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Abstract
We develop Korevaar–Schoen’s theory of directional energies for metric-valued Sobolev
maps in the case of RCD source spaces; to do so we crucially rely on Ambrosio’s concept
of Regular Lagrangian Flow. Our review of Korevaar–Schoen’s spaces brings new (even in
the smooth category) insights on some aspects of the theory, in particular concerning the
notion of ‘differential of a map along a vector field’ and about the parallelogram identity
for CAT(0) targets. To achieve these, one of the ingredients we use is a new (even in the
Euclidean setting) stability result for Regular Lagrangian Flows.
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4.1 Basic considerations about the space L p(X,Yȳ) . . . . . . . . . . . . . . . . . . . . . . . . 1241
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1 Introduction

In the seminal paper [15], Eells–Sampson proved Lipschitz regularity of harmonicmaps from
a manifold M to a simply connected manifold N with non-positive sectional curvature, the
estimate being in term of a bound from below on the Ricci curvature and an upper bound
on the dimension of the source manifold. A crucial step in their argument is the proof of the
now-called Bochner–Eells–Sampson inequality, namely:

�
|du|2HS

2
≥ du(�u) + K |du|2HS (1.1)

valid for smooth maps u : � ⊂ M → N provided RicM ≥ K . From this one sees that if u
is harmonic then

�
|du|2HS

2
≥ K |du|2HS (1.2)

and then a Moser’s iteration argument gives that |du|HS is locally bounded from above (the
upper dimension bound comes into play in the constants appearing in this process), which
was the claim.

Given that the final estimate does not depend on the smoothness of M, N but only in the
stated curvature bounds, it is natural to wonder whether such smoothness can be removed.
This problem attracted the attention of several mathematicians, see in particular [23,26,29]
and the survey [24] for an overview on this and related topics. We remark that given the kind
of assumptions in Eells–Sampson work, the natural non-smooth class of spaces for which
such Lipschitz regularity is expected to hold is that of RCD(K , N ) spaces as source and
CAT(0) ones as target; so far this generality has been out of reach.

This paper is part of a bigger project aiming at reproducing (1.1) in such fully synthetic
setting, see also [14,21] for other contributions in this direction. The purpose of the current
manuscript is to generalize part of Korevaar–Schoen’s theory in [26] to the case of source
spaces which are RCD. Specifically, one of the definitions proposed in [26] is that of ‘map
from a smooth manifold to a metric space which is Sobolev along a given direction’: we
adapt this construction to the case of RCD source and postpone to a future contribution the
study of what in [26] has been called ‘total energy functional’. Our main results here are:

(i) We obtain new stability results for Regular Lagrangian Flows both on RCD spaces and
in the Euclidean setting, see Theorems 3.4 and 3.8.

(ii) We reproduce the theory of what we call Korevaar–Schoen (Sobolev) space relying on
the aforementioned concept of Regular Lagrangian Flow. In particular we introduce the
Korevaar–Schoen space KSpZ (�,Y) of maps from� ⊂ X to Y which are Sobolev along
the vector field Z , and for u ∈ KSpZ (�,Y) we define the quantity |du(Z)| which plays
the role of the modulus of the differential of u applied to Z (and corresponding to the
p-th root of the directional energy density in [26]). See Sect. 4.2.

(iii) Using our stability result for RLF we prove the ‘triangle inequality’

|du(α1Z1 + α2Z2)| ≤ |α1| |du(Z1)| + |α2| |du(Z2)|
(iv) We show that for u ∈ KSpZ (�,Y) not only the quantity |du(Z)| is well defined, but also

the differential du(Z) of u applied to Z makes sense, see Definition 4.14.
(v) Using the previous point and a duality argument we show that under some kind of

Sobolev condition on the target space Y, we also have the parallelogram identity

|du(Z1 + Z2)|2 + |du(Z1 − Z2)|2 = 2
(|du(Z1)|2 + |du(Z2)|2

)
, (1.3)
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Korevaar–Schoen’s directional energy and Ambrosio’s… 1223

see Theorem 4.25. According to [14], CAT(0) spaces have the required condition.

Let us briefly comment the above results. In (i) the relevant notion of convergence of the
underlying vector fields is that of ‘weak convergence in time and strong in space’, see Def-
inition 3.3. Previous results in this direction (see [2, Remark 5.11]) required quantitative
estimates on the regularity of the flows which are not available neither in the RCD setting (but
see [11,12]) nor in the Euclidean one for BV vector fields (but see [10]). More recent contri-
butions [1] avoid the use of such quantitative estimates, but still our setting was not covered.

To the expert’s eye, what claimed in (i i) is perhaps not so surprising, as it is by now
clear that the concept of Regular Lagrangian Flow provides the correct replacement for the
notion of flow of a vector field in a non-smooth environment. Even so, let us mention that
our presentation offers some (marginal) improvement w.r.t. the original one in [26], see in
particular Definition 4.6 and compare to the original proof of the absolute continuity of the
directional energy densities.

Forwhat concerns the triangle inequalitymentioned in (i i i), we can obtain it under the only
assumption that the map u is in KSpZ1

(�,Y) ∩ KSpZ2
(�,Y), without needing a control of the

total energy as in [26] (and indeed we won’t mention total energy at all in this manuscript). In
particular, even in the case of smooth source space, our result strengthens previously existing
ones. This is possible thanks to a kind of Trotter-Kato formula for Regular Lagrangian Flows
that we obtain as a corollary of the stability results in (i), see Proposition 3.5.

The definition in (iv) makes use of the theory of L0-normed modules as tools to develop
first-order calculus onmetricmeasure spaces as proposed in [16].More in detail, our approach
for defining du(Z) should be seen as an adaptation to the current framework of the recent
construction of differential of a metric-valued Sobolev map proposed in [21].

Finally, the proof of the parallelogram identity (1.3) is perhaps what conceptually differs
the most from the approach in [26]. Indeed, in [26] it is observed that CAT(0) spaces have a
sort of metric parallelogram (in)equality and this information is directly exploited to obtain
(1.3); here, instead, in some sense we decouple the study of the geometry of the target from
the one of Sobolevmaps valued in it. More precisely, thanks to the existence of a sort of linear
differential (point (iv)) we can easily prove that if the target space (Y,dY) is so that ‘for any
Radon measure μ on it the Sobolev space W 1,2(Y,dY, μ) is Hilbert’ (see Definition 4.24),
then necessarily (1.3) holds. Thus here the discussion is fully at the ‘Sobolev’ level. The
question is then evidently whether there are spaces Y as above, and in particular if CAT(0)
spaces have this property: the non-trivial affirmative answer (valid more generally for locally
CAT(k) spaces) has been obtained in [14].

We conclude this introduction remarking that it seems impossible to obtain the desired
Lipschitz regularity of harmonic maps from RCD to CAT(0) spaces fully mimicking the
approach in [26]. The problem is that Regular Lagrangian Flows are not Lipschitz in general
(because typically there are not Lipschitz vector fields on RCD spaces) and as such they cannot
be used in the same spirit as in [26] to provide any kind of Euler’s equation for our minimizers
of the energy functional. This is one of the reasons that led to the attempt of establishing the
‘full’ inequality (1.1) rather than focussing ‘only’ on its version for harmonic maps (1.2).

2 Preliminaries

2.1 Sobolev calculus

To keep the presentation short we assume that the reader is familiar with the concept of
Sobolev functions on a metric measure space [4,5,13,28], with that of L0-normed modules
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1224 N. Gigli, A. Tyulenev

and differentials of real valued Sobolev maps and with second order calculus on RCD spaces
[16,18].

Herewe only recall those conceptswe shall usemost frequently. For a genericmetric space
(X,d)we shall denote by Lip(X),Lipbs(X) the spaces of real valued Lipschitz functions and
Lipschitz functionswith bounded support, respectively. TheLipschitz constant of f ∈ Lip(X)

will be denotedLip( f ) ∈ [0,+∞); the local Lipschitz constant lip f : X → [0,∞) is defined
as

lip f (x) := lim
y→x

| f (y) − f (x)|
dX(x, y)

if x is not isolated, 0 otherwise.

We shall most often work with a metric measure space (X,d,m) which is complete and
separable as metric space and equipped with a non-negative and non-zero Radon measure
giving finite mass to bounded sets.

Definition 2.1 (The Sobolev space W 1,p(X,d,m)) Let p ∈ (1,∞) and f ∈ L p(X). We say
that f ∈ W 1,p(X) provided there is a function G ∈ L p(m) and a sequence ( fn) ⊂ Lipbs(X)

converging to f in L p(m) such that (lip( fn)) weakly converges to G in L p(m).

For f ∈ W 1,p(X) we recall that there is a minimal, in the m-a.e. sense, non-negative
function G ∈ L p(m) for which the situation in Definition 2.1 occurs: it will be denoted |Df |
and called minimal weak upper gradient. One can check that

∀ f ∈ W 1,p(X) there is ( fn) ⊂ Lipbs(X) converging to f in L p(m)

such that lip( fn) → |Df | in L p(m). (2.1)

Now suppose that m′ is another Radon measure on X giving finite mass to bounded sets and
such thatm ≤ m′. Then, given p ∈ (1,∞), it is clear that L p(m′) ⊂ L p(m) with continuous
inclusion, thus a direct consequence of Definition 2.1 above and of minimal weak upper
gradient is that

W 1,p(X,d,m′) ⊂ W 1,p(X,d,m) and |Dm f | ≤ |Dm′ f | m − a.e. ∀ f ∈ W 1,p(X,d,m′), (2.2)

where with |Dm f |, |Dm′ f |we denoted the minimal weak upper gradients inW 1,p(X,d,m),
W 1,p(X,d,m′) respectively.

The concept of L0(m)-normed module is introduced in order to ‘extract’ a notion of
differential from that of minimal weak upper gradient:

Theorem 2.2 (Cotangent module and differential)With the above notation and assumptions,
there is a unique (up to unique isomorphism) couple (L0(T ∗X), d) with L0(T ∗X) being a
L0(m) normed module, d : W 1,2(X) → L0(T ∗X) linear and such that: |d f | = |Df | m-a.e.
for every f ∈ W 1,2(X) and {d f : f ∈ W 1,2(X)} generates L0(T ∗X).

Among the various constructions related to L0-normed modules, we shall make use of
the one of pullback:

Theorem 2.3 (Pullback) Let (X, dX,mX), (Y, dY,mY) be metric measure spaces as above,
u : X → Y a Borel map such that u∗mX � mY and M an L0(mY)-normed module.
Then there is a unique (up to unique isomorphism) couple (u∗M , [u∗]) such that u∗M
is a L0(mX)-normed module and [u∗] : M → u∗M is linear, continuous and such that
|[u∗v]| = |v| ◦ u mX-a.e. for every v ∈ M and {[u∗v] : v ∈ M } generates u∗M .

The module u∗M is called the pullback module and [u∗] the pullback map. These can
also be characterized by the following universal property:
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Proposition 2.4 (Universal property of the pullback)With the same notation and assumptions
as in Theorem 2.3 above, let V ⊂ M a generating subspace, N a L0(mX)-normed module
and T : V → N a linear map such that |T (v)| ≤ f |v| ◦ u mX-a.e. ∀v ∈ V for some
nonnegative mX-a.e. function f ∈ L0(mX). Then there exists a unique L0(mX)-linear and
continuous map T̃ : u∗M → N such that T̃ ([u∗v]) = T (v) for every v ∈ V and this map
satisfies

|T̃ (w)| ≤ f |w| mX − a.e. ∀w ∈ u∗M . (2.3)

These properties of pullbacks have been studied in [16,18] for maps satisfying u∗mX ≤
CmY; the generalization to the case of L0-normed modules has been considered in [9,22].

Finally, let us present the construction of the ‘extension functor’. Informally speaking,
it might happen that one deals with a measure μ � m and with a L0(μ)-normed module
M and would like to think M as L0(m)-normed module, where its elements are 0 on those
regions which μ does not see. The extension functor formalizes this construction.

Thus let M be a L0(μ)-normed module with μ � m. Notice that we have a natural
projection/restriction operator proj : L0(m) → L0(μ) given by passage to the quotient up to
equalityμ-a.e. and a natural right inverse of it, namely an ‘extension’ operator ext : L0(μ) →
L0(m) which sends f ∈ L0(μ) to the function equal to f m-a.e. on { dμ

dm > 0} and to 0 on

{ dμ
dm = 0}.
Thenweput Ext(M ) := M as set, define themultiplication of v ∈ Ext(M ) by f ∈ L0(m)

as proj( f )v ∈ M = Ext(M ) and the pointwise norm as ext(|v|) ∈ L0(m). We shall denote
by ext : M → Ext(M ) the identity map and notice that in a rather trivial way we have

Ext(M ∗) ∼ Ext(M )∗ via the coupling ext(L)
(
ext(v)

) := ext(L(v)).

In what follows we shall always implicitly make this identification.
For the definition of RCD(K ,∞) space see [6] and for the second order calculus see [16].

Here we just recall that the space Test(X) of test functions (introduced in [27]) is defined as

Test(X) := {
f ∈ L∞ ∩ W 1,2(X) : f ∈ D(�), |Df | ∈ L∞(X), � f ∈ W 1,2(X)

}
,

and that the space of TestV(X) of test vector fields is defined as

TestV(X) :=
{

n∑

i=1

gi∇ fi : n ∈ N, fi , gi ∈ Test(X) ∀i = 1, . . . , n

}

.

For the definition of covariant derivative—defined through integration by parts—and the
space W 1,2

C (TX) of L2 vector fields with covariant derivative in L2 see [16]. Recall that

TestV(X) ⊂ W 1,2
C (TX) and thus so does its W 1,2

C -closure, which is denoted H1,2
C (TX) (it

is an open problem to understand whether H1,2
C (TX) = W 1,2

C (TX) or not). In particular for

f ∈ Test(X) we have ∇ f ∈ L∞ ∩ H1,2
C (TX). Also, the identity ∇(∇ f ) = Hess( f ) holds,

having freely identified tangent and cotangent modules via the Riesz isomorphism.
Finally recall the following form of Leibniz rule: for v ∈ L∞ ∩ H1,2

C (TX) and w ∈
L∞ ∩ W 1,2

C (TX) we have

〈v,w〉 ∈ W 1,2(X) and d〈v,w〉 = 〈∇·v,w〉 + 〈v,∇·w〉. (2.4)

2.2 Sobolev and absolutely continuous curves

We recall here some basic properties of Sobolev and absolutely continuous curveswith values
in a metric space.
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1226 N. Gigli, A. Tyulenev

Throughout this section, (Y,dY) will be a complete metric space.

Definition 2.5 (Absolutely continuous curves) A curve γ : [0, T ] → Y is said to be abso-
lutely continuous provided there is f ∈ L1((0, T )) such that

dY(γs, γt ) ≤
∫ s

t
f (r) dr ∀t, s ∈ [0, T ], t < s. (2.5)

For p ≥ 1, the space AC p([0, T ],Y) consists of those absolutely continuous curves for
which we can find f as above in the space L p((0, T )). Finally, AC p

loc([0, T ),Y) is the
collection of all those curves which are in AC p(I ,Y) for every compact interval I ⊂ [0, T ).

The following result is well-known; its proof can be found e.g. in [3, Theorem 1.1.2]:

Theorem 2.6 (Metric speed) Let p ≥ 1 and γ ∈ AC p([0, T ],Y). Then for a.e. t ∈ [0, T ]
there exists the limit

|γ̇t | := lim
h→0

dY(γt+h, γt )

|h| ,

it defines a function in L p((0, T )) and is the least—in the a.e. sense-function f for which
(2.5) holds.

Wenow turn to the definition of Sobolev curves and in order to do so we begin by spending
fewwords onmetric-valued L p spaces. Let (X,d,m) be ametricmeasure space as before (i.e.
complete, separable and with m finite on bounded sets) and (Y,dY, ȳ) a pointed complete
space.

For p ≥ 1 the space L p(X,Yȳ) consists of those (equivalence class up tom-a.e. equality)
Borel maps u : X → Y which are essentially separably valued, i.e. for some negligible set
N ⊂ X we have that u(X\N ) ⊂ Y is separable, and satisfying

∫
dp
Y(u(x), ȳ) dm < ∞.

If m(X) < ∞ the particular choice of ȳ is irrelevant and the reference to it will be omitted
and if Y is a Banach space we shall always pick ȳ = 0 and, again, omit the choice from the
notation.

The space L p(X,Yȳ) is equipped with the distance

dL p(X,Y)(u, v) :=
(∫

dp
Y(u, v) dm

) 1
p

.

