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Abstract

Given a smooth complex toric variety we will compare real Lagerberg forms and currents on
its tropicalization with invariant complex forms and currents on the toric variety. Our main
result is a correspondence theorem which identifies the cone of invariant closed positive
currents on the complex toric variety with closed positive currents on the tropicalization. In
a subsequent paper, this correspondence will be used to develop a Bedford—Taylor theory of
plurisubharmonic functions on the tropicalization.
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1 Introduction

A smooth complex toric variety X5 is a smooth algebraic variety over C with an open
immersion of an algebraic torus T and an algebraic extension of the action of T on itself to
X 5. Such a variety is encoded by the combinatorial structure of a fan X in the vector space
Nr := N ®z R where N is the cocharacter lattice of T. We denote by T?" := T(C) and
X§ = X5 (C) the respective complex analytic manifolds of complex points. Inside T?",
there is a maximal compact torus S. The quotient X5 /S is denoted by Nx. The topological
space Ny has a canonical stratification

Ns = ]_[ N(o)

oeX

indexed by the cones of X, analogous to the stratification of X 5 into orbits. The incidence
relations between cones of X' translate to incidence relations between strata with the inclu-
sions reversed. If 7 is a face of the cone 0 € ¥, denoted as t < o, then the corresponding
strata satisfy N(o) C N(t). The stratum corresponding to the cone {0} is equal to Ng. It
is called the dense stratum. Each stratum N (o) of Nx has a canonical structure of a finite
dimensional real vector space equipped with a Z-structure. For T < ¢ € X, there is a linear
projection

g,z N(t) — N(0o).

The space Ny is a classical object in the theory of toric varieties where it appears also
under the name manifold with corners (see e.g. [1,17]]). In tropical geometry, it is called
the Kajiwara-Payne tropicalization of X 5. By construction, it comes with a natural map
trop: X5 — Nx which is a proper map of topological spaces.

On the spaces X' and Nz, there are sheaves of bigraded algebras of smooth differential
forms. Both are denoted A~" or, when we want to stress the underlying space, by Ax? and

Ay, respectively. The well-known sheaf of complex smooth differential forms Ay is a
X X

sheaf of C-algebras and plays a central role in complex analysis and complex geometry.
The sheaf AX,'Z is a sheaf of R-algebras and was introduced by Smacka, Shaw and the third
author [14], based on work of Lagerberg [16]. The smooth differential forms on X5 are
called complex forms while the forms on Ny are called Lagerberg forms. In both cases, the
elements of A% are called smooth functions.

We explain briefly the definition of Lagerberg forms. More details are given in Sect. 3.
If U is an open subset of the finite dimensional real vector space N (o), Lagerberg [16] has

introduced the bigraded R-algebra

A" U) = P APU) ®cw) A1)
P-qeN
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A comparison of positivity in complex and tropical... 1201

where A'(U) denotes the usual R-algebra of real smooth differential forms on U. For an open
setU C Ny,denoteby U, := N(o)NU its strata. Then a Lagerberg form on U is defined as
a collection of forms (wy)sey, With w, € A (Uy), satisfying the following compatibility
conditions. For every pair of cones 7 < o and every point p € Uy, there is a neighborhood
V C U of pwith V; =77 (Vo) NV and

wrly, =77, (@olv,) (1.1)

on V;. The compatibility conditions (1.1) are, roughly speaking, saying that close to the
boundary, Lagerberg forms are constant in the direction towards the boundary. Although this
condition does not seem entirely natural from an archimedean point of view, it is very natural
from both a tropical [14] and a non-archimedean point of view [13]. Moreover, it has very
strong consequences. For instance, if w is a form of bidegree (p, ¢), then the support of w is
disjoint to any stratum of dimension smaller than min(p, g).

There are natural differential operators d’, d” of bidegree (1, 0) and (0, 1) turning AR

into a double complex analogous to the usual differential operators 8 and § on A - There
P

is also a theory of integration for Lagerberg forms similarly to the complex case.

The sheaf Axgl has an antilinear involution, the complex conjugation, that sends A”9 to
A?P A complex formis real, if itis invariant under complex conjugation. The sheaf Ay, has
also a canonical involution J called the Lagerberg involution. A form w of bidegree (p, p)
with J(w) = (—1)Pw is called symmetric. In both settings, there is a notion of positivity for
(p. p)-forms (see 4.2.6). Positive forms on X" are always real, while positive forms on Nx
are always symmetric.

In Sect. 2.3 and in Sect. 4.2, we will introduce a new antilinear involution F on the sheaf
of S-invariant forms on X% that respects the bigrading, and anticommutes with complex

SF the subsheaf of S-invariant forms which are

conjugation on one-forms. We denote by A'an
X

F-invariant.

TheoremA Let U C Nyx be an open subset and V the S-invariant open subset V :=
trop~(U) of X 5. There exists a unique bigraded algebra morphism

trop*: A”(U) — A>(V)SF (1.2)

with trop* ¢ = ¢ o trop for all ¢ € A%O(U) and which satisfies

trop* od' = w7129 o trop*, trop* 0d” = 77129 o trop* . (1.3)
Moreover, for w € AP4(U), we have
trop* (J (w)) = i” T trop*(w). (1.4)

Therefore trop* sends symmetric forms to real forms. Furthermore, this morphism respects
positivity and integration of top dimensional forms.

If U is contained in the dense stratum Np, then (1.2) is an isomorphism. In general, this
is no longer true. The reason for this is the compatibility conditions (1.1). These results will
be shown in Section 4. The normalization factors in equation (1.3) are almost forced by the
compatibility with integration and the compatibility between the Lagerberg involution and
complex conjugation (1.4). If we do not insist on compatibility with integration or with the
bigrading, other identifications between Lagerberg forms and invariant complex forms are
possible. For instance, the map (1.2) differs from the interpretation of Lagerberg forms as
S-invariant forms given in [7, Remarque (1.2.12)].
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1202 J.I. Burgos Gil et al.

The main interest of this paper will be currents. To define currents on an open subset
U C Ny, we first introduce a topology on the space of Lagerberg forms with compact
support A2 (U). The definition is similar to the complex case with additional input caused
by the compatibility condition (1.1) towards the boundary (see Subsection 3.2 for details).
A Lagerberg current of type (p, ¢) on U is a continuous linear map T: Az 7" (U) — R.
We denote the space of currents of type (p, g) by D?4(U). By duality, the involution J
defines an involution on D", hence a notion of symmetric currents. We call T € D?-?(U)
positive, if it is symmetric and T («) > 0 for all positive Lagerberg forms a € A, 7" 77 (U).

Let again V = trop~ ! (U). Since the map trop is proper, the dual of the map trop* from
(1.2) induces a C-linear map

trop,.: DP9(V) — DP9 (U) @r C (1.5)

defined by trop, (T)(a) = T (trop*(a)) forall T € DP4(V) and @ € Az """ (V). We
will show that trop,(T) € DP-P(U) for every S-invariant T € DPP(V) which is also
F-invariant. Since the map trop*: AY9(U) — AP(V), albeit injective, is not a closed
immersion, the map trop,, is in general not surjective. Since trop™ preserves positivity of
forms, trop,, preserves positivity of currents. All this will be shown in Sect. 5.

The main result of this paper is the following Correspondence Theorem.

Theorem B The map trop,, induces a linear isomorphism between the following cones:

(i) The cone of S-invariant positive complex currents in DP-P (V) that are closed with respect
to d and 0 and that are invariant with respect to F.

(ii) The cone of positive Lagerberg currents in DP-P(U) that are closed with respect to d’
and d".

The proof of Theorem B will be given in Theorem 7.1.5. We will show in Examples 5.1.11
and 5.1.12 that we cannot omit any of the conditions closed or positive in Theorem B.

Let us give some details about the proof of the Correspondence Theorem. In the case
p =n :=dim X 5, the cone in (i) is the space of positive S-invariant Radon measures on V
and the cone in (ii) is the space of positive Radon measures on U, hence Theorem B follows
readily from the fact that U is the quotient of V by the S-action (see Corollary 5.1.17). This
suggests that for p < n, we consider coefficients of complex and Lagerberg currents to follow
a similar argument. In fact, it is more convenient to go for the dual notion of co-coefficients
as follows:

For simplicity, we consider the case X5 = C" with coordinates z = (z1,...,2,), 2
situation that can always be achieved locally. Then Ny = (R U {oo})" has coordinates
(u1, ..., uy,) and the tropicalization map is given by

trop(z) = (—log|z1l, ..., —log|zal).

The cones of X' are the faces of R;o- Any cone in X has the form o7 := {u € R’éo | uj =
0Vi ¢ L} forsome L C {l,...,n}and the corresponding stratum of Ny is given by

N(or) :={(u1,...,un) € Nx |u; =ocoifandonlyifi € L}.
For M C {1, ..., n}, we define the following union of strata of codimension 1:
EM .= {(uy,...,uy) € Ny | u; = oo forsomei € M}.

Let U be an open subset of (R U {oco})". Given a Lagerberg current 7 € DP?-P(U) and
I,JC{l,...,nywith|I|=|J| =n— p,wecall T!/ € D*"(U \ E'Y/) given by

TV (f) = T((=D9" D2 fd'uy nd"uy)
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A comparison of positivity in complex and tropical... 1203

a co-coefficient of T. If the Lagerberg current T is positive, then the co-coefficients T/
are real Radon measures, 777 = T/, the T!! are positive Radon measures and 2|TI J | <
T 4 777 where |T'7| denotes the total variation measure of T// (see Subsection 5.2).

A key ingredient in the proof of the Correspondence Theorem is the following Decompo-
sition Theorem along the above stratification.

Theorem C Let U be an open subset of (R U {oo})™. If T is a positive current in DP-P(U),
then there is a decomposition

r=Y1, (1.6)

oeX

with uniquely determined currents T, such that U \ (E™Y' U N (0)) is a null set with respect
to the Radon measure TG[ I forany o = o € X.

The decomposition (1.6) does not depend on the choice of the coordinates uy, ..., u,
hence gives a canonical decomposition for any positive current 7 € DPP(U) on any open
subset U of Ny as we show in Theorem 6.1.6. A similar statement is well known on the
complex toric manifold X5* and we show in Sect. 6.1 that both canonical decompositions
are closely related via trop,.

For a positive Lagerberg current 7' € D?-P(U), we will prove that T = trop, (S) for a
positive current S on V = trop~! (U) if and only if T has C-finite local mass. The latter is a
local condition on U given in Definition 6.2.1. We then show that a closed positive Lagerberg
current has C-finite local mass, completing the proof of surjectivity. For injectivity of trop,,
an additional argument is required. All this is done in Sect. 7.1.

As an application, we will prove in Theorem 7.2.4 a tropical analogue of the Skoda—EI Mir
Theorem for Lagerberg currents in the toric setting: Let U be an open subset of Nx and let E
be a union of strata closures in Ny . We consider a closed positive current 7 € D?-?(U \ E)
which has C-finite local mass on U. Then we can extend T by zero to a closed positive
Lagerberg current on U. For details, we refer to Sect. 7.2. A consequence of the Tropical
Skoda-El Mir theorem is that in the canonical decomposition (1.6), if T is closed, then all
the currents T, are closed.

The motivation for the present work is the following. It is known that there is no way
to continuously extend the wedge product on A~ to D". Bedford—Taylor theory provides
a way to define products of certain closed positive currents on X35'. In a subsequent paper,
using the Correspondence Theorem and Bedford—Taylor theory for complex manifolds, we
develop a Bedford—Taylor theory on Ny.

For instance, Bedford—Taylor theory on Ny will have the following application: Let K be
a field endowed with a non-archimedean complete absolute value | |,. From the fan X, we
may construct a toric variety X s x. We may also consider the analytification X5 ; of the
toric variety X x x as a Berkovich space and the corresponding tropicalization map

tropg : X5 g — Ny

which should be viewed as a non-archimedean analogue of the tropicalization map trop of
the complex toric manifold X5 considered before. For any open subset U of Ny, these
tropicalization maps lead to a natural bijective correspondence between invariant continu-
ous plurisubharmonic functions on trop~!(U) and invariant continuous plurisubharmonic
functions on trop}1 (U) in the sense of Chambert-Loir and Ducros [7, §5.5]. Moreover, we
show that the complex Bedford—Taylor theory corresponds to the Bedford—Taylor theory of
Chambert-Loir and Ducros [7, §5.6].
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1204 J.I. Burgos Gil et al.

We explain in more detail the content of the paper. In Sect. 2, we introduce complex
and Lagerberg multilinear forms. We interpretate the Lagerberg forms as the complex forms
which are invariant under a natural involution F. Then we discuss several positivity notions of
these forms. In the complex case, weakly positive, positive and strongly positive multilinear
forms are well-known. They form strictly convex cones of maximal dimension. Moreover,
the cone of strongly positive forms is dual to the one of weakly positive forms, while the cone
of positive forms is self dual. Similar notions are defined in [16] for Lagerberg multilinear
forms on a real vector space. The notions of weakly and strongly positive Lagerberg forms
are however somewhat pathological. We show in Example 2.3.6 that the cone of strongly
positive forms is not of full dimension and that the cone of weakly positive forms is not strictly
convex. This also implies that the notions of weakly and strongly positive in the complex and
Lagerberg case do not correspond exactly. For this reason, we will mainly restrict ourselves
to positive forms.

In Sect. 3, we will first introduce the partial compactification Ny associated to a fan X
and we will describe its topology. Then we introduce Lagerberg forms on Nx. Similarly as
in complex analysis, we endow the space of compactly supported Lagerberg forms with a
locally convex topology and we define the dual notion of Lagerberg currents. The upshot of
this section is that Lagerberg forms and currents on Ny satisfy similar properties as their
complex analogues.

In Sect. 4, we study positivity of Lagerberg forms and compare them to invariant complex
differential forms. In particular, we prove Theorem A. We first deal with the dense torus T
in Sect. 4.1 before we consider arbitrary smooth toric varieties in Sect. 4.2.

Section 5 is devoted to positivity of Lagerberg currents and the relation with positivity
of complex currents. We define the map trop, and discuss the compatibility of the different
notions of positivity with respect to this map. We also define the co-coefficients of a Lagerberg
current and show that, analogously to the complex case, the co-coefficients of a positive
Lagerberg current are Radon measures. We show in Example 5.2.8 that there are weakly
positive Lagerberg currents whose co-coefficients are not Radon measures. This is caused by
the fact that the cone of weakly positive multilinear Lagerberg forms is not strictly convex.

In Sect. 6, we prove the decomposition theorem (see Theorem C). Moreover we introduce
the concept of C-finite local mass. Intuitively, a current has C-finite local mass if it has local
finite mass as an invariant complex current (see Definition 6.2.1 for details). We give in
Example 6.2.3 a positive current 7' that does not have C-finite local mass. Nevertheless, it is
of the form 7' = trop,(S) for a complex current S, but this current cannot be chosen to be
positive.

Finally, Sect. 7 is devoted to the proof of Theorem B and of the tropical Skoda-El Mir
theorem. In Appendix A, there is a reminder on Borel and Radon measures.

Notation and conventions

The set N of natural numbers includes zero. We write Ry = RU {00} and R>; := {u e R |
u >t} for any ¢ € R. In the notation A C B, we allow that A = B.

In this paper, N usually denotes a free abelian group of rank n with dual M. We denote
by Nr and Mp their scalar extensions to R. By a fan X in N, we mean a fan consisting of
strictly convex rational polyhedral cones in Nr. We denote the associated (complex) toric
variety by X 5> and the associated partial compactification of Ng by Nx (see Sect. 3.1).
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A comparison of positivity in complex and tropical... 1205

A topological space is called locally compact if it has a basis consisting of relatively
compact subsets; but it is not necessarily Hausdorff. A topological vector space is assumed
to be Hausdorff. Our conventions on Radon measures are summarized in Appendix A.

2 Positivity on real and complex vector spaces

Let V be a real vector space of dimension n. Write Vo = V ®p C for the associated
complex vector space, V* = Homp(V,C) = Homc(Vc, C) for the complex dual and
V' = Homg (V, R) for the real dual. Let V¢ denote the real vector space underlying V¢ with
the complex structure determined by A(v @ u) = v ® (Au). We denote the complex dual of
Ve by V*. Observe that V" agrees with the space of antilinear maps from V¢ to C. Let V”
be a copy of V’. We consider the exterior algebras

ATV = Ac(VF @ V) = € arivr,
p,q€N

and

AA,.V/ — AR(V/ ® V//) — @ AP V/.
p.q€N
The elements of A”-9V* are called complex (p, q)-forms while the elements of AP9V’ are

called Lagerberg (p, q)-forms.

2.1 The complex situation

We recall some definitions from complex geometry.

The identity induces antilinear maps o : Vg — Ve and o: APV — APV which we
denote by w > w. The inverse of o is also denoted by o : V¢ — V. The antilinear maps o
induce antilinear mapso : V* — V'ando: V' — V*, thatextend uniquely to an antilinear
involution of the R-algebra A~ V*. This involution sends A”4V* to A?-?V*. We continue
to write o (w) = o for complex forms w. A complex form w is called real if ® = w.

Choose a real basis eq, ..., e, of V. We obtain dual complex bases duy, ..., du, of V*
and dity, ..., dii, of V" determined by du;(e; ® 1) = 8;j = dii; (¢; ® 1). Then we have

o (Zdu;) = rdii;.

Definition 2.1.1 The canonical orientation of the vector space V¢ is the orientation deter-
mined by the real form

w, =dui Nidig A --- ANduy Nidu, € AVVE

The form w,, depends on our choice of a basis, but the orientation does not.
An w € APPV* is called strongly positive if it is in the convex cone spanned by

{ag Aidp A Aap Nidy | aj € AV for j=1,..., p).
An w € AP-PV* is called positive if it belongs to the convex cone spanned by

2 _
(i"ana|ae APOv*y.
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1206 J.I. Burgos Gil et al.

A complex (p, p)-form w € APPV* is called weakly positive if, for every strongly
positive form 7 of type (n — p, n — p), there is a real number y > 0 with

WAN=Ywy,.

We denote by Ai’f; V*, Ai‘p V* and Af_‘,ﬁ} V* the cones of strongly positive, positive and
weakly positive (p, p)-forms respectively.

Observe that our weakly positive forms are called positive in [9, §III.1.A].

