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Abstract

Let 6 be an elementary theta function, such as the classical Jacobi theta function. We establish
a spectral decomposition and surprisingly strong asymptotic formulas for (|6]2, ¢) as ¢
traverses a sequence of Hecke-translates of a nice enough fixed function. The subtlety is
that typically |9|> ¢ L2. Applications to the subconvexity, quantum variance and 4-norm
problems are indicated.
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1 Introduction

Let I" be a congruence subgroup of the modular group SL2(Z), and let H denote the upper
half-plane. For pair of square-integrable automorphic functions @1, ¢ € L*(I'\H), the
Petersson inner product

1 dxdy

Q) = o1 1
(o1, 92) vol(T\H) zer\le(z)wz(z) )2 )]

may be written in terms of the inner products of ¢ against the constant function 1, the elements
of an orthonormal basis Bcusp for the space of cusp forms, and the unitary Eisenstein series
Eq.1/2+i¢ attached to the various cusps a of I': with suitable normalization (see, e.g., [9], [10,
§15], [6] for details),

(o1 @2) = (@1, (L) + Y (o1, 9){g. ¢2)
#€Bcusp

dt @
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This formula may be used to establish (among other things) the equidistribution of the Hecke
correspondences 7,, on I"'\H through estimates such as

(@1, Tog2) = {91, 1)(1, 92) + O (x(m)n~/#17) A3)

for unit vectors @1, ¢o € L?(I'\H). Here the Hecke operator 7, is normalized so that 7,1 = 1
(thus for I' = SLy(Z), T, f (z) is the average of f ((az+b)/d) over all factorizations n = ad
and integers 0 < b < d) and ¥ € [0, 7/64] quantifies the strongest known bound [13] for
the Hecke eigenvalues of the cusp forms and Eisenstein series occurring in (2). Given such
a bound for Hecke eigenvalues, the estimate (3) follows from (2) and the Cauchy—Schwarz
inequality.

Variations on (3) in which ¢1, ¢> are not both square-integrable turn out to play a funda-
mental role in analytic number theory, extending far beyond the evident application to Hecke
equidistribution. For instance, in the periods-based approach to the subconvexity problem on
GL, following Venkatesh [31] and Michel—Venkatesh [18], the basic quantitative input is an
analogue of (3) for

e ¢ = |E|? the squared magnitude of a unitary Eisenstein series E and
e ¢ = |®|? that of a cusp form @,

so that s is rapidly-decaying but ¢; fails to belong to L2, or even to L!. The inner products
(|E|?, |®|?) arise naturally after applying Cauchy—Schwarz to the integral representation
LV x ®,1/2) = (¥, E) for the Rankin—Selberg L-function attached to a pair cusp forms
W, ®; the magnitudes of such L-functions are in turn related to fundamental arithmetic
equidistribution problems, such as those concerning the distribution of solutions to x% +
y? + z2 = n (see for instance [17]). The standard Plancherel formula does not apply to
(|E|?, |®|?), and indeed, its “formal application” gives the wrong answer. There arises the
need for a regularized Plancherel formula which the authors of [18, §4.3.8] develop in
generality sufficient for their purposes.

This paper is concerned with another such variation. We will prove analogues (in fact,
counterintuitive strengthenings) of the spectral decomposition (2) and the asymptotic formula
(3) for

e @) := |A|* the squared magnitude of an elementary theta function, such as the Jacobi
theta function
0(z) = y"/* > exp@rin’s), z=x+iy )
nez

onI'g(4) DT, and
e ¢ =: ¢ of sufficiently mild growth that the inner product (|0|2, ¢) converges absolutely;
for instance, it will suffice to impose the growth condition

9(z) < ht(z)/*7 ®)

for some fixed § > 0, where the height function ht : '\lH — R is defined by ht(z) :=
max, .S,z Im(yz).

As we discuss below, a detailed analysis of such inner products (1613, @) is at the heart of
each of the recent works [19-22], and also seems likely to be useful in further applications,
motivating the focused discussion recorded here.

Unfortunately, |#|> ¢ L2, so the standard Plancherel formula does not apply to the inner
products (1613, ¢). Indeed, it is immediate from (1) that a continuous function f on I'\H
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The spectral decomposition of 1612 1427

satisfying the asymptotic | f (z)| = ht(z)”? near the cusps is absolutely integrable if and only
if B < 1, while from (4) we see that 16]*(z) > ht(z) near the cusp oo. In this article, we
develop a different, robust technique for decomposing and estimating such inner products.
We focus for now on the following special case of the results obtained, postponing general
statements to Sect. 2.

Theorem 1 Let 0 denote the Jacobi theta function (4). Fix a measurable function ¢ on T'\H
satisfying the growth condition (5).
Let n traverse a sequence of integers coprime to the level of T'. Then

(1012, Tup) = (1017, 1)(1, @) + O(x(m)n~"/?). (©6)

Curiously, the new bound (6) is stronger than the more straightforward estimate (3) in
that n=1/2 replaces n~1/2+?  To put it another way, the strength of (6) is comparable to that
of (3) together with the assumption of the (unsolved) Ramanujan conjecture ¢ = 0. We will
explain this surprise shortly.

Before doing so, we summarize our interest in studying inner products involving |0]2.
Our original motivation was that asymptotic formulas such as (6) turned out to be the global
quantitative inputs to the method introduced and developed in [19-21] for attacking the
quantum variance problem. That problem concerns the sums given by

D AP W) (W, [ 1) @)

feF

for some “nice enough family of automorphic forms” F and fixed observables ¥, W5, which
we assume here for simplicity to be cuspidal. The asymptotic determination of (7) when F
consists of the Maass forms of eigenvalue bounded by some parameter 7 — oo may be
understood as a fundamental problem in semiclassical analysis (see for instance [35, §15.6],
[23, §4.1.3], [16,36], [19, §1]). The method of [19] uses the theta correspondence to relate
the sums (7) to inner products roughly of the form

(1612, hiha), (8)

where 1, h, are half-integral weight Maass—Shimura—Shintani—Waldspurger lifts of Wy, W5.
The local data underlying the lifts depends rather delicately upon the family . It turns out that
when F is “nice enough,” the product /21 15 is essentially a translate of the product ¢ := h?hg
of some fixed lifts no, hg. If that translate is induced by (for instance) the correspondence 7;,,
then (8) is of the form (|02, T,¢) and so estimates like (6) become relevant for determining
the asymptotics of sums like (7).

Another motivation for the present study comes from the appearance of elementary theta
functions in the Shimura integral representation [5,28]

Lisym?, 1/2) ~ / o0 E ©)
for symmetric square L-functions on GLj; here ¢ is a cusp form and E is a suitable half-

integral weight Eisenstein series, and ~ denotes equality up to local factors. One also knows
the cuspidal analogue of (9), namely

Lsymlo ® W, 1/2) ~ | / oOhP (10)

for cusp forms W with half-integral lift 2 (see Qiu [24, Thm 4.5]). An application of the
Cauchy-Schwartz inequality to such integrals yields inner products involving |0 |2. By study-
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1428 P.D. Nelson

ing those inner products using the results of this paper, a surprising implication concerning
the subconvexity problem for (twisted) symmetric square L-functions was obtained in [22].

A third source of motivating applications may be obtained by summing (precise forms of)
the identity (10) over either ¢ or 4 in an orthonormal basis. The LHS of the resulting identity
is a moment of L-functions, while the RHS, by Parseval, is an inner product involving |#|%. By
applying the results of this paper to such inner products, one may hope to obtain summation
formulas for certain moments of L-functions. Summing over ¢ yields the moments relevant
for the quantum variance problem discussed above, while taking a suitably normalized sum
over & yields a summation formula for twisted symmetric square L-functions to which one
might hope to apply the techniques of [20]. We plan to pursue this idea separately.