It is easy to see that L p(X,Yȳ) is complete w.r.t. this distance and separable if (Y,dY) is
so. Moreover, arguing as for the study of so-called ‘strong measurability’ of Banach-valued
functions, it is not hard to check that

the collection of simple maps in L p(X,Yȳ) is dense in L p(X,Yȳ), (2.6)

where ‘simple’ means ‘attaining a finite number of values’.
We now come back to the study of Sobolev curves and consider the above construction

for X := [0, T ], T > 0 equipped with the canonical distance and measure.
For γ : [0, T ] → Y Borel and ε ∈ (0, T ) we define Ep,ε(γ ) ∈ [0,∞] as

Ep,ε(γ ) :=
∫ T−ε

0

dp
Y(γt+ε, γt )

ε p
dt

Definition 2.7 (Sobolev curves) Let (Y,dY) be a complete space and p ∈ (1,∞). Given
T > 0, the space of Sobolev curves W 1,p([0, T ],Y) consists of those γ ∈ L p([0, T ],Y)

Borel such that

Ep(γ ) := lim
ε↓0 Ep,ε(γ ) < ∞.
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In order to study the properties of Sobolev curves, let us first study the functionals Ep,ε:

Lemma 2.8 (Basic properties of Ep,ε) Let γ ∈ L p([0, T ],Y). Then:

(i) We have

lim
ε↓0 ε

(Ep,ε(γ )
)1/p = 0.

(ii) Let ε ∈ (0, T ) and λi ∈ [0, 1], i = 1, . . . , n, n ∈ N, with
∑

i λi = 1. Then

(Ep,ε(γ )
)1/p ≤

n∑

i=1

λi
(Ep,λi ε(γ )

)1/p
. (2.7)

Proof

(i) For ε ∈ (0, T ) consider the map Tε : L p([0, T ],Y) → R given by Tε(γ ) :=
ε(Ep,ε(γ ))1/p = ‖dY(γ·, γ·+ε)‖L p([0,T−ε],R). Then we have

|Tε(γ ) − Tε(γ̃ )| = ∣∣‖dY(γ·, γ·+ε)‖L p([0,T−ε],R) − ‖dY(γ̃·, γ̃·+ε)‖L p([0,T−ε],R)

∣∣

≤ ‖dY(γ·, γ·+ε) − dY(γ̃·, γ̃·+ε)‖L p([0,T−ε],R).

Noticing that the triangle inequality on Y gives |dY(a, b) − dY(c, d)| ≤ dY(a, c) +
dY(b, d) for every a, b, c, d ∈ Y and using again the triangle inequality in L p([0, T −
ε],R) we then have

‖dY(γ·, γ·+ε) − dY(γ̃·, γ̃·+ε)‖L p([0,T−ε],R)

≤ ‖dY(γ·, γ̃·)‖L p([0,T−ε],R) + ‖dY(γ·+ε, γ̃·+ε)‖L p([0,T−ε],R)

≤ 2‖dY(γ·, γ̃·)‖L p([0,T ],R),

i.e. |Tε(γ )−Tε(γ̃ )| ≤ 2dL p([0,T ],Y)(γ, γ̃ ). This shows that themaps Tε are equiLipschitz,
hence to conclude the proof it is sufficient to find a dense subset of L p([0, T ],Y) such
that for any γ in this subset it holds Tε(γ ) → 0 as ε ↓ 0. It is readily checked that simple
curves have this property, hence the proof is complete.

(ii) Put μ0 := 0 and μi := ∑i
j=1 λ j for i = 1, . . . , n and notice that from

dY(γt+ε, γt ) ≤
n∑

i=1

dY(γt+μi ε, γt+μi−1ε)

and the triangle inequality in L p we obtain

‖dY(γ·, γ·+ε)‖L p([0,T−ε]) ≤
n∑

i=1

‖dY(γ·+μi ε, γ·+μi−1ε)‖L p([0,T−ε])

≤
n∑

i=1

‖dY(γ·+λi ε, γ·)‖L p([0,T−λi ε]).

Then (2.7) follows from the identity (Ep,ε(γ ))1/p = ε−1‖dY(γ·, γ·+ε)‖L p([0,T−ε]).

��
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1228 N. Gigli, A. Tyulenev

Lemma 2.9 Let T > 0 and f : (0, T ) → R
+ be such that

lim
ε↓0 ε f (ε) = 0 and f (ε) ≤

n∑

i=1

λi f (λiε) (2.8)

for every ε ∈ (0, T ), n ∈ N and λi ∈ [0, 1], i = 1, . . . , n, n ∈ N, with
∑

i λi = 1.
Then there exists the limit as ε ↓ 0 of f (ε) and

f (ε) ≤ lim
ε′↓0

f (ε′) ∀ε ∈ (0, T ). (2.9)

Proof Let ε′, ε ∈ (0, T ) be with ε′ ≤ ε and denote by [x] the integer part of x ∈ R. Apply
the second in (2.8) with n := [ ε

ε′ ] + 1, λi := ε′
ε
for every i ≤ n − 1 and λn = 1 − [ ε

ε′ ] ε′
ε
to

get

f (ε) ≤
[ ε

ε′
] ε′

ε
f (ε′) + 1

ε

(
ε − ε′ [ ε

ε′
])

f
(
ε − ε′[ ε

ε′
])

.

Fix ε and notice that [ ε
ε′ ] ε′

ε
→ 1 and ε − ε′[ ε

ε′ ] → 0 as ε′ ↓ 0, thus letting ε′ ↓ 0 in the
above and taking into account the first in (2.8) we deduce

f (ε) ≤ lim
ε′↓0

f (ε′). (2.10)

In particular limε↓0 f (ε) ≤ limε′↓0 f (ε′), showing the existence of the limit; then (2.9)
follows from (2.10).

Corollary 2.10 Let γ : [0, T ] → Y be Borel. Then there exists the limit of Ep,ε(γ ) as ε ↓ 0
and

Ep(γ ) = sup
ε∈(0,T )

Ep,ε(γ ). (2.11)

Proof Thanks to Lemma 2.8 we can apply Lemma 2.9 to the function f (ε) := (Ep,ε(γ ))1/p .
The conclusion follows. ��

As in the real-valued case, there is a tight connection between the notions of absolutely
continuous and Sobolev curves:

Theorem 2.11 (Sobolev and AC curves) Let (Y,dY) be a complete space and p ∈ (1,∞).
Then:

(i) Let γ ∈ AC p([0, T ],Y). Then (the equivalence class up to a.e. equality of) γ belongs
to W 1,p([0, T ],Y).

(ii) Let γ ∈ W 1,p([0, T ],Y). Then

ii-a) γ admits a continuous representative and such representative belongs to
AC p([0, T ],Y).

(ii-b) The functions t �→ dY(γt+h ,γt )
h (set equal to 0 if t + h /∈ [0, T ]) have a strong limit

|∂tγ |—called distributional derivative of γ—in L p([0, T ]) as h → 0. In particular
it holds

Ep(γ ) =
∫ T

0
|∂tγ |p dt . (2.12)

(ii-c) |∂tγ | coincides for a.e. t with the metric speed of the continuous representative of
γ
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Finally, W 1,p([0, T ],Y) is a Borel subset of L p([0, T ],Y) and equipping it with the induced
Borel structurewe have that themap fromW 1,p([0, T ],Y) toC([0, T ],Y) (resp. L p((0, T )))
sending a curve to its continuous representative (resp. distributional derivative) is Borel.

Proof

(i) Being continuous, γ is Borel and γ ([0, T ]) ⊂ Y is compact, hence separable. It follows
that γ ∈ L p([0, T ],Y). Given h > 0, the bound d(γt+h, γt ) ≤ ∫ t+h

t |γ̇s | ds gives
∫ T−h

0

dp
Y(γt+h, γt )

|h|p dt ≤
∫ T−h

0

∣
∣
∣
1

h

∫ t+h

t
|γ̇s | ds

∣
∣
∣
p
dt

≤
∫ T−h

0

1

h

∫ t+h

t
|γ̇s |p ds dt ≤

∫ T

0
|γ̇s |p ds (2.13)

and given that this holds for every h ∈ (0, T ), the claim is proved.

(ii) Let hk ↓ 0 be such that the functions
dY(γt+hk ,γt )

hk
defined to be 0 if t + hk /∈ [0, T ]

(which are uniformly bounded in L p((0, T )) by assumption) weakly converge to some
limit function g. Also, let {xn : n ∈ N} ⊂ Y be countable and dense set and define
fn(t) := dY(γt , xn). Then the triangle inequality ensures that fn ∈ L p((0, T )) and
| fn(t + h) − fn(t)| ≤ dY(γt+h, γt ) and hence up to pass to a subsequence we can
assume that for every n ∈ N the functions t �→ fn(t+hk )− fn(t)

hk
converge to some limit

gn in the weak convergence of L p((0, T )) as hk ↓ 0. The construction ensures that
|gn | ≤ g and for any ϕ ∈ C∞

c ((0, T )) we have

−
∫ T

0
fn(t)ϕ

′(t) dt = lim
hk↓0

∫
fn(t + hk) − fn(t)

hk
ϕ(t) dt =

∫ T

0
gn(t)ϕ(t) dt,

which shows that fn ∈ W 1,p((0, T )) with ∂t fn = gn . It turn, it is well known—and
easy to prove—that this implies that fn admits a continuous representative f̃n satisfying

| f̃n(s) − f̃n(t)| ≤
∫ s

t
|∂r fn | dr ≤

∫ s

t
g(r) dr , ∀t, s ∈ [0, T ].

Thus for N ⊂ [0, T ] Borel, negligible and such that fn(t) = f̃n(t) for any t /∈ N and
n ∈ N we have

dY(γt , γs) = sup
n

| fn(t) − fn(s)| ≤
∫ s

t
g(r) dr ∀t, s ∈ [0, T ]\N ,

which, e.g. by the absolute continuity of the integral, shows that the restriction of γ to
[0, T ]\N is uniformly continuous and thus it can be extended to a continuous curve γ̃

which clearly satisfies

dY(γ̃t , γ̃s) ≤
∫ s

t
g(r) dr ∀t, s ∈ [0, T ].

By the very definition, this means γ̃ ∈ AC p([0, T ],Y) and Theorem 2.6 also tells that

| ˙̃γt | ≤ g(t) a.e. t, (2.14)

therefore the chain of inequalities

‖g‖p
p ≤ lim

hk↓0

∥∥∥
dY(γ·+hk , γ·)

hk

∥∥∥
p

p
≤ lim

hk↓0

∥∥∥
dY(γ·+hk , γ·)

hk

∥∥∥
p

p

(2.13)≤ ‖| ˙̃γ |‖p
p
(2.14)≤ ‖g‖p

p
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is actually made of equalities. In particular, the functions
dY(γ·+hk ,γ·)

hk
converge to g also

in norm, thus strongly in L p((0, T )) (because L p-spaces are uniformly convex when
p ∈ (1,∞)). Also, the equality ‖| ˙̃γ |‖p

p = ‖g‖p
p and (2.14) force g = | ˙̃γ | showing at

once that the limit of dY(γ·+h ,γ·)
h as h ↓ 0 does not depend on the particular subsequence

chosen and that it coincides with the metric speed of the continuous representative of
γ .

Final statements It is clear that the functionals Ep,ε : L p([0, T ],Y) → [0,+∞] are con-
tinuous, thus (2.11) grants that Ep is lower semicontinuous. Hence it is Borel and since
W 1,p([0, T ],Y) = {γ : Ep(γ ) < ∞} we see that the set of all Sobolev curves is a Borel
subset of L p([0, T ],Y) as well.

For the Borel regularity of the ’continuous representative’ map it is sufficient to show that
for any c > 0 such map is continuous from {Ep ≤ c} ⊂ L p([0, T ],Y) to C([0, T ],Y). Thus
let γ n → γ in L p([0, T ],Y) be with supn Ep(γn) ≤ c. As for the classical L p spaces—and
with the same proof—up to pass to a subsequence we can assume that γ n

t → γt for a.e. t .
Now notice that the bound

dY(γ n
t , γ n

s ) ≤
∫ s

t
|∂rγ n

r | dr ≤
∣
∣
∣
∫ s

t
|∂rγ n

r |p dr
∣
∣
∣
1
p
∣
∣
∣
∫ s

t
1 dr

∣
∣
∣
1− 1

p ≤ c|s − t |1− 1
p

grants that the curves γ n are uniformly continuous, thus from pointwise a.e. convergence
we deduce uniform convergence to a limit curve γ̃ . It is then clear that γ̃ is the continuous
representative of γ , thus concluding the proof of the claim.

Finally, the Borel regularity of the ‘distributional derivative’ map follows easily notic-

ing that for any n ∈ N the map γ �→ dY(γt+1/n ,γt )

1/n from L p([0, T ],Y) to L p((0, T )) (set
0 if t + 1/n /∈ [0, T ]) is continuous, hence Borel. The conclusion follows noticing that
W 1,p([0, T ],Y) coincides with the class of γ ’s such that the maps have limit in L p((0, T ))

as n → ∞, the distributional derivative being such limit. ��
A direct and simple corollary of the above is the following chain rule:

Corollary 2.12 Let p ∈ (1,∞), γ ∈ W 1,p([0, 1],X) (resp. AC p([0, 1],X)) and ϕ : X → Y
Lipschitz. Then ϕ◦γ ∈ W 1,p([0, 1],Y) (resp. AC p([0, 1],Y)) with distributional derivative
(resp. metric speed) bounded from above by lipϕ ◦ γ |∂tγ |.
Proof Assume that γ ∈ AC p([0, 1],X). Then directly from the definition it is clear that
ϕ ◦ γ ∈ AC p([0, 1],Y), while from the definition of metric speed it follows the desired
bound on the metric speed of the composition. The case of Sobolev curves now follows from
Theorem 2.11.

For later use let us point out the following simple lemma:

Lemma 2.13 Let (X,d) be a complete and separable space. Then there exists a countable
family ( fn) of 1-Lipschitz functions with bounded support such that

d(x, y) = sup
n

( fn(x) − fn(y)) ∀x, y ∈ X (2.15)

and any such family has the following property:
For any p ∈ (1,∞) and γ ∈ L p([0, 1],X) we have that γ ∈ W 1,p([0, 1],X) if and only

if fn ◦ γ ∈ W 1,p((0, 1)) for every n ∈ N with supn ∂t ( fn ◦ γ ) ∈ L p((0, 1)). Moreover, if
these holds we also have

|∂tγt | = sup
n

∂t ( fn ◦ γ )t .
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Proof To prove that a countable family for which (2.15) holds exists, simply pick fk,n(x) :=
(k − d(x, xn)) ∨ 0, where (xn) ⊂ X is countable and dense.

For the second part of the claim, let ( fn) be an arbitrary sequence of 1-Lipschitz functions
for which (2.15) holds and notice that for every absolutely continuous curve γ the function
fn ◦ γ is absolutely continuous with ( fn ◦ γ )′t ≤ |γ̇t |. Also, for any t, s ∈ [0, 1], t ≤ s we
have

d(γt , γs) = sup
n

fn(s) − fn(t) = sup
n

∫ s

t
( fn ◦ γ )′r dr ≤

∫ s

t
sup
n

( fn ◦ γ )′r dr ,

showing that supn( fn ◦ γ )′t ≥ |γ̇t | for a.e. t . Therefore Theorem 2.11 ensures that if γ ∈
W 1,p([0, 1],X), then the claimed properties of fn ◦ γ all hold.

Conversely, assume that γ ∈ L p([0, 1],X) is such that fn ◦ γ ∈ W 1,p((0, 1)) for every
n ∈ N with supn ∂t ( fn ◦ γ ) ∈ L p((0, 1)). Then the same arguments used in the proof of
point (i i) of Theorem 2.11 give that γ admits a continuous representative in AC p([0, 1],X)

and the conclusion follows. ��
We now study the particular case of curves with values in some L p space.

Lemma 2.14 Let (X,d,m) be a complete and separable metric space equipped with a non-
negative and non-zero Radon measure finite on bounded sets. Equip X × [0, 1] with the
product ofm and the Lebesgue measure and let (t, x) �→ ft (x) ∈ R be a given Borel map in
L p(X × [0, 1]), for p ∈ (1,∞).