Definition 2.1.2 To € A”PV* we associate a sesquilinear form |n| on A? V¢ by the rule
Il y) = (=D P, ).
Moreover, for ¢ = n — p, there is a duality pairing
(-, ) APPV* @ ATIV* — C 2.1
defined by
nA©=(n,ww.
We denote by A7-7 V¥ the subspace of real elements. Then the pairing (2.1) induces a pairing
(-, )R: APPVE @ ATIVE > R, (2.2)

Note that the assignment n — |n| is canonical and gives an isomorphism between A?-PV*
and the space of sesquilinear forms on A” V. On the other hand, the duality pairing (-, -)
depends on the choice of basis but only up to a non-zero positive number.

Proposition 2.1.3 A form n € APPV* is real if and only if the sesquilinear form |n| is
Hermitian. A form n is positive if and only if |n| is a positive semidefinite Hermitian form.

Proof The antilinear involution o on AP:?V* is given by

o(N(x, &) =7(x, &) = (=D)Fn(E, %)

for x € APV¢ and & € AP V. Assume that 7 is real. Then for x, y € AP V¢ we have

—_— pp—=b | _ rp—1 Ny
. y) = (=D 2 i Pnx,y) = (=D 2 (=) "nx,y)
rp=1 11(1)2—1)

= (=D 7 (=)D, x) = (=D

Thus, the sesquilinear form || is hermitian. The converse is proved analogously.
Assume now that n € A”PV* is a positive form and x € A”V¢. Then we can write

.172 —
n= Zl Vi Naj,
J

i7Pn(y, %) = Inl(y, x).

. . .2 plp=0 . _
with y; € Rypand «; € APOV* Then, since i?” (—=1)" 2 i P = 1, we have

G x) = (D5, B = Yy Aa D = Y v e () = 0,

J J

proving that |n| is positive semidefinite.
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Conversely, assume that || is positive semidefinite. Then by the spectral theory of Her-
mitian forms, there are y; € Rygand or; € APOV* = (APVe)* such that
In| = nyaf aj.

This implies that

. p2 -
n= le vioj ANaj
showing that 7 is a positive form. O

Lemma 2.1.4 For every p > 0, the complex vector space AP'PV* admits a C-basis of
strongly positive forms.

Proof [9, Lemma III.1.4]. O
Lemma 2.1.5 Any weakly positive form in AP*PV* is real.

Proof The fact that w,, and any positive or strongly positive form are real follows directly
from the definition. Let now w be a weakly positive form in A”-?V*. This means that for
each strongly positive form 7 in A7 V*, there is a non-negative real number y such that

WAN=Ywy.
Since 1, y and wj, are real, this implies that
OAN=Ywy.

Hence (w — @) A n = 0 for any strongly positive form 1 in A79V*, By Lemma 2.1.4,
A?9V* admits a basis of strongly positive elements. Therefore (w — @) A n = 0 holds for
any n € A?9V*. By duality, we get w — @ = 0 and hence w is real. O

Corollary 2.1.6 For p € N, there are inclusions of closed convex cones
p.pysx p.pys* p-p ik
ALEVE CALTVE C ALY

in APPVE. For q :=n — p, the cones Ai’f: V* and Ai’f{l}V* are dual to each other and the

cone Afr’pV* is the dual of Ai’q V* with respect to the real duality pairing (2.2).

Proof By definition, the spaces of strongly positive forms and of positive forms are convex
cones contained in AP*P V. Lemma 2.1.5 implies that A%’% V* is contained in AP*P V.
Then Ai',ﬁ) V* is a closed convex cone as the dual of the convex cone Ai’f; V*.

We next show that the convex cone of strongly positive forms is closed. Choose any
hermitian metric in the complex vector space A?V* and let S C A”V* be the unit sphere.
The set K C S of totally decomposable elements is closed as it is the preimage of the
Grassmanian Gr(p, V*) under the projection S — P(APV*). Since S is compact, so is K.
Let K/ C AP'PV* be the image of K under the continuous map

L p2 _
APV — APPV* a— iPaAa.

Then K’ is a compact set that does not contain 0. Thus the convex cone over K’ is closed [19,
Cor. 9.6.1]. Since the convex cone over K’ is Af,’r‘yf V*, we deduce that the space of strongly
positive forms is a closed convex cone. Being Af_’f? V* closed and convex, it agrees with its
double dual. Therefore A i': V* is the dual of Ai‘fv V*
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1208 J.I. Burgos Gil et al.

We next prove that AY?”V* is self dual. Let y € A"V*. Theny = zduy A --- A du, for
some z € C and hence i”zy AY = zZwy. Fora € APV* and B € A?7V*, we conclude that

.p2.g2 - = _nZ —_—
i"iTananBAB=i"aAnBAaAB

is a positive multiple of w,,. Here we have used the identity irie (=DHP1 =i "* This proves
that the cone A" V* is contained the dual of A%?V*. To prove the converse, we introduce
the isomorphism ¢: AIV* — APV defined, fora € ATV*, by

BAra=Bg@)duy A Adu, (B e APVT).

Then, for any pair of forms n € A?"PV* and @ € A7V*, the equality

nAiCa A = |nl(p@), p(a))w,

is satisfied. Therefore, if 7 belongs to the dual cone of A‘_I,_’q V*, then the sesquilinear form
|n| is positive semidefinite. By Proposition 2.1.3, the form 5 is positive proving the reverse
inclusion. We deduce that the cone Aﬁ’p V* is closed because it is a dual cone. O

Remark 2.1.7 For p = 0, 1, n — 1, n, the notions of strong positivity, positivity and weakly
positivity agree (see [9, Corollary II1.1.9]). In [9, Remark III.1.10], there are examples of
positive forms that are not strongly positive forany 2 < p <n — 2.

2.2 The real situation

We now shift to positivity of Lagerberg forms following [16]. We consider again a real basis
ey, ..., e, of V which induces dual bases d’uy, ...,d'u, of V' andd"uy,...,d"u, of V".

We denote by J V another copy of our n-dimensional R-vector space V and let us denote
by J: V > JV the identity map. There is a unique involution on V & J V that extends J and
which we also denote by J. From now on, we make the identification V" := Hom(JV, R)
and then duality yields an involution on V' @ V" which we also call J. There is a unique
algebra homomorphism on A"V’ that extends J. It is again an involution mapping A?4V’
onto A?-?V’, This map, also denoted by J, is called the Lagerberg involution.

Definition 2.2.1 The Lagerberg orientation is the orientation on the vector space V' & V"
defined by

=du A"d"ui A ANduy Ad"u, € AT(V).
Consider a form w € AP?V’. We call @ symmetric if
J(w) = (-D?w. 2.3)
We call w strongly positive if it belongs to the convex cone spanned by
far AJ@) A Aap Ad(ay) | aj e ANV for j=1,..., p).

We call w positive if it belongs to the convex cone spanned by

rp=1)

(=D" 7 anJ@)|aec APV}

A symmetric Lagerberg (p, p)-form @ € AP-PV’ is called weakly positive if for every
strongly positive form 7 of type (n — p, n — p), there is a real number y > 0 with

OAN=YT,.
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We will also denote as ALYV, ARPV’ and ALY V' the spaces of Lagerberg (p, p)-forms
that are strongly positive forms, positive and weakly positive respectively.

Remark 2.2.2 Strongly positive, positive or weakly positive Lagerberg forms and 7,, are sym-
metric. In the definition of weakly positive Lagerberg forms, it is necessary to impose the
symmetry because the real analogue of Lemma 2.1.4 is not true, see Example 2.3.6.

It follows from Corollary 2.2.5 below that our definition of positive Lagerberg forms
agrees with the definition given by Lagerberg in [16, Definition 2.1].

From our definition, we deduce that the product of positive Lagerberg forms is positive.

Definition 2.2.3 To n € A”PV’, we associate a bilinear form |n| on APV by the rule

rp—1)
2

Inl(x, y) = (=1) n(x, J ().
Moreover, for ¢ = n — p, there is a duality pairing

(-, ) APPV @ ATV — R,

defined by n A w = (n, )z, forn € APPV and w € AT9V’.

Note that, again, the assignment 1 — || is canonical and gives an isomorphism between
AP PV’ and the space of bilinear forms on A”V . On the other hand, the duality pairing (-, -)
depends on the choice of a basis, but only up to a positive number.

Proposition 2.2.4 A form n € AP-PV’ is symmetric if and only if the bilinear form |n| is
symmetric. A form n is positive if and only |n| is a positive semidefinite symmetric form.

Proof The proof is similar to the complex case and is given in [16, Proposition 2.1]. O

Denote now by Afy‘f] V'’ the subspace of symmetric elements and let ¢ := n — p. The
duality pairing of Definition 2.2.3 induces a real duality pairing, denoted by the same symbol,

[ Aé’y'rﬁV’ ® Agy’?nV’ — R.
We give the analogue of Corollary 2.1.6 which was stated before [16, Lemma 2.2].
Corollary 2.2.5 For p € N, there are inclusions of closed convex cones
ARV ARPV ARV
in ARV’ For q :== n — p, the cones Ai”’; V' and A‘_’,_’f’w V' are dual to each other and the
cone Aﬁ’pV’ is the dual ofA(iq V' with respect to the above real duality pairing.

Proof The arguments are as in Corollary 2.1.6 replacing complex by real numbers and
sesquilinearforms by symmetric bilinear forms. O

Remark 2.2.6 As in the complex case, strong positivity agrees with positivity and weak

positivity for p = 0, 1,n — 1, n. Similarly as in [9, Example III 1.10], there are positive
Lagerberg forms that are not strongly positive forany 2 < p <n — 2.
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2.3 Comparison between the real and complex situations

We aim for an identification of the space of Lagerberg forms A"V’ with a subspace of the
space of complex forms A~ V* that preserves positivity as much as possible.

Definition 2.3.1 The vector space V* = Hompg(V, C) haj an antilinear involution F coming
from complex conjugation in C. We extend F to V* @ V" in such a way that F and o (the
complex conjugation from 2.1) anticommute:

F(a@) = —F(x) (fora e V*). (2.4)

There is a unique antilinear involution of the R-algebra A~ V* which extends F. We denote
this extension also by F.

Note that F induces an antilinear involution of any A”9V*, In coordinates, we have
F(AM) =x, F(du)=du; and F(di;) = —di; (2.5)

where 1 € A%0V* = C.
Note that, if n € AP79V*, then

F(n) = (=DPF@). (2.6)

We see V/ C V*and V/ C V" as the subspaces of F-invariant elements. Note that V’
looks like the space of real elements of V*, while, due to the twisted definition (2.4) of F in
V™, the elements of V" look like the imaginary elements of V"

We extend the inclusion V' @ V" — V* @ V" to an R-algebra homomorphism

AV s AV Q@.7)
This inclusion sends d'u j to du j and d"uj to idii;.

Proposition 2.3.2 We have the following compatibilities for the inclusion (2.7).

(i) The space of complex forms invariant under F is the image of A™'V'.

(ii) The Lagerberg involution J agrees on V' @ V" with the map o — ia.
(iii) A Lagerberg (p, p)-form is symmetric if and only if it is real as a complex form.
(iv) The image of ty is wy,.

Proof Since F is an antilinear involution, the space of F-invariant elements of A~ V* has
real dimension 22" which agrees with the dimension of A~"V’. Since, by construction, the
Lagerberg forms are invariant under F, both spaces agree. The remaining statements are
direct computations. O

Lemma 2.3.3 The involution F maps strongly positive (resp. weakly positive, resp. positive)
complex forms to strongly positive (resp. weakly positive, resp. positive) complex forms.

Proof For any complex (p, 0)-form «, antilinearity of F and (2.6) give
Fa ANiP&) = Fa A (—i)PF(a) = Fa ANiP F(@). (2.8)

We conclude that F preserves positivity of complex forms. Multiplicativity of F* and (2.8)
show also that F preserves strong positivity of forms.

Since w, is the image of 7, under the above identification, it is fixed under . Using that
F is an involution, we deduce from duality that F' preserves weak positivity as well. O
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Proposition 2.3.4 The following compatibility conditions hold.

(i) A strongly positive Lagerberg form is also a strongly positive complex form.
(ii) An F-invariant weakly positive complex form is a weakly positive Lagerberg form.

This follows easily from the definitions. For positive forms, we have a stronger result.
Proposition 2.3.5 A Lagerberg form is positive if and only if it is positive as a complex form.

Proof 1t is easily seen that if @ € APPV’ is a positive Lagerberg form, then it is also a
positive complex form by using the embedding (2.7) and that Jo = iP ®.

Conversely, assume that w is a Lagerberg (p, p)-form that is positive as a complex form.
n(p—1)
We claim that is enough to show thatif n = (—1) B o AiPa for some complex (p, 0)-form

o, then n 4+ F(n) is a positive Lagerberg form. Assuming this claim, we can write

rp—1) -
a):ZyS(—l) T ag ANiPag
N

with ¥ € R>p and o5 € APOy*, Using the claim and the F-invariance of w, we have that

p(p—1)
2

w=%(w+F(a)))=Z%(—l) (a5 NiPas + F(os Aifas))

N

is a positive Lagerberg form.
To prove our claim, we write « = a + ib witha, b € AP-0(V'). Then we have

aNiPa@d = (a+ib) AiP(@@—ib)=iP(anda—ia Nb+ibAa+DbAb).
Using F (@) = a — ib, we get
Fa A F(i’@)) = (a —ib) A F(i”(@ — ib)) = i”(a — ib) A (@ + ib),
where we have used for the last equality that
F(@ita) = (=1)PiPF(@a) = (-DPi’ (=)’ F(a) = i’a
by equation (2.6) and analogously F(i?t'b) = —iPT1h. Since

rip=1 1

%(n tFm) =(h7 o (¢ niPa+ Fa A F(if@))),

we deduce that
rp=1 pp—1)

N+ Fm)=2-(-1)"7T iP@ana+bab)=2-(=1)"T @AJa+bAJb)

which is a positive Lagerberg form. O

The next example shows that the analogues of Proposition 2.3.5 for strongly and weakly
positive forms do not hold. Hence the converse of Proposition 2.3.4 (i) and (ii) is wrong.

Example 2.3.6 We show that the space of strongly positive Lagerberg forms does not span
the space of symmetric Lagerberg forms. In particular, the cone of strongly positive Lager-
berg forms has empty interior and not every symmetric Lagerberg form can be written as a
difference of strongly positive ones.

Indeed, let V be a real vector space of dimension four. Then we have

2,2 vy ’ 7 / 7 _
AgymV —{ Z wijd ui Nd uj ANdug Aduy wl-jkl—wj,-lk}.

i<k,j<l
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Moreover, we have the following identity of cones:
A2V =(aNT@AbATD) |a,be AV ).
Givena,b € ANV’ let wijki(a, b) € R be such that

anJ@ AbAJb) = Z wijx(a, byd'u; A d”uj ANdup ~Ad"u;.
i<k, j<l

A direct computation shows

w1,3.2,4(a, b) —wi234(a,b) + w243, b) =0,
and, by symmetry, we have

w3 142(a, b) —wz143(a,b) + w1 34(a b) =0,

Hence Aizs V' is in a proper linear subspace of Agﬁn V' and so it has empty interior.

As a consequence, the cone Aizw V' is not strictly convex. Namely, the form

o=dus "d"ui Ad'us ANd"uy —d'us Ad"uy Ad'us Ad"uz
+dur"nd"uy Adus Ad"us +d'uy Ad"uzs Ad'usr Ad"ug
— d/ul A d”uz A d’u3 A d//u4 + d’ul A d”uz A d’u4 A d”u3

satisfies n A w = 0 for every n € Ai% V', and hence Cw € A2+2w V' for every C € R.

Remark 2.3.7 We will deduce from Example 2.3.6 the existence of Lagerberg forms that are
strongly positive as complex forms but not strongly positive as Lagerberg forms.
By Lemma 2.1.4, every complex form w can be written as a complex linear combination

w = Zkiwi (2-9)

of strongly positive complex forms w; . If w is real, then applying o to (2.9) and using that
the w; are real, we see that we may take the X; to be real. If w is further invariant under F,
then applying F to (2.9) we see that replacing w; by 1/2(w; + F(w;)) we may assume the
w; to be F-invariant. Note that F(w;) is strongly positive by Lemma 2.3.3.

We have just shown Afy’,ﬁ V = ((Af_’fy7 V*)F)g. Since we showed in Example 2.3.6 that
(Af_”f Vhr C Afy’n'; V', we find that (Ai”f vHF ¢ Ai”f V’. By Proposition 2.3.2, this means
exactly that not every Lagerberg form that is strongly positive as a complex form is strongly
positive as a Lagerberg form.

The next example illustrates this phenomenon.

Example 2.3.8 Let V still be a real vector space of dimension four. Choose a basis ey, . . ., es

and corresponding bases of V*, V", V/ and V" as before. The complex form
n = (duy +idup) Ni(duy — idur) A (duz + idug) Ni(duz — iduy)

is strongly positive by definition. By Lemma 2.3.3, the form w = %(n + F(n)) is strongly
positive. Moreover, it is F-invariant and hence w may be seen as a Lagerberg form by
Proposition 2.3.2. We claim that w is not strongly positive as a Lagerberg form.
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A direct computation shows that
w=dui Ad"uy Ad'us ANd"uzs +d'ui Ad"uy Ad'ug Ad"ug
+duy "Nd"ury ANd'uzs Ad"uz +d'us Ad"us Ad'us Ad"ug
—duy "d"ury Ad'us Ad"ug +d'us Ad"uy Ad'us Ad"ug
+dur "d"uy Nd'us Ad"uzs —d'us Ad"uy Ad'us Ad"us.
=(=Ddui "d'us —d'us Ad'ug) N J(d'uy Ad'uz —d'us Ad'ug)
+ (=D(dur Ad'ug +d'us Ad'uz) A J(d'uy Ad'us + d'ur Ad'usz).

This shows that w is a positive Lagerberg form, that the associated symmetric bilinear form
|| has rank 2 and that (ker |w|)~ is the 2-dimensional subspace

(ker o))" = R(d'u; Ad'us —d'us Ad'ug) + R uy Ad'us +d'us Ad'uz).

We pick any decomposition

=Y ajAJ(@)) (2.10)
j

with @ € A0V, Then a; € (ker lw|)*, since for any v € ker |w| C A2V, we have
0=l v) =) (v
J
If w were strongly positive, we would have a decomposition like (2.10) where o ; € A0y

is a product of (1, 0)-forms. However, this is not possible because (ker |a)|)L does not contain
any non-zero real decomposable element as the following argument shows. Assume that

p:=(adui+Bdur+ydus+38du) A du+B dus+y duz+68dus)

belongs to (ker lw)t.
This implies the equations

ay’ —a'y =p's — B8,
ad —a's =8y — By,
ap —a'B =0,
y8 —y's§ =0.