For the applications motivating this work, it is indispensible to have more flexible forms
of Theorem 1 in which:

e The squared magnitude |6 |? is generalized to any product 66, of unary theta series 01, 65,
such as those obtained by imposing congruence conditions in the summation defining 6.

e One allows greater variation than ¢ +— T, ¢ for n coprime to the level of I". For instance,
one would like to consider variation under the diagonal flow on I"'\SL; (R), or with respect
to “Hecke operators” at primes dividing the level.

e The dependence of the error term upon ¢ and 61, 6, is quantified.

The main purpose of this article is to supply such flexible forms. Our results, to be formulated
precisely in Sect. 2, are natural completions of Theorem 1: working over a fixed global field,
we prove that the translates under the metaplectic group of a product of two elementary theta
functions equidistribute with an essentially optimal rate and polynomial dependence upon
all parameters. In quantifying the latter we make systematic use of the adelic Sobolev norms
developed in [18, §2].

The regularized Plancherel formula of Michel-Venkatesh, which builds on a method of
Zagier [34], does not seem to apply to the inner products (|62, ¢) considered here: that method
would involve finding an Eisenstein series £ with parameter to the right of the unitary axis
for which |0]?> — € € L2, but it is easy to see from the expansion 1012(z) ~ y!/2 4 ... near
the cusp oo that such an € does not exist. The singular nature of the parameter 1/2 presents
further difficulties if one tries to adapt that method. We are not aware of an adequate formal
reduction (e.g., via a simple approximation argument or truncation) by which one may deduce
flexible forms of estimates such as (6) directly from (2). The technique developed here is
more direct, and specific to |0]2. We illustrate it now briefly in the context of Theorem 1:

(1) Some careful but elementary manipulations (change of variables, Poisson summation,
folding up, Mellin inversion, contour shift) to be explained in Sect. 3 give a pointwise
expansion

dt
2
6] :1+Z/t€Rc(a,z)E;1/2+“E (11)
a
where a traverses the cusps of I'g(4),

E} i jogis =260+ 20 Eq 1240, E(s) =T (s/2)5(s),
and the complex coefficients c(a, r) are explicit and uniformly bounded (and best

described in the language of Theorem 2 below; see also [19, §9]). It seems worth recall-
ing here that the standard unitary Eisenstein series Eq 1,2+, as given in the simplest
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case a = oo, I' = SL(Z) by

1 y* EQs—1) ,_
E = = I S—— R E— s .. 12
@=g ) araE = T ey T (12)
(c.d)eZ2—{(0,0)}:
ged(e,d)=1

for Re(s) > 1, vanishes like O (¢) as t — 0, while £(1 + 2i¢) has a simple pole at = 0,
so the normalized variant E7 /2+ir 18 well-defined and E ol /2 1s not identically zero.

(2) From the expansion (11) we deduce first that (|02, 1) = 1 and then that

dt

2 v o2 * a
(1817, @) = (1617, 1) (1, ¢) +2a:/t€RC(a, DEq124i0 9) 5 13)

(3) Wededuce Theorem 1 in the expected way by replacing ¢ with 7,,¢ and appealing to the
consequence (Ez’ 1j24it® Tp) < (141t~ (m)n=1/2 of standard bounds for unitary
Eisenstein series and the rapid decay of £(1 + 2it).

The main analytic difference between the integrands on the RHS of (2) and (13) is in their
t — 0 behavior: for nice enough ¢, @1, ¢, the typical magnitude of the integrand in (2) is
=< |t| while that in (13) is < 1. The more glaring difference between the two expansions is
that (13) contains no cuspidal contribution. The improvement of (6) compared to (3) is now
explained by noting as above that the Hecke eigenvalues of unitary Eisenstein series (unlike
those of cusp forms) are known to satisfy bounds consistent with the Ramanujan conjecture
0 =0.

Remark 1 Asin [18, §4.3.8] or [34], one can define a regularized inner product (|6 |2, ¥)reg
whenever ¢ admits an asymptotic expansion near each cusp in terms of finite functions
yP log(y)™ with exponent of real part Re(8) # 1/2. The regularization takes the form
(1612, ¢ireg == (|0 |2, ¢ —&) for an auxiliary Eisenstein series €. The difference ¢ —& satisfies
the growth condition (5), so the results of this paper apply directly to such regularized inner
products.

Remark 2 1t follows in particular from (11) that
|6 |zis orthogonal to every cusp form, (14)

as does not appear to be widely known; this feature is crucial for the application to subcon-
vexity pursued in [22]. By taking a residue in Shimura’s integral [28], (14) is equivalent to
the well-known fact that L(adg, s) is holomorphic at s = 1 for every cusp form ¢; compare
also with [12]. The proof given here is not directly dependent on such considerations.

Remark 3 In more high-level terms, our arguments amount to viewing |0|? as the restriction
to the first factor of a theta kernel for (SL,, O3), where O, denotes the orthogonal group
of the split binary quadratic form (x, y) + x2 — y?; the expansion (11) then amounts
to the (regularized) decomposition of that kernel with respect to the O;-action. We may
then understand (11) as asserting that cusp forms do not participate in the global theta
correspondence with the split O;, as should be well-known to experts.

This paper is organized as follows. In Sect. 2, we formulate our main results. In Sect. 3,

we sketch a direct proof of the simplest special case stated above (Theorem 1). The general
case is treated in Sect. 6 after some local (Sect. 4) and global (Sect. 5) preliminaries.
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1430 P.D. Nelson

2 Statements of main results

We refer to Sect. 5 for detailed definitions in what follows and to [7,8,29,33] for general
background.

Let k be a global field of characteristic # 2 with adele ring A. Let v : A/k — CO
be a non-trivial additive character. Denote by Mp,(A) the metaplectic double cover of
SL2(A), A(SLy) (resp. A(Mp,)) the space of automorphic forms on SL; (k)\SL2(A) (resp.
SL>(k)\Mp,(A)), o the Weil representation of Mp,(A) attached to v and the dual pair
(Mp,,0(1)), wy 3 ¢ +— Oy ¢ € A(Mp,) the standard theta intertwiner parametrizing
the elementary theta functions, Z(x) the unitary induction to SL;(A) of a unitary character
¥t A% /k* — CD and Eis : Z(x) — A(SL») the standard Eisenstein intertwiner defined
by averaging over {(*%)} \SL (k) and analytic continuation along flat sections. Choose a
Haar measure d*y on A*, hence on A* /k*.

Using d*y, we define in Sect. 5.11 for all nontrivial unitary characters x of A* /k* an
Mp, (A)-equivariant map I, : wy ® wy — Z(x); it may be regarded as a restricted tensor
product of local maps, regularized by the local factors of L(x, 1). As we explain in Sect.
5.11, the composition Eis o 7, makes sense for all unitary x.

Denote by f(O) the integral over unitary characters x of A* /k* with respect to the measure
dual to d*y. Write simply f for an integral over SL, (k)\SL2(A) with respect to Tamagawa
measure, or equivalently, the probability Haar.

The map wy > ¢ — 6y 4 has kernel given by the subspace of odd functions, so we
restrict attention to the even subspace cof;r) = {¢ € wy : ¢(x) = ¢(—x)}. (That subspace is
reducible, but its further reduction is unimportant for us.)