Then the following are equivalent:

i) The map [0, 1] � t �→ ft ∈ L p(X) belongs to W 1,p([0, 1], L p(X)) (resp.
AC p([0, 1], L p(X))).

ii) There is a function g ∈ L p(X×[0, 1]), g ≥ 0, such that for a.e. (resp. every) t, s ∈ [0, 1],
t < s it holds

| fs − ft | ≤
∫ s

t
gr dr m − a.e.. (2.16)

iii) Form-a.e. x ∈ X we have f·(x) ∈ W 1,p([0, 1]) and the function (t, x) �→ |∂t ft (x)| =:
ht (x) belongs to L p(X × [0, 1]) (resp. and moreover ( ft ) ∈ C([0, 1], L p(X))).

Moreover, if these holds h is the least function g ≥ 0, in the m × L1-a.e. sense, for which
(2.16) holds and

| ft+ε(x) − ft (x)|
|ε| → ht (x) in L p(X × [0, 1]) as ε → 0, (2.17)

where the incremental ratios are defined to be 0 if t + ε /∈ [0, 1].
Proof We shall deal with the absolutely continuous case, as the Sobolev one can be obtained
through very similar arguments taking also into account Theorem 2.11.
(i) ⇒ (ii)Recall that L p(X)has theRadon-Nikodymproperty and let (g̃t ) ∈ L p([0, 1], L p(X))

be the derivative of ( ft ). Then for every t, s ∈ [0, 1], t < s it holds

fs − ft =
∫ s

t
g̃r dr ,

the integral being intended in the Bochner sense. By classical arguments (see e.g. [20, Propo-
sition 1.3.19]) we deduce the existence of a Borel function g ∈ L p(X × [0, 1]) such that for
L1-a.e. t ∈ [0, 1] we have gt (x) = |g̃t (x)| for m − a.e. x ∈ X. It is then easy to see that the
same formula holds also m-a.e., so that the conclusion holds with gt := |g̃t |.
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(ii) ⇒ (i) For any t, s ∈ [0, 1], t < s from (2.16) we have

‖ fs − ft‖L p(X) ≤
∫ s

t
‖gr‖L p(X) dr

and since the identity
∫ 1
0 ‖gt‖p

L p(X) dt = ∫∫ 1
0 |gt |p dt dm < ∞ shows that (‖gt‖L p(X)) ∈

L p((0, 1)), this is sufficient to conclude.
(ii) ⇒ (iii) Continuity follows from the already proved implication (i i) ⇒ (i). The assump-
tion is equivalent to asking that for a.e. t, ε ∈ [0, 1] with t + ε ∈ [0, 1] it holds

| ft+ε − ft | ≤
∫ t+ε

t
gr dr m − a.e.. (2.18)

Notice also that Fubini’s theorem and the assumption g ∈ L p(X × [0, 1]) give that t �→
gt (x) ∈ L p((0, 1)) for m-a.e. x .

Now observe that for given f̃ ∈ L1((0, 1)), g̃ ∈ L p((0, 1)) we have f̃ ∈ W 1,p((0, 1))
with |∂t f̃t | ≤ g̃t a.e. t if and only if for every ϕ ∈ C1

c ((0, 1)), ϕ ≥ 0 it holds

∣
∣∣
∫ 1

0
f̃tϕ

′
t dt

∣
∣∣ ≤

∫ 1

0
g̃tϕt dt .

Also, by a simple approximation argument it is sufficient to check the above for ϕ running
in a countable set D, dense in the C1-topology in the class of admissible ϕ’s.

With this said, for any ϕ ∈ D we have

∫ 1

0
ftϕ

′
t dt = lim

ε↓0

∫ 1

0
ft

ϕt+ε − ϕt

ε
dt = − lim

ε↓0

∫ 1

0
ϕt

ft − ft−ε

ε
dt m − a.e.

and therefore (2.18) gives that m-a.e. the bound

∣∣∣
∫ 1

0
ftϕ

′
t dt

∣∣∣ = lim
ε↓0

∣∣∣
∫ 1

0
ϕt

ft − ft−ε

ε
dt

∣∣∣ ≤ lim
ε↓0

∫ 1

0
ϕt

1

ε

∫ t+ε

t
gr dr dt =

∫ 1

0
ϕt gt dt

holds for every ϕ ∈ D. According to what previously said, this is sufficient to conclude.
(iii) ⇒ (ii) For m-a.e. x we know that: for a.e. t, s ∈ [0, 1] with t < s it holds

| fs(x) − ft (x)| = ∣∣
∫ s

t
∂r fr (x) dr

∣∣ ≤
∫ s

t
|∂r fr (x)| dr

and thus Fubini’s theorem gives that for a.e. t, s ∈ [0, 1] with t < s it holds

| fs − ft | ≤
∫ s

t
|∂r fr | dr m − a.e.

To conclude that the same holds for every t, s, notice that the continuity assumption on ( ft )
grants that the left hand side of the above is continuous in t, s with values in L p(X). The
same holds for the right hand side due to the assumption ∂t ft ∈ L p(X × [0, 1]).
Last statements The fact that h is the least g ≥ 0 for which (2.16) holds follows by the
arguments given. To prove (2.17) notice that by standard results aboutW 1,p((0, 1)) functions
we know that for m-a.e. x ∈ X the given incremental ratios converge to t �→ ht (x) in
L p((0, 1)). Hence by dominate convergence and Fubini’s theorem the conclusion follows
if we show that the incremental ratios are dominated in L p(X × [0, 1]). This is a direct
consequence of (2.16). ��
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2.3 Regular Lagrangian Flows

Here we very briefly recall the main definitions and results of the metric theory of Regular
Lagrangian Flows as developed in [7]. The concept of Regular Lagrangian Flow provides
the correct substitute, in this setting, for the concept of solution of the ODE

γ ′
t = Zt (γt ),

see also [2,8] for overviews of the subject and historical remarks on R
d and RCD spaces

respectively.
We begin with:

Definition 2.15 (Regular Lagrangian flow) Let (X,d,m) be a complete and separable met-
ric space equipped with a non-negative and non-zero Radon measure giving finite mass to
bounded sets.

Let (Zt ) ⊂ L1([0, 1], L2(TX)) be a given family of vector fields. A Regular Lagrangian
Flow of (Zt ) is a Borel map FlZ : [0, 1] × X → X such that:

i) For some C > 0 it holds

(FlZt )∗m ≤ Cm ∀t ∈ [0, 1]. (2.19)

ii) For every f ∈ W 1,2(X) it holds: for m-a.e. x the map t �→ f (FlZt (x)) is in W 1,1(0, 1)
with

∂t f (Fl
Z
t (x)) = d f (Zt )

(
FlZt (x)

)
a.e. t ∈ [0, 1].

Notice that part of the role of (i) is to ensure that (i i)makes sense, as the function d f (Zt )

is only defined up to m-a.e. equality, so that its composition with FlZt makes sense because
(FlZt )∗m � m. We also point out that in [7] property (i i) is only required for a certain family
of functions, labelledA, dense in W 1,2(X). It is easy to see that this is the same as imposing
the same property for any f ∈ W 1,2(X) because given such f and ( fn) ⊂ A converging
to f in the W 1,2-topology, we have that d fn → d f in L2(T ∗X). Therefore taking into
account the integrability assumption on (Zt ) and (2.19) we deduce that the sequence of maps
(t, x) �→ d fn(Zt )(Fl

Z
t (x)) converge to (t, x) �→ d f (Zt )(Fl

Z
t (x)) in L1

t (L
1
x ) ∼ L1

x (L
1
t ).

Similarly, (t, x) �→ fn(Fl
Z
t (x)) converge to (t, x) �→ f (FlZt (x)) in L2

t (L
2
x ) ∼ L2

x (L
2
t ).

Hence up to pass to a not-relabeled subsequence we deduce that for m-a.e. x the functions
t �→ fn(Fl

Z
t (x)), d fn(Zt )(Fl

Z
t (x)) converge to t �→ f (FlZt (x)), d f (Zt )(Fl

Z
t (x)) in the L1

and L2 topologies respectively. This is sufficient to pass to the limit in property (i i) for the
fn’s and obtain that the same property holds for f .
The concept of Regular Lagrangian Flow is tightly linked to the continuity equation:

Definition 2.16 (Continuity equation) Let (X,d,m)be a complete and separablemetric space
equipped with a non-negative and non-zero Radon measure giving finite mass to bounded
sets.

Let T > 0, [0, T ] � t �→ ρt ∈ L∞(X) be a weakly∗ continuous curve of probability
densities and [0, T ] � t �→ vt ⊂ L0(TX) be a Borel map. We say that (ρt , vt ) solves the
continuity equation provided:

i) We have
∫∫ T

0
|vt |2ρt dt dm < ∞
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ii) For any f ∈ W 1,2(X) the map t �→ ∫
f ρt dm is absolutely continuous and its derivative

is given for L1-a.e. t ∈ [0, T ] by
d

dt

∫
f ρt dm =

∫
d f (vt )ρt dm.

Albeit the last two definitions make sense on arbitrary metric measure spaces, to develop a
good theory it seems necessary to impose a lower bound on the Ricci curvature. In particular,
the following notion of regularity for vector fields is important:

Definition 2.17 (Regular vector fields) We say that a vector field Z over a RCD(K ,∞) space
X is regular provided Z ∈ L∞∩W 1,2

C (TX) andmoreover it is in the domain of the divergence
with (divZ)− ∈ L∞(X). For a Borel time-dependent vector field (Zt ) defined for t ∈ [0, T ]
we say that it is regular provided Zt is regular in the previous sense for a.e. t and

∫ T

0
‖|Zt |‖L∞ + ‖|∇Zt |HS‖L2 + ‖(divZt )

−‖L∞ dt < ∞.

The main/basic result of the theory of Regular Lagrangian Flows on RCD spaces is:

Theorem 2.18 Let (X,d,m) be a RCD(K ,∞) space and (Zt ) a regular vector field
parametrized on t ∈ I ⊂ R. Then:

i) There is a unique Regular Lagrangian flow (FlZt ) of (Zt ) (uniqueness is intended at the
level of curves, i.e.: if (F̃lt ) is another flow, then for m-a.e. x it holds FlZt (x) = F̃lt (x)
for any t ∈ I ).

ii) For any bounded probability density ρ0 with bounded support there is a unique family
(ρt ), t ∈ I , such that ρt ≤ C for some C > 0 and every t ∈ I and (ρt , Zt ) solves the
continuity equation. Moreover, ρt is the density w.r.t.m of (FlZt )∗(ρ0m) and the Regular
Lagrangian Flow is the only flow with this property.

iii) For m-a.e. x the curve t �→ FlZt (x) is absolutely continuous and its metric speed
ms(FlZ· (x), t) at time t is given by

ms(FlZ· (x), t) = |Zt |(FlZt (x)) m − a.e. x a.e. t . (2.20)

Also, for (ρt ) as above we have

‖ρs‖L∞ ≤ ‖ρt‖L∞ exp
( ∫ s

t
‖(divZr )

−‖L∞ dr
)

∀t, s ∈ I , t ≤ s. (2.21)

Proof

(i) follows from (ii) and Theorem 8.3 in [7].
(ii) for the existence see for instance Theorem 6.1 in [8] and notice that Example 4.1 ensures

that in our setting such theorem is applicable. For uniqueness see Theorem 6.4 in [8]
(and recall that Corollary 6.3 in [7] grants that a L4 − � estimate holds).

(iii) the fact that the flow is concentrated on a family of absolutely continuous curves and
inequality≤ in (2.20) follows from the superposition principle, Definition 7.3 in [7] and
ourLemma2.14. The opposite inequality follows fromLemma2.13 and the definition of
norm of a vector field (equivalently, notice that for every probability measure μ ≤ Cm

on X the plan π := (Fl·)∗μ is a test plan, that the superposition principle tells that
π ′
t = e∗

t Zt and conclude with Theorem 2.3.18 in [16]).

Finally, the estimate (2.21) comes from estimate (4–15) in [7]. ��
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3 New stability results for Regular Lagrangian flows

3.1 The RCD setting

Aim of this section is to prove new stability results for Regular Lagrangian Flows on RCD
spaces. The main application that we have in mind is a sort of Trotter–Kato formula for
Regular Lagrangian Flows, namely that if Z1, Z2 are regular vector fields, then for every
t ≥ 0 the maps

(FlZ1
t
n

◦ FlZ2
t
n

) ◦ · · · ◦ (FlZ1
t
n

◦ FlZ2
t
n

)

︸ ︷︷ ︸
n times

converge toFlZ1+Z2
t asn → ∞, seeTheorem3.4 andProposition3.5 for the precise statement.

We start with the following very general fact:

Lemma 3.1 Let (X,d,m) be a metric measure space, (Y,dY) a complete and separable
metric space and Tn : X → Y, n ∈ N∪{∞}, be such that: for any bounded probability density
ρ with bounded support the sequence n �→ (Tn)∗(ρm) weakly converges to (T∞)∗(ρm) in
duality with Cb(Y).

Then Tn → T∞ locally in measure.

Proof Suppose not. Then there are ε > 0 and E ⊂ X bounded such that

for An := {x ∈ E : dY(Tn(x), T∞(x)) ≥ ε} it holds m(An) ≥ ε for infinitely many n′s.
(3.1)

Now consider the measure ν := (T∞)∗(m|E ) on Y which, being Borel and finite, is Radon.
Thus there is a compact K ⊂ Y such that ν(Y\K ) ≤ ε

2 and by compactness of K we can
find a finite number of sets B1, . . . , Bk of diameter ≤ ε

2 covering K . Define Ci := T−1∞ (Bi ),
i = 1, . . . , k, so that by definition m(E\ ∪i Ci ) ≤ ε

2 and thus by (3.1) we deduce that
m(An ∩ ∪iCi ) ≥ ε

2 for an infinite number of n’s. Hence

for some ī ∈ {1, . . . , k} we have m(An ∩ Cī ) ≥ ε

2k
for an infinite number of n′s. (3.2)

Now let ϕ ∈ Cb(Y) be with values in [0, 1] identically 1 on Bī and with support in the
ε
2 -neighbourhood of Bī , so that by construction ϕ ◦ T∞|Ci ≡ 1 and

ϕ ◦ Tn |An∩Ci ≡ 0 for every n such that (3.1) holds (3.3)

(because if T∞(x) ∈ Bī and dY(Tn(x), T∞(x)) ≥ ε then since the diameter of Bī is ≤ ε
2 we

necessarily have that Tn(x) is not in the ε
2 -neighbourhood of Bī ).

Finally, put ρ := χCī
m(Cī )

−1 (notice that (3.2) ensures that m(Cī ) > 0 so that ρ is
well defined), observe that ρ is a bounded probability density with bounded support and that
putting μ := ρm by construction we have

∫
ϕ d(T∞)∗μ = 1 and

∫
ϕ d(Tn)∗μ =

∫

An

ϕ ◦ Tn dμ +
∫

X\An

ϕ ◦ Tn dμ
(3.3)≤ μ(X\An)

≤ 1 − μ(An ∩ Cī )
(3.2)≤ 1 − ε

2k

for every n for which (3.2) holds. Hence limn→∞
∫

ϕ d(Tn)∗μ <
∫

ϕ d(T∞)∗μ violating the
weak convergence of ((Tn)∗μ) to (T∞)∗μ and thus concluding the proof. ��
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Wecan use such abstract result in conjunctionwith the theory ofRegular Lagrangian Flows
to deduce the following stability result, which links stability of solutions of the continuity
equation to stability of the associated flows:

Proposition 3.2 Let (X,d,m) be a RCD(K ,∞) space and (Zn), n ∈ N ∪ {∞} regular time
dependent vector fields such that St := supn∈N∪{∞} ‖|Zn,t |‖L∞(X) ∈ L1((0, 1)). Assume that
for any probability density ρ0 ∈ L∞(X) with bounded support, letting (ρn,t ) be the solution
of the continuity equation for Zn starting from ρ0, we have

ρn,t ⇀ ρ∞,t ∀t ∈ [0, 1],
weakly in duality with Cb(X).

Then FlZn → FlZ∞ locally in measure as maps from X to C([0, 1],X). In particular, for
every t ∈ [0, 1] we have FlZn

t → FlZ∞
t locally in measure as maps from X to X.

Proof Recall from (i i) of Theorem 2.18 that ρn,t is the density w.r.t. m of (FlZn
t )∗(ρ0m).

Hence our assumptions and Lemma 3.1 above grant that FlZn
t → FlZ∞

t locally in measure as
maps from X to X for every t ∈ [0, 1].

Now let m′ ∈ P(X) be such that m � m′ � m and recall that the local convergence in
measure of maps from X to C([0, 1],X) is metrized by the distance

d̄(Fl, Fl′) :=
∫

1 ∧ sup
t∈[0,1]

d(Flt (x), Fl
′
t (x)) dm

′(x).

