialization which
sends the identity endomorphism of L into the unit section of RM (which is the constant
function equal to 1 defined on M). This induces a unital isomorphism of bundles of algebras
ϕL : End(S ⊗ L)

∼→ End(S) given by composing the natural isomorphism of bundles of
R-algebras End(S⊗ L)

∼→ End(S)⊗ End(L)with IdEnd(S)⊗ψL . The conclusion follows

by setting �L
def.= ϕ−1L ◦ �. ��

The map �γ of Sect. 3 extends to a unital isomorphism of bundles of algebras:

��
def.= � ◦� : (�(M),�) ∼→ (End(S), ◦),

which allows us to identify bundles (S, �) of modules over Cl(T ∗M, g∗) with bundles of
modules (S, ��) over the Kähler-Atiyah algebra. We denote by a dot the external multipli-
cation6 of (S, ��), whose action on global sections is:

α · ε def.= ��(α)(ε) ∀α ∈ �(M)
def.= �(�(M)) ∀ε ∈ �(S).

Let tr : End(S) → RM be the fiberwise trace morphism, whose map induced on sections
we denote by the same symbol. The results of Sect. 3 imply:

Proposition 4.5 Let (S, �) be a real spinor bundle. Then:

S(ω) = tr(��(ω)) ∀ω ∈ �(M).

5 Since S need not be associated to a spin structure on (M, g), this generalizes the traditional notion of spinor.
In signatures p − q ≡8 0, 2, S is associated to an untwisted Pin structure (see [69]) so its sections could also
be called “pinors”.
6 Through the isomorphisms explained above, this corresponds to Clifford multiplication on the vector bundle
S, whose existence amounts to existence of the corresponding real Lispchitz structure on (M, g) by the results
of [69].
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Definition 4.6 Let (S, �) be a real spinor bundle on (M, g) and U be any vector bundle on
M . The symbol of a sectionW ∈ �(End(S)⊗U ) is the section Ŵ ∈ �(�(M)⊗U ) defined
through:

Ŵ
def.= (�� ⊗ IdU )−1(T ) ∈ �(∧T ∗M ⊗U ),

where IdU is the identity endomorphism of U .

Remark 4.7 In particular, the symbol of an endomorphism Q ∈ �(End(S)) is a polyform
Q̂ ∈ �(M), while the symbol of an End(S)-valued one-form A ∈ �(T ∗M ⊗ End(S)) is
an element Â ∈ �(M, T ∗M ⊗ ∧T ∗M) = �1(M,�(M)) = �∗(M, T ∗M), which can be
viewed as a T ∗M-valued polyform or as a �(M)-valued 1-form.

4.2 Paired spinor bundles

Definition 4.8 Let (S, �) be a real spinor bundle on (M, g). A fiberwise-bilinear pairing B
on S is called admissible if Bm : Sm × Sm → R is an admissible pairing on the simple
Clifford module (Sm, �m) for all m ∈ M . A (real) paired spinor bundle on (M, g) is a triplet
S = (S, �,B ), where (S, �) is a real spinor bundle on (M, g) andB is an admissible pairing
on S.

Since M is connected, the symmetry and adjoint type σ, s ∈ {−1, 1} of the admissible
pairings Bm (which are non-degenerate by definition) are constant on M ; they are called
the symmetry type and adjoint type of B and of (S, �,B ). An admissible pairing on (S, �)
can be viewed as a morphism of vector bundles B : S ⊗ S → RM , where RM is the
trivial real line bundle on M . Since M is paracompact, the defining algebraic properties of
an admissible pairing can be formulated equivalently as follows using global sections (see
[70]), when viewing (S, �) as a bundle (S, ��) of modules over the Kähler-Atiyah algebra
of (M, g):

1. B (ξ1, ξ2) = σB (ξ2, ξ2) ∀ξ1, ξ2 ∈ �(S)

2. B (��(ω)ξ1, ξ2) = B (ξ1, ��((π
1−s
2 ◦ τ)(ω))(ξ2)) ∀ω ∈ �(M) ∀ξ1, ξ2 ∈ �(S).

Definition 4.9 We say that (M, g) is strongly spin if it admits a Spin0(V
∗, h∗)-structure—

which we call a strong spin structure. In this case, a real spinor bundle (S, �) on (M, g) is
called strong if it associated to a strong spin structure.

When (M, g) is strongly spin, then it is strongly orientable in the sense that its orthonormal
coframe bundle admits a reduction to an SO0(V ∗, h∗)-bundle.

Remark 4.10 When pq = 0, the special orthogonal and spin groups are connected while the
pin group has two connected components. In this case, orientability and strong orientability
are equivalent, as are the properties of being spin and strongly spin. When pq �= 0, the
groups SO(V ∗, h∗) and Spin(V ∗, h∗) have two connected components, while Pin(V ∗, h∗)
has four and we have Pin(V ∗, h∗)/Spin0(V ∗, h∗) � Z2×Z2. In this case, (M, g) is strongly
orientable iff it is orientable and in addition the principalZ2-bundle associated to its bundle of
oriented coframes through the group morphism SO(V ∗, h∗)→ SO(V ∗, h∗)/SO0(V ∗, h∗) is
trivial, while an untwisted Pin(V ∗, h∗)-structure Q reduces to a Spin0(V

∗, h∗)-structure iff
the principal Z2 × Z2-bundle associated to Q through the group morphism Pin(V ∗, h∗)→
Pin(V ∗, h∗)/Spin0(V ∗, h∗) is trivial.When (M, g) is strongly spin, the short exact sequence:

1→ Z2 ↪→ Spin0(V
∗, h∗)→ SO0(V

∗, h∗)→ 1
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induces a sequence in Cech cohomology which implies that Spin0(V
∗, h∗)-structures form a

torsor over H1(M,Z2). A particularly simple case ariseswhen H1(M,Z2) = 0 (for example,
when M is simply-connected). In this situation, M is strongly orientable and any untwisted
Pin(V ∗, h∗)-structure on (M, g) reduces to a Spin0(V

∗, h∗)-structure since H1(M,Z2 ×
Z2) = H1(M,Z2 ⊕ Z2) = 0. Similarly, any Spin(V ∗, h∗)-structure on (M, g) reduces to
a Spin0(V

∗, h∗)-structure. Up to isomorphism, in this special case there exists at most one
Spin(V ∗, h∗)-structure, one Spin0(V ∗, h∗)-structure and one real spinor bundle on (M, g),
which is automatically strong.

The following gives sufficient conditions for existence of admissible pairings on real
spinor bundles:

Proposition 4.11 Suppose that (M, g) is strongly spin and Let (S, �) be a strong real spinor
bundle on (M, g). Then every admissible pairing on (�, γ ) extends to an admissible pairing
B on (S, �). Moreover, the Levi-Civita connection∇g of (M, g) lifts to a unique connection
on S (denoted∇S and called the spinorial connection of S), which acts bymodule derivations:

∇S
X (α · ε) = (∇g

Xα) · ε + α · (∇S
Xε) ∀α ∈ �(M) ∀ε ∈ �(S) ∀X ∈ X(M)

and is compatible with B :

X [B (ε1, ε2)] = B (∇S
Xε1, ε2)+B (ε1,∇S

Xε2) ∀ε1, ε2 ∈ �(S) ∀X ∈ X(M).

Proof The first statement follows from the associated bundle construction since admissible
pairings are Spin0(V

∗, h∗)-invariant by Proposition 3.7. The second and third statements
are standard (see [30, Chapter 3]). The last statement follows since the holonomy of ∇S is
contained in Spin0(V

∗, h∗), whose action on � preserves B . ��
With the assumptions of the proposition, the spinorial connection induces a linear con-

nection (denoted DS) on the bundle of endomorphisms End(S) = S∗ ⊗ S. By definition,
we have:

(DS
X A)(ε) = ∇S

X [A(ε)] − A(∇S
Xε) ∀A ∈ �(End(S)) ∀ε ∈ �(S) ∀X ∈ X(M).

Proposition 4.12 Suppose that (M, g) is strongly spin and let (�, �) be a strong real spinor
bundle over (M, g). Then DS : �(End(S))→ �(T ∗M ⊗ End(S)) acts by derivations:

DS
X (A1 ◦ A2) = DS

X (A1) ◦ A2 + A1 ◦ DS
X (A2) ∀ A1, A2 ∈ �(End(S)) ∀X ∈ X(M).

Moreover,�� induces a unital isomorphismof algebras (�(M),�) � (�(End(S)), ◦)which
is compatible with ∇g and DS:

DS
X (��(α)) = ��(∇g

Xα) ∀α ∈ �(M) ∀X ∈ X(M).

Proof That DS acts by algebra derivations of�(End(S)) is standard. Proposition 4.11 gives:

(DS
X A)(ε) = ∇S

X A(ε)− A(∇S
Xε) = ∇S

X (��(α)(ε))−��(α)(∇S
X ε) = ��(∇g

Xα)(ε)

for all A ∈ �(End(S)), ε ∈ �(S) and X ∈ X(M), where α
def.= �−1� (A) ∈ �(M). ��

Definition 4.13 Suppose that (M, g) is strongly spin and let (S, �) be a strong real spinor
bundle over (M, g). Given a connection D : �(S)→ �1(M, S) on S, its dequantization is
the connection D̂ : �(�(M))→ �1(M,�(M)) defined on �(M) through:

D̂X
def.= �−1� ◦DX ◦�� ∀X ∈ X(M).
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Remark 4.14 Writing D = ∇S −A with A ∈ �1(End(S)), we have:

D̂ = ∇g − Â,

where Â ∈ �1(M,�(M)) is the symbol of A, which we shall also call the symbol of D.

4.3 Constrained generalized Killing spinors

Definition 4.15 Let (S, �) be a real spinor bundle on (M, g) andD be an arbitrary connection
on S. A section ε ∈ �(S) is called generalized Killing spinor with respect to D if:

Dε = 0. (53)

A linear constraint datum for (S, �) is a pair (W,Q), where W is a real vector bundle over
M and Q ∈ �(End(S)⊗W) � �(Hom(S, S ⊗W)). Given such a datum, the condition:

Q(ε) = 0 (54)

is called the linear constraint on ε defined by Q. We say that ε is a (real) constrained
generalized Killing spinor if it satisfies the system formed by (53) and (54).

Remark 4.16 Supersymmetric solutions of supergravity theories can often be characterized
as manifolds admitting certain systems of generalized constrained Killing spinors, see for
instance [63,66]. This extends the notion of generalized Killing spinor considered [9,33,34,
78].