Theorem 2 Let ¢, ¢ € wy, We have the pointwise expansion: for o € Mp,(A),

.1 (0)0y .4, (0) = /9¢,¢19¢,¢2 +/(0) Eis(Iy (¢1, $2))(0) 15)

Moreover, if ¢1, P2 € w](;_), then we have the inner product formula

/ Oy, Op.gp =2 /A P102. (16)

Finally, for ¢ € A(SLy) satisfying the growth condition (30) analogous to (5), we have the
inner product expansion

/9W~¢101//»¢2(/) = /me%m/fﬂ+/(0)/Ei5(1x(¢1,@))<ﬂ- (17)

Theorem 2 specializes to (11) upon taking k = Q and ¢1, ¢, as in the example of Sect. 5.4. A
special case of Theorem 2 was proved by us in [19, §10]; the proofs are presented differently,
and their comparison may be instructive. The contribution from the trivial character x to the
RHS of (17) should be compared with the case of Siegel-Weil discussed in [4, §7.2].

More generally, suppose ¢| € wy,, $> € wy- for some nontrivial characters v, ¥’ of A/k.
One can write ¥/ (x) = ¥ (ax) forsomea € k*. Ifa € k*2, then wy = wy, and so one can
study [ 6y, ¢, 0y ¢, using Theorem 2. If a ¢ k*2, one can prove (more easily) an analogue
of Theorem 2 involving dihedral forms for the quadratic space k> 3 (x, y) > x? — ay?; see
Sect. 5.12. One finds in particular that

f6¢,¢16¢/,¢2 =0. (18)
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The spectral decomposition of 1612 1431

Following [18, §2], we employ unitary Sobolev norms S; on w and automorphic Sobolev
norms Sff on A(SLy) (see Sects. 4.6, 5.3). Denote by E : SLy(A) — R.( the Harish—
Chandra spherical function (Sect. 5.13).

Theorem 3 There exists an integer d depending only upon the degree of k so that for nontrivial
characters ¥, ' of Ak and ¢ € wy, ¢z € wy, ¢ € A(SLy) and o € SLy(A), the right
translate o p(x) := @(x0) satisfies

/9¢»¢19¢’,¢2 oY= /9¢,¢19¢/’,¢z/‘ﬂ+ O(E(0)Sa(¢1)Sa(@2)S) (). (19)

The implied constant depends at most upon (k, ¥, V).

One should understand the conclusion of Theorem 3 as follows: if 61, 6, are a pair of essen-
tially fixed elementary theta functions, ¢ is an essentially fixed automorphic form on SL; of
sufficient decay, and 0 € SL,(A) traverses a sequence that eventually escapes any fixed com-
pact, then (616>, o) tends to (6162, 1)(1, @) as rapidly as the Ramanujan conjecture would
predict if 6,6, were square-integrable, and with polynomial dependence on the parameters of
the “essentially fixed” quantities. An inspection of the proof also reveals polynomial depen-
dence upon the heights of the characters v/, ¢'. The estimate (19) can be sharpened a bit
at the cost of lengthening the argument (see e.g. Remark 6), but already suffices for our
intended applications; the groundwork has been laid here for the pursuit of more specialized
refinements should motivation arise.

Remark 4 We have already indicated that Theorem 1 follows by specializing Theorem 2 to
(13). Alternatively, the 7> case of Theorem 1 may be recovered from Theorem 3 by taking
k = Q and for o the finite-adelic matrix diag(n, 1/n). One can deduce from (17) a more
general form of (19) involving an extension of 0, 0, to the similitude group PGL, (A) which
then specializes to the general case of Theorem 1; it is not clear to us how best to formulate
such an extension, and our immediate applications do not require it, so we omit it.

3 Sketch of proof in the simplest case

We sketch here the proof of the expansion (11) underlying the proof of Theorem 1. Let 6 be
as in (4). Set z := x + iy, e(z) := ¢*"%. Consider the Fourier expansion

617 (2) = y'? Y em*2)e(n?s)

m,nez

=2 3" e(m® = n*)x)exp(=2m(m* +n?)y).

m,nez

Change variables to © := m — n and v := m + n, so that m? —n? = pv and m? 4+ n? =
(1* +v?)/2:

10P7() = y'* Y e(uvx) exp(—m (1® + v ) umu)-
WVEZL
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1432 P.D. Nelson

Detect the condition 1=, (2) as % Zg:o, (=1 )1 e™iEY and apply Poisson summation to (say)
the v sum:

1
0P @ =5 D > (D exp(=m((ux + 5 +v)7%/y + 1’y) (20)
£=0,1 u,veZ
1
=3 2 DM exp(—m((ux +v)*/y + i), 1)
nezvelz

For simplicity, we now consider instead of |0 12(z) the closely related sum

E@) = Y exp(—m((ux +v)*/y + 1*y)) (22)
W VEZL

obtained by stripping (21) of its 2-adic factors. By isolating the contribution of (u, v) = (0, 0)
and writing the remaining pairs (u, v) in the form (Ac, Ad) for some unique up to sign nonzero
integers A, ¢, d with ged(c, d) = 1, so that (ux 4+ v)2/y + u?y = |cz +d|*A2/y, we obtain

y
E@ =1+ 2 f<|cz+d|2>

(c.d)e(Z>—{(0,0)})/{£1}
ged(e,d)=1

with f(y) := erZ—{O} exp(—mA2/y). The function f decays rapidly as y — 0 and satisfies
f(y) ~ yY? as y — oo. Its Mellin transform f(s) = fyeRi fy~d*y is given for
Re(s) > 1/2 by

) = f Z ES 732 [y)y ™ dy = 26(29).
yeRY s ez
By Mellin inversion, f(y) = f(z) 2£(2s)y* 2”5;1 Thus E(z) = 1 + f(2) EX(z) & 3=, where
E} := 2£(2s)E, with E; as in (12). It is known that E, vanishes to order one as s — 1/2,
while E¥ is holomorphic for Re(s) > 1/2 except for a simple pole at s = 1 of constant
residue 1. Shifting contours, we obtain
ds

E() =2+/ EXo) 2 (23)
(1/2) 27‘”

By standard bounds on E}(z) that take into account the rapid decay of the factor I'(s),

/ / ht(2)/>7°|E¥ (2)| < .
(1/2) JT\H

Therefore (23) holds not only pointwise but also weakly when tested against functions ¢
satisfying (5). In particular, (E, 1) = (2, 1) = 2.

The expansion (11) follows from the above argument applied to |6 |2(z) rather than E(z),
or alternatively, by specializing Theorem 2; see also [19, §9].

In passing to the general results of Sect. 2, we must keep track of how more complicated
variants of the 2-adic factors in (21) affect the residue arising in the contour shift. This is
ultimately achieved by the inversion formula for an adelic partial Fourier transform. We must
also quantify everything; we do so crudely.

Remark 5 The proof sketched above and its generalization given below is the third that we
have found. The following alternative arguments are possible, but less efficient:
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The spectral decomposition of 1612 1433

(1) One can realize 0 as the residue as ¢ — 0 of a 1/2-integral weight Eisenstein series
E3 /4+e and then subtract off a weight zero Eisenstein series &4 to regularize the
inner product (51:33/4+€, Plreg = (§E~3/4+g — El4¢, @) following the scheme of [18,
§4.3.5] with some necessary modifications; the hypotheses do not literally apply, but
the method can be adapted with some work. One can then extract the residue of the
regularized spectral expansion of this regularized inner product to obtain the required
formula for (|0]?, ©).

(2) As in the proof of the standard Plancherel formula (see e.g. [6,9]), one can reduce
first to understanding (|0|2, ¢) when ¢ is an incomplete Eisenstein series, expand ¢ =
f @ c(s)Es % as an integral of spectral Eisenstein series E, and then shift contours to
the line Re(s) = 1/2. Difficulty arises (especially in the generality of Theorem 2) when
one wishes to compare the expansion so-obtained to the spectral coefficients (E1 /21, ¢)
of ¢, which are given by ¢(1/2 +it) + M(1/2 4 it)c(1/2 —it) rather than c(1/2 + it)
(here M (s) := £(25)/€(2(1 —s))). The analogous difficulty in the proof of the standard
Plancherel formula is addressed by the functional equation for the intertwining operators,
of which some more complicated variants are required here. The present approach is
more direct.