Fix ε > 0 and let k ∈ N be such that
∫ i+1

k
i
k

St dt < ε for every i = 0, . . . , k − 1. Notice that

(2.20) grants that d(FlZn
t (x), FlZn

s (x)) ≤ ∫ s
t Sr dr for m-a.e. x ∈ X and n ∈ N ∪ {∞} and

therefore

d(Flt (x), Fl
′
t (x)) ≤ d(Fl i

k
(x), Fl′i

k
(x)) + 2ε for i ∈ {0, . . . , k − 1} such that t ∈ [ ik , i+1

k ),

for m-a.e. x ∈ X, which gives

sup
t∈[0,1]

d(Flt (x), Fl
′
t (x)) ≤ 2ε +

k−1∑

i=0

d(Fl i
k
(x), Fl′i

k
(x)), m − a.e. x .

Hence we have

lim
n→∞ d̄(FlZn , FlZ∞) ≤ 2ε + lim

n→∞

k−1∑

i=0

∫
1 ∧ d(FlZn

i
k

(x), FlZ∞
i
k

(x)) dm′(x) = 2ε

having used the local convergence in measure of (FlZn
i
k

) to FlZ∞
i
k

. The arbitrariness of ε gives

the claim. ��
Our question is now to find appropriate conditions on a sequence of vector fields which

ensure convergence of solutions of the continuity equation. We shall work with:

Definition 3.3 Let (Zn) ⊂ L1([0, 1], L1(TX)), n ∈ N∪{∞}.We say that Zn → Z∞ weakly
in time and strongly in space provided for any ϕ ∈ Cc(R) we have Zϕ

n → Zϕ∞ strongly in
L1([0, 1], L1(TX)), where we put

Zϕ
n,t :=

∫

R

ϕ(t − s)Zn,s ds ∀t ∈ [0, 1], n ∈ N ∪ {∞},
and it is intended that Zn,s = 0 for s /∈ [0, 1].
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The main result of this section is the following theorem:

Theorem 3.4 Assume that (Zn) ⊂ L1([0, 1], L1(TX)) convergesweakly in time and strongly
in space to the regular vector field Z∞. Assume also that

∫ 1

0
sup

n∈N∪{∞}

(
‖|Zn,t |‖L∞ + ‖|∇Zn,t |HS‖L2

)
dt + sup

n∈N∪{∞}

∫ 1

0
‖(divZn,t )

−‖L∞ dt < ∞.

(3.4)
Then the Regular Lagrangian Flows (FlZn ) converge locally in measure to the Regular
Lagrangian Flow FlZ∞ and, for every t ∈ [0, 1], the maps (FlZn

t ) converge locally in measure
to FlZ∞

t .

Proof Let ρ0 ∈ L∞ be a probability density with bounded support and let (ρn,t ) be the
solution of the continuity equation for Zn starting from ρ0. According to Proposition 3.2, to
conclude it is sufficient to prove that ρn,t⇀ρ∞,t in duality with Cb(X) for any t ∈ [0, 1].

Compactness To this aim start observing that by the assumption (3.4) and the bound
(2.21) we have that ρn,t ≤ Cm for some C > 0 independent on n, t . Analogously, from
the bound (2.20) it easily follows that supp(ρn,t ) ⊂ B for some bounded closed set B ⊂ X
independent on n, t . Thus

ρn,tm ≤ Cm|B ∀n ∈ N, t ∈ [0, 1] (3.5)

and since m|B is a finite Radon measure we can conclude that the family {ρn,t }n,t is tight.
Finally, again the bound (2.20) gives that the curves t �→ ρn,tm are W1-equiLipschitz.
This and the previous observations imply that such sequence of curves is precompact in
C([0, 1], (P1(X),W1)) and thus up to pass to a non-relabeled subsequence we can assume
that it converges to a limit curve (μt ) ∈ C([0, 1], (P1(X),W1)). Since the bound (3.5)
passes to the limit, we have that μt = ηtm for some ηt ≤ CχB for every t ∈ [0, 1].

Identification of the limit To conclude it is sufficient to show that ηt = ρt for every
t ∈ [0, 1] and since clearly η0 = ρ0, this will follow if we show that (ηt ) solves the continuity
equation for Z∞. Thus let f ∈ Test(X), recall that t �→ ∫

f ρn,t dm is absolutely continuous
with

d

dt

∫
f ρn,t dm =

∫
d f (Zn,t )ρn,t dm a.e. t (3.6)

and notice that what already proved grants that
∫

f ρn,t dm → ∫
f ηt dm as n → ∞ for

every t ∈ [0, 1]. Hence to conclude it is sufficient to show that
∫
d f (Zn,t )ρn,t dm converges

to
∫
d f (Z∞,t )ηt dm in the sense of distributions. Here and below we shall put Zn,t ≡ 0 for

t /∈ [0, 1], ρn,t = ρ0 for t ≤ 0 and ρn,t = ρn,1 for t ≥ 1, similarly for ηt .
Now fix ϕ ∈ C∞

c (R) and let (ψk) ⊂ Cc(R) be a sequence of functions such that
∫

ψk = 1
and ψk ≥ 0 and supp(ψk) ⊂ [− 1

k ,
1
k ] for every k ∈ N. Then for every k ∈ N we have

∣∣∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Z∞,t )ηt

)
dt dm

∣∣∣

≤
∣∣∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Zψk

n,t )ρn,t

)
dt dm

∣∣∣

+
∣∣∣
∫∫ 1

0
ϕt

(
d f (Zψk

n,t )ρn,t − d f (Zψk∞,t )ηt

)
dt dm

∣∣∣

+
∣∣∣
∫∫ 1

0
ϕt

(
d f (Zψk∞,t )ηt − d f (Z∞,t )ηt

)
dt dm

∣∣∣.
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Now notice that what previously proved ensures that (ρn,t ) converges to (ηt ) in the weak∗
topology of L∞([0, 1]×X), while the assumption and the fact that |d f | ∈ L∞(X) grant that
d f (Zψk

n,t ) → d f (Zψk∞,t ) in L1([0, 1] × X) as n → ∞ for every k ∈ N. Since moreover it is

clear that d f (Zψk∞,t ) → d f (Z∞,t ) in L1([0, 1] ×X) as k → ∞, by letting first n → ∞ and
then k → ∞ in the above we obtain:

lim
n→∞

∣
∣
∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Z∞,t )ηt

)
dt dm

∣
∣
∣

≤ lim
k→∞ sup

n∈N

∣
∣
∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Zψk

n,t )ρn,t

)
dt dm

∣
∣
∣.

Thus to conclude the proof it is sufficient to show that the right hand side in the above is
0. Put for brevity In(t, s) := ∫

d f (Zn,t )ρn,s dm and notice that since f ∈ Test(X), from
(3.4) we have that t �→ It := supn |In(t, t)| ∈ L1(0, 1) and recalling also (2.4) we see that
d f (Zn,t ) ∈ W 1,2(X) for a.e. t , with |d(d f (Zn,t ))| ≤ C( f )(|Zn,t | + |∇Zn,t |HS). Thus from
(3.6) (which is valid for functions f ∈ W 1,2(X)) we obtain

|In(t, s) − In(t, t)| ≤
∫∫ s

t
d(d f (Zn,t ))(Zn,r )ρn,r dr dm ≤ |s − t |C( f )gt (3.7)

where gt := supn
∫
B |Zn,t |2 + |∇Zn,t ||Zn,t | dm. The assumption (3.4) give g ∈ L1(0, 1).

Now observe that
∫∫ 1

0 ϕtd f (Zn,t )ρn,t dt dm = ∫∫ 1
0 ϕtψt−s In(t, t) ds dt and that

∫∫ 1

0
ϕtd f (Z

ψk
n,t )ρn,t dt dm =

∫∫∫ 1

0
ϕtψ

k
t−sd f (Zn,s)ρn,t

ds dt dm =
∫∫ 1

0
ϕsψ

k
t−s In(t, s) ds dt

having used the fact that ψk is even in the last step. Therefore using also (3.7) we get
∣
∣∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Zψk

n,t )ρn,t

)
dt dm

∣
∣∣ =

∣
∣∣
∫∫ 1

0
ϕtψ

k
t−s In(t, t) − ϕsψ

k
t−s In(t, s) ds dt

∣
∣∣

≤ Lip(ϕ)

∫∫ 1

0
|s − t |ψk

t−s |In(t, t)| ds dt

+ C( f )
∫∫ 1

0
|s − t |ϕsψ

k
t−s gt ds dt .

Recalling that by construction we have ψk
t−s = 0 for |s − t | > 2

k we obtain

sup
n

∣∣∣
∫∫ 1

0
ϕt

(
d f (Zn,t )ρn,t − d f (Zψk

n,t )ρn,t

)
dt dm

∣∣∣ ≤ 2
Lip(ϕ) + C( f )

∫ 1
0 ϕ

k

∫ 1

0
It + gt dt

and the conclusion follows letting k → ∞. ��
Our main example of sequence of vector fields converging weakly in time and strongly in

space is the one given by the following proposition:

Proposition 3.5 Let Z1, Z2 ∈ L1(TX) and for every n ∈ N define Zn ∈ L1([0, 1], L1(TX))

by putting

Zn,t := 2Zi( j) for t ∈ [ j
2n ,

j+1
2n ) where i( j) = 1 if j isevenand i( j) = 2 if j isodd. (3.8)

Then (Zn) converges weakly in time and strongly in space to the vector field constantly equal
to Z1 + Z2 ∈ L1(TX).
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Proof Let In,i := {t ∈ [0, 1] : Zn,t = 2Zi }, i = 1, 2, so that we can write Zn = 2χIn,1 Z
1 +

2χIn,2 Z
2, being intended that Zn,t = 0 for t /∈ [0, 1]. Then for ψ ∈ C∞

c (R) directly from

the definition we see that Zψ
n = 2χIn,1 ∗ ψZ1 + 2χIn,2 ∗ ψZ2. Now notice that Young’s

inequality ‖ f ∗ ψ‖L1 ≤ ‖ f ‖L1‖ψ‖L1 ensures that the operator ‘convolution with ψ’ is
continuous from L1(R) into itself, thus since (χIn,1) converges to

1
2χ[0,1] weakly in L1(R),

we see that (χIn,1∗ψ)weakly converges to 1
2χ[0,1]∗ψ in L1(R).Moreover, since the functions

χIn,1 ∗ψ are uniformly Lipschitz and with uniformly bounded support, they form a relatively
compact subset in L1(R), hence the convergence of (χIn,1 ∗ ψ) to 1

2χ[0,1] ∗ ψ is strong in
L1(R). From this it easily follows that the sequence (2χIn,1 ∗ψZ1) converges to χ[0,1] ∗ψZ1

strongly in L1([0, 1], L1(TX)) and since a similar argument works for (2χIn,2 ∗ ψZ2), the
claim follows. ��

For later use, we notice the following:

Proposition 3.6 Let Z1, Z2 be two regular vector fields, define Zn as in (3.8) and let ρ0 be a

bounded probability density with bounded support. Let ρt be the density of (Fl
Z1+Z2

t )∗(ρ0m)

and define ρ1
n,t , ρ

2
n,t by

ρ1
n,tm := (FlZ1

t− 2i
2n

)∗(FlZn
2i
2n

)∗(ρ0m) for t ∈ [ 2i2n ,
2(i+1)
2n ),

ρ2
n,tm := (FlZ1

t− 2i+1
2n

)∗(FlZn
2i+1
2n

)∗(ρ0m) for t ∈ [ 2i+1
2n ,

2(i+1)+1
2n ).

Then for every t ∈ [0, 1] both the sequences (ρ1
n,t ), (ρ

2
n,t ) converge toρt in theweak∗ topology

of L∞(X).

Proof We shall prove the result for ρ1
n,t only, as the study of ρ2

n,t follows along similar lines.

Fix t ∈ [0, 1] and let in ∈ N be such that t ∈ [ 2in2n ,
2(in+1)

2n ).
The estimates (2.21) and (2.20) grant that the densities {ρ1

n,t }n are equibounded, hence to
conclude it is sufficient to prove that

∫
ϕρ1

n,t dm → ∫
ϕρt dm for a set ϕ’s dense in L1(X).

We shall consider ϕ bounded and Lipschitz and notice that

∣∣∣
∫

ϕρ1
n,t dm −

∫
ϕρt dm

∣∣∣ ≤
∣∣∣
∫

ϕ d(FlZ1

t− 2in
2n

)∗(FlZn
2in
2n

)∗(ρ0m) −
∫

ϕ d(FlZn
t )∗(ρ0m)

∣∣∣
︸ ︷︷ ︸

An

+
∣∣∣
∫

ϕ d(FlZn
t )∗(ρ0m) −

∫
ϕρt dm

∣∣∣
︸ ︷︷ ︸

Bn

.

Theorem 3.4 ensures that Bn → 0 as n → ∞, for An we put μn := (FlZn
2in
2n

)∗(ρ0m) ∈ P(X),

σn := (FlZ
1

t− 2in
2n

, FlZn

t− 2in
2n

)∗μn ∈ P(X2) and notice that

An =
∣∣∣
∫

ϕ d(π1)∗σn −
∫

ϕ d(π2)∗σn
∣∣∣

=
∣∣∣
∫

ϕ(x) − ϕ(y) dσn(x, y)
∣∣∣ ≤ Lip(ϕ)

∫
d(x, y) dσn(x, y).
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Thus recalling, from (2.20), that for m-a.e. x we have

d
(
FlZ

1

t− 2in
2n

(x), x

)
≤ 2‖Z1‖L∞

∣
∣t − 2in

2n
∣
∣ ≤ 22−n‖Z1‖L∞ ,

d
(
FlZn

t− 2in
2n

(x), x

)
≤ 2max{‖Z1‖L∞ , ‖Zn‖L∞}∣∣t − 2in

2n
∣
∣ ≤ 22−n max{‖Z1‖L∞ , ‖Zn‖L∞},

(3.9)

the conclusion follows from
∫

d(x, y) dσn(x, y) =
∫

d
(
FlZ1

t− 2i
2n

(x), FlZn

t− 2i
2n

(x)

)
dμn(x)

≤
∫

d
(
FlZ1

t− 2in
2n

(x), x

)
dμn(x) +

∫
d

(
x, FlZn

t− 2in
2n

(x)

)
dμn(x)

by (3.9) ≤ 23−n max{‖Z1‖L∞ , ‖Z2‖L∞}. (3.10)

��

3.2 The Euclidean case

The arguments used in the previous section can also be used in the Euclidean context to
extend known stability results for vector fields converging weakly in time and strongly in
space, to the BV case. Compare with [2, Remark 5.11].

The following is a rather trivial observation:

Lemma 3.7 Let (ρt , vt ) be a solution of the continuity equation on R
d with (ρt ) ∈

L∞([0, 1], L∞(Rd)), (|vt |) ∈ L1([0, 1], L∞(Rd)) and f ∈ BV (Rd).
Then t �→ ∫

f ρt dLd is absolutely continuous and for its derivative it holds
∣∣∣
d

dt

∫
f ρt dLd

∣∣∣ ≤ ‖Df ‖TV‖ρt‖L∞‖vt‖L∞ a.e. t .

Proof For f ∈ C∞
c (Rd) the claim is a direct consequence of the distributional formulation

of the continuity equation, which ensures that

d

dt

∫
f ρt dLd =

∫
d f (vt )ρt dLd a.e. t .

Then the conclusion follows recalling that ‖Df ‖TV = ‖|d f |‖L1 . The general case follows
from a standard approximation procedure; we omit the details. ��

With this last lemma and adapting the arguments used for Theorem 3.4 we deduce the
following result:

Theorem 3.8 Assume that (Zn) ⊂ L1([0, 1], L1(Rd ,Rd ;Ld)) converges weakly in time and
strongly in space to Z∞. Assume also that

∫ 1

0
sup

n∈N∪{∞}
‖|Zn,t |‖L∞ + ‖DZn,t‖TV dt + sup

n∈N∪{∞}

∫ 1

0
‖(divZn,t )

−‖L∞ dt < ∞. (3.11)

Then the Regular Lagrangian Flows (FlZn ) converge locally in measure to the Regular
Lagrangian Flow FlZ∞ and, for every t ∈ [0, 1], the maps (FlZn

t ) converge locally in measure
to FlZ∞

t .
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Proof The argument is verbatim the same used in the proof of Theorem3.4,with the following
differences: the function f is taken in C∞

c (Rd), so that the assumption (3.11) yields that
d f (Zn,t ) ∈ BV (Rd) and taking into account Lemma 3.7 above we obtain the estimate

|In(t, s) − In(t, t)| =
∣
∣
∣
∫ s

t

d

dr

∫
d f (Zn,t )ρn,r dLd dr

∣
∣
∣

≤ ‖D(d f (Zn,t ))‖TV
∫ s

t
‖ρn,r‖L∞‖Zn,r‖L∞ dr .