Suppose that (M, g) is strongly spin and (S, �) is a strong real spinor bundle. Then we
can write D = ∇S −A with A ∈ �1(End(S)), where ∇S is the spinorial connection on S.
In this case, the equations satisfied by a constrained generalized Killing spinor can be written
as:

∇Sε = Aε, Q(ε) = 0

and their solutions are called constrained generalized Killing spinors relative to (A,W,Q).
When A is given, we sometimes denote D by DA. Using connectedness of M and the
parallel transport of D, Eq. (53) implies that the space of constrained generalized Killing
spinors relative to (A,Q,W) is finite-dimensional and that a constrained generalized Killing
spinor which is not zero at some point of M is automatically nowhere-vanishing on M ; in
this case, we say that ε is nontrivial.

4.4 Spinor squaringmaps

Let S = (S, �,B ) be a paired spinor bundle on (M, g). The admissible pairingB of (S, �)
allows us to construct extensions to M of the squaring maps E± : � → End(�) of Sect. 2
and of the spinor squaring maps E±� : �→ ∧V ∗ of Sect. 3. We denote these by:

E± : S→ End(S) and E±S : S→ �(M).

AlthoughE±S preservefibers, they are notmorphismsof vector bundles since they arefiberwise
quadratic. By the results of Sect. 3, these maps are two to one away from the zero section
of S (where they branch) and their images – which we denote by Z±(M)—are subsets of
the total space of �(M) which fiber over M with cone fibers Z±m (M) (m ∈ M). We have
Z−(M) = −Z+(M) and Z+(M) ∩ Z−(M) = 0�(M). The fiberwise sign action of Z2 on S
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permutes the sheets of these covers (fixing the zero section), hence E±S give bijections from
S/Z2 to Z±(M) as well as a single bijection:

ÊS : S/Z2
∼→ Z(M)/Z2,

where Z(M)
def.= Z+(M)∪ Z−(M) and Z2 acts by sign multiplication. The sets Ż±(M)

def.=
Z±(M)\0�(M) are connected submanifolds of the total space of�(M) and the restrictions:

Ė±S : Ṡ→ Ż±(M) (55)

of E±S away from the zero section are surjective morphisms of fiber bundles which are two
to one.

Definition 4.17 The signed spinor squaring maps of the paired spinor bundle S = (S, �,B )

are the maps E±S : �(S)→ �(M) induced by E±S on sections (which we denote by the same
symbols).

By the results of Sect. 3, E±S are quadratic maps of C∞(M)-modules and satisfy:

supp(E±S (ε)) = supp(ε) ∀ε ∈ �(S).

Let Z±(M)
def.= E±S (�(S)) ⊂ �(M) denote their images and set Z(M)

def.= Z+(M) ∪
Z−(M). Then Z−(M) = −Z+(M) and Z+(M)∩Z−(M) = {0} and we have strict inclusions
Z±(M) ⊂ �(Z±(M)) and Z(M) ⊂ �(Z(M)) (see Eq. (5) for notation). Moreover, E±S
induce the same bijection:

ÊS : �(S)/Z2
∼→ Z(M)/Z2.

Finally, let
·
�(S) = �(Ṡ) be the set of nowhere-vanishing sections of S and

·
Z
±
(M)

def.=
·
�(Z±(M)) = �(

·
Z
±
(M)) ⊂ Z±(M) be the set of those polyforms in Z±(M) which are

nowhere-vanishing and define
·
Z(M)

def.= ·
Z
+
(M)∪ ·Z

−
(M). Notice that

·
Z
+
(M)∩ ·Z

−
(M) = ∅.

The signed spinor squaring maps restrict to two-to one surjections which coincide with the
maps induced by (55) on sections:

Ė±S :
·
�(S)→ ·

Z
±
(M).

Proposition 4.18 Suppose that (M, g) is strongly spin let S = (S, �,B ) be a strong paired
spinor bundle associated to a Spin0(V

∗, h∗)-structure Q on (M, g). Then every nowhere-

vanishing polyform α ∈ ·
Z(M) determines a cohomology class cQ(α) ∈ H1(M,Z2)

encoding the obstruction to existence of a globally-defined spinor ε ∈ �(S) (which is nec-
essarily nowhere-vanishing) such that α ∈ {E+S (ε), E−S (ε)}. More precisely, such ε exists iff
cQ(α) = 0. In particular, we have:

·
Z(M) = {α ∈ Z(M) | cQ(α) = 0} and

·
Z
±
(M) = {α ∈ Z±(M) | cQ(α) = 0}.

Proof We have α ∈ Zκ (M) for some κ ∈ {−1, 1}. Let Lα be the real line sub-bundle of
�(M) determined by α. Since the projective spinor squaring map PES : P(S)→ P(∧(M))

is bijective, Lα determines a real line sub-bundle LQ(α)
def.= (PES)−1(Lα) of S. A section

ε of S such that Eκ
S (ε) = α is a section of LQ(α). Since such ε must be nowhere-vanishing

(because α is), it exists iff LQ(α) is trivial, which happens iff its first Stiefel–Whitney class
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vanishes. The conclusion follows by setting cQ(α)
def.= w1(LQ(α)) ∈ H1(M,Z2). Notice

that cQ(α) depends only on α and Q, since the Clifford bundle (S, �) is associated to Q

while all admissible pairings of (S, �) are related to each other by automorphisms of S (see
Remark 3.4 in Sect. 3). ��
Definition 4.19 The cohomology class cQ(α) ∈ H1(M,Z2) of the previous proposition is

called the spinor class of the nowhere-vanishing polyform α ∈ ·Z(M).

Remark 4.20 cQ(α) is not a characteristic class of S, since it depends on α.

Lemma 4.21 Let S = (S, �,B ) be a paired real spinor bundle on (M, g), (SL , �L) be the
modification of (S, �) by a real line bundle L on M and q : L⊗2 � RM be an isomorphism of
line bundles. LetB L be thebilinear non-degenerate pairingon SL whoseduality isomorphism
∗L : SL → S∗L satisfies:

∗L ⊗IdSL = ϕ−1L ◦ (∗ ⊗ IdS) ◦ ψq , (56)

where ∗ : S→ S∗ is the duality isomorphism ofB , ϕL : End(SL)→ End(S) is the natural

isomorphism of bundles of unital algebras and ψq
def.= IdS⊗S ⊗ q : SL ⊗ SL → S⊗ S is the

isomorphism of vector bundles induced by q. ThenB L is an admissible pairing on (SL , �L)

which has the same symmetry and adjoint type asB . Hence the triplet SL
def.= (SL , �L ,B L)

is a paired spinor bundle on (M, g) which we call the modification of S by L.

Proof Recall from Proposition 4.4 that �L = ϕ−1L ◦ �. A simple computation gives:

B L(ξ1 ⊗ l1, ξ2 ⊗ l2) = q(l1 ⊗ l2)B (ξ1, ξ2) ∀ξ1, ξ2 ∈ �(S) ∀l1, l2 ∈ �(L),

which immediately implies the conclusion. ��
The following proposition shows that cQ(α) can be made to vanish by changingQ.

Proposition 4.22 Suppose that (M, g) is strongly spin and a let Q be a Spin0(V
∗, h∗)-

structure on (M, g). For every nowhere-vanishing polyform α ∈ ·Z(M), there exists a unique
Spin0(V

∗, h∗)-structure Q′ such that cQ′(α) = 0.

Proof Suppose for definiteness that α ∈ Z+(M). Let (S, �) be the strong real spinor bundle

associated to Q and set L
def.= L+Q(α) ⊂ S. By Remark 4.10, isomorphism classes of

Spin0(V
∗, h∗)-structures on (M, g) form a torsor over H1(M,Z2). Let Q′ = cQ(α) ·Q be

the spin structure obtained from Q by acting in this torsor with cQ(α). Then the strong real
spinor bundle associated toQ′ coincides with (SL , �L). Pick an isomorphism q : L⊗2 � RM

and equip SL with the admissible pairingB L induced fromB by q as in Lemma 4.21. Since
��L = ϕ−1L ◦�� , relation (56) implies that the polarizations E+SL = �−1�L

◦ (∗L ⊗ IdSL ) and

E+S = �−1� ◦ (∗⊗ IdS) of the positive spinor squaring maps of SL and S are related through:

E+SL = E+S ◦ ψq .

Since ψq(L⊗2 ⊗ L⊗2) = L⊗2 (where L⊗2 is viewed as a sub-bundle of SL = S ⊗ L), this
gives E+SL (L⊗2 ⊗ L⊗2) = E+S (L ⊗ L), which implies E+SL (L

⊗2) = E+S (L) = Lα Hence the

line sub-bundle of SL determined by α is the trivializable real line bundle L⊗2 � RM . Thus
cQ′(α) = 0. ��
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4.5 Description of constrained generalized Killing spinors as polyforms

Let S = (S, �,B ) be a paired spinor bundle (with B of adjoint type s) and (W,Q) be a

constraint datum for (S, �). Let Q̂ def.= (�� ⊗ IdW ) ∈ �∗(M,W) be the symbol of Q (see
Definition 4.6). Proposition 3.26 implies:

Lemma 4.23 A spinor ε ∈ �(S) satisfies:

Q(ε) = 0

iff one (and hence both) of the following mutually-equivalent relations holds:

Q̂ � α = 0, α � (π 1−s
2 ◦ τ)(Q̂) = 0,

where α
def.= E+S (ε) ∈ �(M) is the positive polyform square of ε.

Now assume that (M, g) is strongly spin and that (S, �,B ) is the paired spinor bundle

associated to a Spin0(V
∗, h∗)-structure. Set A def.= ∇S − D ∈ �1(M, End(S)) and let

Â def.= (��⊗ IdT ∗M )−1(A) ∈ �1(M,�(M)) be the symbol ofA, viewed as a�(M)-valued
one-form. In this case, we have:

Lemma 4.24 A nowhere-vanishing spinor ε ∈ �(S) satisfies Dε = 0 iff:

∇gα = Â � α + α � (π 1−s
2 ◦ τ)(Â), (57)

where α
def.= E+S (ε) is the positive polyform square of ε.

Proof Assume that ε satisfies ∇Sε = A(ε). We have α ∈ �(End(S)) and:

DS(E+S (ε))(χ) = ∇S(E+S (ε))(χ)− E+S (ε)(∇Sχ)

= ∇S(B (χ, ε) ε)−B (∇Sχ, ε) ε

= B (χ,∇Sε) ε +B (χ, ε)∇Sε = B (χ,A ε) ε +B (χ, ε)A ε

= E+S (ε)(At χ)+A(E+S (ε))(χ)

for all χ ∈ �(S), where At is obtained by fiberwise application of the B -transpose of
Lemma 3.15. The equation above implies:

DS(E+S (ε)) = A ◦ E+S (ε)+ E+S (ε) ◦At . (58)

Applying �−1� and using Lemma 3.15 and Proposition 4.1 gives (57).
Conversely, assume that α satisfies (57). Applying �� gives Eq. (58), which reads:

B (χ,DXε) ε +B (χ, ε)DXε = 0 ∀χ ∈ �(S) ∀X ∈ X(M). (59)

Hence DXε = β(X)ε for some β ∈ �1(M). Using this in (59) gives:

B (χ, ε) β ⊗ ε = 0 ∀χ ∈ �(S).