4 Local preliminaries
4.1 Generalities

In this section we work over a local field k of characteristic # 2. Let ¥ : k — C() be a
nontrivial character. Equip k& with the Haar measure self-dual for the character vy, defined by

V2(x) == ¥ (2x).
When £ is non-archimedean, we denote by o its ring of integers, p its maximal ideal, and
q = #0/p the cardinality of its residue field.

4.2 “The unramified case”

We use this phrase to mean specifically that k is non-archimedean, v is unramified, and the
residue characteristic of k is # 2.

4.3 Conventions on multiplicative characters

We represent the group
X(k*) := Hom(k™*, C*)

of continuous homomorphisms additively. Denote by yX the value taken by the character
x € X(k*) at the element y € kX, by 0 € X(k*) the trivial character y — y© := 1, by « the
absolute value character y +— y“ := |y/|, and, for any complex number s, by s« the character
y >y = |yl thus

YA =y ()X =y v =k, Y =1

Every x may be written uniquely as ca + xo for some ¢ € R and xo unitary; Re(x) := cis
called the real part of x.
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1434 P.D. Nelson

4.4 The metaplectic group

Denote by Mp, (k) the metaplectic double cover of SLy(k), defined using Kubota cocy-
cles [15] as the set of all pairs (0,¢) € SLa(k) x {£1} with the multiplication law
(01, £1)(02, §2) = (0102, {182¢(01, 02)) Where

. x(o102) x(o102) * % . d ifc=0,
c(or,02) "( X0 | x(02) ) x((c d)) = {c ife£0 @4

with (,) : kx/kX2 x k* /kXz — {%1} the Hilbert symbol. As generators for Mp, (k) we take
fora € k*,b € k and ¢ € {11} the elements

(). (1))
w= ((_1 1) , 1), e@) = (1.0)

which satisfy the relations n(by)n(b2) = n(by + ba), t(a)t(ar) = t(ajax)e((ar, a2)),
t@)n(b) = n(a*b)t(a), wt(a) = t(a HYw, w?> = r(—1) and (when b # 0) wn(—b~") =
nd)t(B)wnB)w™!. Identify functions on SL (k) with their pullbacks to Mp, (k).

4.5 Principal congruence subgroups

Suppose for this subsection that k is non-archimedean. Set K SL, := SLa(o0). Form € Z>,
denote by Kgy ,[m] := K N (1 +p™ M>(0)) the mth principal congruence subgroup. Define
a map

o KSL2 — Mp, (k)

<<* *>> {(c, d)"© ifc #£0,
o =
cd 1 ifc=0
where v denotes the normalized valuation on k. There exists an mq, depending only upon
v(2), so that the restriction of o to KSL2 [mo] is a homomorphism ([8, Prop 2.8], [14]) in fact,
one may take m( := 0 in the unramified case (Sect. 4.2). In general, denote for m > mg by
K[m] := U(KSL2 [m]) < Mp, (k) the image. It defines a filtration K[mo] D K[mo + 1] D
- of congruence subgroups of Mp, (k). One has w € K[0] whenever K[0] is defined and
n(b), t(a) € K[m] forall b,a € p", 1 4+ p" whenever K [m] is defined.
For a smooth representation V of Mp, (k) and m > my, denote by V[m] := VK" the
subspace of K [m]-invariant vectors. For m < mg, write V[m] := {0}. Thus {0} = V[—-1] C
VIO]C V[1] € .-+ and V = UV [m].

4.6 Sobolev norms

For each integer d and unitary admissible representation V' of Mp,(k), denote by S(Y the
Sobolev norm on V defined by the recipe of [18, §2]. Strictly speaking, that article considers
the case of reductive groups and not their finite covers, but the definitions and results apply
verbatim in our context (using the principal subgroups defined above in the non-archimedean
case).
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These norms have the shape S; (v) := ||A%]| for a positive self-adjoint operator
A on V, whose definition is given the archimedean case by (essentially) A = 1 —
> xe B(LieMp, (k) X2 and in the non-archimedean case by multiplication by g™ on the orthog-
onal complementin V [m] of V[m—1]. A number of useful properties of such norms (‘“axioms
(S1a) through (S4d)”) are established in [18, §2]; for the purposes of Sect. 4, we shall need
only the following:

(S1b) The distortion property. There is a constant «, depending only upon deg(k), so that
forall g, v € Mp,(k), V, one has S (gv) < |Ad(g)[*/SY (v)

(S4d) Reduction to the case of A-eigenfunctions. If W is a normed vector space and ¢ :
V — W a linear functional with the property that [£(v)| < A||A%Y|y for each
A-eigenfunction v, then |[£(v)| < A/SL‘I// (v) for all v € V, where (A’, d") depends
only upon (A, d) and deg(k).

When the representation V' is clear from context, we abbreviate Sy := S, ; .

4.7 Conventions on implied constants

Implied constants in this section are allowed to depend upon (k, 1) except in the unramified
case (Sect. 4.2), in which implied constants are required to be depend at most upon deg(k).
Similarly, we abbreviate S := S; when d (the implied index) may be chosen with the above
dependencies. The purpose of this convention is to ensure that implied constants are uniform
when (k, ) traverses the local components of analogous global data.

4.8 The Weil representation

For (V, q) aquadratic space over k, the Weil representation wy, v of Mp, (k) on the Schwartz—
Bruhat space S(V) is defined on the generators as follows: there is a quartic character xy v :
k* — g < C and an eighth root of unity yy v € pug < CV, whose precise definitions
are unimportant for our purposes (see [8,11,28] for details), so that

gy ()G (x) = Y (bg(x)P(x), wy.v(t(@)(x) =aXV @D qax),
a)llf,V(w)¢:y1//,v¢/\7 ww,v($(§))¢=§dimv¢

where ¢"(y) = [, ()Y ((x, y)) dx with (x,y) = g(x +y) — g(x) — g(y) and the
Haar measure dx normalized so that ((¢)")"(x) = ¢(—x). The assignment V > wy vy
is compatible with direct sums in the sense that if V. = V' @ V", then wy vy = wy v ®
wy, v with respect to the dense inclusion S(V') ® S(V”) < S(V). The complex conjugate
representation is given by wy v = wy, y- where V™ := (V, —q) denotes the quadratic space
“opposite” to V = (V, g) obtained by negating the quadratic form.

We are concerned here primarily, although not exclusively, with the case that V is the
one-dimensional quadratic space V| = k with the quadratic form x — x2. In that case, we
write simply wy, := wy, y. Since ¥ is fixed throughout Sect. 4, we accordingly abbreviate
w 1= wy. It is realized on the space S(k). Note that the Fourier transform ¢ +— ¢” attached
above to this space differs from the “usual one” by a factor of 2 in the argument of the phase,
ie., N (x) = fvevl ¢ (y)¥ (2xy) dy. We normalized the Haar measure on k as we did in Sect.
4.1 so that the isomorphism V| = k is measure-preserving and w is unitary. In the unramified
case, the space @K1 of K[0]-invariant vectors in @ is one-dimensional and spanned by the
characteristic function 1, of the maximal order o in k.
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4.9 Basic estimates in the Weil representation

The following estimate is cheap, but adequate for us.

Lemma4 For ¢ € w, one has ||| ;1 K S(@) and ||@||L~ K S(P).