Using this estimate in place of (3.7), the conclusion is obtained arguing as in Theorem 3.4.
��

4 Directional Energy

4.1 Basic considerations about the space Lp(X, Yȳ)

In this short section we collect some basic simple properties of the space L p(X,Yȳ). Let
us fix a complete and separable metric space (X,d) equipped with a non-negative Radon
measurem giving finitemass to bounded sets and a pointed complete space (Y,dY, ȳ) (which
often, but not always, will be separable).

The behaviour of AC p curves with values in L p(X,Yȳ) is described in the following
lemma (compare with Lemma 2.14):

Lemma 4.1 Let (x, t) �→ ft (x) ∈ Y be a given Borel map in L p(X × [0, 1],Yȳ) and
p ∈ (1,∞). Then the following are equivalent:

(i) The curve [0, 1] � t �→ ft ∈ L p(X,Y) belongs to W 1,p([0, 1], L p(X,Yȳ)) (resp.
AC p([0, 1], L p(X,Yȳ))).

(ii) There is a function G ∈ L p(X × [0, 1]), G ≥ 0, such that for a.e. (resp. every)
t, s ∈ [0, 1], t < s it holds

dY( fs, ft ) ≤
∫ s

t
Gr dr m − a.e.. (4.1)

(iii) For m-a.e. x ∈ X we have f·(x) ∈ W 1,p([0, 1],Y) and the function (t, x) �→
|∂t ft (x)| =: Ht (x) belongs to L p(X × [0, 1]) (resp. and moreover ( ft ) ∈ C([0, 1],
L p(X,Yȳ))).

Moreover, if these holds H is the least function G ≥ 0 in the m × L1-a.e. sense, for which
(4.1) holds and

dY( ft+h(x), ft (x))

|h| → Ht (x) in L p(X × [0, 1]) as h → 0, (4.2)

where the incremental ratios are defined to be 0 if t + h /∈ [0, 1].
Proof We shall deal with the absolutely continuous case, as the Sobolev one can be obtained
through very similar arguments taking also into account Theorem 2.11. Moreover, since
( ft ) ∈ L p(X × [0, 1],Yȳ), by definition there is a separable subset of Y containing, up to
negligible sets, the image of ( ft ); thus up to replacing Y with the closure of such separable
subset we can assume that Y is separable. Hence, without loss of generality we may assume
that L p(X,Yȳ) is separable.
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(i) ⇒ (ii) Let ( fn) ⊂ L p(X,Yȳ) be countable and dense, put Fn,t := dY( ft , fn) ∈ L p(X)

and notice that the triangle inequality in Y gives |Fn,s − Fn,t | ≤ dY( ft , fs) m-a.e.. On the
other hand, the triangle inequality in L p(X) gives ‖Fn,s − Fn,t‖L p(X) ≥ dL p(X,Y)( fs, fn) −
dL p(X,Y)( ft , fn), so that the identity dL p(X,Y)( fs, ft ) = supn dL p(X,Y)( fs, fn) − dL p(X,Y)

( ft , fn) (consequence of the density of the fn’s) forces

dY ( fs, ft ) = sup
n

|Fn,s − Fn,t | m − a.e. ∀t, s ∈ [0, 1]. (4.3)

In particular, for every n ∈ N we have (Fn,t ) ∈ AC p([0, 1], L p(X)) so that by the Radon-
Nikodym property of L p we obtain that Gn,t := ∂t Fn,t is a well defined function in L p(X)

for a.e. t ∈ [0, 1].
Now observe that the assumption ( ft ) ∈ AC p([0, 1], L p(X,Yȳ)) ensures (by arguing as

in (2.13)) that given a sequence hi ↓ 0 the incremental ratios
dY( ft+hi , ft )(x)

hi
are bounded in

L p(X×[0, 1]) as hi → 0, hence up to subsequences they must converge to a limit G̃ weakly
in L p(X × [0, 1]). Thus (4.3) forces |Gn,t |(x) ≤ G̃t (x) for m × L1-a.e. (x, t) and in turn
this grants that G := supn |Gn | belongs to L p(X × [0, 1]). The conclusion follows noticing
that for any t, s ∈ [0, 1], t < s it holds

dY ( fs, ft ) = sup
n

|Fn,s − Fn,t | ≤ sup
n

∫ s

t
|Gn,r | dr ≤

∫ s

t
Gr dr , m − a.e.,

as desired.
(ii) ⇒ (i) Directly from (4.1) we obtain

dL p(X,Y)( fs, ft ) = ‖dY( fs, ft )‖L p(X) ≤
∥∥∥

∫ s

t
Gr dr

∥∥∥
L p(X)

≤
∫ s

t
‖Gr‖L p(X) dr

for any t, s ∈ [0, 1], t < s, and since the identity
∫ 1
0 ‖Gt‖p

L p(X) dt = ∫∫ 1
0 |Gt |p dt dm < ∞

shows that (‖Gt‖L p ) ∈ L p(0, 1), this is sufficient to conclude.
(ii) ⇒ (iii) Continuity is obvious from the implication (i i) ⇒ (i) already proved. For any
1-Lipschitz function ϕ : Y → R the function ϕ ◦ f satisfies (i) of Lemma 2.14 with
g := G and thus Lemma 2.14 ensures that for m-a.e. x ∈ X the function t �→ ϕ ◦ ft (x)
belongs to W 1,p([0, 1]) and its distributional derivative is bounded above by Gt (x). Letting
ϕ running over the countable set given by Lemma 2.13 we conclude that t �→ ft (x) belongs
to W 1,p([0, 1],Y) with distributional derivative bounded above by Gt (x) for m-a.e. x .
(iii) ⇒ (ii) It is trivial to notice that for any 1-Lipschitz function ϕ : Y → R the function
ϕ ◦ f belongs to W 1,p((0, 1)) and ∂t (ϕ( ft (x))) =: hϕ

t (x) ≤ Ht (x). Thus Lemma 2.14
ensures that for every t, s and m-a.e. x ∈ X it holds

|ϕ( fs(x)) − ϕ( ft (x))| ≤
∫ s

t
Hr (x) dr

hence taking the supremum as ϕ varies over the countable family given by Lemma 2.13 we
conclude.
Final statements The fact that H is the minimal G for which (4.1) holds follows directly
from the proof given. For what concerns (4.2), notice that (4.1) and the choice G := H give

dY( ft+h(x), ft (x))

|h| ≤ 1

|h|
∫ t+h

t
Hr (x) dr → Ht (x) in L p(X × [0, 1]) as h → 0,

where the claimed convergence is an easy consequence of the definition of Bochner integral.
Hence limh→0 ‖dY( f·+h (·), f·(·))

|h| ‖L p ≤ ‖H‖L p . Now let H̃ ∈ L p be any L p-weak limit of
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dY( f·+h(·), f·(·))
|h| along some sequence hn → 0, so that ‖H̃‖L p ≤ ‖H‖L p , and notice that to

conclude it is sufficient to prove that H̃ = H . For any ϕ : Y → R 1-Lipschitz, the function
ϕ ◦ f satisfies (2.16) with g := H , hence putting hϕ(x) := ∂t (ϕ( ft (x))) as before, from the
trivial bound

dY( ft+h(x), ft (x))

|h| ≥ |ϕ( ft+h(x)) − ϕ( ft (x))|
|h|

we deduce H̃ ≥ hϕ . Hence letting ϕ run in the countable set given by Lemma 2.13 we
deduce that H̃ ≥ H and then the conclusion. ��

We now want to prove a continuity result for L p functions valued in Y and to this aim it
is convenient to first analyze the case Y := �∞.

Lemma 4.2 For every p ∈ [1,∞), the space Cb(X, �∞) is dense in L p(X, �∞).

Proof Let E ⊂ XBorel, f ∈ �∞ and (gn) ⊂ Cb(X,R) be converging toχE in the L p(X,R)-
topology. Then (gn f ) ⊂ Cb(X, �∞) converges to χE f in the topology of L p(X, �∞). Since
linear combinations of functions of the form χE f with E, f as above are dense in L p(X, �∞)

(recall (2.6)), the proof is completed. ��
Proposition 4.3 Let p ∈ [1,∞), Z a time dependent regular vector field on X and u ∈
L p(X,Yȳ). Then the map R � t �→ u ◦ FlZt ∈ L p(X,Yȳ) is continuous.

Proof Up to a left composition with a (Kuratowski) isometric embedding of Y in �∞ we can
assume that Y = �∞. Then observe that the trivial bound
∫

dp
Y(u ◦ FlZt , v ◦ FlZt ) dm ≤

∫
dp
Y(u, v) d(FlZt )∗m ≤ e

∫ t
0 ‖(divZt )

−‖L∞ dt
∫

dp
Y(u, v) dm

shows that the right composition with FlZt is a Lipschitz map from L p(X, �∞) to L p(X, �∞),
thus to conclude it is sufficient to prove that there is a dense subset of L p(X, �∞) made
of functions u such that t �→ u ◦ FlZt ∈ L p(X, �∞) is continuous. An application of the
dominated convergence theorem shows that this is the case for u ∈ Cb(X, �∞), thus the
conclusion follows from Lemma 4.2. ��

4.2 The Korevaar–Schoen space KSpZ(Ä, Yȳ)

Let us fix some regular vector field Z not depending on time on the RCD(K ,∞) space
(X,d,m) and denote by FlZ the unique regular Lagrangian flow associated to Z . Also, let
(Y,dY, ȳ) be a pointed complete space.

Let p ∈ (1,∞), u ∈ L p(X,Yȳ), � ⊂ X open and ε > 0 we set

eZp,ε[u,�](x) :=
⎧
⎨

⎩

dp
Y

(
u(x), u(FlZε (x))

)

ε p
, if x, FlZε (x) ∈ �;

0, otherwise.

For every ϕ ∈ Cb(X) we set

EZ
p,ε[u,�](ϕ) :=

∫
ϕ(x)eZp,ε[u,�](x) dm(x).
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Definition 4.4 We say that a Borel map u : X → Y belongs to Korevaar–Schoen space
KSpZ (�,Yȳ) if u ∈ L p(X,Yȳ) and

EZ
p [u,�] := sup lim

ε→0
EZ
p,ε[u,�](ϕ) < +∞. (4.4)

and the sup is taken among all ϕ ∈ Cb(X) with 0 ≤ ϕ ≤ 1 and d(supp(ϕ),�c) > 0 (if
� = X we interpret this last condition as automatically satisfied).

The quantity EZ
p [u,�] will be called energy of a map u in the direction Z on �.

Theorem 4.5 Let (X,d,m) be a RCD(K ,∞) space, (Y,dY, ȳ) a pointed complete space,
p ∈ (1,∞), Z a regular vector field on X, � ⊂ X open and u ∈ L p(�,Yȳ).

For x ∈ � we put Tx := 1
‖Z‖L∞d(x,�c)

(if � = X we put Tx := +∞) and for C ⊂ �

closed put
TC := inf

x∈C Tx . (4.5)

Then the following are equivalent:

i) It holds u ∈ KSpZ (�,Yȳ).
ii) For every closed set C ⊂ � with TC > 0 the curve [0, 1 ∧ TC ) � t �→ u ◦ FlZt ∈

L p(C,Yȳ) is Lipschitz with Lipschitz constant independent on C.
iii) There exists G ∈ L p(�) such that the following holds. For every closed set C ⊂ � with

TC > 0 we have

dY(u ◦ FlZs , u ◦ FlZt ) ≤
∫ s

t
G ◦ FlZr dr m − a.e. on C ∀t, s ∈ [0, TC ), t ≤ s, (4.6)

(and in particular the map t �→ u ◦ FlZt belongs to AC p
loc([0, TC ), L p(C,Yȳ))).

iv) For m-a.e. x ∈ � the map t �→ u(FlZt (x)) belongs to W 1,p([0, Tx ],Y) and for some
H ∈ L p(�) the distributional derivative |∂t u(FlZt (x))| satisfies the identity

|∂t u(FlZt (x))| = H(FlZt (x)) a.e. t ∈ [0, Tx ]. (4.7)

Moreover if these hold the functions (eZp,ε[u,�])1/p converge to nonnegative H in L p(�)

as ε ↓ 0, we have

E Z
p [u,�] =

∫

�

|H |p dm, (4.8)

and the choice G := H is admissible in (4.6) and provides the least, in the m-a.e. sense,
function G ≥ 0 for which (4.6) holds.

Proof

(iv) ⇒ (iii) By Proposition 4.3 we know that t �→ u ◦ FlZt ∈ L p(C,Yȳ) is continuous. Then
the conclusion follows from Lemma 4.1.
(iii) ⇒ (ii) The bound

∫

C

dp
Y(u ◦ FlZs , u ◦ FlZt )

|s − t |p dm
(4.6)≤ 1

|s − t |
∫

C

∫ s

t
G p ◦ FlZr dr dm

= 1

|s − t |
∫ s

t

∫
Gp d(FlZr )∗(m|C )dr

(2.21)≤ e|s−t |‖(divZ)−‖L∞
∫

�

Gp dm
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yields that the Lipschitz constant of [0, 1 ∧ TC ) � t �→ u ◦ FlZt ∈ L p(C,Yȳ) is bounded

from above by e
1
p ‖(divZ)−‖L∞ ‖G‖L p(�) and in particular is independent on C , as desired.

(ii) ⇒ (i)Let L be the uniform Lipschitz constant of [0, 1∧TC ) � t �→ u◦FlZt ∈ L p(C,Yȳ).
Now pick ϕ ∈ Cb(X) with 0 ≤ ϕ ≤ 1 and d(supp(ϕ),�c) > 0, put C := supp(ϕ) and
simply notice that

∫
ϕ eZp,ε[u,�] dm ≤

∫

C

dp
Y(u ◦ FlZε , u)

ε p
dm ≤ L p,

so that the claim follows letting ε ↓ 0.
(i) ⇒ (iv) Let α > β > 0 be two parameters and consider the closed set Cα ⊂ � defined as
Cα := {x ∈ � : d(x,�c)} ≥ α‖Z‖L∞} (if � = X we pick Cα = X as well—if Z = 0 the
set Cα might be not closed but in this case the claim is trivial). We start claiming that

e−α‖(divZ)−‖L∞

α − β

∫

Cα

∫ α−β

0
dp
Y(u ◦ FlZt , ȳ) dt dm ≤

∫

�

dp
Y(u, ȳ) dm ∀ȳ ∈ Y,

e−α‖(divZ)−‖L∞

α − β

∫

Cα

Ep,[0,α−β](u ◦ FlZ· ) dm ≤ EZ
p [u,�]. (4.9)

To check the first, notice that
∫

Cα

∫ α−β

0
dp
Y(u ◦ FlZt , ȳ) dt dm =

∫ α−β

0

∫
dp
Y(u, ȳ) d(FlZt )∗(m|Cα ) dt

≤ (α − β)eα‖(divZ)−‖L∞
∫

�

dp
Y(u, ȳ) dm.

For the second, start observing that Corollary 2.10 and the monotone convergence theorem
gives

∫

Cα

Ep,[0,α−β](u ◦ FlZ· ) dm = lim
ε↓0

∫

Cα

∫ α−β−ε

0

dp
Y(u ◦ FlZt+ε, u ◦ FlZt )

ε p
dt dm

= lim
ε↓0

∫ α−β−ε

0

∫
dp
Y(u ◦ FlZε , u)

ε p
d(FlZt )∗(m|Cα ) dt

≤ (α − β)eα‖(divZ)−‖L∞ lim
ε↓0

∫

Cα−β

dp
Y(u ◦ FlZε , u)

ε p
dm.

Now let ϕ ∈ Cb(X) be with supp(ϕ) ⊂ � and ϕ ≡ 1 on Cα−β and notice that

lim
ε↓0

∫

Cα−β

dp
Y(u ◦ FlZε , u)

ε p
dm ≤ lim

ε↓0

∫

�

ϕ
dp
Y(u ◦ FlZε , u)

ε p
dm ≤ EZ

p [u,�],

thus our claim (4.9) is proved. It follows that

form−a.e. x ∈ Cα thecurve [0, α−β] � t �→ u(FlZt (x)) ∈ YbelongstoW 1,p([0, α−β],Y).