This implies β = 0, sinceB is non-degenerate and ε is nowhere-vanishing. Hence Dε = 0.
��
Remark 4.25 If A is skew-symmetric with respect to B , then (57) simplifies to:

∇gα = Â � α − α � Â. (60)

In applications to supergravity, A need not be skew-symmetric relative to B .
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Theorem 4.26 Suppose that (M, g) is strongly spin and let S = (S, �,B ) be a paired spinor
bundle associated to the Spin0(V

∗, h∗)-structureQandwhose admissible formB has adjoint
type s. Let A ∈ �1(M, End(S)) and (W, Q) be a linear constraint datum for (S, �). Then
the following statements are equivalent:

(a) There exists a nontrivial generalized constrained Killing spinor ε ∈ �(S) with respect
to (A,W,Q).

(b) There exists a nowhere-vanishing polyform α ∈ �(M) with vanishing cohomology
class cQ(α) which satisfies the following algebraic and differential equations for every
polyform β ∈ �(M):

α � β � α = S(α � β) α,
(
π

1−s
2 ◦ τ

)
(α) = σs α, (61)

∇gα = Â � α + α �
(
π

1−s
2 ◦ τ

)
(Â), Q̂ � α = 0 (62)

or, equivalently, satisfies the equations:

α � α = S(α) α,
(
π

1−s
2 ◦ τ

)
(α) = σs α, α � β � α = S(α � β) α, (63)

∇gα = Â � α + α �
(
π

1−s
2 ◦ τ

)
(Â), Q̂ � α = 0, (64)

for some fixed polyform β ∈ �(M) such that S(α � β) �= 0.

If ε ∈ �(S) is chiral of chirality μ ∈ {−1, 1}, then we have to add the condition:

∗ (π ◦ τ)(α) = μα.

The polyform α as above is determined by ε through the relation:

α = Eκ
S (ε)

for some κ ∈ {−1, 1}. Moreover, α satisfying the conditions above determines a nowhere-
vanishing real spinor ε satisfying this relation, which is unique up to sign.

Remark 4.27 Suppose that α ∈ �(M) is nowhere-vanishing and satisfies (61) and (62) but
we have cQ(α) �= 0. Then Proposition 4.22 implies that there exists a unique Spin0(V

∗, h∗)-
structureQ′ such that cQ′(α) = 0. Thus α is the square of a global section of a paired spinor
bundle (S′, �′,B ′) associated toQ′. Hence a nowhere-vanishing polyform α satisfying (61)
and (62) corresponds to the square of a generalized Killing spinor with respect to a uniquely-
determined Spin0(V

∗, h∗)-structure.

Proof The algebraic conditions in the Theorem follow from the pointwise extension of The-
orem 3.20 and Corollary 3.28. The differential condition follows from Lemma 4.24, which
implies that DAε = 0 holds iff (62) does upon noticing that ε ∈ �(S) vanishes at a point
m ∈ M iff its positive polyform square α satisfies α|m = 0. The condition cQ(α) = 0 follows
from Proposition 4.18. ��

In Sects. 5 and 6, we apply this theorem to real Killing spinors on Lorentzian four-
manifolds and to supersymmetric configurations of heterotic supergravity on principal
bundles over such manifolds.
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4.6 Real spinors on Lorentzian four-manifolds

Let (M, g) be a spin Lorentzian four-manifold of “mostly plus” signature such that
H1(M,Z2) = 0. By Remark 4.10, this condition insures that (M, g) is strongly spin, with
a Spin(V ∗, h∗)-structure, Spin0(V ∗, h∗)-structure and real spinor bundle (S, �) which are
unique up to isomorphism. Let S = (S, �,B ), where the admissible pairing B is skew-
symmetric and of negative adjoint type. The spinor class cQ(α) (see Definition 4.19) of any

nowhere-vanishing polyform α ∈ ·Z(M) vanishes since H1(M,Z2) = 0. Hence any such α

is a signed square of a nowhere-vanishing spinor. We will characterize real spinors on (M, g)
through certain pairs of one-forms.

Definition 4.28 A pair of nowhere-vanishing one-forms (u, l) ∈ �1(M)×�1(M) is called
parabolic if:

g∗(u, u) = 0, g∗(l, l) = 1, g∗(u, l) = 0,

i.e. u and l are mutually-orthogonal, with u timelike and l spacelike of unit norm. Two
parabolic pairs of one-forms (u, l) and (u′, l ′) are called strongly equivalent if there exists a
sign factor ζ ∈ {−1, 1} and a real constant c ∈ R such that:

u′ = ζu and l ′ = l + cu.

Let P(M, g) denote the set of parabolic pairs of one-forms defined on (M, g).

Definition 4.29 A rank two vector sub-bundle� of T ∗M is called a distribution of parabolic
2-planes in T ∗M if, for all m ∈ M , the fiber �m is a parabolic 2-plane in the Minkowski
space (T ∗mM, g∗m).

Definition 4.30 Let� is a distribution of parabolic 2-planes in T ∗M . The real line sub-bundle

Kh(�)
def.= ker(g∗�) (where g∗� is the restriction of g∗ to�) is called the null line sub-bundle

of � and � is called co-orientable if the quotient line bundle Nh(�)
def.= �/Kh(�) is

trivializable. In this case, a co-orientation of � is an orientation of �/Kh(�).

A co-orientation of � amounts to the choice of a sub-bundle of half-planes H ⊂ � such
thatHm is one of the two spacelike half-planes of�m for each m ∈ M . In this case, the pair
(�,H) is called a co-oriented distribution of parabolic 2-planes in T ∗M .

Definition 4.31 Let � be a distribution of parabolic 2-planes in T ∗M . A local frame (u, l)
of � defined on a non-empty open subset U ⊂ V is called a local parabolic frame if (u, l)
is a parabolic pair of one-forms for the Lorenzian manifold (U , g|U ). Such a frame is called
global if U = M .

Local parabolic frames of� defined aboveU are determined up to transformations of the
form:

u′ = bu and l ′ = ζ l + cu,

where ζ ∈ {−1, 1} and b, c are nowhere-vanishing smooth functions defined on U . Notice
that � admits a global parabolic frame iff it is trivializable. Since H1(M,Z2) = 0, any
smooth section of the projective bundle P(S) lifts to a nowhere-vanishing section of S and
hence we have:

�(P(S)) = �(Ṡ)/C∞(M)×,

123



Spinors of real type as polyforms and the generalized Killing equation 1397

where the multiplicative group C∞(M)× of nowhere-vanishing real-valued functions defined
on M acts on �(S) through multiplication of sections by the corresponding function. The
results of Sect. 3.6.3 imply:

Theorem 4.32 There exists a natural bijection between the set �(P(S)) = �(Ṡ)/C∞(M)×
and the set of trivializable and co-oriented distributions (�,H) of parabolic 2-planes in
T ∗M. Moreover, there exist natural bijections between the following two sets:

(a) The set �(Ṡ)/Z2 of sign-equivalence classes of nowhere-vanishing real spinors ε ∈
�(S).

(b) The set of strong equivalence classes of parabolic pairs of one-forms (u, l) ∈ P(M, g).

Remark 4.33 Let (u, l) be a parabolic pair of one-forms corresponding to a nowhere-

vanishing spinor ξ ∈ �(S). Then α
def.= u + u ∧ l is a signed polyform square of ξ by

Sect. 3.6.3.

4.7 Real spinors on globally hyperbolic Lorentzian four-manifolds

Let (M, g) be an oriented and spin Lorentzian four-manifold of “mostly plus” signature such
that H1(M,Z2) = 0. As before, let S = (S, �,B ) be a paired real spinor bundle on (M, g),
where B is skew-symmetric and of negative adjoint type.

Proposition 4.34 Let v ∈ �1(M) be a timelike one-form such that g∗(v, v) = −1. Let
Pv : T ∗M → Lv be the orthogonal projection onto the real line sub-bundle Lv of T ∗M
determined by v. For any parabolic pair (u, l) on (M, g), there exists a unique smooth
function f ∈ C∞(M) such that:

Pv(l + f u) = 0. (65)

Moreover, there exist exactly two parabolic pairs of one-forms (u′, l ′) which are strongly-
equivalent with (u, l) and satisfy Pv(l ′) = 0, namely:

u′ = u, l ′ = l + f u and u′ = −u, l ′ = l + f u

and every pair (u′′, l ′′) which is equivalent with (u, l) and satisfies Pv(l ′′) = 0 has the form:

u′′ = bu, l ′′ = l + f u

where b ∈ C∞(M)× is a nowhere-vanishing smooth function.

Proof We have:

Pv(α) = −g∗(α, v)v, ∀α ∈ �1(M).

Notice that g∗(u, v) �= 0 since u �= 0 is lightlike and v is timelike. Condition (65) amounts
to:

g∗(l, v)+ f g∗(u, v) = 0,

which is solved by f = − g∗(l,v)
g∗(u,v) . The remaining statements follow immediately from the

definition of equivalence and strong equivalence of parabolic pairs (see Definition 3.30). ��
LetPv(M, g) denote the set of parabolic pairs of one-forms (u, l) on (M, g)which satisfy

Pv(l) = 0. The groupZ2 acts on this set by changing the sign of u while leaving l unchanged.
Proposition 4.34 and Theorem 4.32 imply:
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Corollary 4.35 With the assumptions of the previous proposition, there exists a bijection
between the sets �(Ṡ)/Z2 and Pv(M, g)/Z2.

Assume next that (M, g) is globally hyperbolic. By a theorem of Bernal and Sánchez
[14], it follows that (M, g) is isometric to R× N equipped with the warped product metric
g = −F dt⊗dt+k(t), where N is an oriented three-manifold, F ∈ C∞(R×N ) is a strictly
positive function and k(t) is a Riemannian metric on N for every t ∈ R. Let V2(N , k(t)) be
the bundle of ordered orthonormal pairs of one-forms on N . Since N is oriented, any element
of V2(N , k(t)) determines an element of the principal bundle PSO(3)(N , k(t)) of oriented
frames of (N , k(t)), showing that V2(N , k(t)) is a principal SO(3)-bundle. Let V2 be the
fiber bundle defined on M = R× N whose fiber at (t, n) ∈ R× M is given by:

V2(t, n)
def.= V2(T

∗
n N , k(t)n),

where V2(N , k(t))n = V2(T ∗n N , k(t)n) is the manifold of k(t)n-orthonormal systems of two
elements of T ∗n N . Consider the fiberwise involution i1 of V2 defined through:

i1(e1, e2)
def.= (−e1, e2) ∀(e1, e2) ∈ V2.

and let Z2 act on the set C∞(R × N )× × �(V2) through the involution:

(f, s)→ (−f, i1(s)) ∀f ∈ C∞(R × N )× ∀s ∈ �(V2).