Proof The L bound follows from the L'-bound, Fourier inversion and the distortion prop-
erty applied to the Weyl element w. We turn to the L!-bound. In the real case k = IR, there
is an element Z in the complexified Lie algebra of Mp, (k) so that w (Z)¢ (x) = x2¢(x). By
Cauchy—Schwarz, the contribution to ||¢|| ;1 from the range x| < 1 is bounded by O (||¢||)
and that from the remaining range by fx€k:|x\>1 lp(x)| = fxek:lx\>1 x| |w(Z)p (x)] <
lo(Z)o|| < S1(¢). The complex case is similar. In the non-archimedean case, it suffices by
reduction to the case of A-eigenfunctions (S4d) to show for each m > 0 and ¢ € w[m] that
ol < qA’” @]l for some absolute A. The condition ¢ € w[m] implies that for all b € p™,
one has w(n(b))¢ = ¢, that is to say, (1/f(bx2) — )¢ (x) = 0 for all x € k. Therefore ¢
is supported on elements x € k satisfying the constraint ¥ (bx?) = 1 for all b € p”. That
constraint implies |x| < ¢™/?, and the set of elements satisfying it has volume O (g"/?), so
Cauchy-Schwarz gives as required that ||¢| 1 < qm/4||¢|| < qo(’”) ol ]

4.10 Induced representations

Denote by Z(x) the unitarily normalized induction to SL; (k) of a character y of k™, realized

in its induced model as a space of functions f : SLp(k) — C satisfying f(n(x)t(y)g) =

y¥TX f(g) for all x, y, g € k, k*, SLa(k). When y is unitary, Z()) is unitary with respect

to the norm || || := (fKSL |f|2)1/2 for Kgr, = SL, (k) the standard maximal compact
2

subgroup equipped with the probability Haar. When x is unitary, Z () is irreducible if and
only if x is not a non-trivial quadratic character.

4.11 Change of polarization

Recall from Sect. 4.8 that V| = k is the one-dimensional quadratic space with the form
x — x2 underlying w and V[ = k that with x —x2 underlying @. We abbreviate the
tensor product of w and @ as w® := w @ @; it is not in any literal sense the square of the
representation w, but we shall have no occasion to refer to the latter. Then w? identifies
with the Weil representation wy, v, attached to the quadratic space V, := V; @ V| = k2
equipped with the form (x, x2) xlz - x%. The latter quadratic space is split, and so by
a well-known procedure (see e.g. [25, §0, (VII)]) involving a change of polarization in the
symplectic space W ® V, underlying the construction of wy, v, (here W is the symplectic
space for which SLy (k) = Sp(W)), there exists an intertwiner F : S(V2) — S(W) = S(k?)
under which the representation w? on the source corresponds to a natural geometric action
of Mp, (k) = Mp, (W) on the target:

Denote by V; = k2 the standard split quadratic space with the form (y, y2) — y1y2.
The map p : Vy = k% — Vo = k% given by p(y1, y2) = (22, 252) is an isometry:
if (x1,x2) = p(y1, y2), then x12 - x% = y1y2. Define for ¢ € w ® w the partial Fourier
transform

Fé(n. y2) :=/ ¢(p(y1,r>>w<yzt)dr=/ PYCin i
tek tek

2 2

YW (y21)dt.

Lemma5 In the unramified case, F1,2 = 1,2.
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Proof By direct calculation. O

Lemma6 For o € Mp,(k) and ¢ € w ® o, one has .7-'a)2(0)¢(y) = F¢(yo). Here yo
denotes the right multiplication of y by the image of o in SLy (k).

Proof See for instance Jacquet-Langlands [11, Prop 1.6] or Bump [3, Prop 4.8.7].

4.12 The local intertwiner

Let x be a character of k* with Re(x) > —1. By Lemma 6, the map I, : @ ® @ — Z(x)
defined by the convergent integral

1(@)(0) = / VO F (yero) d* y

yek*

is equivariant. The normalized local Tate integral x +— I, (¢)/L(x, 1) extends to an entire
function of y. We will ultimately only need to consider the range Re(yx) > 0.

Lemma 7 Suppose we are in the unramified case (Sect. 4.2). Let x be an unramified character
of k> with x # —a. Then I, (1, ® 1,) is the K -invariant vector taking the value L(x, 1) at
the identity.

Proof Our assumptions imply by Lemma 5 that F¢ = 1,2, so we conclude by the standard
evaluation of unramified local Tate integrals. O

Proposition 8 Suppose ¥ _is unitary, so that Z(x) is unitary. For each d there exists d’ so that
Jorallp = ¢ ® §; € ?,

SEO (L, ($)) < SH($1)S% ().

Proof By the equivariance of I,, we reduce to showing that || 1, (¢)|| <« S(¢1)S(¢2). The
normon I, (¢) is given by integration over the maximal compact, so by the distortion property
(S1b) and — once again — the equivariance of I, , we reduce to establishing the pointwise bound
L)1) < S(@). But

L (#)(1) <</ YEF(yer) dy < / [Fp 0, x)dx < o1l illd2llpr,
yek> xek
so we conclude by Lemma 4. O

5 Global preliminaries
5.1 Fields, groups, spaces, measures

Let k, A, ¥ be as in Sect. 2. In what follows, equip all discrete spaces with discrete mea-
sures and quotient spaces with quotient measures. Equip A with Tamagawa measure, so that
vol(A/k) = 1. Fix an arbitrary Haar measure d*y on A*. Denote by p a typical place of k.
Then for all but finitely many p, the pair (ky, v¥) will be in the “unramified case” (Sect. 4.2).

Denote by Mp,(A) the metaplectic double cover of SLy(A); it is the set of pairs
(0,¢) € SLa(A) x {£1} with respect to the multiplication law (o1, £1)(02, {) =
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(0102, {182¢(01, 02)) where c(o1, 02) = ]_[p cp(01,p, 02,p) is the product of local Kub-
ota cocycles ¢, defined in 4.4. Identify functions on SL;(A) with their (“non-genuine”)
pullbacks to the double cover Mp, (A). Define n(b), t(a) € Mp,(A) for b,a € A, A* as in
Sect. 4.4.

Denoteby P < SL, the upper-triangular subgroup and U < P the strictly upper-triangular
subgroup. Write ¢; := (1, 0), ez := (0, 1). Equip U(A), SL>(A) with Tamagawa measures,
so that the map U(A)\SLy(A) 3 o > ey0 € A? is measure-preserving. Equip P(A) with
the left Haar measure compatible with the natural isomorphism P(A)/U(A) = A* and
the chosen Haar measure on A*. Set X := SL,(k)\SL»(A) equipped with the Tamagawa
measure (i.e., the probability Haar). We retain and adapt to the adelic setting the conventions
of Sect. 4.3 concerning multiplicative characters. For instance, we denote now by y* := |y|
the adelic absolute value of y € A*.

5.2 Siegel domains

For convergence issues, we assume basic familiarity with Siegel domains (see e.g. [27, §4] or
[2,6] or [2, §12]); the reader may alternatively trust that the general analytic issues concerning
convergence are not qualitatively different from those in the model example of Sect. 3. In
particular, denote by ht : X — R. ¢ the function ht(g) := max,, S|, k) hta (v g) where hty
is defined with respect to the Iwasawa decomposition by hta (n(x)t(y)k) := |y|'/2. Then
ht(x) > ¢ > 0 for some ¢ > 0 depending only upon k; moreover, ht is proper.