(4.10)
Denote its distributional derivative by t �→ Fα,β,t (x) and notice that by the last part of
Theorem 2.11 them×L1-a.e. defined function Fα,β : [0, α − β]×Cα → R is Borel and by
the second in (4.9) belongs to L p([0, α − β] × Cα).

From the trivial identitydY(u◦FlZs+h, u◦FlZs ) = dY(u◦FlZt+h, u◦FlZt )◦FlZs−t it follows that
Fα,β,s = Fα,β,t ◦FlZs−t m-a.e. for a.e. s, t , s ≥ t . Thus lettingμα,β := FlZ∗ (L1|[0,α−β]×m|Cα )
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we see that there is a μα,β -a.e. uniquely defined Borel function F̄α,β : � → R such that for
a.e. t ∈ [0, α − β] it holds

Fα,β,t (x) = F̄α,β(FlZt (x)) L1|[0,α−β] × m|Cα − a.e. (t, x).

Notice that sinceL1|[0,α−β]∩[0,α′−β ′] ×m|Cα∩Cα′ -a.e. it holds Fα,β,·(·) = Fα′,β ′,·(·) , we have
that

FlZ∗ (L1|[0,α−β]∩[0,α′−β ′] × m|Cα∩Cα′ ) − a.e. it holds F̄α,β = F̄α′,β ′ . (4.11)

Now observe that

For E ⊂ � Borel we have m(E) = 0 if and only if μα,β(E) = 0, (4.12)

for every α > β > 0.
The ’easy’ implication that m(E) = 0 implies μα,β(E) = 0 for every α, β obviously

follows from definitions. To prove the converse implication we proceed as follows. Let ρt
be the density of (Ft )∗m w.r.t. m, so that the functions ρt are uniformly bounded in L∞ for
t ∈ [0, 1]. The measures (Ft )∗m converge to m weakly in duality with continuous functions
with bounded support on X as t ↓ 0 (by the dominated convergence theorem and because
the flow is concentrated on continuous curves). This weak convergence plus the uniform L∞
bound imply that ρt converge to 1 in the weak∗ topology of L∞. Therefore for any E of finite
measure we have

m(E) =
∫

χE dm = lim
t↓0

∫
χEρt dm = lim

t↓0

∫
χE d(Ft )∗m = lim

t↓0 (Ft )∗m(E).

This proves that if m(E) > 0, then for t sufficiently small it holds (Ft )∗m(E) > 0 as well.
Then the conclusion follows from the definition of μα,β .

Thus from (4.11) it follows that there exists and is m|�-a.e. uniquely determined a Borel
function H such that

H = F̄α,β μα,β − a.e. ∀α > β > 0.

We claim that such H has the required properties. We start by proving that H ∈ L p(�) and
to this aim we start noticing that

lim
α↓0

1

α

∫ α

0

∫

Cα

f ◦ FlZt dm dt =
∫

�

f dm ∀ f : � → R
+Borel. (4.13)

This can be easily proved for f bounded and Lipschitz, then the case of f ∈ L1(�) follows
by a density argument based on the bound (FlZt )∗m ≤ et‖divZ‖L∞m and finally the case of
non-negative f ’s comes by monotone approximation.

Now notice that by construction (and (2.12)) it holds
∫
Cα

Ep,[0,α−β](u ◦ FlZ· ) dm =
∫
Cα

∫ α−β

0 |H |p ◦ FlZt dt dm, hence from the second in (4.9) we obtain
∫

�

|H |p dm (4.13)= lim
α↓0

1

α

∫ α

0

∫

Cα

|H |p ◦ FlZt dm dt

= lim
α↓0 limβ↓0

1

α − β

∫

Cα

∫ α−β

0
|H |p ◦ FlZt dt dm

= lim
α↓0 limβ↓0

1

α − β

∫

Cα

Ep,[0,α−β](u ◦ FlZ· ) dm ≤ EZ
p [u,�] (4.14)

Now we prove (4.7). Letting β ↓ 0 in (4.10) we see that for every α > 0 it holds: m-a.e.
x ∈ Cα the curve t �→ u(FlZt (x)) belongs to W 1,p([0, α],Y) (e.g. by recalling the relation
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between Sobolev and AC curves stated in Theorem 2.11) and, by definition, its distributional
derivative is given by H ◦ FlZt . Thus for m-a.e. x ∈ � we have that: for every α ∈ Q with
α < Tx the curve t �→ u(FlZt (x)) belongs toW 1,p([0, α],Y) and its distributional derivative
is given by H ◦ FlZt . Arguing as before by calling into play Theorem 2.11 we conclude that
for m-a.e. x the curve t �→ u(FlZt (x)) belongs to W 1,p([0, Tx ],Y) and its distributional
derivative is given by H ◦ FlZt , as desired.

Last statements The fact that the choice G := H is the least for which (4.6) holds is a direct
consequence of the analogous statement in Lemma 4.1. Inequality ≥ in (4.8) is proved in
(4.14) while the opposite comes with the proofs (i i i) ⇒ (i i) and (i i) ⇒ (i).

It remains to prove L p(�)-convergence of (eZp,ε[u,�])1/p to H . Extend H to the whole
X by putting it 0 outside � and notice that what we already proved gives

(eZp,ε[u,�])1/p ≤ 1

ε

∫ ε

0
H ◦ FlZt dt → H in L p(�), (4.15)

where the claimed convergence can be proved along the same lines used to show (4.13). Now
notice that for α > β > 0, Lemma 4.1 applied to X := Cα and ft := u ◦ FlZt in the interval
[0, α − β] ensures that (eZp,ε[u,�])1/p ◦ FlZ → H ◦ FlZ in L p(C × [0, α − β]). This is the
same as to say that (eZp,ε[u,�])1/p → H in L p(μα,β) and in particular any L p(�)-weak

limit of (eZp,ε[u,�])1/p must coincide with H μα,β -a.e.. Thus by (4.12) we deduce that

(eZp,ε[u,�])1/p⇀H in L p(�), which together with (4.15) gives the conclusion. ��
Theorem 4.5 and its proof suggest the following definition:

Definition 4.6 (The quantity |du(Z)|) Let p ∈ (1,∞), Z a regular vector field on X, � ⊂ X
open and u ∈ KSpZ (�,Yȳ). We shall denote by |du(Z)| ∈ L p(�) the function H given by
point (iv) of Theorem 4.5 and appearing in (4.7).

In the smooth category, the quantity |du(Z)| is the norm of the differential of u applied
to Z , whence the notation chosen. Notice that for the moment we only defined |du(Z)|, not
the underlying object du(Z), so the notation chosen is purely formal. We will define du(Z)

in Sect. 4.4.
We conclude this section with the following kind of regularity result which will be useful

in what comes next.

Proposition 4.7 Let p ∈ (1,∞), Z a regular vector field on X, � ⊂ X open and u ∈
KSpZ (�,Yȳ). Then for every C ⊂ � closed for which TC > 0 (recall the definition (4.5)) and
f ∈ Lipbs(Y), the map [0, TC ) � t �→ f ◦ u ◦ FlZt ∈ L p(C) is C1 and for its derivative we
have for every t ∈ [0, TC )

∣∣∣
d

dt
f ◦ u ◦ FlZt

∣∣∣ ≤ (
lip( f ) ◦ u |du(Z)|) ◦ FlZt m − a.e. on C . (4.16)

Proof For any t, s ∈ [0, TC ) we have

| f ◦ u ◦ FlZs − f ◦ u ◦ FlZt | ≤ Lip( f )dY(u ◦ FlZs , u ◦ FlZt ) m − a.e. on C

and thus (4.6) yields that t �→ f ◦ u ◦ FlZt ∈ L p(C) is Lipschitz. Since L p(C) has the
Radon–Nikodym property, we deduce that such curve is differentiable for a.e. t . Then from

the identity
f ◦u◦FlZs+h− f ◦u◦FlZs

h = f ◦u◦FlZt+h− f ◦u◦FlZt
h ◦ FlZs−t we deduce that

( f ◦ u ◦ FlZ· )′s = ( f ◦ u ◦ FlZ· )′t ◦ FlZs−t
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for every differentiability points s > t . Since Proposition 4.3 grants continuity in s with
values in L p(C) of the right hand side, C1 regularity follows. Then the bound (4.16) follows
from the definition of |du(Z)|, Corollary 2.12 and Lemma 2.14. ��

4.3 Triangle inequality

Aim of this section is to prove that under suitable natural assumptions it holds the following
sort of triangle inequality:

|du(α1Z1 + α2Z2)| ≤ |α1| |du(Z1)| + |α2| |du(Z2)|.
The study of the above will be divided in two parts: a first (easy) one where we study the
effect of multiplication of vector fields by constants and a second (more delicate) where we
study sums of vector fields.

We start with the following simple lemma:

Lemma 4.8 Let (X,d,m) be a RCD(K ,∞) space and Z a regular vector field. Then for every
α, t ≥ 0 we have FlαZt = FlZαt m-a.e.. If −Z is also a regular vector field (i.e. if divZ ∈ L∞),
the same conclusion holds for any α ∈ R.

Proof Start noticing that αZ is also a regular vector field, so that the statement makes sense.
To conclude, according to Theorem 2.18 it is sufficient to show that if t �→ ρt solves the
continuity equation for vt ≡ Z , then t �→ ραt solves the continuity equation for vt ≡ αZ .
But this is obvious, whence the conclusion follows. ��

As a direct consequence of the above we obtain:

Proposition 4.9 (Multiplication of the vector field by a constant) Let K ∈ R, (X,d,m) be
RCD(K ,∞) space,� ⊂ X open and Z a regular vector field on it. Let (Y,dY) be a complete
metric space and u ∈ KSpZ (�,Yȳ).

Then for every α ≥ 0 we also have u ∈ KSpαZ (�,Yȳ) and |du(αZ)| = |α||du(Z)|. If −Z
is also a regular vector field, the same conclusion holds for any α ∈ R.

Proof It is clear that if t �→ γt is absolutely continuous then so is t �→ γαt and with metric
speed which changes by a factor |α|. Then by Theorem 2.11 the same holds for Sobolev
curves and distributional derivatives. Then conclusion easily follows from Theorem 4.5. ��

We now turn to the study of the effect of the sum of vector fields on Regular Lagrangian
Flows and start with a simple result about stability of convergence in measure under left
composition:

Lemma 4.10 Let Tn : X → X, n ∈ N ∪ {∞} be Borel and such that Tn → T∞ locally
in measure as n → ∞. Assume also that the measures (Tn)∗m are locally equi-absolutely
continuous w.r.t. m, i.e. that: for every ε > 0 and B ⊂ X bounded there is δ > 0 such that
for every E ⊂ B Borel with m(E) < δ we have (Tn)∗m(E) ≤ ε for every n ∈ N.

Then for every complete metric space Y and every Borel map u : X → Y which is
essentially separably valued we have that (u ◦ Tn) converges locally in measure to u ◦ T∞.

Proof Replacing Ywith a closed separable subset containing, up to negligible sets, the image
of u we can assume that Y is separable. Then up to a (Kuratowski) isometric embedding of
Y in �∞ we can replace the former with the latter. Then Lemma 4.2 and a simple cut-off
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argument shows that Cb(X, �∞) is dense in the space of essentially separably valued Borel
maps from X to �∞ w.r.t. to local convergence in measure.

Now let m′ ∈ P(X) be such that m � m′ � m and notice that the assumption on
equi-absolute continuity of (Tn)∗m implies

∀ε>0 ∃δ > 0 s.t. ∀E ⊂ XBoreltheboundm′(E) ≤ δ implies (Tn)∗m′(E) ≤ ε ∀n ∈ N∪{∞}
(4.17)

and recall that the distance d0(u, v) := ∫
1 ∧ d�∞(u, v) dm′ metrizes the local convergence

in measure.
Then for u : X → �∞ Borel and essentially separably valued and ε > 0 let first δ be

given by (4.17) and then v ∈ Cb(X, �∞) be such that for E := {d�∞(u, v) > ε} it holds
m′(E) < δ. We have

d0(u◦T∞, u◦Tn) ≤ d0(u◦T∞, v◦T∞)+d0(v◦T , v◦Tn)+d0(u◦Tn, v◦Tn) ∀n ∈ N (4.18)

and for every n ∈ N ∪ {∞} it holds

d0(u ◦ Tn, v ◦ Tn)=
∫

E
1 ∧ d�∞(u, v) d(Tn)∗m′+

∫

X\E
1 ∧ d�∞(u, v) d(Tn)∗m′ (4.17)≤ ε + ε.

Since the continuity of v and the dominated convergence theoremgive thatd0(v◦T , v◦Tn) →
0 as n → ∞, from (4.18) we obtain

lim
n→∞d0(u ◦ T∞, u ◦ Tn) ≤ 4ε

and by the arbitrariness of ε > 0 we conclude. ��
The core of the matter for what concerns the triangle inequality is the following lemma:

here we make crucial use of the stability results for Regular Lagrangian Flows that we
obtained in Sect. 3.1.

Lemma 4.11 Let K ∈ R, (X,d,m) be RCD(K ,∞) space, � ⊂ X open and Z1, Z2 two
regular vector fields on it. Let (Y,dY, ȳ) be a pointed complete space and u ∈ KSpZ1

(�,Yȳ)∩
KSpZ2

(�,Yȳ). For C ⊂ � closed put TC := 1
2 min{T 1

C , T 2
C }, where T j

C , j = 1, 2 is defined
as in (4.5) for the vector field Z j , j = 1, 2 and the set C.

Then for every f ∈ Lipbs(Y)wehave that themap [0, TC ) � t �→ f ◦u◦FlZ1+Z2
t ∈ L p(C)

is C1 and for its derivative at time 0 we have

d

dt

(
f ◦ u ◦ FlZ1+Z2

t
)|t=0 = d

dt

(
f ◦ u ◦ FlZ1

t
)|t=0 + d

dt

(
f ◦ u ◦ FlZ2

t
)|t=0 . (4.19)

Proof Let ρ0 be a bounded probability density with support in C and T > 0. Define Zn

as in Proposition 3.5 and let (Fl+t ), (Flnt ), (Fl
1
t ), (Fl

2
t ) be the Regular Lagrangian Flows of

Z1 + Z2, Zn, Z1, Z2 respectively and (ρ+
t ), (ρn

t ), (ρ1
t ), (ρ

2
t ) the corresponding solutions of

the continuity equation starting from ρ0.
We know from (2.21) and our assumptions that these Regular flows have locally uniformly

bounded compression in t ∈ [0, TC ), thus from the stability result Theorem 3.4 (coupled with
Proposition 3.5) and Lemma 4.10 above we deduce that ( f ◦ u ◦ Flnt ) converges in measure
to ( f ◦ u ◦ Fl+t ) as n → ∞ for any t > 0. Since these functions are uniformly bounded
(because f is bounded) and ρ0 has bounded support, we deduce that
∫ (

f ◦u◦Fl+t1 − f ◦u◦Fl+t0
)
ρ0 dm = lim

n→∞

∫ (
f ◦u◦Flnt1 − f ◦u◦Flnt0

)
ρ0 dm ∀t1 ≥ t0 ≥ 0.

(4.20)
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Fix t1 ≥ t0 ≥ 0 and for n ∈ N let I1(n), I0(n) ∈ N be such that t j ∈ [ 2I j (n)

2n ,
2I j (n)+2

2n ),
j = 0, 1, and use the very definition of Flnt and the regularity property stated in Proposition 4.7
to write

∫ (
f ◦ u ◦ Flnt1 − f ◦ u ◦ Flnt0

)
ρ0 dm

=
∫∫ t1

2I1(n)

2n

d

dt

(
f ◦ u ◦ Flnt

)
ρ0 dt dm −

∫∫ t0

2I0(n)

2n

d

dt

(
f ◦ u ◦ Flnt

)
ρ0 dt dm

+
I1(n)−1∑

i=I0(n)

∫∫ 2i+1
2n

2i
2n

d

dt

(
f ◦ u ◦ Fl2Z1

t− 2i
2n

◦ Fln2i
2n

)
ρ0 dt dm

+
∫∫ 2i+2

2n

2i+1
2n

d

dt

(
f ◦ u ◦ Fl2Z2

t− 2i+1
2n

◦ Fln2i+1
2n

)
ρ0 dt dm. (4.21)

We shall study the underlined term in the above. It is easy to verify that the uniqueness of
Regular Lagrangian Flows yields Fl2Z1

t = FlZ1
2t for every t ≥ 0, hence recalling the definition

of ρ1
n,t given in Proposition 3.6 we have

∫∫ 2i+1
2n

2i
2n

d

dt

(
f ◦ u ◦ Fl2Z1

t− 2i
2n

◦ Fln2i
2n

)
ρ0 dt dm

=
∫∫ 2i+1

2n

2i
2n

d

dt

(
f ◦ u ◦ FlZ1

2(t− 2i
2n )

◦ Fln2i
2n

)
ρ0 dt dm

= 2
∫∫ 2i+1

2n

2i
2n

d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0 ◦ FlZ1

2(t− 2i
2n )

◦ Fln2i
2n

ρ0 dt dm

=
∫∫ 2(i+1)

2n

2i
2n

d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0ρ
1
n,t dt dm.