The point p determines a point o’ in the Grassmannian Gr(2, 4) with Pliicker coordinates

_|a B |y | s

X = o IB/ > = o )// > =l s
By pé y ¢

U= , V= , W= .
ﬂ/)// ﬂ/g/ )//(S/

The previous equations imply that the Pliicker coordinates of p’ satisfy the equations
y=—-v, z=u, x=w=0.
Moreover, the Pliicker equations for Gr(2, 4) are reduced to the single equation

xw—yv+zu =0.
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We conclude that the Pliicker coordinates of p’ satisfy the equation
Y +z22=0 @2.11)

that has no real solutions except the trivial one. The fact that w is strongly positive as a
complex form is reflected by the fact that (2.11) has non-trivial complex solutions.

3 Lagerberg forms and Lagerberg currents on partial compactifications

For convex geometry we will use the notation and conventions set up in [12, Appendix]. Let
N be a free abelian group of rank n, M = Homgy (N, Z) its dual and denote by Ng resp. Mg
the respective scalar extensions to R.

3.1 Partial compactifications

A strictly convex rational polyhedral cone o € Np is a polyhedron defined by finitely many
equations of the form ¢(.) > 0 with ¢ € M, that does not contain a positive dimensional
linear subspace. A rational polyhedral fan ¥ in Np is a polyhedral complex all of whose
polyhedra are strictly convex rational cones. In this paper we make the convention that a fan
is always a rational polyhedral fan.

A cone is called smooth if it is generated by a subset of a Z-basis of N. A fan X' is
called smooth if each cone of X is smooth. For 0 € X we define the monoid S, := {¢ €
M| ¢(v) > Oforallv € 6}. Foro € X, write N(o) := Nr/{o)r where (o)r denotes the
real vector space generated by o. Given o, 7 € X, we write T < o if 7 is a face of 0. We
have projection maps 75 : Nk — N(o) and 5, : N(t) = N(o) fort < 0.

Definition 3.1.1 Let X' C N be a rational polyhedral fan. We consider the disjoint union

Ny = ]_[ N(o)

ceX

and call Ny equipped with the topology introduced in Remark 3.1.2 the partial compactifi-
cation of N associated to X.

Remark 3.1.2 The partial compactification Ny carries the following topology which is Haus-
dorff. It is also locally compact and has a countable basis and hence it is metrizable. Let us
briefly recall its definition.

First, we define the partial compactification of N (o) for a single cone o € X by setting

Ny =] N@).
T<0
The set N, is naturally identified with the monoid morphisms Hompygen (Ss, Roo). We equip
it with the subspace topology of R%. Using a finite set of generators ¢, ..., gx for the
monoid S, we can realize Hompgon (S5, Roo) as a closed subspace of ]R’go with the induced
topology (see [18, Remark 3.1] and use [18, Lemma 2.1]).

For aface p of o, we note that N, is an open subset of N,;. This is used to define a topology
on the partial compactification N5 by gluing the partial compactifications N,, o € X, along
the open subsets induced by common faces.

We give a second description of the topology of Nyx. To this end, we fix an Euclidean
metric in Ng. Fora cone v of X, the Euclidean metric allows us to identify v with a subspace
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of Nr and, through the projection r,, with the space N (v). Again, we consider first the case
of a single cone o € X. For a point u € Ny, there is a unique face v of o with u € N(v).
Letug € v- C Ng be the corresponding point and let U be a neighborhood of uq in v-. For
each face T < v, the cone v induces a cone (V) contained in N (7). For each p € v, we
write

W, U, p)=][7U+p+v). (3.1)
<V
The topology of N, is defined by the fact that {W (v, U, p)}u,p is a basis of neighbourhoods
of u in N, for any u € N,. As before the topology of N is defined by gluing along the
open subsets N; of N, whenever 7 < o.

The first definition of the topology is given by Kajiwara [15] and by Payne [18], the second
definitionis from[1, I.1]. The topologies coincide as the above basis of neighbourhoods works
also for the first definition by [18, Remark 3.4].

To prove that Ny is Hausdorff, we use that the quotient of a topological space (in this
case the disjoint union of the N, ) by an equivalence relation is Hausdorff if the canonical
map to the quotient is open and the graph of the equivalence relation is closed [5, Ch. I §8.3
Prop. 8]. As the map to the quotient is open by construction, it is enough to show that, for
cones o1 and o, with 7 = o1 N 07, the map

Ny —> Ng X Ng,

is a closed immersion. This follows easily from the first description of the topologies of N,
and Ny, by choosing a finite set of generators of Sy, and S,, and observing that the union of
both sets is a set of generators of S;.

Note that Ny is locally compact because the N, provide an open covering of Ny and
each of them is locally compact. Finally every N, has a countable basis and hence also Nx.

Remark 3.1.3 Let T = Spec C[M] be the split complex torus with cocharacter lattice N. Let
X x denote the toric variety over C with dense torus T determined by the fan ¥ in Np. Let
X% denote the analytification of X x, i.e. the set of complex points X 5 (C) with its structure
of an analytic space.

There is a well-known continuous map (see for example [1, I.1, p.2], [15, Definition 1.2]
or [6, Section 4.1])

an

trop: X5 — Ny, (3.2)

which is nowadays called tropicalization map as it is given by glueing on the affine open
subsets U, = Spec C[S,] for 0 € X of X x the tropicalization maps

trop: US" — N, = Hompmon(So s Roo), ¥ —> (m —> —log |x" (»)])

where x™: T — G, is the character associated with m. It follows from [6, Sections 4.1, 4.2]
that the tropicalization map (3.2) is a proper continuous map that identifies Nx with X§'/S
where S denotes the real compact torus

S={peT"|Ix"(p)| = 1forallm e M} C T*".

There is a continuous proper section px : Nx — X% of the tropicalization map (3.2) given
as the unique continuous extension of the section

p: Ng — T = Hom(M,C*), n+— [m — exp(—(m,n))]

of (3.2) (see [6, Remark 4.1.3]).

@ Springer



1216 J.I. Burgos Gil et al.

N(.Tl) N(Ug) p—|—-oov N(.Tg)
Ly
Nr = N({0})
N(on) N(o1)
Ny,
'ON(Tg)

Fig.1 The fan and partial compactification of the toric variety P2

To illustrate the topology on the partial compactification Ny, we give the following lemma
where the notation coincides with the one in [1, I.1, p.5].

Lemma3.1.4 Let ¥ C NR be a fan, and let Nx be its associated partial compactification.
Given p € Nr and v € |X|, the limit p 4+ oov 1= lim,_, { o p + pv exists in Nx. Moreover,
p + oov € N(o) for the unique cone o € X such that v € relint(o).

Proof We use the description of the topology of Nx given by the basis of neighborhoods
W(o, U, g), so we fix an Euclidean metric in Ngr. Let pg € ot be the point corresponding to
75 (p), U aneighborhood of pg in o and ¢ € o. It is enough to show that there is a 19 > 0
and for all u > g, the condition p + pv € W(o, U, q) holds. Since 7, (p) = 75 (po) and
q € o, wededuce that p — pg — g € (o). Since v € relint(o), there is a i such that for all
> po,wehave p — po—q+puveoandhence p+puveqg+U+o=W(,U,q).O

Example 3.1.5 As an example, we consider the toric variety P? and its tropicalization shown
in Fig. 1. Note that for v = (0, 1), the point p + oov is the point in N (o3) lying vertically
above p.

3.2 Lagerberg forms and Lagerberg currents

Recall from [16] that for every open subset U of N, there is a bigraded R-algebra of
Lagerberg forms A (U) with differentials d’ and d” of bidegree (1, 0) and (0, 1). Lagerberg
forms were introduced by Lagerberg in loc. cit. under the name superforms. They are defined
as

API(U) = AP (U) ®coowy A1(U)

where A" (U) denotes the R-algebra of real valued smooth differential forms on U.
We choose a basis of N which defines coordinates uy, ..., u, on Nr. Then we may write
a Lagerberg form « as

o = Zf]jd,u] /\d”uJ
1,7

@ Springer



A comparison of positivity in complex and tropical... 1217

where I = {iy < --- <ip}and J = {j; < --- < j,} range over all subsets of {1, ..., n},
where f7; are smooth real functions on U and we use the multi-index notation

d'up /\d//uj = du;, /\~-~/\du,‘p®du/‘1 /\---/\dujq.

There are differentials d’: AP4(U) — APT19(U) and d”: AP9(U) — AP4T1(U), which
are in coordinates given by

d’(fd’ul /\d”blj) = Xn: ﬂ
: a

io=1

d/u,'o A d’u, A d”u;

L

and

ad
f d/u[ A d”ujo A d”u].
814]0

d"(fd'ur nd"uy) = (=17 »

Jo=1

The product of the bigraded R-algebra A~ (U) is alternating and we denote it by A. The
algebras A~ (U) form a sheaf on Np that is denoted by A~" or by A'l’\;R.

The algebra A~ (U) carries a natural involution J that permutes bidegrees and is deter-
mined by J(¢ ® B) = B @« forall o, B € A" (U). A Lagerberg form o € A”?(U) of type
(p, p) is called symmetric if it satisfies J (o) = (—1)P .

Let us fix a fan ¥ C Ng. Following [14, Definition 2.4], smooth forms on open subsets
of Ny are defined as follows.

Definition 3.2.1 LetU C Ny beanopensubset. Foreveryo € X, we write Uy := UNN (o).
A Lagerberg formoftype (p, q) on U is given by afamily w = (wg)sex Withw, € AP 9(Uy)
satisfying the following local condition. For each p € Uy, there exists a neighborhood V of
p in U such that for all T < o we have

_ *
Dtly, st (v = Tor @alv)ly, gt v,y

We denote by A”-4(U) the real vector space of Lagerberg forms of type (p, g) on U. There
are unique differentials d’: AP4(U) — APTM4(U) and d”: AP9(U) — AP9H1(U) such
that (d'w)y; = d'(wy) and (d"®)y = d"(wy) for each w € AP9(U) and each 0 € X.
A smooth function f: U — R is a Lagerberg form of type (0, 0) in U. The assignment
U — AP9(U) defines a sheaf A79 of real vector spaces on the topological space Ny. If
we want to stress the fact that AP-7 is a sheaf on Ny, we will denote it by AK,’;, The support
supp(w) of a Lagerberg form w € AP-9(U) is the closed subset of points of U where w has
a non-zero germ in the stalk. The space of Lagerberg forms of type (p, ¢) on an open subset
U of Ny with compact support is denoted A2 (U).

Remark 3.2.2 The stalk Ay;?  of the sheaf A7 inapointx € N(o) C Ny canbe identified

with the stalk Ax(q o). in x of the sheaf of Lagerberg forms on the real vector space N (o).
This follows from Definition 3.2.1.

(ii) Let U C Ny be an open subset and w € AP4(U) a Lagerberg form. It follows from
statement (i) that supp(w) = Uy exsupp(wy ), see [14, Lemma 2.17].

(iii) Let U C Ny be an open subset. There is an involution J on

AV (U) = Bp,g=0A" (V)
such that given a Lagerberg form w = (ws)wey as in Definition 3.2.1, J(w) is determined

by (Jw)s = J(ws). A Lagerberg form w € AP-P(U) of type (p, p) is called symmetric if it
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satisfies J (w) = (—1)Pw.
(iv) For U C Ny open, the restriction map A”9(U) — AP-9(U N NR) is injective.

Remark 3.2.3 Let U be an open subset of Ny. Observe that AP9U) is in general not a
finitely generated Ag’O(U )-module. This is caused by the fact that forms of large degree
vanish automatically at the boundary.

We next discuss a topology on the space AZ"?(U). This topology is modeled on the
topology of the space of test forms used in analysis, see for instance [22, §6]. In fact, for an
open subset U of N5, we will define topologies on certain subspaces of A?*? (U) and use a
limit process to define a topology on AZ*?(U). Moreover, we shall describe the convergent

sequences in AZ"?(U). In the following, we fix a basis u1, ..., u, of M which defines
coordinates (i1, ..., u,): Nr = R and allows to write Lagerberg forms on U in terms of
standard forms d'u; A d"uy for subsets I, J C {1, ..., n}.

Definition 3.2.4 Let U be an open subset of Nx. For each compact subset K C U and each
finite open covering (V;); of K, we denote by A’;(’q(U , (Vi)i) the subset of all Lagerberg
forms w = (wy)eex in AZ?(U) such that supp(w) C K and

Ol e (Vi) = ”:»r(wa|Vi~a)|v,-,mnai(vi,a> 3.3)
holds for all i and all cones 0,7 € ¥ witht < o and V;, = V; N N(o) # . Given
w e A%q(U, (Vl)l)’ we write @ = ZI,JC{I n) fI,]d’ul A d”uj and define

.....

3 fr
ol = ) P (3.4)
aeN 1,Jc{l,...,
la|<m

for each m € N using the supremum norm || || ¢ of continuous real functions on the compact

set K. The family of norms (3.4), where m € N varies, defines on A‘I;’ (U, (V;);) the structure

of a locally convex topological vector space which is complete with respect to a translation

invariant metric and hence it is a Fréchet space. The induced topology is denoted by tx (v;),.
We put on AZ*?(U) the topology , defined as the limit topology

AP D) = lim (ARIWU. (V). tk.v),)
K., (V)i

in the category of locally convex topological vector spaces. Note that this may be different
from the direct limit in the category of topological vector spaces.

As mentioned previously, the topology of AZ*? (U') is modeled on the classical topology on
the space of test functions in [22, §6] and its formal properties are very similar. For instance,
if U is not compact, then AP9(U) is not metrizable. Nevertheless the topology on AP
has many nice properties and the fact that is not metrizable is only a minor issue.

Remark 3.2.5 The spaces AZ*Y(U) have the same properties as the test function spaces in
[22, Chapter 6]. This is a consequence from the fact that £ := AP?YU)isan LF -space
as introduced by Dieudonné and Schwartz [10]. This means that the vector space E is a
countable union of strictly increasing Fréchet spaces Ej such that the topology on Ej agrees
with the induced topology from Ej ;. Indeed, using that U has a countable basis, it is clear
that the direct limit can be by described by using countable many (K, (Vk_;);) such that the
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compact subset Ky lies in the interior of Ky and such that a subfamily of (Vi41,); is a
refinement of the open covering (Vi ;); of K. Setting

Ey = (AR (U, (V). Tk, v, )

we see that E is an L F-space. It is shown in [10] that £ has a canonical structure as a
locally convex space which is the finest structure such that the topology on E, agrees with
the induced topology and it follows that E is the direct limit of the E, in the category of
locally convex spaces.

All properties of test function spaces from [22, Chapter 6] were shown in [10] more
generally for L F-spaces and so they apply to AZ"?(U). In fact, an L F-space is not only
sequentially complete, but a complete Hausdorf space [10, Corollary of Theorem 6]. For our
paper, we need mainly the following results about sequences.

Proposition 3.2.6 Let U be an open subset of Nx. A sequence (wy) in AP converges
to w € APY(U) if and only if there is a compact subset K C U and a finite open covering
(Vi)i of K such that all wy and w are contained in Aﬁ‘q(U, (Vi)i) and for every m € N, we
have limy_ o ||lwr — || = 0.

Proof A convergent sequence is bounded and hence the result follows from the fact that every
bounded subset of an L F'-space is contained in some E,, [10, Proposition 4]. O

Even if the space AZ"?(U) is not metrizable, for many purposes, sequences are enough.

Proposition 3.2.7 Let T: Az """ 9(U) — R be a linear functional. Then the following
conditions are equivalent.

(i) The map T is continuous.
(ii) If a sequence (wi)keN converges to zero, then (T (wy))reN converges to zero.
(iii) The restriction of T to each subspace Ayll(_p’n_q(U, (Vi)i) is continuous.

Proof The equivalence of (i) and (iii) follows from [10, Proposition 5], while (ii) and (iii)
are equivalent by Proposition 3.2.6. O

As in the classical case of distributions, we now define currents as the topological dual of
the space of smooth forms with compact support.

Definition 3.2.8 A Lagerberg current of type (p, q) on U is a continuous linear functional
T: A P"71(U) — R. The space of such Lagerberg currents is denoted by D”9(U). A
Lagerberg distribution is a Lagerberg current of type (n, n).

Remark 3.2.9 Let U denote an open subset of Ny .

(1) If U is contained in the open generic stratum N, then the definition of D?4(U) above
coincides with the definition of D?:9(U) given by Lagerberg [16, 2.1].
(ii) By the usual methods, the spaces of Lagerberg currents inherit operators

d': D"4(U) — DP9 U), d": DP9(U) — DP4TI(U)
and a product

AP (U) @ DP9 (U) —s DPHPatd (1)
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such that

d/(T)(CU,) = (_1)P+q+1T(d/w/)’
d"(T) (") = (=P 7@ "),
BAT)(w) = (_1)(P'+q')(p+q)T(ﬂ A )

forall T € DP4(U), B € AP4 (U) and all ', ", w € A (U) of suitable bidegree.
(iii) There is an involution J on D> (U) = @ 4>0D?9(U) such that given T' € DP9 (U)
and w € AL~ ?"7P(U) the Lagerberg current J(T) € D77 (U) is given by

J(T) (@) = (=D"T(J (w)).
A Lagerberg current T € DP-P(U) is called symmetric if it satisfies J(T) = (—1)PT.

Integration of Lagerberg forms gives examples of currents. We start by recalling the
integration theory of Lagerberg forms. If U C Ny is an open subset and n € A" (U) is a
Lagerberg form with compact support, using the chosen basis of M, we write

n=fduird"urn---~du, Nd"u,.

Denote by dX the Lebesgue measure on N induced by the lattice N. The integral of 5 is

defined as
/n:/ fdA.
U Nr

Since the support of any compactly supported Lagerberg form of type (n, n) is a compact
subset of N, the integral is finite. Since two isomorphisms N = Z" differ by a matrix of
determinant 1, the integral does not depend on the choice of coordinates.

Example 3.2.10 Let U C Ny be an open subset. We will use the map
[ 1: AP9(U) — D7), n+— [nl() =f nA -
U
This map is a morphism of A" (U)-modules compatible with the actions of d’, d” and J.