5.3 Sobolev norms

We briefly recall the adelic Sobolev norms introduced in [18, §2] which were inspired in turn
by [1,31]. For an integer d and a unitary admissible representation V of Mp, (A), define the
Sobolev norm Sc‘l/ on V by the formula SX (v) := | A%v||, where A denotes the restricted
tensor product of the operators defined in Sect. 4.6. This definition applies also to SL,(A)-
modules, which we regard as non-genuine Mp, (A)-modules. These norms take finite values
on smooth vectors and apply in particular when V = L?(X), but for that space, a finer
Sobolev norm 331( is also useful: for f € C*°(X), set Sff(f) = ||ht¢ Adf||L2(X). We omit
the superscript, writing S ; := 84, when V is clear from context. The indices d, d’ appearing
here and below are implicitlyw restricted to depend only upon deg(k). We employ as in Sect.
4.6 and [18, §2] the convention of omitting the index when it is implied. Note that Sy, S—_y4
are dual; indeed, foru,v € V,

(u, v) = (A%, A™%). (25)
Asin [18, §2.6.5], we set
Csop(V) = vev{mzl | Av]. (26)

We now record some specialized and annotated forms of the axioms from [20, §2] relevant
for Sect. 5:

(Slc) Sobolev embedding. Let V be a unitary irreducible admissible representation of
Mp, (A). Then for each d there exists a d’ so that the inclusion of Hilbert spaces
v, Sé‘l/,) — (V, S{}/) is trace class; moreover (see [18, §2.6.3]), there exists dy so
that the trace of A~ is bounded uniformly in V (with the global field k held fixed).
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Concretely, this gives implications of the shape
(u,v) L S—g(w)C@d) = Sa(v) K C(d") 27

which read more precisely “given a vector v € V and a system of scalars C(d") > 0,
if for each d there exists ad’ so that the first estimate holds for all u € V, then for each
d there exists a d’ so that the second estimate holds.” Indeed, choosing dj so that the
sum y_, B S—dy (1)?, taken over u in an orthonormal basis B of A-eigenfunctions
in V, is finite, and applying our hypothesis with d + dp in place of d, we obtain for
some d’ that

Sa)?* =Y (A%, v)P < €)Y S-a ) < CdY,
ueB ueB

as required. In particular, given an Mp, (A)-equivariant map j : W — V, we have
(v, j(w)) KSW)S(w) = Sa(j(w)) K Sgr(w). (28)

Here v, w € V, W; d’ depends only upon d. (Precisely, if the estimate on the LHS
holds for all v, w and some implied index dy, then for each d there exists a d’ so that
the estimate on the RHS holds for all v, w.) Indeed, the hypothesis of (28) is that
(v, j(w)) K Sgy(v)Sg, (w) for some dy. By (25), the estimate

(v, j(w)) = (A7 oy, AT j(w)) &« S_g(v)Sy (w)

holds with d' := d + 2dy. By (27), we obtain the conclusion of (28). The same
argument gives for W = L*(X) that

(v, j(w)) K SMS¥ (W) = Si(j(w)) K SH(w). (29)

(S1d) Linear functionals can be bounded place-by-place. Let 1 = ®mr), be a unitary irre-
ducible! admissible representation of Mp,(A). Let £, : m, — C be functionals
indexed by the places p of k with the property that for all p for which (kp, ) is
unramified in the sense of Sect. 4.2 and for which there exists a spherical unit vector
vp € mp, we have [£(vp)| < 1; assume also that £, (vp) = 1 for all p outside some
finite set. Let £ = [[ £, : @ — C be the restricted product of these functionals. Sup-
pose for some A > Oand d € Z that |[£,]| < ASZ" holds for all p. Then |[£] < A’SZ},,
where A’, d’ depend only upon A, d. In particular, a product of implied constants
coming from the finite set of places at which a vector v € 7 ramifies can always be
absorbed into S7 (v) if d is large enough.
This axiom applies also to multilinear forms. For instance, if ¢ = [[ €, : 7 Q7T — C
has the property that £, is bounded in magnitude by 1 on spherical unit vectors in the
unramified case and satisfies £y (v1,p, v2,p)| < AS4(v1,p)Sa(v2,p) in general, then
[£(v1, v2)| < A’Sy (v1)Sy (v2) with notation as above; see [18, Remark 2.6.3] and
[18, §4.4.1] for details.

(S2a) Automorphic Sobolev inequality. There exists dp so that Sflf) majorizes L°°-norms.

1 Irreducibility is not mentioned explicitly in the hypotheses of (S1d) in [18, §2], but is used in the proof and
necessary for the truth of the statement; alternatively, one could restrict to admissible subrepresentations of
the space of automorphic forms.
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5.4 The basic Weil representation and elementary theta functions

Denote by wy, the Weil representation of Mp, (A) on the Schwartz—Bruhat space S(A) under-
lying the dual pair Mp, x O; and with respect to the additive character v; to dispel any
ambiguity, we record that wy (n(b))¢(x) = w(bxz)qb(b) for ¢ € wand b € A. Tt is the
restricted tensor product of Weil representations of the local metaplectic groups defined in
Sect. 4.8. Write a)i =y Q Wy

For ¢ € wy, the corresponding elementary theta function 6y ¢4 : [Mp,] — C is defined
by the absolutely convergent sum

Oy.(0) =Y wy(0)p ().

aek

Although we have defined 6y, ¢ as a function on [Mp,], it is perhaps more natural to regard
it here as the restriction of a theta kernel to elements of the form (o, 1) in the product
[Mp;] x O1(k)\O1(A).

Set wl(;) ={¢p € w:p(x) = p(—x) for all x € A}. Its orthogonal complement is known
to be the kernel of ¢ — 60y 4. Except in Sect. 5.12, we consider only one value of ; we

accordingly abbreviate w 1= wy, »* = wfb 0p = Oy ¢, €tc.

By computing Fourier expansions on a Siegel domain, one finds that |0 (c)| < ht(c)'/4,
so if ¢ is a measurable function on X satisfying
@(0) < ht(c)'/>7? for some fixeds > 0, (30)

then the integral fX 0, @(p converges absolutely for all ¢1, ¢ € w.
Example. Fork := Q, Yoo (x) = ¢*™* and ¢ = Q¢ With ¢oo (x) = e’zm‘z,qﬁp =1z,
one has for x, y € R, Ri with z := x + iy that 9¢(n(x)t(yl/2)) =yl > Zexp(Znin2z).

ne

5.5 Mellin transforms and Tate integrals

Recall that we have fixed a Haar measure d*y on A*. It defines a quotient measure, which
we also denote by d*y, on A*/k*, hence a dual measure d x on the space of characters
x : AX/k* — C* of given real part Re(x) = ¢ (defined as in Sect. 4.3), so that the Mellin
inversion formula f(1) = f(c) F(x)dyx holds for all f € C°(A*/k*) with the Mellin
transform defined by f(x) := nyAx/kx FO)y X d*y.

We summarize here some standard consequences of the theory of Tate integrals (see
[26,30]). For a Schwartz—Bruhat function ¢ € S(A) and a character y of AX/k* with
Re(x) > 1, the integral fyeAX yX¢ (y) d*y converges absolutely for Re(x) > 1 and extends

meromorphically to all x. We denote by fyrgix yX¢(y) d*y that meromorphic extension.
The possible poles are at x = « and x = 0. One has the global Tate functional equation

reg reg
/ yX¢(y)de=/ Y P N (y)d™y (31
yeAX yeAX

where ¢ denotes the Fourier transform with respect to any non-trivial additive character of
A/k, such as ¥ or ¥r,; it does not matter which.

@ Springer



The spectral decomposition of 1612 1441

5.6 Induced representations and Eisenstein series

For each character x : AX — C) whose local components have real part > 0, denote by
Z(x) its unitary induction to SLy(A), which consists of smooth functions f : SLy(A) — C
satisfying f(n(x)t(y)o) = yX ¥ f(o) forx, y, o € A, A*, SLy(A);itis the restricted tensor
product of the representations defined in Sect. 4.10. When y is trivial on k>, so that it defines
an automorphic unitary character y : A* /k* — CW, denote by Eis, : Z(x) — A(SLy), or
simply Eis := Eis, when  is clear from context, the standard Eisenstein intertwiner obtained
by averaging over P (k)\SLy (k) and analytic continuation along holomorphic sections (see
e.g. [6]). When x is unitary, so is Z(x), and we equip it with the product of the invariant
norms defined in Sect. 4.10.