Proposition 4.36 Consider a globally hyperbolic Lorentzian four-manifold:

(M, g) = (R× N ,−F dt ⊗ dt ⊕ k(t))

such that N is oriented and spin and H1(N ,Z2) = 0. Then there exists a bijection between
the set �(Ṡ)/Z2 of sign-equivalence classes of nowhere-vanishing real spinors defined on
M and the set [C∞(R × N )× × �(V2)]/Z2. Moreover, there exists a bijection between the
sets �(P(S)) and �(V2)/Z2, where Z2 acts on �(V2) through the involution i1.

Proof Let v
def.= F

1
2 dt and consider a parabolic pair of one-forms (u, l) on M such that

Pv(l) = 0. Since l has unit norm and is orthogonal to v, it can be viewed as a family of
one-forms (parameterized by t ∈ R) defined on N . We decompose u orthogonally as:

u = Pv(u)+ u⊥ = −g∗(u, v) v ⊕ u⊥,

where u⊥ def.= u− Pv(u) = u+ g∗(u, v) v and g∗(u, v), g∗(u⊥, u⊥) are nowhere-vanishing.
The spacelike 1-form u⊥ satisfies:

g∗(u⊥, u⊥) = g∗(u, v)2.

Thus u can be written as:

u = f v ⊕ |f| eu,
where:

eu
def.= u⊥

g∗(u⊥, u⊥) 1
2

= u⊥

|g∗(u, v)| and f
def.= −g∗(u, v) ∈ C∞(R× N ).

The pair (eu, l) determines an orthonormal pair of one-forms (eu(t), l(t)) on (N , k(t)) for
all t ∈ R, which gives a section s of the fiber bundle V2. It is clear that the parabolic
pair (u, l) determines and is determined by the pair (f, s). The conclusion now follows from
Corollary 4.35 bynoticing that the transformationu→ bu (withb ∈ C∞(M,R)) corresponds
to f → b f and eu → sign(b)eu . ��
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The three-manifold N is parallelizable since it is connected, oriented and spin. This holds
for both compact and open M by considering the Whitehead tower of BO(3) (the classifying
space of O(3)) and using the fact that π3(BSpin(3)) = 0. Hence there exists a unique
family {e(t)}t∈R of one-forms on N such that (eu(t), l(t), e(t)) is an oriented orthonormal
global frame of (T ∗N , kt ) for all t ∈ R. This produces a parallelization of (M, g) given by
(v, eu(t), l(t), e(t))t∈R. Let:

R
def.= diag(−1, 0, 0) ∈ SO(3).

and let Z2 act on C∞(R× N )× × C∞(N ,SO(3)) through the involution:

(f, ψ)→ (−f,AdR ◦ ψ) ∀f ∈ C∞(R× N )× ∀ψ ∈ C∞(N ,SO(3)),

where:

(AdR ◦ ψ)(t, n) = R ◦ ψ(t, n) ◦ R−1 ∀(t, n) ∈ R× N .

The previous proposition implies:

Corollary 4.37 Let (M, g) be as in Proposition 4.36 and fix a global oriented orthonormal
frame of T ∗N. Then there exists a bijection between the set �(Ṡ)/Z2 of sign equiv-
alence classes of nowhere-vanishing real spinors defined on M and the set [C∞(R ×
N )× × C∞(N , SO(3))]/Z2. Moreover, there exists a bijection between the sets �(P(S))
and C∞(N , SO(3))/Z2, where Z2 acts on C∞(N , SO(3)) through the involution:

ψ → AdR ◦ ψ ∀ψ ∈ C∞(N , SO(3)).

We hope that this characterization can be useful in the study of globally hyperbolic
Lorentzian four-manifolds admitting spinors satisfying various partial differential equations.

5 Real Killing spinors on Lorentzian four-manifolds

Definition 5.1 Let (M, g) be a pseudo-Riemannian manifold which is oriented and strongly
spin and (S, �) be a strong real spinor bundle on (M, g). Let λ ∈ R be a real number. A real
Killing spinor of Killing constant λ

2 is a global section ε ∈ �(S) which satisfies:

∇S
Xε =

λ

2
X � · ε ∀ X ∈ X(M).

It is called a parallel spinor if λ = 0.

Real Killing spinors are (unconstrained) generalized Killing spinors relative to the con-
nectionD = ∇S−A defined on S, whereAX = λ

2��(X �) ∈ �(End(S)) for all X ∈ X(M).

The End(S)-valued one-form A has symbol Â ∈ �1(M, T ∗M) given by ÂX = λ
2 X

�. In
this section, we study real Killing spinors when (M, g) is a spin Lorentzian four-manifold
of “mostly plus” signature (3, 1) such that H1(M,Z2) = 0.

Remark 5.2 When p − q ≡8 0, 2, a real Killing spinor can be viewed as a complex Killing
spinor which is preserved by a Spin0(p, q)-invariant real structure on the complex spinor
bundle and which has real (in signature (p, q)) or purely imaginary (in signature (q, p))
Killing constant. When comparing signatures, note that [15] has a sign in the Clifford rela-
tion opposite to our convention (19). In the conventions of loc. cit., the real Killing spinors
considered below correspond to special cases of imaginary Killing spinors, which were
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studied in [16,73]. Reference [73] proves that a Lorentzian four-manifold admitting a non-
trivial imaginary Killing spinor (which is a real Killing spinor in our convention) with null
Dirac current is locally conformal to a Brinkmann space-time7. In this section, we give
a global characterization of Lorentzian four-manifolds admitting real Killing spinors (see
Theorem 5.3).

5.1 Describing real Killing spinors through differential forms

For the remainder of this section, let (M, g) be a spin Lorentzian four-manifold of “mostly
plus” signature which satisfies H1(M,Z2) = 0. Let (S, �) be a spinor bundle on (M, g).
Since H1(M,Z2) vanishes, the spinor bundle is automatically strongly spin and unique up
to isomorphism. We endow it with an admissible pairingB which is is skew-symmetric and
of negative adjoint type.

Theorem 5.3 (M, g) admits a nontrivial real Killing spinor with Killing constant λ
2 iff it

admits a parabolic pair of one-forms (u, l) which satisfies:

∇gu = λ u ∧ l, ∇gl = κ ⊗ u + λ(l ⊗ l − g) (66)

for some κ ∈ �1(M). In this case, u� ∈ X(M) is a Killing vector field with geodesic integral
curves.

Remark 5.4 Our conventions for the wedge product of one-forms are as follows, where Sk
denotes the permutation group on k letters:

θ1 ∧ · · · ∧ θk
def.=

∑
σ∈Sk

ε(σ )θσ(1) ⊗ · · · ⊗ θσ(k).

where θ1, . . . , θk ∈ �1(M).

Proof Recall from Sect. 4.6 that a spinor ξ associated to (u, l) has a signed polyform square
given by α = u + u ∧ l. Theorem 4.26 shows that ξ is a real Killing spinor iff:

∇g
X (u + u ∧ l) = ÂX � (u + u ∧ l)+ (u + u ∧ l) � (π ◦ τ)(ÂX ) ∀X ∈ X(M),

where ÂX = λ
2 X

�. Expanding the geometric product and isolating degrees, this equation
gives:

∇g
Xu = λ

(
u(X)l − l(X)u

)
, ∇g

X (u ∧ l) = λ X � ∧ u,

which in turn amounts to (66) for some κ ∈ �1(M). The vector field u� is Killing since
∇gu is an antisymmetric covariant 2-tensor by the first equation in (66). Since u is null and
orthogonal to l, the same equation gives ∇g

u�
u = 0. Hence ∇g

u�
u� = 0, i.e. u� is a geodesic

vector field. ��
Remark 5.5 The first equation in (66) gives:

∇g
Xu

� = λ (u(X) l� − l(X) u�) ∀X ∈ X(M).

Hence the null vector field u� ∈ X(M) is not recurrent, i.e. ∇g does not preserve the rank
one distribution spanned by u�. Lorentzian manifolds admitting recurrent vector fields are
called almost decent and were studied extensively (see [17,36,37] and references therein).

7 Recall that a Brinkmann space-time is a four-dimensional Lorentzian manifold equipped with a non-
vanishing parallel null vector field.
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Taking λ = 0 in Theorem 5.3 gives:

Corollary 5.6 (M, g) admits a nontrivial parallel real spinor iff it admits a parabolic pair of
one-forms (u, l) which satisfies the following conditions for some one-form κ ∈ �1(M):

∇gu = 0, ∇gl = κ ⊗ u. (67)

Although Lorentzian manifolds admitting parallel spinors were studied extensively in the
literature (see [18,72] and references therein), Corollary 5.6 seems to be new. Recall that
u coincides up to sign with the Dirac current of any of the spinors ξ,−ξ determined by
the parabolic pair (u, v) (see Remark 3.23). Reference [73] shows that a Lorentzian four-
manifold admitting an (imaginary, in the conventions of loc. cit) Killing spinor with null
Dirac current is locally conformally Brinkmann. The following proposition recovers this
result in our approach.

Proposition 5.7 Suppose that (M, g) admits a nontrivial real Killing spinor with nonzero
Killing constant λ

2 �= 0 and let (u, l) be a corresponding parabolic pair of one-forms.
Then u is locally conformally parallel iff l is locally equivalent to a closed one-form l ′ by
transformations of the form (70). In this case, (M, g) is locally conformal to a Brinkmann
space-time.

Proof The one-form u is locally conformally parallel iff for sufficiently small non-empty
open subsets U ⊂ M there exists f ∈ C∞(U ) such that the metric ĝ = e f g satisfies
∇ ĝu = 0 on U . This amounts to:

0 = ∇ ĝ
X u = ∇g

Xu + d f (X)u + d f (u�)X � − u(X)d f

= λ(u(X)l − l(X)u)+ d f (X)u + d f (u�)X � − u(X)d f ∀X ∈ X(U ), (68)

where in the last equality we used the first equation in (66). Taking X = u� and using the
fact that u is nowhere-vanishing, null and orthogonal to l gives (d f )(u�) = 0, whence (68)
reduces to:

u ⊗ (d f − λl) = (d f − λl)⊗ u,

which amounts to the condition d f = λ(l+cu) for some c ∈ C∞(U ). This has local solutions
f iff l+ cu is closed for some locally-defined function c. In this case, the nowhere-vanishing
null one form u is ∇ ĝ-parallel and hence (M, g) is locally conformally Brinkmann. ��

5.2 The Pfaffian system and its consequences

Antisymmetrizing the two equations in (66) gives the Pfaffian system:

du = 2λ u ∧ l, dl = κ ∧ u, (69)

which implies:

Lemma 5.8 Let (u, l) be a parabolic pair of one-forms which satisfies Eq. (66) for some
κ ∈ �1(M) and λ ∈ R and let Cu ⊂ T M be the rank one distribution spanned by u�. Then
l is closed if and only iff κ ∈ �(Cu). Moreover, u is closed iff λ = 0.