Example 3.2.11 Let U be an open subset of Nx. For every real Radon measure 1 on U (see
Appendix A), there exists a unique Lagerberg current 7 € D™"(U) such that

1= [ fdu vreaw). (3.5)
U

Indeed, for a compact subset K of U and a finite covering (V;);cy of K, the canonical maps
A%O(U, Vier) — CIO((U, R) and COK U,R) — C?(U), R) are morphisms of locally
convex vector spaces. By the universal property of the direct limit, the composition of these
maps induces a continuous map AE’O(U) — C?(U, R). This shows our claim.

Proposition 3.2.12 Let (U;);ic; be an open cover of an open subset U of Nx. Then there
exists a partion of unity subordinate to the given cover (U;);ey, i.e. a countable, locally finite
open cover (V) jej of U together withamap s: J — I suchthat V; C Uy forall j € J

and a collection of non-negative functions f; € AS’O(VJ-) such that Zje] fi=1L
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Proof By general arguments, see [23, Theorem 1.11], it is sufficient to show that, given a
point x and a neighborhood V of x in U, there exists a function f € Ag’O(V) that is constant
equal to 1 on a neighborhood of x. This statement is clearly local, so we may assume that
our fan X is generated by a single cone o and Ny = N,. We have seen in Remark 3.1.2 that
a choice of k generators of the cone o leads to a realization of N, as a closed (polyhedral)
subset of R’éo. Now the existence of a partition of unity for an open subset of R’go from [14,
Lemma 2.7] readily shows the claim. O

Let U be an open subset of Nx. Recall from Appendix A that the space C?(U ,R) of real
valued continuous functions on U with compact support has a canonical structure of a locally
convex topological vector space.

Corollary 3.2.13 For U C Nyx open, the image ofA(C)’O(U) — C?(U) is sequentially dense.

Proof 1t is enough to show that, for any continuous function f € C?(U ), there is a sequence
of functions gx € Ag’O(U), k > 0, that converges to f in the topology of C?(U). Let K be
the support of f. Using that Ny is locally compact, we can easily find open subsets Uy, Ua
and compact subsets K1, K> with

KcU CcK cUyCcK,CU.

By Proposition 3.2.12, the Stone—Weierstrass Theorem [20, Theorem 7.32] implies that the
R-algebra {h|g, | h € A%0), supp(h) C K>} is dense in CY(K ). Hence there is a
sequence of smooth functions h; € AQ’O(U) with supp(hr) C Kp such that the hylg,
converge uniformly to f in C°(K|). Again by Lemma 3.2.12, there is a smooth function
0 < p < 1, whose support is contained in U; and with p|x = 1. Then the sequence of
smooth functions given by gx = phy converges to f in CB(U ). O

4 Positivity for complex invariant forms and Lagerberg forms

In this section we study positive forms on a smooth complex toric variety that are invariant
under the action of the compact torus and compare them to positive Lagerberg forms. We
keep the setting from Section 3.

4.1 Invariant forms in the case of the torus

We start with the case of the complex algebraic torus T = Spec C[M] of dimension n
with character lattice M and cocharacter lattice N. We fix a splitting N = Z" that induces
holomorphic coordinates zi, ..., z, on T as well as linear coordinates uy, ..., u, on NR.
As before we denote the associated complex manifold M ®z7 C* = (C*)" by T#". We will
also consider the real compact torus

S:={zeT*||zjl=1Vje{l,....n}} ={zeT" | |x"(@)| =1 Yu € M}.

We will denote by A either the sheaf of complex differential forms on T" or the sheaf of
(real) Lagerberg forms on Nr. The context will always allow us to distinguish between them.
If not we will denote the former as Ayan and the latter as Apy,. For an S-invariant subset V
of T2, let A(V)S denote the subalgebra of A(V) given by the S-invariant forms.
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Remark 4.1.1 Let V be an S-invariant subset of T?". The subalgebra A(V)S is a direct factor
of A(V) because averaging with respect to the Haar probability measure ug of S defines a
canonical projection

AV) — A(V)S, o +— o™= /a*(w)dug(a)
S
where a: T® — T?" denotes translation by a € T?".

Definition 4.1.2 Let_F be the antilinear involution of the sheaf of C-algebras A =Aran deter-
mined by F(f) = f for f € A®0 and by

F(dzj/zj) =dzj/zj, F(idzj/zj) =idz;/z;

for j = 1,..., n. The S-invariant one-forms dz;/z; and idz;/z; (j = 1, ..., n) generate
a subsheaf of R-algebras B of A such that A>" = A"? @g B". Observe that this definition
of B does not depend on the choice of the splitting N = Z" which induces the coordinates
21, ..., Zn. The antilinear involution F above is the R-linear endomorphism on Afan given
as the tensor product of complex conjugation on A%? with the identity on B. We conclude
that the involution F is indeed well defined.

Lemma 4.1.3 The involution F is T*-equivariant. In particular F induces an antilinear
involution, also denoted by F, of A(V)S for any S-invariant open subset V of T*".

Proof For f € A%O(V)and j =1, ..., n, we have
a*f =a*f, a*(dzj/zj) =dz;j/zj, and a*(ide/Zj) =idz;/z;.
We deduce that a* F (w) = F(a*w) for any w € A(V) and the claim follows. |
Lemma4.1.4 Let V C T be an S-invariant open subset. If o € A(V)S, then
F(w) = 0F (w), F(idw)=idF (w).
Proof We note that the S-invariant forms i Kldz; AdZg /(zrzk) give a frame in A(V). Using

that r — log(rz) is a diffeomorphism from R onto R, any w € A(V)S can be written as

_ _ ilKldzy AdZ
w= frx00gEiZ1). ... 10g(EnZn) — @1

TK ZIZK

where the functions f7 x are smooth complex valued functions of n real variables. We denote
by 0; f1,k the partial derivative with respect to the j-th variable. Clearly

3 f1.x = 9; fr.x-
Then F(dw) is equal to

dz; i'"®ldz; Adz dz; i"®ldz; Adz
Zzafll( N ZZafIK LA ——L K

AT, 212K % idl 212K

and

~ilKldz; Adz _d K|z A d7

l zZr Ndz i l Zy N\Ndz

F@ =0 fixk—t =35 0 fr—? TN L il 5
1. K

ZIZK 1.K jél ZIZK
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Thus the commutativity between 9 and F follows from 9, f,yK =90 f1k.
Similarly, F(idw) is equal to

idz; i"ldz; Adz idz; llKle Adz
DI RO BTTE e e

AT 212K X 2K 212K

and

IKlg dz _ idz; iKlg dz
[ Z] NdAZK 1azj 1 ] NdZg
0P =id [ Y fik——a—=|=>_> 0ifik—=2A - :
1.K ZIZK I.K j¢K Z([ ZIZK

Therefore the commutativity of F and id also follows from 8; f; xk = 9; f1 - |
The next example shows that S-invariance of w is necessary in Lemma 4.1.4.

Example 4.1.5 Consider the case n = 1 and let f(z) = z + z. This function is real but not
S-invariant. Furthermore

IF(f)y=0f =dz
and

F@f)=F(dz) = F(zdz/z) = zdz/z.

Definition 4.1.6 For any S-invariant open subset V C T2", we denote by A(V)S¥ the algebra
of forms that are simultaneously F-invariant and S-invariant. Since F and the action of S both
respect the bigrading of A, we deduce that A( V)SFisa bigraded algebra. By Lemma 4.1.4,
the operators 9 and ;9 induce operators on A(WSF,

The next goal is to give an identification between the algebra of S-invariant forms that
are also F-invariant, and the algebra of real Lagerberg forms on Ng. This identification
will respect the natural differential operators. Recall that J denotes the Lagerberg involution
introduced in Remark 3.2.2.

Proposition 4.1.7 Let U C Ng be an open subset and V = trop~— ' (U) the corresponding
S-invariant subset of T*". Then there is a unique homomorphism

trop*: A(U) — A(V)
of R-algebras such that
trop*(¢) = ¢ o trop 4.2)
forall p € A%O(U) and such that

trop*(d'w) = 77129 trop*(w) and trop*(d’w) = 7~ Y?id trop*(w) 4.3)

for all o € A(U). Moreover, this homomorphism is injective with image A(V)S-F inducing
an isomorphism A(U) =~ AWV)SF. Forw € AP9(U), we have
trop* (J (w)) = i” T trop*(w). (4.4)
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Proof We first recall some formulas from complex analysis in one variable. If z = re’? and

u = —log|z| = —log(r), since r? = zZ, we have
d - dz
) = —=° and du = ——
2z Z
Forj=1,...,nwriterj = |z;| = (z;Z;)"/?. Then
trop*(u ;) = — log(r;).
Therefore, Egs. (4.2) and (4.3) imply
dz; idz;
trop*(d'u ;) = — I trop*(d'u;) = ——=L—. 45
p (d'uj) NS p (d uj) N 4.5)
Since trop* is an algebra homomorphism, we deduce that, if w € A(U) is written as
o= frx@i .. up)du nd'ug, (4.6)
1.K
then the corresponding form on the torus is given by
—1 \MIFIK] dz; ANdzig
trop™* = — il —log(ry), ..., —log(r,)) ———=. (4.7
p* () §(2ﬁ> f1.x(=log(r1) gr) = === (47)

This proves the uniqueness of the map trop*. Conversely, using Eq. (4.7) as the definition
of trop*, the uniqueness of the decomposition (4.6) shows that trop™ is well defined and it
is immediate to verify (4.2), (4.3) and (4.4). Clearly, the form in (4.7) is F- and S-invariant
and every element in A(V)S ¥ has this form. Obviously, the map trop* is injective. Hence it
induces an isomorphism A(U) =~ A(V)SF, O

Corollary 4.1.8 Let U C Ng be an open subset and V = trop~'(U). Then trop* induces an
isomorphism of topological vector spaces Ac(U) =~ A.(V)SF.

Proof The isomorphism of vector spaces follows from Proposition 4.1.7 as the map trop is
proper. Using that trop is a submersion, the topological statement can be checked locally in
coordinates. O

Remark 4.1.9 The S-invariant open subsets of T*" are precisely the preimages of open subsets
of Ng. Hence S and F act in a natural way on the sheaf trop, A. We denote by (trop, A)S* the
subsheaf of sections invariant under S and F. Then Proposition 4.1.7 yields a monomorphism
of sheaves of R-algebras

trop*: A —> (trop, A)>F (4.8)
that preserves differentials as in (4.3).

The next remark shows that Lagerberg forms and the involution F are pointwise described
by the linear algebra in Sect. 2.

Remark 4.1.10 Choose a point x € T*" and let y = —log |x| = trop(x) denote its image
under the tropicalization map. Write V' = Ty N for the tangent space to N at y. Let vV,
V", V* and V* be defined as Sect. 2. There is an isomorphism

trop*: V* @ V¥ — 110 @ 70180
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given by
dz; _ —idzj
du; —> — , and idu; —> .
/ 2«/7ij J 2«/7ij

This isomorphism is compatible with the map trop™ in the sense that
trop™ () (x) = tropy (& (y)).
Let 7, € A™"V’ be the Lagerberg orientation as in Definition 2.2.1. Then

i"dzy NdZy N - ANdzy ANdZ,
Ay x 2. Jx, 2

trop} (z,) = 4.9)
Note that the denominator of this form is strictly positive in the torus T?" therefore, any
positivity notions on T*" defined using the orientation trop (z,) or the orientation

i"dzi ANdZy A - Adzy AdZ,

agree.
Let w € AP9(W) for some open subset W of T?" and x € W. We get from (2.5) that

F(w)(x) = F(w(x)) (4.10)

where F on the righthand side is the involution from Definition 2.3.1.

Definition 4.1.11 Let U be an open set of Ngr. A Lagerberg form w € A(U) is called strongly
positive (respectively positive, weakly positive) if for all x € U, w(x) is strongly positive
(respectively positive, weakly positive).

Let V be an open set of T?". A complex differential form w € A(V) is called strongly
positive (respectively positive, weakly positive) if for all y € V, w(y) is strongly positive
(respectively positive, weakly positive).

As we have seen in Example 2.3.6, it is reasonable to restrict our attention to positive
Lagerberg forms. Nevertheless we add the other positivity notions for further reference.

Lemma4.1.12 Let U be an open set of Ng and w € APP(U) be a Lagerberg form on U.

(i) The Lagerberg form w is symmetric if and only if trop* w is real.
(ii) If w is strongly positive, then trop* w is strongly positive.
(iii) If trop* w is weakly positive then w is weakly positive.
(iv) The Lagerberg form w is positive if and only if trop* w is positive.

Proof The Lagerberg form w is symmetric if and only if Jw = (—1)”w. By Eq. (4.4) this is
equivalent to trop™(w) = trop*(w). This proves the first statement.

The remaining assertions follow from the fact that positivity is checked pointwise,
Remark 4.1.10 and Propositions 2.3.4 and 2.3.5. O

Remark 4.1.13 Remark 4.1.10 shows that the correspondence

7129« d and 77 V39 «— d” (4.11)
from Proposition 4.1.7 was already used implicitly in Section 2 in order to preserve positivity
and the bigrading between the complex and the Lagerberg forms.
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Remark 4.1.14 Chambert-Loir and Ducros mention in [7, Remarque 1.2.12] the identifica-
tionsd =3 + 3 <> d' and 4wd = %(8 — ) < d” (observe that d Arg(z) = 4md°®log|z|)
which have the disadvantage that they do not respect the bigrading and do not allow the nice
interpretation of symmetric Lagerberg forms as real complex forms as in Lemma 4.1.12.

Remark 4.1.15 Let U be an open subset of Ng and V := trop’1 (U). We have introduced
the map trop*: A(U) — A(V) in order to establish later correspondence results between
Lagerberg forms and currents on U and invariant complex forms and currents on V.

Let us explain our choices which lead to the achieved correspondence (4.11): Our first
condition is that trop* should be a differential homomorphism of R-algebras with respect to
the differential operators d’ and d” of A(U) and natural differential operators 3’ and 3” on
A(V). Naturality means here that 3’, 3” should be in the two-dimensional C-vector space
spanned by 9 and 3. The second condition is that trop* respects the bigrading which implies
9’ = ad and 8” = bid for some a, b € C. Third, the range of trop* should be contained in
the F-invariant forms in V which yields a, b € R. Observe that these three conditions imply
already that trop™ preserves positivity of forms (see Lemma 4.1.12). Our fourth condition
is (4.4) which forces a = b. The fifth condition is that trop* is compatible with integration
(see Lemma 4.2.5 below). This gives ab = 1/m. Hence we have seen that the five conditions
given above fix our choices in Proposition 4.1.7 up to a sign.

4.2 Invariant forms in the case of a toric variety

The next goal is to partially extend Proposition 4.1.7 to toric varieties. Let X' be a smooth
fan in Nr. Let X x be the corresponding smooth complex toric variety and let Nx be the
corresponding partial compactification of Ng as in Sect. 3. We denote by X5 the complex
manifold associated to X x. Recall from Remark 3.1.3 that the tropicalization map is a proper
continuous map trop: X5' — Ny that identifies Nx with X§'/S.

Remark 4.2.1 Let V C X% be an S-invariant open subset. Then, in general, the involution F
does not induce an involution of A~ (V). In fact, if o € A~ (V), then F(w|ynran) may not
extend to a smooth form on V, as the following example shows.

Weset Xy = AL and V = X3 = C. Thendz € A"0(V), but

F(dz) = F(Z%) = gdz

is not a smooth form in 0. Nevertheless, the next result implies that ' can be extended to
smooth S-invariant forms.

Lemma4.2.2 Let V C X% be an S-invariant open subset. Let o € A~ (V)S be a smooth
S-invariant formon V. Then F (w|ynran) extends uniquely to a smooth form S-invariant form
on 'V and hence F induces an antilinear involution on A"'(V)S also denoted by F.

Proof Since the statement is local we may assume that V is contained in the affine toric
variety X, for some o € X'. We choose a system of toric coordinates (z1, .. ., z,) and write

o= frx@....z)dz Adi.

Moreover, the S-invariance of V yields that V is invariant under complex conjugation of the
coordinates. Since w is S-invariant, each summand f7 xdz; A dzg is also S-invariant and
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hence we can write

_ i 71 NdZg

frx@1, - zdzy Adzg = gk (zal, -, |Zn|)T
12K

for a unique smooth function g; ¥ € C*°(V). On V N T*", this yields

[1Klg dz
_ i™ldzy ndzg
F(fr,x@i,...,z0)dzy ndzg) = F (gI,K(|Zl|a e |Zn|)T>

iKldzy Adzg

= gl,K(|Zl|7 ey |Zn|)
ZIZK
= DM kG Tda A dik
which can be uniquely extended to a smooth form on V because w is smooth. By Lemma4.1.3,
the restriction F(w)|ynran is S-invariant. By continuity, F(w) is S-invariant. O

For any open S-invariant subset V C X4, we will denote by A(V)> the R-subalgebra
of forms that are at the same time invariant under S and under F. As before we obtain a sheaf
of bigraded R-algebras (trop, A ng)g'F on Ny.

Proposition 4.2.3 There is a unique morphism of sheaves of bigraded R-algebras
trop*: Ayy —> (trop, Ayu)SF 4.12)
that extends the morphism (4.8). Moreover, trop* satisfies
77129 o trop* = trop* od’ and 7 ~'/%i9 o trop* = trop* od”’. (4.13)
For an open subset U of Ny and w € AP4(U), we have
trop* (J (w)) = i’ T trop* (w). (4.14)

Proof This follows easily from the definitions and Proposition 4.1.7. O

Remark 4.2.4 1f U is an open subset of N, then we have seen in Proposition 4.1.7 that the map
(4.12) is an isomorphism. For an open subset U of Ny, the map is obviously still injective,
but in general no longer surjective. The latter can be seen already in the one dimensional
case. Let N = Z and X the fan with a single maximal cone 0 = Rx¢. Then Xy = Aé: and
Ny = R U {oo}. Consider the smooth function ¢(z) = zZ on X3 = C and the function
f) = e on Ng = R. Then, on C* C C we have ¢ = trop* f, but f can not be
extended to a smooth function on Ny, because, by definition, a smooth function on Ny has
to be constant in a neighborhood of oco. This gives an example of a non-surjective

trop*: A%0(U) — A% (trop~! (U))SF.