As in Sect. 4.10, the representation Z(x) is reducible when y is a nontrivial quadratic
character; the results of Sect. 5.3 nevertheless apply, either by continuity from the irreducible
case or by inspection of the proofs.

The Eisenstein intertwiner Eis, has a simple zero for x the trivial character, so the nor-
malized variant L(x, 1)Eis, makes sense for any unitary x.

Lemma9 [18, §2.5.1] There exists dy so that f(O) CSOb(Z(X))_dO < o0.

5.7 The residue of the Eisenstein intertwiner

The residue of the association x + Eis, : Z(x) — A(SLy) as x approaches the character
o =] is given by “integration over P (A)\SL>(A)” in the following sense (see e.g. [6]):2
Let fy € Z(x) be a holomorphic family defined in a vertical strip containing the character
Xx = . Suppose also that f, has sufficient decay as C(x) — oo. Then for o € SL2(4),

/ Eis(f,)(0) dx = / Bis(f,)(0) dx + / far 32)
(1+¢) (1—¢) P(A\SL,(A)

where | P(AN\SLa(4) denotes the equivariant functional Z, («) — C compatible with the
chosen Haar measures on P(A) and SL;(A). As a “dimensionality test,” note that both d x
and [ P(AN\SLa(4) scale inversely with respect to the measure d*y on A*.

5.8 Bounds for the Eisenstein intertwiner

Lemma 10 Let x be a unitary character of A* /k*. For f € I(x) and ¢ € A(SLp),
LG DUEis(), 91200 < S loo-

Proof 1t suffices to estimate the integral of |L(x, 1)Eis(f)¢| over a Siegel domain. For x
close to the trivial character (i.e., near the pole of L(yx, 1)), we estimate the constant term of
L(x, DEis(f) as in the proof of [18, (4.12)] and its Whittaker function using the argument
of [18, (3.23)] and that linear functionals can be bounded place-by-place (S1d), giving

L(x, DEis(f)(g) < S(f)ht(g)"/* log(ht(g) + 10). (33)

2 Strictly speaking, the cited reference discusses Eisenstein series on GL;. The methods give what we state
here for SLj: it suffices to prove the identity after testing both sides against an incomplete Eisenstein series
Eis(h), h € CZ°(N(A)P(k)\SLa(A)), and follows in that case by unfolding the summation defining / and
computing the residue of the standard intertwining operator on Z(x).
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For x away from the trivial character, we first argue similarly that Eis(f)(g) < S(f)ht(g) 172
and then use the coarse bound L(x, 1) <« C(x)°" « Csob(I(X))O(l) as in [18, §4.1.8]
to absorb the dependence upon yx into the factor S(f) at the cost of increasing its implied
index. Thus (33) holds for any y, and so

L(x. D(Eis(f), ¢) 2x) < S(f) /X ht(g)!'/? log(ht(g) + 10)|¢|(g).

Since fx ht(g)'/2 log(ht(g) + 10) < 0o, the conclusion follows. O

5.9 Bound:s for the Eisenstein projector

For ¢ € L*°(X) there exists, by duality, an element IT, (¢) € Z()) so that for all f € Z(y),

(f T (@) 200 = (Eis(f). 9)120x)- (34)

The map IT,, is linear and equivariant. By continuity and the discussion of Sect. 5.6, we may
consider L(x, 1)IT, even when x = 0.

Lemma 11 Let x be a unitary character of A* /k*. For any d there exists d’ so that
L(x. DS, (9) < Sy (@)

Proof By (34), Lemma 10 and the automorphic Sobolev inequality (S2a), we have
(f, I, () K S(£)SX(¢). The conclusion follows from Sobolev embedding (S1c) in the
form (29). O

5.10 Change of polarization

Recall that 0? := 0 ®; itdescends toa representation of SLo(A) on S(A)RS(A) = S (A?2).
Define the partial Fourier transform F : w> — S(A?) by taking the restricted tensor product
of the local maps defined in Sect. 4.11, thus F¢(y1, y2) = fteA(b(le-H’ “T_t)w(yzt). By
Lemma 6,

F(@*(0)p)(x) = Fo(x0). (35)
For ¢ = ¢1 ® ¢, Fourier inversion gives F¢(0) = [, _, ¢1(x)$2(x) and [,, F¢p =
Jren ®@1(x)2(—x), whence

Fo(0) + /A (T =2(¢1, ¢o) for p1, ¢ € ™. (36)

5.11 The regularized global intertwiner

Let x : AX/k* — C* be a nontrivial Hecke character with Re(x) > —1. We now define an
Mp, (A)-equivariant map I, : @ ® @ — Z(x). It may be characterized most simply as the
unique equivariant map for which

reg

I (1 ® ¢2)(1) = / y A p1(0)d2(y). (37

yeAX
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By the global Tate functional equation (31) and the identity (35), we may recast this definition
in the following form, which is better suited for our purposes:
reg

L@@ = [y FeGen (38)
yeAX

Equivalently, I, is the restricted tensor product of the local maps defined in Sect. 4.12,

regularized by the local factors L(xy, 1): for pure tensors ¢ = ®¢; and a good factorization

d*y =[]d*yp, one has by Lemma 7

Iy, (6p)

L@ ©0) = A, )
e N Y A

=LOG D[] I @p)

pes

for S a finite set of places taken large enough in terms of ¢y, ¢2, o. In particular, the map
x — L(x, DL + (¢) extends by continuity to all unitary y; similarly, Eis, (I, (¢)) makes
sense for any unitary x.

Lemma 12 Foranyd, do there exists d' so that for all ¢ = ¢1 Q¢r € wQw and all nontrivial
unitary y : AX — CD, one has

L(x. D)™ SaIy () < Sar(¢1)Sar ($2)Cp(T(x)) ™.

Proof The definition (26) of Cgqp, implies that Sy (I, (¢)) <K Sa+dy (I, (#))Csoh (Z(x)) %,
so it suffices to show that for any d there exists d’ so that L(yx, 1)_18,1(1)( @) <
S (91)Saz (¢2). By Sobolev embedding (S1c) we reduce to showing that for each d there
exists d’ so that for each factorizable f = ® f, € Z(x), one has

L DN L (@) < S—a(f)Sa (@)Sa ($2).

This follows from the fact that linear functionals can be bounded place-by-place (S1d)
applied to a suitable multiple of the factorizable functional £ = [] £, defined by £(¢) :=
(f, Iy (@) /(L(x, 1)S—4(f)), the required local bounds following from Proposition 8,
Lemma 7, the duality (25), and the estimate L(xp, 1) < 1 for the local factors at finite
places p; compare with the proof of [18, (4.25)]. O

5.12 The anisotropic case

Lety, ¥/ : A/k — CU benontrivial characters. There existsa € k* sothat ¥/ (x) = ¥ (ax).
Assume that a ¢ k*2. Then wy % wy. Denote by (V, q) the quadratic space k* with the
form g(x, y) := x> — ay?; it is non-split. Then