Remark 5.9 Let:

l ′ = l + cu, (70)
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where c ∈ C∞(M). Then the parabolic pair (u, l) satisfies (66) for the one-form κ ∈ �1(M)

iff the parabolic pair (u, l ′) satisfies them with κ replaced by:

κ ′ = κ + dc − λ(c2u + 2cl). (71)

Similarly (−u, l) satisfies them with κ replaced by−κ . In particular, a nontrivial real Killing
spinor on (M, g) determines κ up to transformations of the form:

κ → ζκ + dc − λ(c2u + 2cl), with ζ ∈ {−1, 1} and c ∈ C∞(M).

Moreover, (u, l) satisfies (69) for κ iff (u, l ′) satisfies them with κ replaced by κ ′. Similarly,
(−u, l) satisfies (69) with κ replaced by −κ .

By the Frobenius theorem, the first equation in (69) implies that the distribution ker(u) =
C⊥u ⊂ T M integrates to a codimension one foliation of M which is transversally-orientable
since u is nowhere-vanishing. Since Cu is contained in C⊥u , this foliation is degenerate in the
sense that the restriction of g to C⊥u is a degenerate vector bundle metric. In particular, the
three-dimensional vector space C⊥u,m is tangent to the causal cone Lm ⊂ TmM along the null
line Cu,m at any point m ∈ M (see Appendix A) and the complement C⊥u \ Cu consists of
spacelike vectors. Since l is orthogonal to u, we have l� ∈ �(C⊥u ). The vector fields u� and
l� span a topologically trivial distribution �� of parabolic 2-planes contained in Cu .

Let S(C⊥u ) be any complement of Cu in C⊥u :

C⊥u = Cu ⊕ S(C⊥u ).

Such a complement is known as a screen bundle of C⊥u (see [24] and references therein);
in our situation, it can be chosen such that l� ∈ �(S(C⊥u )), in which case we can further
decompose S(C⊥u ) = Cl ⊕ L , where Cl is the rank one distribution spanned by l� and L is
any rank one distribution complementary to �� in C⊥u . For any choice of the screen bundle,
the restriction of g to S(C⊥u ) is non-degenerate and positive-definite and hence admits an
orthogonal complement in T M which has the form Cu ⊕ Cv , where Cv ⊂ T M is the rank
one distribution spanned by the unique null vector field v� ∈ X(M) which is orthogonal to
S(C⊥u ) and satisfies g(u�, v�) = 1. This gives:

T M = (Cv ⊕ Cu)⊕ S(C⊥u ), (72)

which allows us to write the metric as:

g = u ⊗ v + v ⊗ u + q, (73)

where q = g|S(C⊥u ) and v is the one-form dual to v�.

Lemma 5.10 Suppose that (M, g) admits a nontrivial real Killing spinor ε ∈ �(S) with
Killing constant λ

2 �= 0 and let (u, l) be a corresponding parabolic pair of one-forms. Around
every point in M, there exist localWalker-like coordinates (xv, xu, x1, x2) with u� = ∂xu in
which the metric takes the form:

ds2g = F (dxv)2 + 2Kdxvdxu + ωi dx
vdxi + qi j dx

i dx j , (74)

where F , K, ωi and qi j are locally-defined functions which do not depend on xu and such
that K is nowhere-vanishing. In these coordinates, the one-forms u and l can be written as:

u = Kdxv, l = − 1

2λ
d log(K)+ s dxv = − 1

2λ
d log(K)+ s

K
u,

for some locally-defined function s.
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Proof Since C⊥u is integrable and of corank one and Cu ⊂ C⊥u has rank one, there exist local
coordinates (xv, xu, x1, x2) on M such that ∂xu = u�, the vector fields ∂xu , ∂x1 , ∂x2 span C

⊥
u

and ∂xv is null. In such local coordinates, we have:

u = guv dx
v, with guv = u(∂xv ) = g(∂xu , ∂xv ).

Notice that guv is nowhere-vanishing since u is. The vector fields ∂x1 and ∂x2 span an inte-
grable local screen S(C⊥u ) for C⊥u . Let v be the unique null one form which vanishes along
S(C⊥u ) and satisfies v(∂xu ) = 1. Then the vector field v� satisfies the assumptions which
allow us to write the metric in the form (73). Writing v = vv dxv + vu dxu + vi dxi , the
condition v(∂xu ) = 1 implies vu = 1 and (73) gives:

g = 2 guv vv dx
v ⊗ dxv + guv (dx

v ⊗ dxu + dxu ⊗ dxv)

+guv vi (dxv ⊗ dxi + dxi ⊗ dxv)+ qi j dx
i ⊗ dx j .

Relabeling coefficients gives (74) with F = 2guvvv , K = guv and ωi = 2guvvi . The
coefficients of g do not depend on xu since u� = ∂xu is a Killing vector field. In these
coordinates we have u = K dxv (henceK is nowhere-vanishing) and the first equation of the
Pfaffian system (69) becomes:

(dK+ 2λK l) ∧ dxv = 0,

showing that:

l = − 1

2λ
d log(K)+ s dxv

for some locally-defined function s. ��
Lemma 5.10 gives existence of Walker-like coordinates on Lorentzian four-manifolds

admitting real Killing spinors. These generalize the classical Walker coordinates [87] of
Lorentzian manifolds which admit a parallel null line [17,37,87]. The main difference is that
our u is not recurrent. On the other hand, our u is Killing—a condition which may not hold
on generic Walker manifolds.

Example 5.11 The simply-connected four-dimensional anti-de Sitter space AdS4 admits
Walker-like coordinates (xv, xu, x, y) in which the Anti-de Sitter metric g reads:

ds2AdS4 =
1

c y2
[
dxvdxu + (dx)2 + (dy)2

]
,

where c is a positive constant equal to minus the curvature. It is well-known [6,46,74] that
AdS4 admits a four-dimensional space of real Killing spinors.

5.3 The locally stationary and locally integrable case

Definition 5.12 Suppose that (M, g) admits a nontrivial real Killing spinor ε ∈ �(S) with
nonzero Killing constant. We say that (M, g, ε) is:

• locally stationary if, around every point, the Walker-like coordinates induced by ε are
such that ∂xv is Killing.
• locally integrable if, around every point, theWalker-like coordinates coordinates induced

by ε are such that ω1 = ω2 = 0.
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• locally static if, around every point, the Walker-like coordinates induced by ε are such
that ∂xv is Killing, ω1 = ω2 = 0 and F = 0.

Remark 5.13 Notice that the locally defined rank two distribution � spanned by ∂xv and
∂xu is nondegenerate (and hence admits a non-vanishing timelike section) since ∂xu is null
and K = g(∂xu , ∂xv ) is locally nowhere-vanishing. If (M, g, ε) is locally stationary in the
sense above then some linear combination of ∂xv and ∂xu is a timelike Killing vector field,
whence (M, g) is locally stationary in the standard sense. If (M, g, ε) is locally integrable,
then the orthogonal complement of � is an integrable spacelike distribution of rank two. If
(M, g, ε) is locally static then ∂xv is null and (M, g) admits a local hypersurface orthogonal
to a time-like Killing vector field X (namely X = ∂xv +∂xu or X = ∂xv −∂xu ), hence (M, g)
is locally static in the standard sense.

Theorem 5.14 The following statements are equivalent:

(a) There exists a nontrivial real Killing spinor ε ∈ �(S) with Killing constant λ
2 �= 0 on

(M, g) such that (M, g, ε) is locally stationary and locally integrable.
(b) (M, g) is locally isometric to a Lorentzian four-manifold of the form:

(M̂, ds2ĝ) =
(
R
2 × X , F (dxv)2 + 2K dxvdxu + q

)
,

where (xv, xu) are Cartesian coordinates on R
2, X is a non-compact, oriented and

simply-connected surface endowed with the Riemannian metric q and F,K ∈ C∞(X)

are functions on X (with K nowhere-vanishing) which satisfy:

∇qdK− dK⊗ dK
2K

= 2λ2 K q, �qK = 6λ2K, ∂xu s = κ(∂xu )K,

q∗(dK, dF)

4 λK
− ∂xvs = λ(F − s2)− κ(∂xv )K, ∂xi s = κ(∂xi )K (75)

for some function s ∈ C∞(M) and some one-form κ ∈ �1(M), where x1, x2 are local
coordinates on X.

In this case, the formulas:

u = K dxv, l = − 1

2λ
d log(K)+ s dxv. (76)

give a parabolic pair of one-forms (u, l) corresponding to the real Killing spinor ε, which
satisfy Eq. (66) with respect to the one-form κ . Moreover, (M, g) is Einstein with Einstein
constant � iff � = −3λ2 and the following equations are satisfied, where Ricq is the Ricci
tensor of q:

�qF − q∗(dK, dF)

K
= 2 λ2F, Ricq = −λ2q, (77)

in which situation (X , q) is a hyperbolic Riemann surface.

Remark 5.15 Here, the Laplacian �q is defined through:

�q( f )
def.= tr(∇qgradq f ) ∀ f ∈ C∞(X).

The second equation in (75):

�qK = 6λ2K, (78)
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is a “wrong sign” eigenvalue problem for the Laplacian on X . Since�q is negative semidef-
inite, no nontrivial solutions to (78) exists unless X is non-compact. The function s can be
chosen at will as long as Eq. (75) hold, since different choices produce the same signed
polyform square α = u + u ∧ l of ε, namely:

α = K dxv + 1

2λ
dK ∧ dxv. (79)

We can exploit this freedom to choose:

s2 = F − q∗(dK, dF)

4λ2K
, (80)

which is independent of xv and xu . For this choice of s, Eq. (75) reduce to:

κ = ds

K
, ∇qdK− dK⊗ dK

2K
= 2λ2 K q, �qK = 6λ2K (81)

and hence κ is a one-form defined on X which is completely determined by λ, F , K and q .
In particular, the condition that (M, g) admits a nontrivial real Killing spinor with Killing
constant λ

2 such that (M, g, ε) is locally stationary and locally integrable reduces to the last
two equations in (81), which involve only λ, K and q but do not involve F . This generalizes
a statement made in [46, page 391]. On the other hand, the Einstein condition (77) involves
both F and K. Strictly speaking, the “gauge choice” (80) requires:

F − q∗(dK, dF)

4 λ2 K
≥ 0

if l is to be well-defined, since the formula for l involves s. However, the real Killing spinor
associated to (u, l) is well-defined and satisfies the Killing spinor equations even when s2 is
formally negative somewhere on M , because ε is determined by the polyform (79), which is
independent of s.