Lemma4.2.5 Let U be an open set of Ny and V = trop~ ' (U). Let 1) be a Lagerberg
(n, n)-form with compact support contained in U. Then

/n:/trop*n.
U |4

Proof Since 7 is a top degree Lagerberg form with compact support in U, it has compact
support contained in U N Ng. Choosing integral linear coordinates in Ng, we have

n=fy,...,u)duy nd"uy n---~d'u, Ad"u,
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for a smooth function f on R". By Proposition 4.1.7, we have
i"dzy ANdzZy N - Ndzy ANdzy,
@Am)'z1 ... 2021 - - - 2n '

trop* n = f(—loglzil, ..., —log|z,l)

Writing trop*  in polar coordinates z; = r; ¢'% and using that

ideAde _ drjAde

)

27,z rj
we deduce
ry...dr,d0y...do,
Qa)'ry...ry

=/f(x17'-~9xn)dx1...dxn=/n
v U

which proves the claim. O

d
ftrop*n:/ f(=logry,...,—logr,)
Vv Vv

4.2.6. We next discuss the notions of positivity for toric varieties. In the case of the complex
smooth toric variety X3 the different notions of positivity are the usual ones: A complex
differential form is strongly positive (resp. positive, weakly positive) if it is so pointwise.

In the case of Ny a little bit more has to be said because the different fibers of the sheaves
of forms A over a point p € Nx \ N have a different nature.

Recall from Sect. 3.1 that given a point v € Ny, there is an unique orbit N(o) with
v € N (o) corresponding to a cone o of the fan. Then there is an identification of fibers

ANy (V) = AN (V).

Therefore, the different notions of positivity for Lagerberg forms make sense for this fiber
by using Definition 2.2.1 for V. = N (o). Then for U C Ny, a Lagerberg form is strongly
positive (resp. positive, weakly positive) if it is so fiber by fiber.

Lemma4.2.7 Let U C Nx (respectively V. C X§) be an open subset and v € A(U)
(respectively @ € A(V)) then w is strongly positive, positive or weakly positive if and only
if the same if true for w|ynny (respectively w|yntan ).

Proof This follows from a continuity argument using that the cones of strongly positive,
positive and weakly positive Lagerberg forms in each fiber are closed by Corollary 2.2.5. O

Lemma 4.2.8 Let U be an open subset of Ny, and V = trop’l(U) C X§. Letn € APP(U).

(i) If n is strongly positive, then trop™(n) is strongly positive.
(ii) n is positive if and only if trop™(n) is positive.
(iii) If trop*(n) is weakly positive, then 1 is weakly positive.

Proof The result follows from Lemmas 4.2.7 and 4.1.12. ]

One can deduce from Example 2.3.8 that the converses of (i) and (iii) in the previous
lemma are not always true.

Lemma4.2.9 Let U be an open subset of Ny and V = trop_1 (U) C X% Every strongly
positive complex differential form on V (resp. strongly positive Lagerberg form on U) is
positive and every positive complex differential form on 'V (resp. positive Lagerberg form on
U ) is weakly positive. Moreover, if p = 0, 1, n — 1, n, then all three positivity notions agree
on AP-P(U) (resp. on AP-P(V)).
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Proof Since all notions of positivity of forms are checked fiber by fiber, the result follows from
Corollary 2.1.6 and Remark 2.1.7 in the complex case and Corollary 2.2.5 and Remark 2.2.6
in the Lagerberg case. O

5 Positivity for complex invariant currents and Lagerberg currents

Throughout this section, X will be a smooth fan in Nr, X » will denote the associated toric
variety, Ny will denote the partial compactification of Ng and X§' = X 5 (C) will denote
the complex manifold associated to X 5, with tropicalization map trop: X5 — Nx.

5.1 Invariant currents

Let U be an open subset of Ny and write V = trop_l(U). Let AZ?(U) be the space of
Lagerberg forms on U with compact support and similarly AZ*? (V) is the space of complex
forms on V with compact support. Since trop: V — U is proper, the map trop* in (4.12)
induces a map

trop*: AP (U) — AI(V). 5.1

We now compare the topologies on the space of Lagerberg forms and the space of complex
forms through the map trop*. The definition of the C°°-topology on both spaces is slightly
different. The topology of AZ'?(U) has been described in Definition 3.2.4. The topology of
AP9(V) is defined similarly. One first defines a topology on Al;(’q (V) for each compact K
using norms similar to those in (3.4) taking into account all complex derivatives and then
define the topology of AZ*? (V) as the direct limit in the category of locally convex topological
vector spaces. So the main difference is the use of finite coverings in Definition 3.2.4. From
the definition of the topologies, it is easy to check that the map trop*: AZY(U) — AP9(V)
is injective and continuous. Nevertheless, as the following examples show, trop* is in general
not a homeomorphism onto its image endowed with the subspace topology. Moreover, the
image of trop* is not closed in A2 (V).

Example 5.1.1 As in Remark 4.2.4, we consider the case Xy = A(lc, thus Ny, = Reo.
Consider U = {u € Ro |u >0} C Ny and V = trop_l(U) ={ze€eC|zz < 1}. Let
p: R — R be a smooth function with 0 < p < 1 and p(x) = 0 for [x] > 2 and p(x) = 1
for |x| < 1. Define the sequence of functions

1
Fal) = —plu —n).
e

The sequence ( f;,),>3 does not converge to zero in Ag’O(U ) because for any compact subset
K of U there is no finite covering {V;}; of K with f, € A(I)(‘O(U, {V;}) for all n (see Proposi-
tion 3.2.6). Indeed, assume that such a compact K and covering {V;} exists. Since the point
n € Ry is in the support of f,,, and these points converge to oo, then oo € K. Therefore one
Vi would contain co and hence by definition of A(,)(’O(U , {Vi}) all the f, |y, would have to be
constant, which is not the case.

Write ¢, = trop™ f,,. Then

1
¢n(2) = —p(=loglz| —n).
e
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The support of ¢, is contained in the closed annulus {z € C | "2 < |z|7' < ¢"*?}. Since
p is smooth with compact support, all the derivatives of p are bounded. From this and the
condition above on the support of ¢,, we deduce that for every pair of integers a, b, there is
a constant Cy ; such that

AR
() (%) »
It follows that the sequence (¢,),>3 converges to the function 0 in A?’O(V). We conclude
that the topology of AS’O(U ) is not induced by the topology of A?’O(V).

1

< 72Ca7b€

(a+b)(n+2) )
) |Z|a+b T en

< — Cup SUP
e zesupp(gy

Example 5.1.2 We keep the setting from Example 5.1.1. Choose now p € A%O(R) with
0<p<landp(x)=1forx <0andp(x) =0forx > 1. Further pick Y € A?’O(U) with
¥ (x) = 1 for x > 1. Consider the sequence of differential forms

. idz NdzZ

p(—loglzl —n)——— € A" (V) (neN)

Nn = ¥ (—log|z])e 1
72z

and the differential form n = ¥ (—log |z])e™"/1¥lidz A dZ/(47z7). Similarly as in Exam-
ple 5.1.1 the forms 5, converge to 5 in Ag’l (V). The forms 7, are in the image of trop*
as

My = trop* (¥ (u) exp(—e")p(u — n)d'u A d"u),

but the form 7 is not in the image of trop* because the function Ip(u)e_g“ is non-constant
close to co. Hence the image of trop™*: Aé’l(U) — ALI.’I(V) is not closed.

Now we shift our attention to currents.

Remark 5.1.3 Let V C X% be an S-invariant open subset. Similarly as in Remark 4.1.1, the
average with respect to the probability Haar measure on S leads to a canonical projection
Ac(V) = Aq(V)S that we denote @ > ™. A current S is called S-invariant if

axS =S VYaeS.

The space of S-invariant currents is denoted D(V)S = &b D (V)S. There is a canonical
projection D(V) — D(V)S, where S is mapped to the S-invariant current S%¥ given by
5% (w) = S(w?). The antilinear involution F of A(V)S leaves A.(V)S invariant. It defines
an antilinear involution on the space of S-invariant complex currents D(V)S, which we also
denote by F, given by

(FS)m) =S(Fn) (€ Ac(V)®), (5.2)

The space of S- and F-invariant currents is denoted by D(V)SF . Observe that F respects
the grading. Hence the spaces DP9 ( V)SF are well-defined. Since F is an involution, there
is a canonical projection D(V)S = D(V)S:F,

Definition 5.1.4 The direct image of currents is the map
trop,.: DP9 (V) — DP9 (U)®QrC

given by trop, (S)(n) = S(trop* n) for each n € Ay~ P"4(U). By linearity, we extend the
direct image to a C-linear map trop,.: D(V) — D(U)®rC, where D(U) := @, ,D"1(U)
is the total space of real Lagerberg currents.
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Lemma 5.1.5 For an open subset U of Ny, V := trop’l(U) and S € D(V), we have the
following properties.

(i) trop,(S) = trop, (S™)
(ii) If S € D(V)SF, then trop, (S) € D(U) ¢ D(U)®rC.
(iii) IfU C Nr and S € D(V)S, then S is F-invariant if and only if trop,(S) € D(U).

Proof Proposition 4.2.3 yields (i). To prove the remaining claims, let S € D(V)S. Using
that F is an involution, we see that (5.2) is equivalent to S(n) = (FS)(Fn) for every
ne A(V)5. To prove (ii), we assume that S is F-invariant. We have to show S(trop* w) € R
for all w € A.(U). Using that S and trop* w are F-invariant, property (ii) follows from

trop, S(w) = S(trop* w) = (FS)(F trop™ w) = S(trop™ w) = trop, S(w).

To show (iii), let U C Ng and assume trop, (S) € D(U). Then the same computation in
reversed order shows S(n) = (FS)(Fn) for every n of the form trop* w with w € A.(U).
Using U C Np, we deduce from (4.1) and (4.7) that the C-span of such forms is Ac(V)S
and hence S(17) = (FS)(Fn) holds for all n € Ac(V)S proving F-invariance of S and (iii).

m}

Remark 5.1.6 The map trop, fits in the following commutative diagram:

trop,,

D(V) —— D(V)S e DU) % C
DOVYSF " b,

If U is an open subset of the dense orbit Ng, then Corollary 4.1.8 yields that the map

D(V)SF tmi) D(U) is an isomorphism. If U intersects the boundary, then trop* is not a
closed immersion and hence trop,, is not surjective (see Examples 5.1.11 and 5.1.12 below).

Lemma 5.1.7 Given w € AP4(U) and S € D"*(V), we have the projection formula
w A trop, S = trop, (trop*(w) A S). (5.3)
Proof Givenn e A, "~""717%(U), by Remark 3.2.9(ii) we have
S(trop* (@ A m)) = (=1)PTOCH) (trop* (w) A S)(trop* )
as trop* respects products and (5.3) is an immediate consequence. O
Recall that for w € AP-4(U), we have an associated Lagerberg current [w] = f y@A.in
DP-4(U). Similarly, we have a complex current [] € D?>4(V) associated to a complex form

n € AP4(V). From Lemma 4.2.5 and 5.1.7, we immediately deduce the following result.

Corollary 5.1.8 For every Lagerberg form w € AP1(U), we have

trop, [trop™ (w)] = [w] € DP4(U).
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Definition 5.1.9 Let V C X% be an open subset and let S € D”'”(V) be a current. The
current S is called strongly positive (resp. positive, resp. weakly positive) if S(n) > 0 for
every weakly positive (resp. positive, resp. strongly positive) form n € Ar 7"7?(V). The
space of weakly positive (p, p)-currents will be denoted D{Z)’f(V), the space of positive ones
by Di’p (V) and the space of strongly positive ones by Dspjrp (V). The current S is called real
if we have S(ij) = S(n) foreach n € AL 7" (V).

Let U C Nyx be an open subset and let T € DP”P(U) be a Lagerberg current. The
Lagerberg current 7T is called strongly positive (resp. positive, resp. weakly positive) if it is
symmetric and for every weakly positive (resp. positive, resp. strongly positive) Lagerberg
form n € Al ”"7P(U) the condition T () > 0 holds. The space of weakly positive Lager-
berg currents of type (p, p) will be denoted sz (U), the space of positive ones by Dﬁ’p ),
and the space of strongly positive ones by D" (U).

Lemma5.1.10 Ler U be an open subset of Nx and V = trop~' (U) C X%, Every strongly
positive current in DP-P (V) (resp. in DP-P (U)) is positive, every positive current in DP>P (V')
(resp. in DP-P(U)) is weakly positive and every weakly positive current in DP-P (V) (resp. in
DPP(U)) is real (resp. symmetric). Moreover, if p =0, 1, n — 1, n, then all three positivity
notions agree in DPP (V) (resp. in DP'P(U)).

Proof The positivity claims follow from Lemma 4.2.9. By definition, a weakly positive
current on U is symmetric. To see that a weakly positive current on V is real, we use
Lemma 2.1.4. The latter implies that any real form on V is a real linear combination of
strongly positive ones which easily yields the claim. O

We will see in Theorem 7.1.5 that trop,, induces a bijection between the space of closed
positive complex currents on V = trop~! (U) that are invariant under F and S and the space
of closed positive Lagerberg currents on U. In particular, every closed positive Lagerberg
current is in the image of trop,. The following two counterexamples show that one can
drop neither the closedness assumption nor the positivity assumption. The first example is a
positive Lagerberg current and the second example is a closed Lagerberg current, neither of
which are in the image of trop,.

Example 5.1.11 Let Xy = A}C, Ny =Ry, U ={u e Ry |u >0}and V = trop’l(U) =
{z € C|zz < 1} asin Example 5.1.1. Let T": Aclfl(U) — R be the linear map

T(fd'und'u) = / e F(x)dx. (5.4)
0

If fd'u nd"u € AL (U), then f has compact support contained in U \ {oo}. Therefore the
integral in (5.4) is finite. To show that T is a continuous functional, we use Proposition 3.2.7.
Letw, = gnd'u Ad"u,n > 1be asequence of forms in AMN(U) that converge to zero. Then

there is a neighborhood Vj of oo such that
wO,n|V0 = ﬂ:)o(wa,n) =0

for all n, where o = R is the cone corresponding to the point co. Hence there is a compact
K C U \ {oo} such that supp(g,) C K for all K. Moreover |/ g,||x converges to zero.
Therefore T (w,) also converges to zero. We conclude that T is a Lagerberg current. Clearly
it is positive.
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Assume that S is a current on V such that trop, S = T. Let f,, and ¢, be as in Exam-
ple 5.1.1. Since the functions ¢,, converge to 0 in A?'O(V), we deduce that

On the other hand, the assumption trop, S = T yields the desired contradiction as follows:

idz AdZ
S( nlz z

_ ’ 1"
o ) =T (f,,du Ad u)

oo n+1
:/ exz_"z,o(x —n)dx > / x> 1.
0 n

Example 5.1.12 We keep the setting from Example 5.1.11. Then
o0 X
T(f):= / > f(x)dx. (5.5)
0

defines a linear functional T : AS’O(U ) — R. Since any f € A(C)’O(U ) is constant in a
neighborhood of 0o, the support of f’is a compact subset of U \ {oo}. As in Example 5.1.11,
we see that T defines a current in D! (U). This current is closed because it has top degree.
We claim that T is not of the form trop, (S) for any S € DM(V). We argue by contradiction
and suppose that 7 = trop,.(S). Let p and ¢ be as in Example 5.1.2 and write

tw =Y (—loglzhe”VFlp(—loglz| —n), ¢ =y (—loglzle "/l
Then ¢, — ¢ in A?’O(V). Moreover ¢, = trop*( f;,) for
fo(x) =Y (0)e™ p(x —n) € AXO(U).

Therefore lim,, .~ S(¢,) = S(¢) € C. This contradicts
o0 X X /
S =T = [ & (4 o =) ar
0
converging to —oo for n — 00, as a direct computation using integration by parts shows.

Proposition 5.1.13 Let S € DPP(V)SF_ If S is real (resp. positive, resp. weakly positive),
then T := trop, (S) is symmetric (resp. positive, resp. weakly positive).

Proof Recall from Lemma 5.1.5 that T € DP-P(U). If S is real, then the Lagerberg current
T is symmetric. Indeed forg :=n — pand w € AL1(U), we deduce from (4.14) that

T(J (@) = S(trop*(J (@) = (=DPS(trop*(w)) = (=1)”S(trop*(w)) = (=D’ T ().
The positivity statements follow from Lemma 4.2.8. O

On the dense orbit, we also have the converse implication.

Lemma 5.1.14 Let U be an open subset of Ny, put V := trop_1 (U), andlet S € DP-P(V)SF
be an invariant current such that trop, (S) is a positive current on U. Then S is a positive
currenton V.
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Proof Given a positive form o € A PP (V), the averaged form «® € AZ*P(V)S from
Remark 4.1.1 is again positive. From Lemma 2.3.3, we get that the invariant form

ainv — (aav + F(Otav))/Z c Ag—p,n—p(v)S,F

is positive as well. Since U C Ng, we conclude by Proposition 4.1.7 that ™™ = trop*(8) for
a uniquely determined Lagerberg form § in AP (U). Finally B is positive by Lemma 4.1.12
and S(a) = S(@™) = trop,(S)(B) > 0 shows our claim. o

We will see in the next subsection that positive currents have measure coefficients. The key
result to prove this is captured in the following proposition. We refer the reader to Appendix A
for the convention we use about Radon measures.

Proposition 5.1.15 Let U be either an open subset of X3 or of Nx. Let
T: A%%U) — R

be a linear functional such that T (f) > 0 for every non-negative f € AS’O(U). Then there
is a unique positive Radon measure pon U with T (f) = fU fdu forevery f € Ag’O(U).

Proof The following argument works for the complex and the Lagerberg case.

Let K be a compact subset of U and let C 10< (U, R) be the set of continuous real functions
with support in K. As usual, this real vector space is endowed with the supremum norm
I llsup- We also consider the subspace A(,)(’O(U , R) of smooth real functions with support in

K and its subspace A(,)(’O(U , R>¢) of non-negative functions.
We claim that the restriction of 7' to A%O(U ,R) is continuous with respect to the sup-

norm. Since we have smooth partitions of unity by Proposition 3.2.12, there is a non-negative
xx € A2 (U) with xg (x) = 1 forall x € K. Now the positivity of T yields

_T(XK)”f”sup <T(f) =< T(XK)”f”sup

for all smooth functions f with compact support in K. This proves the claim.