Wy W = Wy, V- 39)
Denote by SO(V) be the special orthogonal group of V. The quotient
[SO(V)] :=SO(V)()\SO(V)(A)

is then a compact abelian group; equip it with the probability Haar. One has a Weil represen-
tation wy, v of SLy(A) on S(V (A)) as in Sects. 4.8, 5.4. The constructions to follow depend
upon ¥, but we omit that dependence from our notation for clarity. For ¢ € wy, v, denote
by 6y : X x [SO(V)] — C the theta kernel 6y (o, h) := Zaev wwyv(o)qﬁ(h’lé). Denote by
A(SO(V)) the set of characters t of [SO(V)]; they are all unitary. For each T € A(SO(V)),
denote by 6y ; : X — C the theta function 64 (o) = fhe[SO(V)] r_l(h)9¢(a, h) and
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by 6(z) the theta lift 0(t) := {6y, : ¢ € S(V(A))}; it defines an irreducible automor-
phic “dihedral” representation of SL;(A) which is abstractly unitarizable. Fix the following
unitary structure on 6(7):

e If T # 1, then 6(7) is cuspidal; equip it with the unitary structure compatible with its
inclusion into L?(X).

e If ¢ = 1 is the trivial character of [SO(V)], then the Siegel-Weil formula (see [32,
p182] or [4] and references) implies that (1) < Eis(Z(n)) where n is the (unitary)
quadratic character of A* /k* corresponding under class field theory to the quadratic field
extension k(/a)/k. More precisely, one has for each ¢ € wy, v the identity 0, 1(0) =
%Eis(],,(¢)))(cr), where Eis : () — A(SLy) isasin Sect. 5.6 and J, : wy v — Z(n) is
given by J,,(¢)(0) := wy, v (0)¢(0). Equip 6 (1) with the unitary structure coming from
Z(n).

Equip 6(7) with unitary Sobolev norms Sg(f) (Sect. 5.3). As in Sect. 5.6, there are linear
maps Iy : L(X) — 6(7) such that (f, I1(¢))or) = (f, )2x) forall f e 6(r), ¢ €
L*°(X). (The precise choice L°°(X) of domain is not particularly important.) For ¢;, ¢ €
@y, wy we have by the isomorphism (39) and Fourier inversion that

0p,(0)0p, (0) = 0p(0, 1) = Z Bp.z(0).
1eASO(V))

Lemma 13 Ler ¢ € L*°(X) and notation as above.

(i) Fort # 1, one has 85 (Ty(r) (9) < Sa(g).
(ii) For each d there exists d’ so that 83(1)(1'[9(1) (p) < S;(, ().

(iii) There exists do so that ). x SO CSOb(G(T))_dO < L
(iv) For any d, dy there exists d’ so that for all T and all ¢y, ¢ € Wy, wy, one has

S50 0 (1 @ $2)) < Sar(@1)Sa($2)Cop ().

The implied constants are allowed to depend upon k, , ¥’ and hence upon V.

Proof (i): Immediate from the definitions and normalizations of unitary structures. (ii): Repeat
the proof of the case x = n of Lemma 11. (iii): Follows in a stronger form from [18, §2.5.1].
(iv) When t = 1, this follows from Lemma 12. A similar proof applies in the case t # 1; we
sketch it for completeness. First, reduce formally as in the proofs of Lemmas 12 and 8 to the
case dy = d = 0, then by reduction theory (see Sect. 5.2) to showing for all x, y € A, A*
for which |y| > 1 and all k in a fixed compact subset of SL,(A) that ¢ := ¢ ® ¢, satisfies
0p.- (n(x)t(y)k) K S(¢1)S(¢2), then by the distortion property (Sect. 4.6) and equivariance
to the case k = 1. By definition,

0p 1 = L N h~1ys).
b, (M (X)1(y)) /he[SO(V)]T ( )Iyln(y)ﬁezvllf(xq( )@ (h™"yé)

Since T # 1, the inner sum may be restricted to § # 0. Since [SO(V')] is compact, we reduce
to showing for all y € A* with |y| > 1 that

I D e yo)| < S@1)S(42).

seV—{0}

uniformly for 4 in a compact subset of SO(V)(A). We reduce using (S1d) to the case of
pure tensors ¢; = ®¢; p and then by (S4d) to the case that each ¢; |, is a A -eigenfunction.
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We estimate the size and support of the non-archimedean components and decay of the
archimedean components as in the proof of Lemma 4. In the number field case, we then
modify y by a suitable element of k>, using the compactness of A /k*, to reduce to
showing: for L a fixed lattice in V, the quantity #{§ € hL : ||¢(§)|| < Q} — 1 vanishes for Q
small enough and is otherwise O(Q?M) for all 4 in a fixed compact subset of SO(V)(A),
where ||g () || denotes the maximum of the norms coming from the archimedean completions.
The function field case is similar. O

5.13 The =-function

The Harish—Chandra function E : SLy(A) — R. ¢ is the matrix coefficient of the normalized
spherical vector in Z(0). It controls the matrix coefficients of tempered representations in the
following sense:

Lemma 14 [18, §2.5.1] Let & be a tempered unitary representation of SLr (A). For f1, fr € w
and o € SLy(A), one has (f1, gf2) K E(0)S(f1)S(f2).

Lemma 14 applies in particular to 7 = Z(x) for any unitary character x of A* /k* or to
any of the non-split dihedral theta lifts # = 6(t) as in Sect. 5.12. For orientation, we record
that E factors as E(0) = ]_[p Ep (0p), is left and right invariant under the standard maximal

compact, and is given locally at a finite place p with uniformizer @ and | |™' = ¢ for
m = 0by Ep(t(@™) = 2m + 1)/q" = Lu=02m — 1/q" " < @m +1)/q".

6 Proofs of the theorems

Proof of Theorem 2 Let ¢y, ¢o € wf;r). Setg := ¢ Qs € w? = wy Q@wy . Leto € Mp,(A).
By the definition followed by Poisson summation,

0.1 ()04, (0) = D @ (@)p(x) = Y F(@(0)(x).

xek? xek?

By (35), the RHS equals ) ;2 F¢(xo). Since every nonzero element of k? is uniquely of
the form zey for some t € k*, y € P(k)\SLa(k), it follows that

04,41 (0)0y 4, (0) = F(0) + Eis(f) (o)

where f(0) := ), c4x F@(tero) and Eis(f)(o) := ZyeP(k)\SLz(k) f(yo) is an incom-
plete Eisenstein series. The asymptotics of f with respect to the Iwasawa height (Sect. 5.1)
are analogous to those in Sect. 3. Denote by f, € Z(x) the unitarily normalized Mellin
transform

(o) 12/ y_x_af(t()’)ﬂ)dxy:/ YTCF¢(yero) d*y = L ($)(0).
yeAX [k* yeAX

(40)

By partial integration, f, (o) decays rapidly with respect to x , whence the rapidly-convergent
Mellin expansion

Eis(f) = /(2) Eis(f,) dx. 1)
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The map x + Eis(fy) = Eis(I,(¢)) is holomorphic for Re()x) > 0 except for a simple
pole at x = «. We shift contours to the line Re(x) = 0; thanks to (32), (38) and our measure
normalizations, the pole contributes

/ Ia(¢)=/ f¢(eza)=/ Fo.
P(ANSL,(8) UAMN\SLy(4) A2

In summary, we have shown that
Ouin @y r(@) =700+ [ o+ [ Eiscr @) dx.
0)

We conclude by (36) and reasoning similar to that following (23). O

Proof of Theorem 3 By (34) and Lemma 14 followed by Lemmas 12 and 11,
/ Eis(1,(¢)) - 09 < E(0)S(y(#)S(M,9) < E(0)S@)Csop T (X)) 05X (p).

We deduce the ¥ = ¢’ case by integrating over x and applying Lemma 9 and Theorem 2.
The ¥ # ' case is proved similarly using Lemma 13. O

Remark 6 A slightly lengthier argument gives a stronger (but more complicated, and not
obviously more useful) estimate with S}f(q)o) replaced by |ht!/2+e A‘é(poll for S the finite
set of places p for which oy, is not in the maximal compact and Ag the product of local
Laplacians (Sect. 4.6) at those places. One can also specify more precisely the dependence

upon ¢1, ¢;.
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