Proof By Lemma 5.10 and Theorem 5.3, we must solve Eq. (66) for u and l of the form (76)
, which automatically satisfy the first equation of the Pfaffian system (69). The first equation
in (66) is equivalent to the condition that the vector field u� = ∂xu is Killing, together with
the condition the first equation in (69) holds. Thus it suffices to consider the second equation
in (66). Evaluating this equation on ∂xv and ∂xu gives the system:

∇g
∂xv

l = κ(∂xv ) u + λ l(∂xv ) l − λ g(∂xv )

∇g
∂xu

l = κ(∂xu ) u + λ l(∂xu ) l − λ g(∂xu ),

which reduce to the following equations for u and l as in (76):

q∗(dK, dF)

4λK
− ∂xvs = λF − λ s2 − κ(∂xv )K,

q∗(dK, dK)

4λK
= λK, ∂xu s = κ(∂xu )K. (82)

On the other hand, restricting the second equation in (66) to X and using (76) gives:

∇qdK− dK⊗ dK
2K

= 2λ2 K q, ∂xi s = κ(∂xi )K. (83)

Furthermore, taking the trace of (83) and combining it with the third equation in (82) we
obtain�qK = 6λ2K. Together with relations (82) and (83), this establishes the system (75).
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Consider now the Einstein equation Ricg = � g on (M, g). The only non-trivial components
are:

Ricg(∂xv , ∂xv ) = �F, Ricg(∂xu , ∂xv ) = �K, Ricg|T X = � q.

Direct computation gives:

Ricg(∂xv , ∂xv ) = −1

2
�qF + 1

2K
q∗(dK, dF)− F

2K2 q∗(dK, dK),

Ricg(∂xv , ∂xu ) = −1

2
�qK, Ricg|T X = Ricq − ∇

qdK
dK

+ dK⊗ dK
2K2 .

Combining these relations with (75), we conclude. ��
Remark 5.16 Lorentzian four-manifolds admitting nontrivial real Killing spinors are super-
symmetric configurations of four-dimensional N = 1 minimal AdS supergravity [28,81].
Supersymmetric solutions of that theory are Lorentzian four-manifolds admitting nontrivial
real Killing spinors which satisfy the Einstein equation with negative cosmological constant.
Hence Theorem 5.14 characterizes all locally integrable and locally stationary supersym-
metric solutions of this theory. To our best knowledge, the classification of four-dimensional
Lorentzian manifolds admitting real Killing spinors is currently open. Theorem 5.3 and [37]
could be used to attack this problem in full generality.

Theorem 5.14 suggests a strategy to construct Lorentzian four-manifolds admitting real
Killing spinors. Fix a simply-connected (generally incomplete) hyperbolic Riemann surface
(X , q) and consider the eigenspace of the Laplacian on (X , q) with eigenvalue 6λ2. In this
space, look for a function K which satisfies the first equation in (75). If such exists, it gives
a real Killing spinor for any F ∈ C∞(X). Below, we give special classes of solutions when
(X , q) is the Poincaré half-plane.

5.4 Special solutions from the Poincaré half-plane

Take:

(M, ds2g) =
(

R
2 ×H, F (dxv)2 + 2K dxvdxu + c

(dx)2 + (dy)2

y2

)
, (84)

where x, y are global coordinates on the Poincaré half-plane H = {
(x, y) ∈ R

2 | y > 0
}

and F,K are real-valued functions defined on H (with K nowhere-vanishing), while c > 0
is a constant. Let q denote the metric c dx⊗dx+dy⊗dy

y2
on H. Theorem 5.14 shows that such

(M, g) admits a real Killing spinor with Killing constant λ
2 �= 0 iff:

∇qdK− dK⊗ dK
2K

= 2λ2 K q, �qK = 6λ2K, (85)

in which case (M, g) is Einstein iff:

�qF − q∗(dK, dF)

K
= 2 λ2F . (86)

Direct computation shows that Eq. (85) are equivalent with:

∂2xK−
∂yK
y
= (∂xK)2

2K
+ 2λ2c

y2
K, ∂2yK+

∂yK
y
= (∂yK)2

2K
+ 2λ2c

y2
K,

∂2xyK+
∂xK
y
= ∂xK∂yK

2K
, y2

(
∂2xK+ ∂2yK

)
= 6 λ2cK.
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This gives the following:

Corollary 5.17 The Lorentzian four-manifold (84) admits a nontrivial real Killing spinor with
Killing constant λ

2 �= 0 iff:

∂2yK+
∂yK
y
= (∂yK)2

2K
+ 2λ2c

y2
K, ∂2xyK+

∂xK
y
= ∂xK∂yK

2K
,

(∂xK)2 + (∂yK)2 = 4 λ2c

y2
K2, y2

(
∂2xK+ ∂2yK

)
= 6 λ2.cK. (87)

In this case, it is Einstein iff F satisfies (86).

Choosing F to not satisfy (86) produces large families of non-Einstein Lorentzian four-
manifolds admitting real Killing spinors.

Example 5.18 TakingK = F = c
y2

gives a solution of (87) iff c λ2 = 1. Hence the Lorentzian
four-manifold:

(M, ds2g) =
(

R
2 ×H,

1

λ2y2
[
(dxv)2 + 2 dxvdxu + (dx)2 + (dy)2

])

admits a real Killing spinor. This is the AdS4 space with metric written in horospheric
coordinates [44], which is well-known to admit the maximal number (namely four) of real
Killing spinors [11].

More examples can be constructed by solving in more generality the eigenvector problem
for the Laplace operator of the Poincaré half plane and checking which solutions satisfy the
first equation in (85). We illustrate this by constructing solutions obtained through separation
of variables. Set:

K = kx ky,

where kx ∈ C∞(H) depends only on x and ky ∈ C∞(H) depends only on y. The second
equation in (87) gives:

k̇x

(
k̇y + 2ky

y

)
= 0, (88)

where the dot denotes derivation with respect to the corresponding variable. When k̇x = 0,
Eq. (87) reduce to:

∂yK+ 2

y
K = 0, λ2c = 1,

with general solution K = c0y−2 (where c0 �= 0 is a constant). If k̇x �= 0, then (88) gives
k̇y + 2ky

y = 0, so ky = c0y−2 for a non-zero constant c0. Using this in (87) gives k̇x = 0, a
contradiction. Hence every Lorentzian four-manifold of the form:

(M, ds2g) =
(

R
2 ×H, F (dxv)2 + 2 c0

dxvdxu

y2
+ (dx)2 + (dy)2

λ2y2

)
(89)

with F a smooth function admits nontrivial real Killing spinors. This gives large families
of non-Einstein Lorentzian four-manifolds carrying real Killing spinors by taking F to be
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generic. The Lorentzian manifold (89) is Einstein when Eq. (86) is satisfied, which for
K = c0y−2 reads:

y2
(
∂2xF + ∂2yF

)
+ 2 y ∂yF = 2F . (90)

To study (90), we try the separated Ansatz:

F = fx fy,

where fx ∈ C∞(H) depends only on x and fy ∈ C∞(H) depends only on y. Equation (90)
gives:

f̈x
fx
= c2 = f̈ y

fy
+ 2 ḟ y

y fy
− 2

y2
(91)

for some c ∈ R. If c = 0, this is solved by:

fx = a1 + a2x, fy = a3y + a4
y2

,

where a def.= (a1, . . . , a4) ∈ R
4. This gives the following family of Einstein Lorentzian

metrics on R
2 ×H admitting real Killing spinors, where we eliminated c0 by rescaling xu :

dsg = (a1 + a2x)

(
a3y + a4

y2

)
(dxv)2 + dxvdxu

y2
+ (dx)2 + (dy)2

λ2y2
. (92)

For a1 = a2 = a3 = a4 = 0 we recover the AdS4 metric written in horospheric coordinates.
Thus (92) gives a four-parameter deformation of AdS4. Every choice a ∈ R

4 produces an
Einstein metric on R

2 ×H with Einstein constant� = −3λ2 admitting real Killing spinors.
If c �= 0, the first equation in (91) gives:

fx = a1e
cx + a2e

−cx

with a1, a2 ∈ R. On the other hand, the equation for fy can be written as:

y2 f̈ y + 2y ḟy + (c2y2 − 2) fy = 0,

being the radial part of the Helmholtz equation in spherical coordinates. Its general solution
is a linear combination of the spherical Bessel functions BY and BJ:

fy = a3BY(cy)+ a4BJ(cy),

where a3, a4 ∈ R. We have:

BJ(cy) = sin(cy)

c2y2
− cos(cy)

cy
, BY(cy) = −cos(cy)

c2y2
− sin(cy)

cy
,

whence:

ds2g = (a1e
cx + a2e

−cx ) [a3BY(cy)+ a4BJ(cy)] (dx
v)2 + dxvdxu

y2
+ (dx)2 + (dy)2

λ2y2
.

This gives a four-parameter family (parameterized by (a1, a2, a3, a4) ∈ R
4) of Lorentzian

Einstein metrics on R
2 ×H admitting real Killing spinors.

Remark 5.19 When a1a2 �= 0 and a3 �= 0, the Lorentzian four-manifolds constructed above
are not isometric to AdS4, since their Weyl tensor is non-zero and their Riemann tensor is
not parallel.
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6 Supersymmetric heterotic configurations

In this section we consider generalized constrained Killing spinors in an abstract form of
heterotic supergravity (inspired by [39]), which is parameterized by a triplet (M, P, c), where
M is a spin open four-manifold, P is a principal bundle over M with compact semi-simple
Lie structure groupG and c is an AdG -invariant, symmetric and non-degenerate inner product

on the Lie algebra g ofG. Let gP
def.= P×AdG g be the adjoint bundle of P . The Killing spinor

equations of heterotic supergravity couple a strongly spinnable Lorentzian metric g on M
(taken to be of “mostly plus” signature), a closed one-form ϕ ∈ �1(M), a three-form H ∈
�3(M) and a connection A on P . This system of partial differential equations characterizes
supersymmetric configurations of the theory defined by (M, P, c). For simplicity, we assume
H1(M,Z2) = 0, although this assumption can be relaxed. We refer the reader to Appendix 6
for certain details.