Let f € C?(U, R). To define T'(f), we use Corollary 3.2.13 or its classical analogue
to get a sequence (f;)neN in AS’O(U , R) which converges to f. It follows from the proof
of that corollary as well as from Proposition 3.2.6 that we can find a compact subset K of
U such that f;, € A%O(U ,R) for all n € N. The sequence (f;),en converges to f with
respect to the sup-norm on K. By the continuity of 7 shown above, it is clear that 7'(f;,)
converges to a real number. The limit 7' ( f) neither depends on the choice of the sequence
nor on the choice of K. Note also that if / > 0, then xx - (f, + || fu — fllsup) is a sequence in
C Supp( &) (U, Rxp) converging to f with respect to the sup-norm. We conclude easily that the

above defines a positive linear functional 7" on C ?(U , R) which extends the given functional.
This is equivalent to have a positive Radon measure w on U with T (f) = / y J du forevery
fecC’U,R).

Note that uniqueness is obvious as a positive linear functional on C?(U , R) is continuous
on C(,)( (U, R) (by the same argument as above) and so our definition of 7'(f) is forced. O

We can now prove that positive (1, n)-currents on open subsets of X4 or Nz are the same
as positive Radon measures.

Proposition 5.1.16 Let U be either an open subset of X% or of Nx. For every positive current
T € D" (U), there is a unique positive Radon measure . on U such that

T(f) = f fdu Vf e AXU). (5.6)
U
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Conversely, every positive Radon measure i on U induces a current T € Di’"(U ) by (5.6).

Proof If T is a positive current in D" (U), then it is a positive linear functional on AS’O(U ).
Hence the first claim follows from Proposition 5.1.15. Conversely, we have seen in Exam-
ple 3.2.11 that every real Radon measure p induces an element 7 € D™"(U) with (5.6).
Clearly, if u is positive, then T is positive as well. O

The following result is a prototype for our main correspondence result in Theorem 7.1.5.

Corollary 5.1.17 Let U be an open subset of Nx and let V := trop~'(U). Then the map
trop,, induces a linear isomorphism D"’”(V)i — D™"™(U)4 of real cones.

Proof Since Ny = X5 /S (see Remark 3.1.3), it is clear that trop* induces an isomorphism
between CS(U , R) and the subspace of C?(V, R) given by the S-invariant functions. Hence
trop,, maps the cone of S-invariant positive Radon measures on V isomorphically onto the
cone of positive Radon measures on U. By Proposition 5.1.16, we get the claim. O

5.2 Co-coefficients of currents

To extend Proposition 5.1.15 to (p, p)-currents, we place ourselves in the local setting. We
assume in this subsection that N = Z" and that ¥ is the fan given by the maximal cone
R’éo and its faces in Ng = R". Then Ny = R}  and X5 is the smooth toric variety Af..
Recall that any smooth toric variety can be covered by toric affine varieties isomorphic to
open subvarieties of this one. The splitting N = Z" induces coordinates (z1, . .., z,) in X3
and (uy, ..., u,) in Np.

Definition 5.2.1 LetV C X§' = C" beanopensubsetandletS € D”P(V),writeg :=n—p
and let I, J C {1,...,n} with |I| = |J| = g¢. Then the co-coefficient S’/ of S is the
distribution on V defined by

SY(F) = SGT fdzy Adz)).
For I C {1, ..., n}, we consider the following union of strata

E! = U{M,’ =00} C Ny :Rgo'
iel
Definition5.2.2 Let U C Ny = R} be open and T € DP-P(U). Let g, I, J be as above.
Then the co-coefficient T!/ is the Lagerberg distribution on U \ EY/ defined by

q@q=1)
2

T () =T(-D

Remark 5.2.3 Note that we define 7!/ € D™ (U \ E'"/) because, by definition of Lagerberg
forms, we can only plug in functions that vanish in a neighborhood of EY/.

fd’ul VAN d”uj).

Remark 5.2.4 Conversely, given S’/ € D""(V) forall I,J C {1,...,n} with |[I| = |J| =
g = n — p, there is a unique complex current S € D”*P (V) with co-coefficients S’ .

Similarly, one can show that given T ¢ D" (U \ E'YYforall I, J C {1, ...,n} with
|I| =|J| =q =n — p, there is a unique T € DP-P(U) with co-coefficients T/ .

Positive currents have measure co-coefficients, instead of just distribution co-coefficients.
The complex case is given by [9, Proposition I1I.1.14]:
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Proposition 5.2.5 Let V C X§' = C" and S € DP'P(V) be a weakly positive current. Then
the co-coefficients S'’ are complex Radon measures on V that satisfy SV = S’! for all
multi-indices I, J with |I| = |J| = q. Moreover, all S are positive Radon measures and
the total variation measures |S'7 | satisfy the estimates

AagIST <29 g S InJcMcIul, (5.7)
M
for any collection of real numbers Ay > 0,k =1,...,n, and Aj = [[; M-

We have seen in Example 2.3.6 that in the tropical case it is reasonable to restrict our
attention to positive Lagerberg forms and hence to positive Lagerberg currents, as opposed
to weakly positive currents.

Proposition 5.2.6 Let U C Nx = RY be an open subset and T € DPP(U) a positive
current. Then the co-coefficients T'' are real Radon measures on U \ E'Y/ that satisfy
T = T for all multi-indices I, J with |I| = |J| = q. Moreover, all T'! are positive
Radon measures and the total variation measures |T'7 | satisfy the estimates

AT < %(A%T”JFA%T“), (5.8)
for any pair of real numbers Ly, Ay > 0.
Proof By definition, Lagerberg currents are real valued. The condition
!l =11 (5.9)
follows from the symmetry of T'. For every f € AX*(U \ E!Y/), we have

@+ 1) =T (- (=D

q(q—
2

Ydup Ad'ug +d'uy /\d”ul)). (5.10)
Moreover (—1) D (d'uy ANd"uy +d'uy Ad"uy) can be written as the difference of two
positive Lagerberg forms

q(q q(q-=1)

(—1) 2_1) (d’uI A d”uj + d/uj A d”bt[) =(-1)"2 (d/l,t] —}—d/uj) A (d”uI —|—d”u1)

9(g=1

— (=12 (d/l/tl Ad up +d/l/lj /\d”l/tj).
(5.11)

Since the product of a positive Lagerberg current by a positive Lagerberg form is a posi-
tive Lagerberg current by Remark 2.2.2, we deduce from equations (5.10), (5.11) and from
Proposition 5.1.15 that 77 + T/+! is a real Radon measure on U \ E’“/. From equation
(5.9), it follows that 777 is also a real Radon measure on U \ E’Y/. In the special case
I = J, there is no need for (5.11) and we can directly deduce from the definition of the
co-coefficient 717 or from (5.10) that T/ is a positive Radon measure on U \ E'.

Note that for every positive continuous function with compact support contained in U \
E'Y7 and for every pair of non-negative real numbers A7, A7, we have the inequalities

T (f =D ud'ug £ agdug) A gd'ug + Ajd”u1)> > 0.
Expanding and using equation (5.9), we deduce
200 T (f) < 2TH () +05T77 (),
from which Eq. (5.8) follows. O
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Observe that (5.8) is stronger than (5.7). This is because in Proposition 5.2.6 we are dealing
with positive currents while Proposition 5.2.5 deals with weakly positive currents.

Example 5.2.7 We show that there can be no analogue of Proposition 5.2.6 for weakly positive
Lagerberg currents.

Example 2.3.6 gives a non-zero Lagerberg form w of type (2, 2) on R* such that 4w are
both weakly positive. In fact w was constructed such that w An = 0 for each strongly positive
Lagerberg form n of type (2, 2). By definition, the associated Lagerberg currents £[w] are
weakly positive. We compute the co-coefficients of T = [w]. For I = {3, 4}, J = {1, 2} and
f € CX(NRr), we have

T”(f) = T”(f) =-—T(fdus Ad'ug Ad"uy nd"up) = / fw)duirdurduszduy
R4

by using the formula for w in Example 2.3.6. We conclude that 77/ = T/ is the Lebesgue
measure on R* and the same holds for / = {2,3} and J = {1, 4}. On the other hand, for
1 ={2,4}, J = {1, 3}, we have that L agrees with the Lebesgue measure on
R*. All other co-coefficients are 0. In particular, for all M C {1, 2, 3, 4} with two elements,
we have TMM = (. We conclude that no estimate of the form (5.8) or (5.7) holds.

In Example 5.2.7, all co-coefficients were positive or negative Radon measures on R?.

Example 5.2.8 We construct from w in Example 2.3.6 a weakly positive Lagerberg current
T whose co-coefficients are not all Radon measures.

Since w A o = 0 for all strongly positive forms «, we have that w A T is weakly positive
for every symmetric current 77 of type (0, 0). This already shows that it is very unlikely that
every weakly positive current has measure coefficients. Indeed, one may check that for the
Lagerberg currents

9
T AMRY — R, T'(fduy Ad"ui A ... Ad'ug Ad"ug) = a—f(o, 0,0,0)
ui

and T = w A T’, and the sets I = {3,4} and J = {1, 2}, we have

T (f) = ;Lf(o, 0,0,0).
ui

It is well-known that uniform convergence does not imply convergence of derivatives. There-
fore the co-coefficient 717 is not a Radon measure.

6 Tropicalization of positive currents

We consider a smooth fan X' in Ng with associated complex toric variety X 5, and correspond-
ing tropicalization Nyx. In this section, we will describe precisely which positive Lagerberg
currents are in the image of positive complex currents with respect to trop,.. To this end,
in the first subsection, we will introduce a canonical decomposition of positive currents in
the complex and in the Lagerberg case and use it to give the desired characterization in the
second subsection.
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6.1 Decomposition of positive currents along the strata

In this subsection, we give a canonical decomposition of a positive current along the boundary
strata. As usual, we handle the complex and the tropical case simultaneously. For simplicity,
we will often give the arguments only in the case of Lagerberg currents as the complex case
is completely similar and even easier as the exceptional sets E for co-coefficients do not
occur (see Sect. 5.2). At the end of the subsection, we will study functoriality of the canonical
decomposition with respect to trop,.

Remark 6.1.1 Recall that the torus action of T yields stratifications of the toric variety
Xz=]]0() and X§ =[] 0(0)™
oeX oeX
into locally closed subsets given by the orbits O (o). Similarly, we have the stratification
Ny =[] N
=)

given in Definition 3.1.1. Note that the stratification of Ny induces the one of X§' by
O(0)™" = tropfl(N(o)) for any o € X. For an open subset V of X5 and an open subset
U of Ny, we get induced stratifications

v=][Vvnow@™ and U= [JUNN().
oeX oeX

For any p € X, the open subset | |
p and its tropicalization | |

v<p O (v) of Xy is the affine toric variety associated with
N (v) is open in Ny. This gives rise to the open subsets

v<p
Vyi=][Vvnow™ and U, :=]JUNNW)
v<p v=<p

of V and U, respectively. For varying p € X, these open subsets cover V (resp. U).

Definition 6.1.2 Since X is smooth, a given cone p in X is generated by part of a Z-basis
by, ..., b, of N. Using the corresponding coordinates, we may view V, (resp. U,) as an
open subset of C" (resp. RZ ). We call such an identification of V), (resp. U,) with an open
subset of C" (resp. RZ)) a choice of toric coordinates on V,, (resp. U, ). We usually denote the
corresponding complex coordinates by zy, . . . , z, and the corresponding tropical coordinates
by uy, ..., up.

Note that for a current 7" of bidegree (p, g) on V (resp. U), the choice of toric coordinates
on V, (resp. U,) leads to well-defined co-coefficients (Tlvp)” (resp. (T|Up)”) for all
I,J Cc{l,...,n}with |I| = |J| = ¢ = n — p. Recall that, if T is positive, then in the
complex case the co-coefficient (T|V/))’ 7 is a Radon measure on the open set V, while in
the Lagerberg case (T|U,,)” is a Radon measure on the open set U, \ E'Y7 (see Sect. 5.2).
This allows us to define the notion of a null set of a positive current.

Definition 6.1.3 Let U be an open subset of X3 (resp. Nx). We say that T € D77 (U) has
measure co-coefficients if for every p € X and some choice of toric coordinates on U,,, the
co-coefficients 777 are complex (resp. real) Radon measures on U, (resp.on U, \ E 107y,

Let T € DP-P(U) have measure co-coefficients and let A be a Borel subset of U. We
say that A is a null set for T if, for all p € X and some choice of toric coordinates on U,
the set ANU, (resp. AN U, \ E'Y7Y is a null set of the total variation measure |(T|Vp)”
(resp. |(T|y,)"/forall I, J C {1,....n} with |I| =n — p.
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Using change of variables, it is easy to see that the conditions in Definition 6.1.3 do not
depend on the choice of toric coordinates.

Lemma 6.1.4 Let U be open in X% (resp. in Nx) and let A C U be closed in U. Then
there is an increasing sequence of smooth functions Y, > 0 in Ag’O(U \ A) which converges
pointwise to the characteristic function of U \ A.

Forany a € AP, the forms ay := Yo € APY(U) have compact support in U \ A.
If a is a positive form, then oy and o — ay are both positive.

For every T € D"~P"=49(U) with measure co-coefficients, we have:

(a) if Ais a null set for T, then limy_, oo T (o) = T (),
(b) if U \ A is anull set for T, then limy_, », T (o) = 0.

Proof Let o € AP (U) with support contained in the compact subset K of U. Since U is a
metric space and since A N K is compact, there is a strictly decreasing sequence (Wy)ren of
relatively compact open subsets of U with

ﬂWk=AmK and WoODW DWiDWyD---.
keN

Now a partition of unity (see Proposition 3.2.12 for the Lagerberg case) gives the existence
of a function ¢} € A?’O(Wk) with 0 < ¢ < 1 and ¢ = 1 on Wy, for every k € N. We
note that the ¢, form a decreasing sequence of smooth functions with compact support which
converges pointwise to the characteristic function of A N K. For the sequence ¢y := 1 — ¥,
we get the first claim. Evaluating T (ax) in terms of the co-coefficients 7/ and using that the
latter are Radon measures, we deduce (a) and (b) from the monotone convergence theorem.
If « is positive, then every oy = Yo and every o — o = @ is positive. O

Remark 6.1.5 In the complex case of Lemma 6.1.4, if A is S-invariant, then we can choose
the smooth functions v, to be S-invariant. Indeed, this follows easily from Lemma 6.1.4 by
averaging the 1 with respect to the Haar probability measure on S.

The decomposition theorem is the following result.

Theorem 6.1.6 Let U be an open subset of X (resp. of Nx ) and let T be a positive current
in DP-P(U). Then there is a unique decomposition

T = Z T, (6.1)
oeX
such that, for every o € X, the following two conditions are satisfied
(i) T, € DPP(U) is positive;
(ii) the set U \ O(o) (resp. U \ N (o)) is a null set for Ty.

Moreover, the support of the current Ty is contained in V N O (o) (resp. U N N (0)).
We call (6.1) the canonical decomposition of the positive current 7.

Proof We write the proof only in the Lagerberg case as the complex case is analogous. The
statement about the support is a direct consequence of statement (ii) so we only need to prove
the existence and uniqueness of the decomposition.

Using a partition of unity provided by Proposition 3.2.12, the existence of such decom-
position can be checked locally. Moreover, since currents form a sheaf, the unicity can also
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be checked locally. Therefore we choose a cone p € X and replace U by U,,. We also make
a choice of toric coordinates, so we can assume from now on that U C R%_.
For each pair of subsets I, J with |I| = |J| = p we write

1J 1J 1J
" =1l 71!

with Ti] the positive and the negative part of the Radon measure 7//. We denote by /Lij
the corresponding Borel measures. For any o € X, let us consider the immersion

i UnN@)\ EY — U\ EY.

We define a new Borel measure pcli{(, on U \ E'Y/ by first restricting ,uij to the locally
closed subset U N N (o) \ E’Y/ and then using the image measure with respect to i’ Since
the sets N (o) form a stratification of Ny, we get the decomposition

uh =" ul!, (6.2)

oeX

of Borel measures. It follows that p,]ij » < nl? . Note that in our setting, the Radon measures

correspond to locally finite Borel measures (see Appendix A). We conclude that ,ulij o 18

a locally finite Borel measure and hence we get a real Radon measure 7./’ on U \ EY/
corresponding to Mija — ,u’_{(,. By Remark 5.2.4, we obtain a unique current 7,, € DP-P(U)
with co-coefficients Tal 7 Note that 7., has measure co-coefficients. By construction, the set
U\ (E™ U N(0)) is a null set with respect to the Borel measure /Li{(, +ul J » associated
to the total variation measure |7 |. The decomposition T = )__ T, follows from (6.2). It
remains to show uniqueness and property (i).

We prove uniqueness of T, in the decomposition (6.1) by induction with respect to the
partial ordering < on X'. We take o € X' and we suppose that uniqueness of T; is known for
all T # o with T < o. Recall from Remark 6.1.1 that U, is an open subset of U and that
Ay := U \ Uy is the closed subset of U given by the disjoint union of all N(t) N U with
7 € ¥ nota face of o. Fora € AL 7""7P(U), Lemma 6.1.4 gives a sequence (0k)keN in
AZTPTPUY with

lim 77 (o) = T ()
k— 00
for t < o and
Iim T;(ax) =0
k— 00
for all ¢ € X which are not faces of o. Now the decomposition (1.6) gives

Jim 7o) =Y Te(@)

T<0

and uniqueness of 7, follows from our induction hypotheses.
For the positivity (i), we prove first that the current

is positive. For this let now A, = A; U (N (o) N U) be the union of all N(r) N U with t
ranging over all cones of X' which are not proper faces of o. Clearly, A/ is also a closed

subsetof U.Leta’ € Ay P77 (U) be positive. Then Lemma 6.1.4 gives a sequence (Ol//()keN
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in A, ”""P(U) with both o}, and &’ — «}, positive. Using the properties (a) and (b) of the
sequence from Lemma 6.1.4, the same argument as before shows that

lim T(a;) = T; (o
Jim T = Y Te@)
T<0, T#0
and hence
T)(@) = lim T(a —ap).
k— 00
Since T and all &’ — «;, are positive, we deduce that T, is positive.