The convergence properties stated in Proposition 3.6 ensure that
∫

d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0ρ
1
n,t dm →

∫
d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0ρ
+
t dm ∀t ∈ [0, TC ).

Handling analogously the other two terms in the right-hand-side of (4.21) and recalling
(4.20), by the dominated convergence theorem (recall that the densities ρn

t are uniformly
bounded) we obtain

∫ (
f ◦ u ◦ Fl+t1 − f ◦ u ◦ Fl+t0

)
ρ0 dm

=
∫∫ t1

t0

( d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0 + d

ds

(
f ◦ u ◦ FlZ2

s

)|s=0

)
◦ Fl+t ρ0 dt dm.

Then the arbitrariness of ρ0 forces

f ◦ u ◦ Fl+t1 − f ◦ u ◦ Fl+t0 =
∫ t1

t0

( d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0 + d

ds

(
f ◦ u ◦ FlZ2

s

)|s=0

)
◦ Fl+t dt,

which (recalling the bound (4.16)) shows that t �→ f ◦u ◦Fl+t ∈ L p(C) is Lipschitz. We then
conclude as for Proposition 4.7: since L p(C) has the Radon–Nikodym property we deduce
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that the formula

d

dt
f ◦ u ◦ Fl+t =

( d

ds

(
f ◦ u ◦ FlZ1

s

)|s=0 + d

ds

(
f ◦ u ◦ FlZ2

s

)|s=0

)
◦ Fl+t

holds for a.e. t ∈ [0, TC ), thenweuse the semigroup property of (Fl+t ), we recall the continuity
property stated in Proposition 4.3 to obtain the desiredC1 regularity and the validity of (4.19).

��
The main result of this section is now easily obtainable:

Proposition 4.12 Let K ∈ R, (X,d,m) be RCD(K ,∞) space, � ⊂ X open and Z1, Z2 two
regular vector fields on it. Let (Y,dY, ȳ) be a pointed complete space and u ∈ KSpZ1

(�,Yȳ)∩
KSpZ2

(�,Yȳ).

Then u ∈ KSpZ1+Z2
(�,Yȳ) and

|du(Z1 + Z2)| ≤ |du(Z1)| + |du(Z2)| m − a.e.. (4.22)

Proof By Lemma 4.11 and inequality (4.16) we know that for any C ⊂ � closed, f ∈
Lipbs(Y) and t, s ∈ [0, TC ), t < s it holds

| f ◦ u ◦ FlZ1+Z2
s − f ◦ u ◦ FlZ1+Z2

t |
≤ Lip( f )

∫ s

t

(|du(Z1)| + |du(Z2)|
) ◦ FlZ1+Z2

r dr m − a.e. on C .

Taking the supremum as f runs on the countable set given by Lemma 2.13, by (2.15) we get

dY(u ◦ FlZ1+Z2
s , u ◦ FlZ1+Z2

t ) ≤
∫ s

t

(|du(Z1)| + |du(Z2)|
) ◦ FlZ1+Z2

r dr m − a.e. on C

and since |du(Z1)| + |du(Z2)| ∈ L p(�), according to Theorem 4.5 this is sufficient to
conclude. ��

4.4 The differential du(Z)

In this section we show that ‘behind’ the definition of |du(Z)| there is an actual object
which we can rightfully call ’differential of u in the direction of Z ’ whose norm coincides
a.e. with |du(Z)|. The kind of construction that we use is strongly reminiscent of—and
deeply motivated by—the one proposed in [21]; the difference here is that our function u is
differentiable only in the direction of Z . For this reason we won’t define the differential du
of u, but only its action on Z .

Throughout this section we fix p ∈ (1,∞), a regular vector field Z on the RCD(K ,∞)

space X, an open set � ⊂ X and a map u ∈ KSpZ (�,Yȳ). Moreover, we shall assume
henceforth that Y is separable (this is helpful—albeit not really necessary—because we shall
consider measures on Y and then Sobolev functions on it, whose theory usually assumes
separability).

We then put

μ := u∗(|du(Z)|pm|�)

and notice that μ is a finite Radon measure on Y. We shall consider Sobolev functions on
(Y,dY, μ) and to emphasize the choice of the measure (which can occasionally be different
from μ) we shall denote the corresponding notion of cotangent module and differential by
L0

μ(T ∗Y) and |dμ f |.
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1252 N. Gigli, A. Tyulenev

Notice that if f : Y → R is defined up to μ-a.e. equality, then f ◦ u is defined up to
m-a.e. equality on {|du(Z)| > 0}; hence the function f ◦ u|du(Z)| is defined up to m-a.e.
equality on �. Then the trivial identity

∫

�

∣
∣ f ◦ u|du(Z)|∣∣p dm =

∫
| f |p ◦ u d(|du(Z)|pm|�) =

∫
| f |p dμ

shows that

the map L p(μ) � f �→ f ◦ u|du(Z)| ∈ L p(m|�) is linear and continuous. (4.23)

The relation between Sobolev functions on (Y,dY, μ) and their pullback obtained by right
composition with u is described in the next proposition:

Proposition 4.13 Let p ∈ (1,∞), Z a regular vector field on X, � ⊂ X open, u ∈
KSpZ (�,Yȳ) and μ := u∗(|du(Z)|pm).

For every f ∈ L∞ ∩ W 1,p(Y,dY, μ) there exists g ∈ L0(m|�) which coincides with
f ◦u m-a.e. on {|du(Z)| > 0} and for which the following holds: for any C ⊂ � closed with
TC > 0, the map t �→ (g ◦ FlZt − g) belongs to C1([0, TC ), L p(C)) and for its derivative at
time 0 it holds the bound

∣∣∣
d

dt

(
g ◦ FlZt

)|t=0

∣∣∣ ≤ |dμ f | ◦ u|du(Z)| m − a.e. on C . (4.24)

Moreover, if g̃ ∈ L0(m|�) is another functionwhich coincideswith f ◦um-a.e. on {|du(Z)| >

0} and such that t �→ g ◦ FlZt belongs to C1([0, TC ), L p(C)) and so that

∣∣∣
d

dt

(
g̃ ◦ FlZt

)|t=0

∣∣∣ ≤ h ◦ u|du(Z)| m − a.e. on C for some h ∈ L p(μ), (4.25)

then

d

dt

(
g ◦ FlZt

)|t=0 = d

dt

(
g̃ ◦ FlZt

)|t=0.

Proof Let ( f̃n) ⊂ Lipbs(Y) be an optimal sequence as in (2.1). Observe that since f is
bounded, by truncation we can assume the f̃n’s to be uniformly bounded. Thus the functions
f̃n ◦ u are also uniformly bounded and hence up to pass to a subsequence—not relabeled—
they converge to some limit function g weakly in L p(�). By Mazur’s lemma, there is a
sequence ( fn) of convex combinations of the f̃n’s such that fn ◦ u → g strongly in L p(�)

and it is easy to verify that ( fn) is still optimal for f as in (2.1).
Now notice that from Proposition 4.7 we know that for every t, s ∈ [0, TC ), t < s it holds

| fn ◦ u ◦ FlZs − fn ◦ u ◦ FlZt | ≤
∫ s

t

(
lip( fn) ◦ u|du(Z)|) ◦ FlZr dr m − a.e. on C .

The fact that (FlZt ) has bounded compression and the construction give that the left hand side
in the above converges to |g ◦ FlZs − g ◦ FlZt | in L p(C), while the same fact and (4.23) give
that (lip( fn)◦u|du(Z)|)◦FlZr → (|dμ f | ◦u|du(Z)|)◦FlZr in L p(C) uniformly on r ∈ [t, s].
Thus passing to the limit in the above we obtain

|g ◦ FlZs − g ◦ FlZt | ≤
∫ s

t

(|dμ f | ◦ u |du(Z)|) ◦ FlZr dr m − a.e. on C (4.26)
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which in turn gives local Lipschitz regularity for t �→ g ◦ FlZt ∈ L p(C). Then C1 regularity
follows, as in Proposition 4.7, from the semigroup property of (FlZt ), which implies that

d

dt
(g ◦ FlZt )|t=t1 = d

dt
(g ◦ FlZt )|t=t0 ◦ FlZt1−t0

for any two differentiability points t0, t1 ∈ [0, TC ), and the continuity statement Proposi-
tion 4.3 which grants that the derivative of g ◦ FlZt has a continuous representative. The
bound (4.24) is then a direct consequence of (4.26).

For the second part of the statement, we start noticing that (4.24) and (4.25) grant that
d
dt

(
g ◦ FlZt

)|t=0 = d
dt

(
g̃ ◦ FlZt

)|t=0 = 0 m-a.e. on {|du(Z)| = 0}, so to conclude we need to
prove that these two derivatives coincide on {|du(Z)| > 0}.

By the properties of g, g̃ andLemma2.14we know that form-a.e. x ∈ C themap [0, TC ) �
t �→ g(FlZt (x)) belongs toW 1,p

loc ([0, TC ) and similarly for t �→ g̃(FlZt (x)). For any such x , by
the locality property of the distributional differential we see that ∂t g(Fl

Z
t (x)) = ∂t g̃(Fl

Z
t (x))

for a.e. t ∈ {s : g(FlZs (x)) = g̃(FlZs (x))}.
Using again Lemma 2.14 we see that d

dt (g ◦ FlZt )(x) = d
dt (g̃ ◦ FlZt )(x) m × L1-a.e.

(x, t) ∈ C×[0, TC ) such that FlZt (x) ∈ {g = g̃}. Then since g = f ◦u = g̃ on {|du(Z)| > 0},
using theC1 regularity of t �→ g◦FlZt , g̃◦FlZt ∈ L p(C)we conclude that d

dt (g◦FlZt )|t=0(x) =
d
dt (g̃ ◦ FlZt )|t=0(x) m-a.e. x ∈ {|du(Z)| > 0}, as desired. ��

Ideally, du(Z) should be defined as the element of the dual of the pullback of L0
μ(T ∗Y)

via u characterized by its action on [u∗dμ f ] via the formula

[u∗dμ f ](du(Z)) = d

dt
(g ◦ FlZt )|t=0 a.e. on C

for any C, g as in Proposition 4.13. From the technical point of view, the above approach has
the problem that it does not really define any objectm-a.e., but onlym|{|du(Z)|>0}-a.e. (notice
that both the pullback u∗L0

μ(T ∗Y) and its dual are not L0(m|�)-normed modules, but in fact
L0(m|{|du(Z)|>0})-normed). This is not a crucial issue, because it is natural to impose that
du(Z) is 0 outside the set {|du(Z)| > 0}, but needs to be taken care of: we shall proceed as
in [21] by using the extension functor discussed in Sect. 2.1.

Definition 4.14 (The object du(Z)) Let p ∈ (1,∞), Z a regular vector field on X,
� ⊂ X open, u ∈ KSpZ (�,Y) and μ := u∗(|du(Z)|pm). Then du(Z) is the element of
(Ext(u∗L0

μ(T ∗Y)))∗ characterized by: for any f ∈ L∞ ∩ W 1,p(Y,dY, μ) and C ⊂ � with
TC > 0 it holds

(
ext([u∗dμ f ])(du(Z))

)|C =
( d

dt
(g ◦ FlZt )|t=0

)
|C , (4.27)

where g is related to f and C via Proposition 4.13 and the derivative is intended in L p(C).

We now prove that the definition is well-posed:

Proposition 4.15 Let p ∈ (1,∞), Z a regular vector field on X, � ⊂ X open, u ∈
KSpZ (�,Yȳ). Then the definition of du(Z) is well-posed. Moreover, the expression |du(Z)| is
unambiguous, i.e. its value in the sense of Definition 4.6 coincides with the pointwise norm
of du(Z), which is defined as

|du(Z)| := ess-supω(du(Z)), (4.28)

where the ess-sup is taken among all ω ∈ Ext(u∗L0
μ(T ∗Y)) with |ω| ≤ 1 m-a.e. on �.
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Proof The second part of Proposition 4.13 ensures that the right hand side in (4.27) depends
only on f ,C and not on the particular choice of g as given by the first part of the same
statement. In particular, for given f ∈ L∞ ∩ W 1,p(Y,dY, μ) there is a unique function
T ( f ) ∈ L0(m|{|du(Z)|>0}) such that T ( f )|C = d

dt (g ◦ FlZt )|t=0 for any C, g as in Propo-
sition 4.13. It is clear that T ( f ) depends linearly on f and this fact together with (4.24)
show that T ( f ) = T ( f ′) m-a.e. on u−1({dμ f = dμ f ′}), thus T passes to the quotient and
defines a linear operator T̃ : {dμ f : f ∈ L∞ ∩ W 1,p(Y,dY, μ)} → L0(m|{|du(Z)|>0}),
which satisfies

|T̃ (dμ f )| ≤ |dμ f | ◦ u|du(Z)| m − a.e. on {|du(Z)| > 0}.
Then the universal property of the pullback ensures that there is a unique L0(m|{|du(Z)|>0})-
linear and continuous operator S : u∗(L0

μ(T ∗Y)) → L0(m|{|du(Z)|>0}) satisfying

S([u∗dμ f ]) = T̃ (dμ f ) for every f ∈ W 1,p(Y,dY, μ), i.e. such that

S([u∗dμ f ])|C = d

dt
(g ◦ FlZt )|t=0

for any C, g as above, and such S satisfies

|S(ω)| ≤ |ω| |du(Z)| m − a.e. on {|du(Z)| > 0} ∀ω ∈ u∗(L0
μ(T ∗Y)). (4.29)

It is then clear that we can uniquely extend S to an L0(m|�)-linear and continuous operator
du(Z) from Ext(u∗(L0

μ(T ∗Y))) to Ext(L0(m|{|du(Z)|>0})) ⊂ L0(m|�) (i.e. to an element

of (Ext(u∗L0
μ(T ∗Y)))∗) and since we have already showed that d

dt (g ◦ FlZt )|t=0 = 0 m-a.e.
on {|du(Z)| = 0}, we proved existence and uniqueness of du(Z) ∈ (Ext(u∗L0

μ(T ∗Y)))∗
satisfying (4.27).

We now turn to the claim about |du(Z)| and temporarily denote the quantity defined in
(4.28) by |du(Z)|′, keeping the notation |du(Z)| for the one in Definition 4.6. Notice that by
(4.29) it easily follows that

|ω(du(Z))| ≤ |ω| |du(Z)| m − a.e. on � ∀ω ∈ Ext(u∗(L0
μ(T ∗Y))),

which in turn implies |du(Z)|′ ≤ |du(Z)|.
For the converse inequality,we start claiming that for f ∈ Lipbs(Y) the choice g := f ◦u in

Proposition 4.13 is admissible for anyC . This follows from the secondpart of Proposition 4.13
and the observation that the arguments already used in the proof of Proposition 4.13 show
that t �→ g ◦ FlZt ∈ L p(C) is C1 with

∣∣∣∣
d

dt
(g ◦ FlZt )|t=0

∣∣∣∣ ≤ lip( f ) ◦ u |du(Z)|.

Now let ( fn) ⊂ Lipbs(Y) be given by Lemma 2.13, notice that |dμ fn | ≤ 1 μ-a.e. for every
n and thus

|du(Z)|′ ≥ sup
n

(
ext([u∗dμ fn])

)
(du(Z)) m − a.e. on �. (4.30)

On the other hand, recalling the Definition 4.6, point (iv) in Theorem 4.5, Lemma 2.13 and
the semigroup property of (FlZt ) we see that for any C ⊂ � with TC > 0 it holds

|du(Z)| ◦ FlZt = sup
n

d

dt
( fn ◦ u ◦ FlZt ) =

(
sup
n

(
ext([u∗dμ fn])

)
(du(Z))

)
◦ FlZt

m-a.e. on C for a.e. t ∈ [0, TC ). By the continuity property in Proposition 4.3 we can pick
t = 0 in the above, so that from (4.30) and the arbitrariness of C we conclude |du(Z)|′ ≥
|du(Z)|, as desired. ��
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Albeitwe cannot define the differential du of u, if u belongs to theKorevaar–Schoen spaces
for two different vector fields Z1, Z2, and thus also for Z1+Z2 as proved in Proposition 4.12,
we expect that du(Z1 + Z2) = du(Z1) + du(Z2) in some sense. This is indeed true, the
precise formulation being:

Proposition 4.16 (‘Linearity’ of the differential) Let p ∈ (1,∞), Z1, Z2 two regular vector
fields on X, � ⊂ X open, u ∈ KSpZ1

(�,Yȳ) ∩ KSpZ2
(�,Yȳ).