6.1 Supersymmetric heterotic configurations

Let us fix a triple (M, P, c) as above, where H1(M,Z2) = 0. For every strongly-spinnable
metric g of signature (3, 1) on M , let Sg = (S, �,B ) be a paired real spinor bundle on
(M, g), where the admissible pairing B is skew-symmetric and of negative adjoint type.
With our assumptions, Sg is unique up to isomorphism of paired spinor bundles, combined
with a rescaling of B by a non-zero constant. Let FA ∈ �2(gP ) denote the curvature form
of a connection A on P . As explained in Appendix 6, g and c induce a symmetric morphism

of vector bundles c(− ∧ −) : �(M, gp) ⊗ �(M, gp) → �(M), where �(M, gp)
def.=

�(M) ⊗ gP . For any 3-form H ∈ �3(M), let ∇̂H be the natural lift to Sg of the unique
metric connection on (M, g) with totally skew-symmetric torsion given by −H .

Definition 6.1 A heterotic configuration for (M, P, c) is an ordered quadruplet (g, ϕ, H , A),
where g is a strongly-spinnable Lorentzian metric on M , ϕ ∈ �1(M) is a closed one-form,
H ∈ �3(M) is a three-form and A ∈ AP is a connection on P such that themodified Bianchi
identity holds:

dH = c(FA ∧ FA). (93)

The configuration is called supersymmetric if there exists a nontrivial spinor ε ∈ �(Sg) such
that:

∇̂H ε = 0, ϕ · ε = H · ε, FA · ε = 0. (94)

Remark 6.2 Equations (94) encode vanishing of the gravitino, dilatino and gaugino super-
symmetry variations. Since we work in Lorentzian signature, supersymmetric configurations
need not solve the equations of motion (which are given in Appendix 6). However, the study
of supersymmetric configurations is a first step toward classifying supersymmetric solutions.
The study of supersymmetric solutions this theory in the physical case of ten Lorentzian
dimensions was pioneered in [48–50], where their local structure was characterized. The
last equation in (94) is formally identical to the spinorial characterization of instantons in
Riemannian signature and dimensions from four to eight.
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6.2 Characterizing supersymmetric heterotic configurations through differential
forms

The metric connection ∇H is given by (see Appendix 6 for notation):

∇H
Y X = ∇g

Y X −
1

2
H �(X , Y ) ∀X , Y ∈ X(M),

where ∇g is the Levi-Civita connection of (M, g) and H � is H viewed as a T M-valued
two-form. Hence the first equation in (94) can be written as:

∇g
Xε −

1

4
H(X) · ε = 0 ∀ X ∈ X(M),

where H(X)
def.= ιX H ∈ �2(M). This shows that ε is a generalized Killing spinor relative

to the connection D = ∇S −A on S, where:

ÂX
def.= �−1� (A) = 1

4
H(X) = 1

4
(∗ρ)(X) = 1

4
∗ (ρ ∧ X �) ∀X ∈ X(M)

and we defined ρ
def.= ∗H ∈ �1(M). The second and third conditions in (94) are linear

algebraic constraints on ε. Hence the first three equations of (94) state that ε is a constrained
generalized Killing spinor (see Definition 4.15). As in Sects. 3.6.3 and 4.6, consider a signed
polyform square of ε:

α = u + u ∧ l,

where (u, l) is a parabolic pairs of one-forms.

Lemma 6.3 (g, ϕ, H , A, ε) satisfies the second equation in (94) (the dilatino equation) iff:

ϕ ∧ u = − ∗ (ρ ∧ u), ϕ ∧ u ∧ l = g∗(ρ, l) ∗ u, g∗(ϕ, l) u = ∗(l ∧ u ∧ ρ),

g∗(u, ϕ) = 0, g∗(u, ρ) = 0, g∗(ρ, ϕ) = 0,

where ρ
def.= ∗H.

Proof By Proposition 3.26, the dilatino equation holds iff:

ϕ � α = H � α, (95)

where α = u + u ∧ l is a signed polyform square of ε. We compute:

ϕ � α = g∗(ϕ, u)+ ϕ ∧ u + ϕ ∧ u ∧ l + g∗(ϕ, u) l − g∗(ϕ, l) u,
H � α = ν � ρ � α = g∗(ρ, u) ν − ∗(ρ ∧ u)− ∗(l ∧ u ∧ ρ)+ g∗(ρ, u) ∗ l + g∗(ρ, l) ∗ u,
where in the second equation we used (37) to rewrite the geometric product in terms of ρ.
Separating degrees in (95) and using these relations gives the conclusion. ��

Lemma 6.4 (g, ϕ, H , A, ε) satisfies the third equation in (94) (the gaugino equation) iff:

FA = u ∧ χA, (96)

where χA ∈ �(u⊥ ⊗ gP ) is a gP-valued one-form orthogonal to u.
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Proof By Proposition 3.26, the gaugino equation holds iff:

α � FA = u � FA + u � l � FA = 0. (97)

Expanding the geometric product gives:

α � FA = u ∧ FA + ιu FA + u ∧ l ∧ FA − l ∧ ιu FA + u ∧ ιl FA + ιu ιl FA = 0.

Hence separating degrees in (97) gives the system:

u ∧ FA = 0, ιu FA = 0,

which is solved by (96). ��
Lemma 6.5 (g, ϕ, H , A, ε) satisfies the first equation in (94) (the gravitino equation) iff:

∇gu = 1

2
∗ (ρ ∧ u), ∇gl = 1

2
∗ (ρ ∧ l)+ κ ⊗ u. (98)

where κ ∈ �1(M) and ρ
def.= ∗H. In this case, u� ∈ X(M) is a Killing vector field.

Proof By Theorem 4.26, the gravitino equation holds iff:

∇g
v (u + u ∧ l) = 1

4
[H(v) � (u + u ∧ l)− (u + u ∧ l) � H(v)] ∀ v ∈ X(M),

which reduces to the followingupon expanding the geometric product and separating degrees:

2∇g
v u + H(v, u) = 0, 2∇g

v (u ∧ l)+ H(v, u) ∧ l + u ∧ H(v, l) = 0.

This system is equivalent with:

2∇g
v u + H(v, u) = 0, 2∇g

v l + H(v, l)− 2κ(v)u = 0 ∀ v ∈ X(M)

for some one-form κ ∈ �1(M). In turn, this is equivalent with (98). ��
Theorem 6.6 A quadruplet (g, ϕ, H , A) is a supersymmetric heterotic configuration for
(M, P, c) iff there exists a parabolic pair of one-forms (u, l) such that the following equations

(where ρ
def.= ∗H ∈ �1(M)) are satisfied:

ϕ ∧ u = ∗(ρ ∧ u), ϕ ∧ u ∧ l = −g∗(ρ, l) ∗ u, − g∗(ϕ, l) u = ∗(l ∧ u ∧ ρ),

g∗(u, ϕ) = 0, g∗(u, ρ) = 0, g∗(ρ, ϕ) = 0, FA = u ∧ χA,

∇gu = 1

2
u ∧ ϕ, ∇gl = 1

2
∗ (ρ ∧ l)+ κ ⊗ u, d∗ρ = 0, (99)

for some one-form κ ∈ �1(M) and some gP-valued one-form χA ∈ �1(M, gP ) which
is orthogonal to u. In this case, u� ∈ X(M) is a Killing vector field and the distribution
ker u ⊂ T M integrates to a transversely-orientable codimension one foliation of M.

Proof By Lemmas 6.3, 6.4 and 6.5, it suffices to prove the last equation in the third line of
(99). The modified Bianchi identity can be written as:

d ∗ ρ = ∗2c(FA ∧ FA),

and gives:

d∗ρ = c(ιuχA, ιuχA) = c(χA(u), χA(u)) = 0,
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because χA is orthogonal to u. The first equation in the the third line of (99) amounts to:

Lu�g = 0, du = 1

8
u ∧ ϕ,

showing thatu� isKilling and the distribution ker u ⊂ T M is integrable, giving a transversely-
orientable foliation Fu ⊂ M of codimension one. ��

6.3 Some examples

Example 6.7 Let:

(M, ds2g) =
(
R
2 × X , 2 dxvdxu + q(xv)

)
,

where q(xv) is a flat Riemannianmetric on X for all xv ∈ R and take P to be the unit principal
bundle over M . Consider the spinor ε corresponding to the pair (u, l), where u = dxv and
l = l(xv) depends on xv . Finally, take:

ϕ = � u, ρ = 0,

where � ∈ C∞(R2 × X). A short computation shows that Eq. (99) reduce to:

∇gl = κ ⊗ dxv.

Applying this to ∂xv , ∂xu and restricting to T X gives:

∇g
xv l = ∂xv l − 1

2
l��∂xvq(xv) = 0, κ(∂xv ) = 0, κ(∂xu ) = 0,

∇gl|T ∗X = ∇ql − 1

2
l��∂xvq(xv)dxv = (κX − ∗q(xv)l)⊗ dxv,

where κX
def.= κ|T X . This implies:

∇ql = 0, κX = ∗q(xv)l − 1

2
l��∂xvq(xv),

showing that (X , q(xv)) is flat for all xv ∈ R. The only remaining non-trivial condition is:

∂xv l = 1

2
l��∂xvq(xv). (100)

This is a linear first order ordinary differential equation for the function xv → l(xv). For
every choice of parallel vector field on (X , q(xv0 )) with fixed (xv0 , x

u
0 ) ∈ R

2, its solution
with the corresponding initial condition determines a one-parameter family of one forms
{l(xv)}xv∈R on (X , q(xv)). Assuming for instance that X is simply connected and that q(xv)
satisfies:

∂xvq(x
v) = 2F(xv) q(xv),

for some function F(xv) depending only on xv , then the explicit solution is:

l(xv) = e
∫
F(xv)l0,

where l0 is parallel vector field on (X , q(xv0 )) and we canonically identify the tangent vector
spaces of {(xv, xu)} × X at different points (xv, xu).
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Remark 6.8 Heterotic solutions with exact null dilaton were considered before (see [13]).
As remarked earlier, a supersymmetric heterotic configuration need not be a solution of
the equation of motion given in Appendix B. The classification of (geodesically complete)
supersymmetric heterotic solutions on a Lorentzian four-manifold and the diffeomorphism
type of four-manifolds admitting such solutions for fixed principal bundle topology is an open
problem. Appendix B gives a brief formulation of abstract bosonic heterotic supergravity and
its Killing spinor equations.
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Appendix A: Parabolic 2-planes and degenerate complete flags in R
3,1

Let (V , h) be a four-dimensional Minkowski space of “mostly plus” signature. A non-zero
subspaceW ⊂ V ∗ is called degenerate or nondegenerate according to whether the restriction
h∗W of h∗ toW is a degenerate or non-degenerate quadratic form. A non-degenerate subspace
W is called:

• positive or negative definite, if the restriction h∗W to W is positive or negative negative
definite, respectively
• hyperbolic, if the restriction of h∗ to W is not positive or negative definite.