To prove that T} is positive, we consider again the closed subset A, . Leta € ALTPTP ()
be positive. By Lemma 6.1.4, there is a positive sequence (o )xen in Ar 2" P(U) such that

lim T, (ox) = Ty ()  and Iim T;(ag) =0
k—o00 k—o00
for all T € X which are not faces of o. We conclude that
lim T, (o) = Ty (@).
k— 00
Using that 7)) (k) > 0 by the positivity of T, and o, we deduce that T, is positive. O

In the complex case, we will show next that the canonical current 7,; from the canonical
.o - -an
decomposition (6.1) is not always the push-forward of a currenton VN O (o) .

Example 6.1.7 Let us consider V = X' = C? where X is the fan whose maximal cone is
the positive quadrant in R? and let T € D'!(C?) be given by

T(Z oidzi A le> =100, 1).

k.l

Using that the coefficients oy of a positive (1, 1)-form are non-negative, we see that 7T is a
positive current. We conclude that T = 7, for the cone o generated by (1, 0). Note that the
push-forward S of a current on the stratum closure O (o)zm = {z1 = 0} can only have a non-
zero co-coefficient §>2. Since all the co-coefficients of T are zero except ! which is given
by the Dirac measure (1 o) in the point (1, 0), we conclude that 7 is not the push-forward

of a currenton O (o) .

Note that the analogue of Example 6.1.7 in the Lagerberg case gives no counterexample
as T is zero in this case since the point (oo, 0) belongs to E!. This is explained by the
following result.

Proposition 6.1.8 Let U be an open subset of X5 (resp. Nx ). Let T be a positive current of
bidegree (p, p) on U with canonical decomposition T = Ty. Letusfixo € X.

oceX

(a) If U C X%, then the complex current Ty is the push-forward of a positive current on
un O(U)an if and only if for all p € X and all choices of toric coordinates on U, the
co-coefficients TG” are zero whenever O (o) C E1Y7.

(b) IfU C Ny, then there is a positive Lagerberg current on U N N (o) whose image on U
is Ty.

We will see in the proof below that in the Lagerberg case, the necessary and sufficient
condition in (a) is always satisfied which is the reason for (b) to be true.
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Proof We first deal with the complex case (a). Suppose that there is a current S on U such
that ¢, (S) = T, for the closed immersion ¢ of U N 0(0) into U. Let p € X and let us fix
toric coordinates on U, such that we may view U, as an open subset of C". Suppose that
N(o) C E'/. This means that there is k € I U J such that the coordinate z; vanishes on
O (o). Hence the restrictions of dzx, dzy to O (o) are zero. This implies that TUI J = 0 using
the definition of co-coefficients and ¢, (S) = 7.

Conversely, assume that for any p € X and any choice of toric coordinates on U,, we
have 7!/ = 0 on U, whenever N(o) C E!Y/. The coordinates zx of O (o) are precisely
those such that zx Z 0 on O(o). We conclude that the co-coefficients of a current S on
UynN 0(0’) can be labeled as S’/ with I, J < {1,...,n} such that |I| = |J| = p and
such that N (o) is not contained in E'%7. To construct such a current S with 1,(S) = T, we
define its co-coefficients on U, N O(U)eln by

s =1 (9

where f is any smooth function with compact support in U, N 0(o)" and where g is any
extension to a smooth function with compact supportin U, . It follows from Theorem 6.1.6 that
the co-coefficients of 7, depend only on the restriction to U, N Wﬁn. Hence the definition
of §'7 depends only on f and not on the choice of the extension g. By Remark 5.2.4, there
is a unique current S, on U, N 0(o)" with co-coefficients S’/ By definition, 7,/ is the
push-forward of S’/. This shows that T |y , is the push-forward of S, with respect to the

closed immersion of U, ﬂman into U,,. It follows that the currents S, on the open covering
U, of U glue to a current S on U with ¢,(S) = T,,. Since T, is positive and since we can
extend compactly supported positive forms on U N N (o) to compactly supported positive
forms U, it is clear that also S is positive. This proves (a).

In the case of a positive Lagerberg current on U, we note that Theorem 6.1.6 says that the
support of 75 is contained in U N N (o). For any p € X' and any choice of toric coordinates
on U, the co-coefficient T!' onU o \E U7 has support contained in supp(7,,). If I, J satisfy
N(o) C E'Y/ | then the support of the restriction of 7;; to U,, is contained in U, N N (o) C
E'™7 and hence TGI T'=0onU o\ E 1Y We conclude that the crucial condition in (a) is
always satisfied in the Lagerberg case and an easy adaption of the argument of (a) to the
Lagerberg case gives a positive Lagerberg current S on U N N (o) whose image in U is T,
proving (b). O

Lemma6.1.9 Let U be an open subset of R, and V := trop~'(U) C C". We consider
SeDPP(VSF qnd T = trop,(S). Let I, J C{l,...,n}with|I| =1|J| =q :=n — p.

(i) Forany f € A?.’O(U \ E'YY e have
TV (f) = n~927281 (271777 wop*(f)). (6.3)

(ii) Assume that the current S is positive. Then T is positive as well and the total variation
measures |8’ | and |T' | of the Radon measures S' and T'/ satisfy

1S (trop* (g)) = w922 |17 <]_[ e i J]e™ g> (6.4)

iel jel

foreach g € AS’O(U \ ETV,
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Proof Recall from Lemma 5.1.5 that T € D?-P(U). To prove (i), we use (4.5) to get
(7))
TV (f) = T(~D"T fd'ug nd"ug) = SGT 0 wop™(fd'us Ad"uy))
dzy ildzy

— (i7" 7=9 tron*
_S(z w7 trop (f)zqzl A YN

) =7 79272081 (71777 wop*(f)).

To prove (ii), we recall from Proposition 5.1.13 that 7" is positive if S is positive. Now equation
(6.4) follows from (6.3) by using 1z/77| = [Ticje™™ ]_[jd e 1. ]

The following result shows compatibility of the tropicalization map with the canonical
decomposition of positive currents from Theorem 6.1.6.

Proposition 6.1.10 Let U be an open subset of Ny and V := trop_1 W).IfS=Y pes Ss
is the canonical decomposition of the positive current S € DPP(V)SE then trop,.(S) is a
positive Lagerberg current on U with canonical decomposition

trop,(S) = Z trop,, (So). (6.5)

oeX

Proof We first observe that with S each summand S, is again S- and F-invariant by the
uniqueness property of the canonical decomposition. To prove (6.5), we may argue locally
on the base and so we may assume that U = U, and V = V,, for some p € X'. We choose
toric coordinates to view U as an open subset of R and V' as an open subset of C". We write
T :=trop,(S) and denote by T = ) T, its canonical decomposition. We pick o € X and
we may assume S = S,. Then we have to show that T = T, . By our characterization of the
canonical decomposition in Theorem 6.1.6, it is equivalent to show that U \ (N(o) U E 107,y
are null sets with respect to the Radon measures |77 |. We note that trop~! (N (¢')) = O (o)
and that V \ O(o) is a null set with respect to the Radon measure S’/ using § = S, and
Theorem 6.1.6. Then (6.4) yields that U \ (N (o) U ETY/) is a null set with respect to |77 |
proving (6.5). O

6.2 Positive Lagerberg currents and local mass

Equation (6.4) gives a necessary condition for a positive Lagerberg current to be the image
of an S- and F-invariant positive complex current. In fact, it naturally leads to the following
definition which turns out to be also a sufficient condition.

Definition 6.2.1 Let U be an open subsetof Ny andlet T € DP?(U) be a positive Lagerberg
current. We say that 7 has C-finite local mass if for all p € X and some choice of toric
coordinates uy, ..., u, on U, as in Remark 6.1.2, the corresponding co-coefficients T,
which may be seen as real Radon measures on U, \ E U7 with total variation measures |77/,
satisfy the condition that the Borel measures given as the image measures

j/{](|T1,J| Hefui l_[ efuj)
iel jeJ
with respect to the open immersion j /{ TiU o \E sy , are locally finite on U,,.

Clearly, the above definition of C-finite local mass does not depend on the choice of toric
coordinates on U,. Note that a Borel measure is locally finite on U, if and only if it is a
Radon measure on U, (see Appendix A).
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Proposition 6.2.2 Let U C Ny be an open subset and V = trop’l (U).LetT € DPP(U) be
a positive Lagerberg current, then there exists a positive complex current § € DP-P(V)S:F
such that trop, (S) = T if and only if T has C-finite local mass.

Proof Suppose that S € D?P(V)SF is a positive current and let T = trop, (S). We will
prove that 7 has C-finite local mass. Indeed, it follows from (6.4) that we have the identity

trop(|S'/ ) =g ~12M [ Je ™ [[eIT"|
iel jed

of positive measures on U, \ E!Y for any p € X and any choice of toric coordinates
ui, ..., u, onUp,. Passing to image measures with respect to the open immersion j;’ U\

EY U, and using that trop(lS” ) is a Borel measure on U, we deduce that

wop(517) = 702012 ([ e [Te i) =

iel jeJ

By Proposition 5.2.5, the Borel measure IST7] is locally finite on V), and hence the Borel
measure trop(|S 171y is locally finite on U,. We deduce that T has C-finite local mass.

Conversely, let T be a positive Lagerberg current in D”-?(U) with C-finite local mass.
We consider the canonical decomposition T = )" .5 T5 from Theorem 6.1.6. First, we
assume that 7' = Tjoy for the minimal cone {0} € X'. By assumption, the co-coefficients are
Radon measures 77/ on U, \ E’Y/ such that the positive Borel measures

j[{](|TIJ| Hefui l_[ efuj>
iel jeJ
are locally finite on U, for every p € X. By Remark 5.1.6, there is a unique current R €
DP-P(V NT*SF with trop, (R) = T|ny. Since T is positive, it follows from Lemma 5.1.14
that R is a positive current. It follows from Proposition 5.2.5 that the co-coefficients R’ of
R are complex Radon measures on V N T?". Using (6.4), we get the following identity of
Borel measures

wop(IR" |y = =922 [ Je ™ [[ e~ 1T"|
iel jeJ
on U N Ng. Using that 7 has C-finite local mass, we know that the image measure of
the right hand side with respect to the open immersion j,: U N Ng — U, is a locally
finite Borel measure on U,. We conclude that the image measure of |R'/| with respect
to the open immersion j;): V NT* — V, is a locally finite Borel measure on V, by

using ji, o trop = tropoj, on V N T4 Hence the Radon measure R’/ admits an image
Radon measure j/’) (R'7) which is a complex Radon measure on V,. By Remark 5.2.4 and

Example 3.2.11, there is a unique currentin S € D??(V,) with co-coefficients S 17 induced
by j //, (R'7). Since the restriction of the co-coefficients S? to the dense stratum V N T2 is

R!7 it follows also from Remark 5.2.4 that S |vnran = R. By construction, the boundary
V, \ Nr is a null set with respect to each Radon measure j /’] (R'7). By Lemma 6.1.4 and

Remark 6.1.5, there is an increasing sequence v > 0 in Ag’O(V \ Nr)S which converges
pointwise to the characteristic function of V \ N such that for any o € ALY (V,) we have

klim S(a) = klim S(Yar) = klim R(Wra). (6.6)
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It follows that the currents S, defined a priori only on V, for any p € X, do not depend
on the choice of toric coordinates on V, and hence agree on overlappings of the covering
(Vy)pex. They define a current on V which we also denote by S. If « is positive, then ¥«
is also positive. By positivity of R and by (6.6), the current S is also positive. Since both
and R are invariant with respect to S and F, we deduce from (6.6) that S € D?-P (V)SF,

We have to check trop, (S) = T. Using j, o trop = tropoj/ on V N T*, we have the
following identities

trop(r 9272471777817y = trop(j. (m927 24,177 Rl7y)

= Jo(trop(m 12724717/ R1))
of Radon measures on U,. By (6.3), we deduce the identity of Radon measures
(trop, ($)'/ = trop(x 912721z z7/ §1) = j, (wop(xr 127217z R!))
onU,\ E'Y7 Since trop,(R) = T on U N Ng, we deduce again from (6.3)
(wrop, (SN = jo (rop ™2~z R ) = TV

on U, \ E'Y, where in the last step we have used our assumption T = Tjg). Then
Remark 5.2.4 proves that trop, (S) = T.

Now we skip the assumption T = T{o) from above and consider any positive current 7
with canonical decomposition T = ) __ 5 T, from Theorem 6.1.6. By Proposition 6.1.8, for
every o € X, thereis a positive Lagerberg current P, on U NN (o) such that Ty = (15)«(Ps)
for the closed immersion ¢, : U N N(0) — U. Now we apply the above case to the current
P, and to the open subset V N O(cr)ﬁln of the toric variety O (o). We conclude that there is
a positive current Q, on V N 0(0)an such that trop,.(Qs) = P,. For the closed immersion
.: VN O()" — V, we have the obvious relation tropot/, = ¢, o trop. Now we set
S 1= (1)+«(Q,) which is a positive current on V. Then we get

trop, (So) = trop, ((1,)+(Q0)) = (t6)«(trop,(Q0)) = (t6)«(Py) = Ty.

Then S := ) So 1s a positive current on V satisfying trop,(S) = T. O

oeX

Next we give an example of a positive Lagerberg current T such that 7 = trop,(S) for
some complex current S, but for which no such S is positive.

Example 6.2.3 We consider the one-dimensional situation with N = Z, Ny = Ry, and

Xy = A(lc. Write U C Ny givenby U = {u € Ryy | u > 0} and V = trop ' (U) = {z €
C|zz < 1}. Let T € D%O(U) be the current

o0
T(gd'und'u) = / g(x)e*dx.
0

Since the function 1 = ¢2*¢~2* does not have locally finite mass around oo, this current is

not of the form trop, (S) for a positive current S in V. Nevertheless 7T is in the image of trop,.
Indeed, let S € D%9(U) be the current given by

S(fdz AdZ) = / JO=SO . gz
Vv 2z
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Clearly this current is not weakly positive. Let now gd'u A d”u be a Lagerberg form on U.
Then g(u) = 0 for u > 0 and hence

trop, S(gd'u Ad"u) = S(trop*(gd'u nd"u)) = S (g(— log |z])

g( log |Z|) - /1 rar / 2
idz NdZ= —logr)—= x)e dx.
/ 1(ZZ)2 < < 0 g( gr) 4 . g( )e

idz /\dZ)

This shows T = trop,, S.

7 The correspondence theorem for closed positive currents

In this section, we consider a smooth fan X' with associated toric variety X x and partial
compactification Ny. After considering positivity of currents in the previous sections, we
add here the additional condition that the currents are closed. Recall that a complex (p, p)-
current T (resp. a Lagerberg (p, p)-current S) is called closed if 0T = AT =0 (resp.d'S =
d"S = 0). In the first subsection, we show our main theorem. It states that the tropicalization
map induces a bijective correspondence between S- and F-invariant closed positive currents
on Xy and closed positive Lagerberg currents on Ny . In the second subsection, we derive
from our main theorem a tropical version of the Skoda—El Mir theorem.

7.1 Closed positive invariant currents

For M ¢ M’ C {1,...,n}, we consider the inclusions RY Roﬁ’g C RZ, obtained by
adding zero at the missing components. For v € R>0, we consider the parallelepiped

P :={ueR"|0<u <vVieM).

Lemma 7.1.1 Let T be a closed current in D_];’p(U)for an open subset U of R .. Fix M C
{1,...,n}with|M| = n— p and with complement M€. Fix also a compact subset K of U, and
afunction y € C° (]R%C). Then there is a constant C € Rxq such that for all f € C° (RM),
and for all v € RQ/IO such that (supp(f) + P(v)) x supp(x) C K, we have

|7 (e x g )d wng ") =T (£ Gurg =) Guage)d rs A d"upg)| < Cl1- £ sap

Proof Let (ey, ..., e,) denote the standard basis of R” and write v = ), em tiei. Using a
telescope argument, one easily reduces to the case where v = te; for some fixed i € M. For
a given ¢ € [0, v;], we consider the auxiliary function

0 0
g RM — R, g(uy) = / flup +sei) — fluy + (s —e)ds = | fuy +se;)ds.
—00

—t

From (supp(f) + P(te;)) x supp(x) C K, we get
0
supp(gr) x supp(x) C K, lIgllsup = #11.f llsups %(u) = flum) — flup —te;)(7.1)
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We put M' = M \ {i} and obtain

ad
d'(grean) ey )d wyg Ad"urn) = 3 gelun) 3 e )d g nd 'y Ay
jeMe J

+ (fup) = fup—te) x upe)d ui Ad'upy Ad" upg.

Since g; has compact support in RY and, by (7.1) g; (uas) x (3s¢) has compact support in U,
we deduce that

&) x ) uyy Ad"uy € ATPTHTI).
Hence, since T is closed, we have
T (d/(g[ up) x upe)d uppy A d”uM)) =0.
Therefore, using that 7 has measure co-coefficients (see Proposition 5.2.6), we get

|T((fum) — fum —te))x upe)d'upy A d"upy)|

- e )

jeme

ax
T(“M“)gt ()
uj

’ . 8)(
< Z ‘TM U{‘/}’M’ <‘7(MM‘) ) ”gt”sup
A 3I/tj'
JjeMc¢
< C-t- ”f“sup
for some constant C. O

Proposition 7.1.2 Let U C Nyx be an open subset and T € DP-P(U). If T is positive and
closed, then it has C-finite local mass.

Proof The question is local and so we may assume that U is an open subset of RZ .

If p = n, then the only co-coefficient of T is %% which is a positive Radon measure on
all of U by Proposition 5.2.6. Hence T has C-finite local mass.

Now assume that p < n. We want to prove that 7 has C-finite local mass around u € U.
We will check the relevant condition in Definition 6.2.1 first for the co-coefficients 7™M
For notational simplicity, we assume M = {1, ...,n— p}andu = (oo, ..., 0o) which is no
real restriction of generality as finite components are easier to handle. We choose a compact
neighborhood K of u. Thereis R € Nxj suchthat [R — 1, 00]” C K. There is a C*°-function
f on RM with the properties:

()0=f=L

(ii) f = 1 on the unit cube [R, R + 1M,

. 1 3\M
(iii) f has compact support in the open cube (R — 5, R + 5)™.

We choose x € C OO(RgC) with compact support in (R — %, 00]M* such that 0 < x < 1land
x = lon[R, o], Forn € NM, we consider the positive Lagerberg form

(n—p)(n—p—1) , 1"
apy, = (—1) 2 X @ppe) flupyy —n)dupy Ad uy.