We defineμ1, μ2, μ+ as u∗(|du(Z1)|pm|�), u∗(|du(Z2)|pm|�), u∗(|du(Z1+Z2)|pm|�)

respectively. Then for every f ∈ Lipbs(Y) and α1, α2 ≥ 0 we have

ext([u∗dμ+ f ])(du(α1Z1+α2Z2)) = α1ext([u∗dμ1 f ])(du(Z1))+α2ext([u∗dμ2 f ])(du(Z2)).

(4.31)
If −Zi is regular as well, i = 1, 2, then the same conclusion holds for any αi ∈ R.

Proof Direct consequence of Lemma 4.11, Lemma 4.8 and the fact, already observed in the
proof of Proposition 4.15 above, that for f ∈ Lipbs(Y) the choice g := f ◦ u is admissible
in the definition of du(Z). ��

Notice that in principle one could use this last proposition to prove the triangle inequality
(4.22), but this would provide no real save of time, being also this last statement fully based
on the crucial Lemma 4.11.

We conclude pointing out a duality formula for the pointwise norm of du(Z); we remark
that the interesting part of the formula is in the fact that 2 different (ordered) measures come
into play when computing the differentials of functions on Y:

Corollary 4.17 Let p ∈ (1,∞), Z a regular vector field onX,� ⊂ X open, u ∈ KSpZ (�,Yȳ)

and μ := u∗(|du(Z)|pm). Also, let w ∈ L1(�) be such that w ≥ |du(Z)|p m-a.e. and put
μw := u∗(wm). Then

1

p
|du(Z)|p = ess-sup

f ∈Lipbs (Y)

ext([u∗dμ f ])(du(Z)) − 1

q
ext

(|dμw f |q ◦ u
)
, (4.32)

where 1
p + 1

q = 1.

Proof From the bound (2.2) we deduce

1

q
|ext([u∗dμ f ])|q = 1

q
ext(|dμ f |q ◦ u) ≤ 1

q
ext(|dμw f |q ◦ u)

for any f ∈ Lipbs(Y) and thus Young’s inequality gives

ext([u∗dμ f ])(du(Z)) ≤ |du(Z)| |ext([u∗dμ f ])| ≤ 1

p
|du(Z)|p + 1

q
ext(|dμw f |q ◦ u),

which is ≥ in (4.32). For the opposite inequality, notice that by the very Definition 4.6
and Lemma 2.13 for every ε > 0 we can find constants (cn) ⊂ R, a Borel partition
(An) of � and 1-Lipschitz functions ( fn) ⊂ Lipbs(Y) such that |du(Z)|(1 − ε) ≤ cn ≤
ext([u∗dμ fn])(du(Z))m-a.e. on An . Then for every n ∈ Nwe put f̃n := cp−1

n fn ∈ Lipbs(Y)

and notice that
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ext([u∗dμ f̃n])(du(Z)) − 1

q
ext(|dμw f̃n |q ◦ u)

= cp−1
n ext([u∗dμ fn])(du(Z)) − cpn

q
ext(|dμw fn |q ◦ u)

≥ cpn − cpn
q

= cpn
p

≥ 1

p

(|du(Z)|(1 − ε)
)p

,

m-a.e. on An , so that the conclusion follows by the arbitrariness of ε > 0 and n ∈ N. ��

4.5 Link with Sobolevmaps defined via post-composition

There is a well-established notion of metric-valued Sobolev map based on post-composition
(see [25] and the references therein for more on the topic and detailed bibliography), in this
short section we prove some natural relation between such notion and the one studied in the
rest of the paper, see Propositions 4.19, 4.22 for the precise statements. Notice that both for
simplicity and to keep consistency with results presented in relevant literature, we will stick
to the case � = X and p = 2, but everything can be easily adapted to cover the case of
arbitrary open sets and Sobolev exponents. Finally, to handle the (lack of) integrability of
some functions, we will need to deal with functions in the Sobolev class S2(X), rather than
in the Sobolev space W 1,2(X): functions in the former class have differential in L2, but no a
priori condition on their integrability is imposed. We refer to [16] and references therein for
all the definitions and properties of S2(X) we shall use.

Definition 4.18 Let (X,d,m) be a metric measure space, (Y,dY, ȳ) a pointed complete and
separable space and u ∈ L2(X,Yȳ). We say that u ∈ W 1,2(X,Yȳ) provided for any 1-
Lipschitz function f : Y → R with f (ȳ) = 0 we have f ◦ u ∈ W 1,2(X) and there is a
function G ∈ L2(X) (not depending on f ) such that

|d( f ◦ u)| ≤ G m − a.e.. (4.33)

It is clear that for u ∈ W 1,2(X,Yȳ) there is a minimal, in the m-a.e. sense, G ≥ 0 for which
(4.33) holds: to avoid any risk of confusion with other forms of differential used in this paper,
it will be denoted |d′u|.

Our first result of this section is the following:

Proposition 4.19 (From Sobolev to ‘directionally Sobolev’) Let (X,d,m) be a RCD(K ,∞)

space, Z a regular vector field on it and (Y,dY, ȳ) a pointed complete and separable space.
Then W 1,2(X,Yȳ) ⊂ KS2Z (X,Yȳ) and for every u ∈ W 1,2(X,Yȳ) we have

|du(Z)| ≤ |d′u| |Z | m − a.e.. (4.34)

Proof Let f : Y → R be 1-Lipschitz with f (ȳ) = 0. Then we know that f ◦ u ∈ W 1,2(X)

and thus by the very definition ofRegular Lagrangian Flowweknow thatm-a.e. the inequality

| f ◦ u ◦ FlZs − f ◦ u ◦ FlZt | ≤
∫ s

t
(|d′u| |Z |) ◦ FlZr dr

holds for a.e. t, s ∈ [0, 1], t < s. It is not hard to see that the construction in Lemma 2.13 can
be modified to ensure that fn(ȳ) = 0 for every n ∈ N, so that the conclusion of the lemma
and what already proved give that m-a.e. the bound

dY
(
u ◦ FlZs , u ◦ FlZt

) ≤
∫ s

t
(|d′u| |Z |) ◦ FlZr dr
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holds for a.e. t, s ∈ [0, 1], t < s. Since both sides of this inequality are continuous in t, s
with values in L2(X) (recall also Proposition 4.3), we conclude thatm-a.e. such bound holds
for every t, s ∈ [0, 1], t < s. According to point (i i i) in Theorem 4.5, this proves that
u ∈ KS2Z (X,Yȳ) and together with point (iv) and the last part of the statement we also get
(4.34). ��

Having clarified the relation between Sobolev spaces we turn to the one between the
corresponding notions of differential. Recall that in [21] it has been proved that to any u ∈
W 1,2(X,Yȳ) it is canonically associated a differential d′u : L0(TX) → Ext

(
(u∗L0

μ(T ∗Y))∗
)

(herewe used the notation d′u in place of du to avoid risk of confusionwith previously defined
differentials), let us briefly review the definition of such object.We need the following lemma:

Lemma 4.20 Let u ∈ W 1,2(X,Yȳ), put μ := u∗(|d′u|2m) and let f ∈ S2(Y,dY, μ). Then
there is g′ ∈ S2(X) such that g′ = f ◦ u m-a.e. on {|d′u| > 0} and

|dg′| ≤ |dμ f | ◦ u|d′u| m − a.e.. (4.35)

More precisely, there is g′ ∈ S2(X) and a sequence ( fn) ⊂ Lipbs(Y) such that

fn → f μ − a.e. lipa( fn) → |dμ f | in L2(μ),

fn ◦ u → g′ m − a.e. lipa( fn) ◦ u|d′u| → |dμ f | ◦ u|d′u| in L2(m).
(4.36)

Such lemma is used to define d′u as follows:

Definition 4.21 Let (X,d,m) be a metric measure space, (Y,dY, ȳ) a pointed complete
and separable space and u ∈ W 1,2(X,Yȳ). Put μ := u∗(|d′u|2m). Then the differential
d′u : L0(TX) → Ext

(
(u∗L0

μ(T ∗Y))∗
)
is defined as follows. For Z ∈ L0(TX) the object

d′u(Z) ∈ Ext
(
(u∗L0

μ(T ∗Y))∗
)
is characterized by the following property: for any f ∈

S2(Y,dY, μ) and g as in Lemma 4.20, it holds

ext
([u∗dμ f ])(d′u(Z)) = dg(Z)

In [21] it has been proved that this definition is well posed and that the value of |d′u| is
unambiguous, i.e. the quantity given by Definition 4.18 coincides with the pointwise norm
of d′u.

We then have the following compatibility statement:

Proposition 4.22 (From differential to ‘directional derivative’) With the same assumptions
and notation of Proposition 4.19 we have

du(Z) = d′u(Z).

and in particular |du(Z)| = |d′u(Z)| holds m-a.e..

Proof Let f ∈ L∞∩W 1,2(Y,dY, μ) be arbitrary. ByDefinitions 4.14 and 4.21 it is sufficient
to prove that any function g′ associated to such f by Lemma 4.20 can be chosen as g in
Proposition 4.13. By (4.34) we know that {|du(Z)| > 0} ⊂ {|d′u| > 0} and thus we know
that g′ agrees with f ◦ u m-a.e. on {|du(Z)| > 0}. Also, the simple lemma below ensures
that t �→ (g ◦ FlZt − g) is C1 with values in L2(X), so that to conclude it is sufficient to
prove the bound (4.24). This follows by picking ( fn) as in Lemma 4.20 above and noticing
that this choice is viable in the proof of Proposition 4.13, so that the conclusion follows by
repeating verbatim the arguments already present in such proof. ��
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Lemma 4.23 Let (X,d,m) be a RCD(K ,∞) space, Z a regular vector field on it and g ∈
S2(X). Then the map [0, 1] � t �→ (g ◦ FlZt − g) belongs to C1([0, 1], L2(X)).

Proof It is sufficient to prove that such curve is absolutely continuous with values in L p(X)

and with derivative given by dg(Z) ◦ FlZt as then the fact that such derivative is continuous
in L p(X) (Proposition 4.3) gives the claim.

Now notice that the very definition of Regular Lagrangian Flow and Lemma 4.1 ensure
that this is true if g ∈ W 1,2(X). For the general case put gn := n ∧ g ∨ (−n) for n ∈ N and
gn,R := χRgn , whereχR(x) := (1−d(x, BR(x̄)))+ for any R > 0,with x̄ ∈ Xbeing a given,
fixed point. Then conclude noticing that limn limR gn,R(FlZt (x)) = g(FlZt (x)) for any t, x
and that form-a.e. x ∈ X the curves t �→ dgn,R(Z)(FlZt (x)) converge to t �→ dg(Z)(FlZt (x))
in L2(0, 1) when we first let R → ∞ and then n → ∞. This is sufficient to ensure that point
(i i i) in Lemma 4.1 holds with Ht (x) := dg(Z)(FlZt (x)), which was the claim. ��

4.6 The case of Y universally infinitesimally Hilbertian

We already know that |du(Z)| satisfies a natural triangle inequality. Here we ask whether in
the case p = 2 it also holds the parallelogram identity

|du(Z1 + Z2)|2 + |du(Z1 − Z2)|2 = 2
(|du(Z1)|2 + |du(Z2)|2

)
(4.37)

in � provided u ∈ KS2Z1
(�,Yȳ) ∩ KS2Z2

(�,Yȳ). Having in mind the smooth category we
see that the answer must depend on Y being somehow Hilbert on small scales: if, say, Y
is Rd equipped with some norm ‖ · ‖, X is the Euclidean space and u, Z are smooth, then
|du(Z)|(x) = ‖du(Z)(x)‖ a.e.. Hence (4.37) holds if and only if the norm ‖ · ‖ comes from
a scalar product.

For metric measure spaces (Y,dY,mY) a notion of ‘being Hilbert on small scales’ has
been proposed in [17], the requirement being that W 1,2(Y,dY,mY) is a Hilbert space (in
general it is only Banach). In our setting there is no measure assigned a priori on Y, but
actually, as seen in the previous section, each map u ∈ KSpZ (�,Yȳ) induces its own measure
on Y. We are therefore lead to:

Definition 4.24 (Universally infinitesimally Hilbertian) Let (Y,dY) be a complete and sep-
arable metric space. We say that it is universally infinitesimally Hilbertian provided for any
Radon measure μ which gives finite mass to bounded sets the space (Y,dY, μ) is infinitesi-
mally Hilbertian, i.e. W 1,2(Y,dY, μ) is Hilbert.

It is not trivial to check that a metric space is universally infinitesimally Hilbertian space.
The first result in this direction has been obtained in [19], where it has been proved the ‘base
case’ thatRd equippedwith the Euclidean norm has such property. This result has been vastly
generalized in [14] where it has been proved that spaces which are locally CAT(k), and in
particular CAT(0) spaces, are universally infinitesimally Hilbertian.

A duality argument based on Corollary 4.17 and the linearity property (4.31) allow to get
the parallelogram identity for targets which are infinitesimally Hilbertian:

Theorem 4.25 Let K ∈ R, (X,d,m) be RCD(K ,∞) space, � ⊂ X open and Z1, Z2 two
regular vector fields on it. Let (Y,dY, ȳ) be a pointed universally infinitesimally Hilbertian
space and u ∈ KS2Z1

(�,Yȳ) ∩ KS2Z2
(�,Yȳ).

Then

|du(Z1 + Z2)|2 + |du(Z1 − Z2)|2 = 2
(|du(Z1)|2 + |du(Z2)|2

)
m − a.e. on �.
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Proof Recall that by Propositions 4.9 and 4.12 we know that u ∈ KS2Z1+Z2
(�,Yȳ) ∩

KS2Z1−Z2
(�,Yȳ) so that the statement makes sense. Put for brevity Z+ := Z1 + Z2,

Z− := Z1 − Z2, define

w := max
{|du(Z1)|2, |du(Z2)|2, |du(Z+)|2, |du(Z−)|2}

and μw := u∗(wm|�) and similarly μi := u∗(|du(Zi )|2m) for i ∈ {1, 2,+,−}. By formula
(4.32) applied with p = q = 2, μ := μ1 and μw := μw we get

1

2
|du(Z1)|2 = ess-sup

f ∈Lipbs (Y)

ext([u∗dμ1 f ])(du(Z1)) − 1

2
ext

(|dμw f |2 ◦ u
)
,

Since an analogous formula holds for Z2 we obtain

2|du(Z1)|2 + 2|du(Z2)|2 = ess-sup
f ,g∈Lipbs (Y)

4 ext([u∗dμ1 f ])(du(Z1))

+ 4 ext([u∗dμ2g])(du(Z2))

− 2 ext
(
(|dμw f |2 + |dμwg|2) ◦ u

)
. (4.38)

Now notice that Proposition 4.16 gives

4 ext([u∗dμ1 f ])(du(Z1)) + 4 ext([u∗dμ2g])(du(Z2))

= 2 ext([u∗dμ+( f + g)])(du(Z+)) + 2 ext([u∗dμ−( f − g)])(du(Z−))

for any f ∈ Lipbs(Y) and that since (Y,dY, μw) is infinitesimally Hilbertian it holds

2|dμw f |2 + 2|dμwg|2 = |dμw( f + g)|2 + |dμw( f − g)|2.
Using these two identities in (4.38) we deduce

2|du(Z1)|2 + 2|du(Z2)|2 = − ess-sup
f ,g∈Lipbs (Y)

ext
(
(|dμw( f + g)|2 + |dμw( f − g)|2) ◦ u

)

+ 2 ext([u∗dμ+( f + g)])(du(Z+))

+ 2 ext([u∗dμ−( f − g)])(du(Z−))

and since as f , g range over [Lipbs(Y)]2 the functions f + g, f − g also range over
[Lipbs(Y)]2, using again the duality formula (4.32) for p = q = 2 and for the vectors
Z+, Z− we conclude. ��
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