Notice that W is partially isotropic (i.e. contains nonzero null vectors) iff it is degenerate
or hyperbolic. Let L denote the cone of causal (i.e. non-spacelike) vectors in (V ∗, h∗). A
non-zero subspace W ⊂ V ∗ is:

• hyperbolic iff dim(W ∩ L) > 1, i.e. iff W meets L along a sub-cone of the latter which
has dimension at least two.
• degenerate iff dim(W ∩ L) = 1, i.e. iff W is tangent to L along a null line
• non-degenerate iff W ∩ L = {0}, in which case W is spacelike (i.e. positive definite).

A degenerate subspace W of V ∗ contains no timelike vectors and the set of its null vectors

coincides with the kernel Kh(W )
def.= ker(h∗W ); accordingly, W decomposes as:

W = Kh(W )⊕U ,

where Kh(W ) = ker(h∗W ) coincides with the unique null line contained in W and U is
a spacelike subspace of V ∗ which is orthogonal to Kh(W ). In particular, we have W ⊂
Kh(W )⊥. For example, a 2-plane � ⊂ V ∗ can be spacelike, hyperbolic or degenerate,
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according towhether h∗� is positive-definite, non-degenerate of signature (1, 1) or degenerate.
In the latter case, � is called a parabolic 2-plane.

Definition A.2 A complete flag 0 ⊂ W(1) ⊂ W(2) ⊂ W(3) ⊂ V ∗ is called degenerate if W(i)

is a degenerate subspace of (V ∗, h∗) for each i = 1, 2, 3.

Notice that a complete flag 0 ⊂ W(1) ⊂ W(2) ⊂ W(3) ⊂ V ∗ is determined by the

increasing sequence of vector spacesW•
def.= (W(1),W(2),W(3)). Such a flag is degenerate iff

W(2) and W(3) are tangent to the light cone of (V ∗, h∗) along the line W(1) (whence W(1) is
a null line).

Proposition A.3 There exists a natural bijection between the set of parabolic 2-planes and
the set of degenerate complete flags in (W ∗, h∗). This associates to each parabolic 2-plane
� ⊂ V ∗ the unique degenerate complete flag 0 ⊂ W(1) ⊂ W(2) ⊂ W(3) ⊂ V ∗ with
W(2) = �, which is given by:

W(1) = Kh(�), W(2) = �, W(3) = Kh(�)⊥. (101)

Proof Let 0 ⊂ W(1) ⊂ W(2) ⊂ W(3) ⊂ V ∗ be a degenerate complete flag. Then the 2-

plane �
def.= W(2) is degenerate, i.e. parabolic. Since the subspace W(1) of W(2) = � is

degenerate and one-dimensional, it is a null line and hence coincides with Kh(�). Since
W(3) is degenerate, the one-dimensional subspace Kh(W(3)) is the unique null line contained
in W(3) and hence coincides with W(1). We thus have W(3) ⊂ W⊥(1). This inclusion is an

equality because dimW⊥(1) = dim V ∗ − 1 = 3 = dimW(3). Hence any degenerate complete
flag has the form (101) for a unique parabolic 2-plane �, namely � = W(2). It is clear that
the correspondence thus defined is a bijection. ��
Definition A.4 A co-oriented degenerate complete flag in (V ∗, h∗) is a pair (W•, L), where
W• = (W(1),W(2),W(3)) is a degenerate complete flag in (V ∗, h∗) and L is a co-orientation
of the parabolic two-plane W(2).

Corollary 3.36 and Proposition A.3 imply the following reformulation of Theorem 3.34:

Theorem A.5 There exists a natural bijection between P(�) and the set of all co-oriented
degenerate complete flags in (V ∗, h∗).

Appendix B: Heterotic supergravity in four Lorentzian dimensions

Let G be a compact semisimple real Lie group whose Lie algebra we denote by g and
whose adjoint representation we denote by AdG : G → GL(g). Let g = g1 ⊕ · · · ⊕ gk be
the decomposition of g into simple Lie algebras. Then any AdG -invariant non-degenerate
symmetric pairing c on g can be written as:

c = c1B1 ⊕ · · · ⊕ ck Bk,

where Bj is the Killing form of g j and c j are non-zero constants.

Definition B.1 A four-dimensional heterotic datum of type G on M is a triplet (M, P, c),
where M is an oriented open four-manifold, P is a principal bundle over M and c is a
non-degenerate symmetric and AdG -invariant bilinear pairing on g.
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Let (M, P, c) be a four-dimensional heterotic datum. Let gP
def.= P ×AdG g be the adjoint

bundle of Lie algebras of P and AP be the affine space of connections on P . For any
connection A ∈ AP , let FA ∈ �2(M, gP ) denote the curvature form of A. Let cP be the
pairing induced by c on the adjoint bundle gP . Since c is AdG -invariant, the latter can be
viewed as a morphism of vector bundles:

cP : gP ⊗ gP → RM ,

where RM is the trivial real line bundle on M . Let �(M, gP )
def.= �(M)⊗ gP and consider

the vector bundle morphism:

c(− ∧−) def.= ∧⊗ c : �(M, gP )⊗�(M, gP )→ �(M),

where ∧ : �(M) ⊗ �(M) → �(M) is the wedge product. Let Met3,1(M) be the set of
metrics of signature (3, 1) defined on M . Let:

〈, 〉g : �(M)×�(M)→ RM and 〈, 〉g,c = 〈, 〉g ⊗ cP : �(M, gP )× (�(M, gP )→ RM

be themetrics induced by g ∈ Met3,1(M) and cP on the vector bundles�(M) and�(M, gP ).
Consider the symmetric bilinear maps corresponding to the vector bundle morphisms:

◦ : �(M)⊗�(M)→ T ∗M ⊗ T ∗M and

c(− ◦ −) : �(M, gP )⊗�(M, gP )→ T ∗M ⊗ T ∗M

whose action on global sections is given by:

(ω ◦ η)(X , Y )
def.= 〈ιXω, ιY η〉g ∀ω, η ∈ �(M) ∀X , Y ∈ X(M)

c(α ◦ β)(X , Y )
def.= 〈ιXα, ιYβ〉g,c ∀α, β ∈ �(M, gP ) ∀X , Y ∈ X(M).

For a three-form H ∈ �3(M) and the curvature FA ∈ �2(gP ) of a connection A ∈ AP , we
have:

(H ◦ H)(X , Y ) = 〈ιX H , ιY H〉g ∀X , Y ∈ X(M),

c(FA ◦ FA)(X , Y ) = 〈ιX FA, ιY FA〉g,c ∀X , Y ∈ X(M).

Remark B.2 Pick a nonempty open subset U ⊂ M which supports local coordinates
{xi }i=1,...,4 ofM aswell as a local g-orthonormal frame {ei }i=1,...,4 of T M and a c-orthogonal
local frame {Ta}a=1,...,rkg of gP such that c(Ta, Tb) = δab εa , where εa ∈ {−1, 1}. Then the
following relations hold on U :

c(FA ∧ FA) = εa F
a
A ∧ Fa

A, c(FA ◦ FA)i j = εa(F
a
A)im (Fa

A) jk g
mk,

(H ◦ H)i j = HilmH lm
j ,

where FA = Fa
ATa and we use Einstein summation over i, j, l,m = 1, . . . , 4 and over

a = 1, . . . rk g.

Let �1
cl(M) be the space of closed one-forms defined on M .

Definition B.3 A bosonic heterotic configuration of (M, P, c) is a quadruplet (g, ϕ, H , A) ∈
Met3,1(M)×�1

cl(M)×�3(M)×AP which satisfies the modified Bianchi identity:

dH = c (FA ∧ FA) . (102)
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The one-form ϕ ∈ �1
cl(M) is called the dilatonic one-form of the bosonic heterotic

configuration. On sufficiently small non-empty open subsets U ⊂ M , it can be written as
ϕ = dφ, where the locally defined function φ ∈ C∞(U ) corresponds to the dilaton of the
physics literature.

Definition B.4 A bosonic heterotic configuration (g, ϕ, H , A) of (M, P, c) is called bosonic
heterotic solution if it satisfies the equations of motion:

Ricg + ∇gϕ − 1

4
H ◦ H − c(FA ◦ FA) = 0,

d∗H + ιϕH = 0,

dA ∗ FA − ϕ ∧ ∗FA + FA ∧ ∗H = 0,

d∗ϕ + 〈ϕ, ϕ〉g − 〈H , H〉g − 〈FA, FA〉g,c = 0.

Let Conf(M, P, c) and Sol(M, P, c) ⊂ Conf(M, P, c) be the sets of bosonic configura-
tions and solutions of the heterotic datum (M, P, c).

Remark B.5 If G is the trivial group, then P is the unit principal bundle over M , which has
total space M and projection given by the identity map idM . In this case, c vanishes (as does
any connection on P) and the set of bosonic configurations reduces to:

Conf0(M) = Met3,1(M)×�1
cl(M)×�3

cl(M),

since the modified Bianchi identity requires dH = 0. Moreover, the equations of motion
reduce to:

Ricg +∇gϕ − 1

4
H ◦ H = 0, d∗H + ιϕH = 0,

d∗ϕ + 〈ϕ, ϕ〉g − 〈H , H〉g = 0.
(103)

This particular case is known as NS-NS supergravity.

For any three-form H on M , let ∇H be the unique g-compatible connection on T M with
totally skew-symmetric torsion given by T = H �, where H � ∈ �(T ∗M ⊗ T ∗M ⊗ T M) is
defined through:

H �(X , Y ) = (ιY ιX H)� ∈ X(M) ∀X , Y ∈ X(M).

Here � denotes raising of indices with respect to g. This connection is given by:

∇H = ∇g − 1

2
H �.

Assume that M admits strongly spinnable Lorentzian metrics, whose space we denote by
Metss3,1(M). We shall assume for simplicity that H1(M,Z2) = 0, although this can be
relaxed. For any g ∈ Metss3,1(M), let (Sg, �g) be a spinor bundle on (M, g). The assumption

H1(M,Z2) = 0 implies that this spinor bundle is unique up to isomorphism.

Definition B.6 A bosonic heterotic configuration (g, ϕ, H , A) ∈ Conf(M, P, c) is called
supersymmetric if g ∈ Metss3,1(M) and there exists a nontrivial spinor ε ∈ �(Sg) which
satisfies the Killing spinor equations:

∇̂H ε = 0, ϕ · ε = H · ε = 0, FA · ε = 0. (104)

A similar formulation can be given for heterotic supergravity on a ten-dimensional open
manifold.
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