Lemma 7.1.1 implies that

T(apn) = T(am0) + O(lInl).
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For any ¢ > 0, we prove now that the positive measure

] i
u2+28
ieM 7i

has finite mass in the region S := [R, 00)” x [R, 0o]™*. We have

(TMM l_[ Mzizs) (Is) = Z (H nziz’“’) T (otp,n)

ieM neNzM \ieM
1
= Y |]]==)oumn
neN>pM \ieM i

IA

o) Z 1_[ 1+25<°O'

nE(N>1)M 1EM

ForI,J C{l,...,n}with [I| =1|J| =n — p, Eq. (5.8) yields

|T1]| 1_[ 1+F -2 T” 1_[ u2+25 + TJJ 1_[ 2+28

zeI ]EJ iel ]EJ

in the region [R, 00)1Y x [R, co]TYT ). Therefore the left hand side has finite mass in this
region. Finally, using that e~* decreases faster than u~!~¢, we deduce that T has C-finite
local mass. O

Proposition7.1.3 Let U C Nsx be an open subset and V = trop~'(U). Let T', T" €
DPP(V)SF be positive and closed currents. If trop, (T") = trop, (T"), then T' = T".

Proof This can be proved locally on Nx. Hence we may assume that X' is a fan containing a
single maximal dimensional cone with all its faces, so that Ny = R as in Definition 6.1.2.
Then the cones of X are given by the faces

={ueRLy | um =0Vm ¢ M}
of R}, where M is ranging over all subsets of {1, ..., n}. We have the corresponding strata
Sy = 00m)" NV ={@z1,....20) €V | i =0& i € M}

of V. We consider now the canonical decompositions of 7’ and 7" from Theorem 6.1.6:

=y 1, T"=) T/

oex oeXx
ForM C {l,...,n}and o := oy € X, we recall that 7, and 7 are S-invariant, positive
currents with support contained in the closure Sy of the stratum Sjs. The co-coefficients of
the current 7, := T, — T,/ are obtained by first restricting the co-coefficient measures of

T :=T' — T" to Sy and then by extending these measures by zero to V.

We claim that all currents 75, 7, and T, are closed. It is clear that 7’ agrees with T},
on the dense stratum V N T?" and hence T{/O}lvmrﬂ" is a closed positive current on V N T?",
Since T{/O} is a positive current on V, it is clear that the restriction of T/0 to V.N T has
locally finite mass near the boundary a4V := V \ (V N T"). By the Skoda—El Mir Theorem
[9, Theorem II1.2.3] and using that dV is a null set for T{’O}, it follows that T{/O} is closed on
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V. Using induction on dim (o), we can prove similarly that 7, is closed for any o € X. The
same arguments show that 7. is closed. Then T is closed as well.
From Proposition 6.1.10, we get the equality of canonical decompositions

> trop,(T}) = trop, (T") = trop,(T") = Y _ trop,(T})

oeX oeX

which implies trop, (7,) =0 forallo € X.

To prove the proposition, it is enough to show for each 0 = oy € X that T, is zero,
or equivalently that all co-coefficients T(,’ T are zero for all subsets I, J C {1,...,n} with
[I| = |J| = n — p (see Remark 5.2.4). We prove this by induction on the cardinality
of M N (I U J). For the initial step, we consider subsets M, I, J C {1,...,n} such that
MN{UJ)=0.Let f be areal valued smooth function on U with compact support in
U\E™ ={ueU|u; #oc0VielU.J}. Using trop,(T,) = 0 and (6.3), we obtain

T} (71277 wop*(f)) = 0. (7.2)

Using that TUI 7 is a Radon measure, we conclude by a standard approximation argument that
(7.2) holds for all f € CO(U \ E'Y).

For any g € C?(V \ trop~ ! (E'Y7)), let g® be the natural projection onto the S-invariant
functions given by averaging over the fibers of trop with respect to the probability Haar
measures. By construction, there is a unique f € CO(U \ E'Y/) with trop*(f) = g®. The
S-invariance of 7T, implies that

T2 ey =11 @2 g™ = 1) (27 27 wop*(f)) = 0.

This means that the restriction of T(TI 7 to the open subset V \ trop~ ! (E1Y/) is identically zero.
Since V \ Sy is a null set with respect to the Radon measure TO,’ 7 and since our assumption
MN{IUJ)=0yields Syy C V \trop’l(EIUJ), we deduce that TU” =0.

For the inductive step, the induction hypothesis is that Tpl 7 =0 whenever p = 0, € ¥
with [LN (I UJ)| < kforsomek > 1.LetM,I,J C{l,...,n}with| MNUUJ)| =k
andm € M N (I UJ). We have to show that 7./’ (f) = 0 foro = o)y and any f € C°(V).
Using that V \ Sy is a null set with respect to the Radon measure 7,//, we may assume
that, in a neighborhood of Sy, the function f depends only the variables zj, j ¢ M. By
symmetry, we may also assume without loss of generality that m € I. Write I’ = I \ {m}.
Let g € C2°(V) be the function given by ¢ = z,, f. By the assumptions on f, there is a
neighborhood of Sj; where

dg

dzm
and in this neighborhood, g depends only on the variables z;, j ¢ M, and z,,. Consider the
smooth form n = gdz; Adzy on V which has compact support. Since 75 is closed and has
support on Sy, the assumptions on g lead to

9
0=T,0m = T,(tfdzy AdZ)+ Y Tg(%deAdzl/AdZJ), (73)
jEMUI J

where the sign depends on the position of m in I. Let us first consider the case where m ¢ J.
Foreach j ¢ M U I, we get |M N ((I’ u{jhu J)| < k. Hence the induction hypothesis
gives

Ty (ig) —0
o sz
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and (7.3) implies T, (fdz; Adzy) = 0 and
TH (f) =i To (fdz AdZy) =0,

Now consider the case where m € J. We put J' := J \ {m}. Foreach j ¢ M U I, we write
_ 0g
hj = zmgj € CX(V).

This function depends only on the variables (z;) j/¢p and z,; and, in a neighborhood of Su,
satisfies

3hj _ 8g
For the compactly supported smooth form o; = h;dz; Adzp A dzy on 'V, we deduce as
above that

0 = T,(dc;)

d dh;
=T, (:l:%dq Adzp /\dZJ) + > I (%dz,/ Adzj Ndzp /\d%]/) :
J

JEMUT 0z
For j ¢ MU and j/ ¢ MU J, weget [MN((I'U{j}U(JU{j})| < k. Hence our
induction hypothesis gives
ohj _ _
TO' dej’/\de/\dZ]//\dZ]/ =0.
aZj/
This implies

ad
Ts (—gdz,' ANdzyp /\de> =0.
dz; -

forall j ¢ M U I which implies T.// = 0 by (7.3) as before. This completes the induction
and proves the result. O

In general the map trop,, : Dfr’p(V) N DP’P(V)S’F — Di‘p(U) is not injective as the
following example shows.

Example 7.1.4 Consider ]P(lc as a toric variety. Then the (0, 0) current that sends the form
f(z)dz Aidz to the value f(0) is a non-zero positive invariant current, but its image by trop,
is zero. Thus, in Proposition 7.1.3 the closedness condition is necessary.

Theorem7.1.5 Let U C Ny be an open subset, V. = trop_l(U). Denote by DP>P(U) +
the cone of positive closed currents on U and by DP-P (V)ff’i the cone of S- and F -invariant
positive closed currents on V. Then the map trop,, induces a linear isomorphism

trop, : DPP(V)G = DPP(U)a (7.4)
of real cones.

Proof By Lemma 5.1.5, Proposition 4.2.3 and Proposition 5.1.13, the linear map in (7.4) is
well-defined. Surjectivity follows from Propositions 6.2.2 and 7.1.2, while injectivity was
proven in Proposition 7.1.3. O
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The isomorphism in Theorem 7.1.5 respects the support of currents.
Proposition 7.1.6 For T € D”’p(V)fl”i, we have
trop~ ' (supp(trop, T)) = supp(T).

Proof Recall that the support of a current 7 is defined as the complement of the maximal open
set W such that 7|y = 0. Let C := supp(trop, (T)). Write U’ = U\ C and V' = trop~ ! (U").
Then trop, (T')|y = 0 and hence Proposition 7.1.3 yields T |y = 0 which means

supp(T) C trop™ ' (supp(trop, (T))).

Since T is S-invariant, then C" := supp(T) is also S-invariant. Write V" = V \ C’. By the
invariance of C’, we have V" = trop~! (U") for an open subset U” C U (see Remark 3.1.3).
Since T'|y» = 0, it is clear that trop, (T')|y» = 0. Therefore

trop~ ! (supp(trop,(T'))) C supp(T),

concluding the proof of the proposition. O

Example 7.1.7 In the case U = Ng and V = T*" our Correspondence Theorem 7.1.5 gives
a new interpretation of the tropical currents introduced by Babaee and Huh [2, Chapter 3],
[3, Section 2].

Let A be a polyhedron in N of dimension p which is integral R-affine, i.e. a polyhedron
given by finitely many inequalities ¢ > ¢ with ¢ € Homz (N, Z) and ¢ € R. The argu-
ment map from polar coordinates induces an S-equivariant fibration of the S-invariant subset
trop~1(A) C T2 over a real torus of dimension n — p with fibers of complex dimension
p. Integration of a complex (p, p)-form over the fibers and then integrating the resulting
function on the real torus with respect to the probability Haar measure defines a complex
current Ty € D"~ P-"~P(T?), For details of the construction of T4, we refer to [3, Definition
2.3].

Let§ 4 denote the Lagerberg current of integration over A definedin [11, 3.6]. The complex
current 7,4 is by construction S-invariant. We get furthermore trop, (74) = 84 by a similar
argument as in the proof of Lemma 4.2.5. Then Lemma 5.1.5(iii) yields that 7’4 is F-invariant.

If C = (¥, m) is a weighted integral R-affine polyhedral complex of pure dimension p
with weights m in the sense of [11, 3.1, 3.3], then one defines

Tei= ) maTa €D P"P(T™), §c:= Y maba € D" """ P(Ng).
A€E A€E
dim A=p dim A=p
Since trop, (Ta) = 6,4, we clearly have trop, (T¢c) = dc.
If C is an effective tropical cycle, then 7¢ is closed and positive by [3, Theorem 2.9]. The
same is true for 6¢ by [11, 3.7]. We conclude that T¢ is the unique closed positive current in
D= P-n=p (TamS.F guch that trop,(Tc) = dc.

7.2 The analogue of the Skoda-El Mir Theorem for tropical toric varieties

We will prove a tropical analogue of the Skoda—EI Mir Theorem. In this subsection, U is an
open subset of Ny and E is the intersection of U with a union of strata closures.

Let T € DPP(U \ E) be a positive Lagerberg current. We pick p € X' and choose toric
coordinates on U, as in Definition 6.1.2. By Proposition 5.2.6, the co-coefficients 717 are
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real Radon measures on U, \ (E U1y E) with total variation measure |7/ |. We will consider
the open immersion

FiU\(E"YUE) — U, \ E'Y.

Definition 7.2.1 Let T € DPP(U \ E) be a positive Lagerberg current. We say that T is
extendable by zero to U if for any p € X, any toric coordinates on U, and all subsets /, J of
{1,...,n}with |I| = |J| = n — p, the Radon measure 7!/ admits an image Radon measure
wrth respect to zl 7 (see Appendix A). In other words, there is a (unique) Radon measure
{EJ(T”) on Up\EIUJ which agrees with 777/ on Uy \ (E'Y U E) such that U, NE\E'Y
is a null set with respect to iéJ(T”).

Lemma7.2.2 If T is extendable by zero to U, then there is a unique Lagerberg current
T € D P(U) such that for any p € X and all toric coordinates on U, the co-coefficient
(T)” is induced by the Radon measurel (T”)for all I, J. Moreover, we have T|U\E =T
and the Lagerberg current T is positive.

In the above situation, we say that T is the extension of T by zero to U.

Proof For p € X and a choice of toric coordinates, Remark 5.2.4 shows that there is a
unique current T € DPP(U,) with co-cqefﬁcients induced by the Radon measures i 1151 (T1.
Clearly, we have T'|y,\g = T|u,\£ and T does not depend on the choice of toric coordinates.
Moreover, the extensions 7 constructed on the open covering (U,) e » agree on overlapping.
By glueing, we get a Lagerberg current on U also denoted by T. Using Lemma 6.1.4 for
A = ENU,, we deduce easily that T is again a positive Lagerberg current. O

Definition7.2.3 Let T € DPP(U \ E) be a positive Lagerberg current. Generalizing Defi-
nition 6.2.1, we say that T has C-finite local mass on U if for all p € X the co-coefficients
7'/, which may be seen as real Radon measures on U, \ (E U ETY7), satisfy the condition
that the Borel measures on U, given as the image measures

jéj<|T1’J| Hefu; 1_[ efuj>

iel jelJ
with respect to the open immersion j éj U\ (EUE W s U 0 are locally finite on U,,.

Theorem7.2.4 Let T € DP'P(U \ E) be a closed positive Lagerberg current which has
C-finite local mass on U. Then T is extendable by zero to U and the extension T of T by
zero to U from Lemma 7.2.2 is a closed positive Lagerberg current on U.

Proof We may assume that U = U, for some p € X and we choose toric coordinates as
in Definition 6.1.2. Since the function [];; e™ [];.; e~ is locally finite on U \ E'%/
and since T has C-finite local mass on U, the Borel measure 11 T(T1)) is locally finite on
U \ E'% and hence T is extendable by zero to U. By Lernma 7.2.2, the extension T of T
by zero to U is a positive Lagerberg current on U.

LetV := trop’1 (U) andlet D .= trop’l (E). Note that D is the intersection of the open
subset V of X5 with a union of strata closures and hence is a closed analytic subset of the
complex toric manifold X%'. By our correspondence theorem (Theorem 7.1.5), there is a
unique closed positive current S € DPP(V \ D) ot F with trop, (S) = T. Using that T has
C-finite local mass on U, it follows from (6.4) that S has finite local mass on V. The complex
Skoda-El Mir Theorem (see [9, Theorem II1.2.3]) shows that the extension Sof S by zero
to V is a closed positive current on V. By construction, we have trop,, (S) = T and hence T
is a closed Lagerberg current. O
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Corollary7.2.5 Let T € DP'P(U) be positive and closed with canonical decomposition
T =Y s Ts from Theorem 6.1.6. Then every Lagerberg current T is positive and closed.

Proof By Theorem 6.1.6, every T, is a positive Lagerberg current. We know from Propo-
sition 7.1.2 that the closed positive Lagerberg current 7 has C-finite local mass. These two
facts show that every T, has C-finite local mass.

We prove that 75, is closed by induction on the dimension of o. By construction T{oy is
the extension by zero of T'|yynu . Hence Tjg) is closed by Theorem 7.2.4. We assume now
that 7% is closed for all T with dim(t) < dim(o). Hence

T,=T- Y T,

dim(t)<dim(o)

is closed. Since T, |y, = T, |y, we deduce that T, |y, is closed. As Ty, is the extension by
zero of this last current, Theorem 7.2.4 implies that 7, is closed. ]
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Appendix A: Reminder about Radon and regular Borel measures

For the convenience of the reader, we gather the used conventions about Radon measures and
some basic facts. In this paper, we deal only with measures on locally compact Hausdorff
spaces which have a countable basis, so let us consider such a space Y.

For K € {R, C} and a compact subset Z of Y, we write C% (Y, K) for the space of K-
valued continuous functions on Y with support in Z equipped with the topology induced
by the supremum norm. The space C?(Y , K) of K-valued continuous functions on Y with
compact support is the direct limit of the spaces C %(Y , K). We equip C?(Y , K) with the
direct limit topology in the category of locally convex topological vector spaces (see [4, III
§1 no 1]).

We define the space of real Radon measures on Y as the topological dual of C?(Y, R).
Observe that our Radon measures are precisely the measures considered by Bourbaki [4, 11
§1no3+5]. If w: Cg(Y, R) — Rislinear with u(f) > Oforall0 < f € C?(Y, R), then we
call i a positive linear functional. Note that p is then continuous and gives rise to a positive
Radon measure. The Riesz representation theorem shows that there is a unique regular Borel
measure 1 on Y such that

u(f) = /Y Fdu®
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forall f € C?(Y, R). Recall that a Borel measure A on Y is regular if and only if it is locally
finite, i.e. any point has an open neighborhood U with A(U) < oo [8, Prop. 7.2.3 and 7.2.5].
In contrast to Radon measures, we always assume that a Borel measure is positive.

A real Radon measure 1 : C?(Y, R) — R can be written as the difference u = 4 — pu—
of positive Radon measures p+ which are induced by locally finite (positive) Borel measures
w5 The Hahn—Jordan decomposition theorem tells us that the Borel measures u% are unique
if one requires them to be minimal. The positive Radon measure || := puy + p— is called
the rotal variation measure of . We call |u|8(Y) = ME(Y) + uB(Y) the total variation
of . Observe that ,uf — u® is not necessarily a signed Borel measure as it has only well
defined finite values on u % -finite Borel sets. The standard example is the real Radon measure
on R with density function sin(x) with respect to the Lebesgue measure which is not a signed
Borel measure as the total space R has no well-defined mass.

A complex Radon measure on Y is defined as a continuous linear functional . : C, B(Y, C) —
C. It is clear that the real and imaginary part of x are real Radon measures. From this, we
conclude as above that i corresponds locally on an open subset U of Y to a complex Borel
measure ,ug. The total variation measure of uf, is the unique Borel measure | uf,| on U
such that there is a Borel measurable function 6: U — R with duf, = ei9d|pcg| [21, 6.1,
6.12]. The Borel measures I,ug | glue to a Borel measure on Y which is associated to a Radon
measure || on Y called the total variation measure of the Radon measure v. We call | 11| B (Y)
the total variation of .

Let g: X — Y be a continuous map of locally compact Hausdorff spaces which admit
a countable basis. We say that a real or complex Radon measure u on X admits an image
Radon measure under g if the image measure g(u|B)isa locally finite Borel measure.

Assume that the real or complex Radon measure © on X admits an image Radon measure
under g. If u is a real Radon measure on X, then we write © = @4 — pu— as above. By
our assumption the image measures f (uf) and f(u?) are locally finite and define Radon
measures f(u)+ and f(u)— onY. We call the real Radon measure f(u) := f(u)+— f(n)—
the image measure of | under f.If n is a complex Radon measure © on X, we define the
image measure f (i) by treating the real and the imaginary part of u separately.

It is straightforward to check that real and complex Radon measures always admit image
Radon measures under proper maps.
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