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Abstract
We determine the structure of the ring of Siegel modular forms of degree 2 in characteristic
3.

Mathematics Subject Classification 11F03 · 14J15 · 14G35 · 11G18

1 Introduction

Let Ag be the moduli space of principally polarized abelian varieties of dimension g. It is a
Deligne-Mumford stack overZ. It carries a natural vector bundle of rank g, the Hodge bundle
Eg . We write L for its determinant line bundle. The vector bundle Eg extends in a natural
way over any compactification Ãg of Faltings-Chai type and we will denote the extension
of Eg and L again by the same symbols. Sections of L⊗k over Ãg are called modular forms
of weight k. It is known that for g ≥ 2 any section of Lk over Ag extends to a section of Lk

over Ãg , a fact usually referred to as the Koecher principle, see [7, Prop. 1.5, p. 140].
If F = Z or Zp or a field one has the graded ring

Rg(F) = ⊕k H
0(Ãg ⊗ F, Lk) .

It is known by [7] that it is a finitely generated F-algebra.
In the case of F = C the ring Rg(C) is the ring of scalar-valued Siegel modular forms

of degree g. It is well-known known thatR1(C) = C[E4, E6] is freely generated over C by
the Eisenstein series E4 and E6 of weights 4 and 6. In the 1960s Igusa [11] determined the
structure of R2(C):

R2(C) = C[ψ4, ψ6, χ10, χ12, χ35]/
(
χ2
35 − P

)
,

where the indices of the generators indicate the weights and P is a polynomial inψ4, ψ6, χ10

and χ12. Moreover, the ideal of cusp forms is generated by χ10, χ12 and χ35. For g = 3,
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Tsuyumine showed in [20] that R3(C) is generated by 34 elements; recently the number of
generators was reduced to 19 by Lercier and Ritzenthaler [14].

For F = Fp , a finite field with p elements, the ring R1(Fp) was described by Deligne [5].
Besides giving the structure of the ring over Z

R1(Z) = Z[c4, c6,�]/ (
c34 − c26 − 1728�

)
,

he showed that

R1(F2) = F2[a1,�] and R1(F3) = F3[b2,�] ,
where � is of weight 12 and a1 (resp b2) is of weight 1 (resp. 2). For p ≥ 5 we have
R1(Fp) = Fp[c4, c6].

For g = 2, Igusa determined in [13] also the ring of modular forms over Z; it is generated
by elements of weight

4, 6, 10, 12, 12, 16, 18, 24, 28, 30, 35, 36, 40, 42, 48 .

For finite fields the structure ofR2(Fp) is known for p ≥ 5. For this we refer to Ichikawa’s
paper [10]. For p ≥ 5 the ring is just as in characteristic zero generated by modular forms
ψ4,ψ6, χ10, χ12 and χ35 with χ35 satisfying a relation χ2

35 = P(ψ4, ψ6, χ10, χ12). Moreover
for p ≥ 5 the reduction map R2(Zp) → R2(Fp) is surjective. Nagaoka studied the image
of the reduction map in [17,18], see also [1].

In this paper we consider the case p = 3 and determine the structure of R2(F3). We
use the close connection between the moduli space A2 and the moduli space M2 of curves
of genus 2 via the Torelli map M2 ↪→ A2 and the description of M2 as a quotient stack
for the action of GL(2) on the space of binary sextics. In that way invariant theory can be
used to construct modular forms. The relation between invariants and modular forms was
already exploited by Igusa in [11], but he used theta functions and Thomae’s formula to relate
these to cross ratios of the zeros of a binary sextic. Here we use not only invariants but also
covariants giving vector-valued modular forms as introduced in [2] to analyze the regularity
of scalar-valued modular forms.

Our result is:

Theorem 1.1 The subring Rev
2 (F3) of modular forms of even weight is generated by forms

of weights 2, 10, 12, 14 and 36 and has the form

Rev
2 (F3) = F3[ψ2, χ10, ψ12, χ14, χ36]/J

with J the ideal generated by the relation

ψ3
2χ36 − χ3

10ψ12 − ψ2
2χ10χ

2
14 + χ3

14 .

Moreover,R2(F3) = Rev
2 (F3)[χ35]/(χ2

35− P) with P a polynomial inψ2, χ10,ψ12, χ14 and
χ36. The ideal of cusp forms is generated by χ10, χ14, χ35, χ36.

The generatorψ2 is the Hasse invariant that vanishes on the locus of non-ordinary abelian
surfaces and χ10 is a form that vanishes on the locus of products of elliptic curves. The ring
of modular forms of degree 2 in characteristic 2 is described in [4].

2 The proof of Theorem 1.1

Since for g = 2 the moduli stack Ag ⊗ F3 has a canonical compactification due to Igusa
we will use this compactification Ã2 ⊗ F3. We will denote the space of sections of Lk on
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Ã2 ⊗F3 by Mk(�2) and we thus haveR2(F3) = ⊕kMk(�2). We write Mk(�1) for the space
H0(Ã1 ⊗ F3, Lk). The Satake compactification is denoted by A∗

2 ⊗ F3. We denote the first
Chern class of L by λ1.

We begin by constructing generators of weight 2 and 10. The locus V1 of abelian surfaces
with p-rank≤ 1 is a divisor inA2⊗Fp and its closure V 1 in Ã2⊗Fp has cycle class (p−1)λ1
in the Chow group with Q-coefficients, so [V 1] = 2λ1 for p = 3, see [6,22]. Therefore the
effective divisor V 1 is the divisor of a section of L⊗2 and there is a modular form ψ2 of
weight 2 whose zero divisor is V 1. It is determined up to multiplication by a non-zero scalar.
We will normalize it later. This form is known as the Hasse invariant. Multiplication by ψ2

implies that dim Mk(�2) ≤ dim Mk+2(�2).
The divisor of products of elliptic curves H1 := A1,1 ⊗F3 gives rise to a second modular

form. (The notation refers to the fact that H1 is the Humbert surface of discriminant 1.) In
the Chow group of codimension 1 of Ã2 ⊗ F3 (resp. A∗

2 ⊗ F3) we have the relation (cf. e.g.
[16, p. 317])

2[H1] + [D] = 10 λ1 (resp. 2[H1] = 10 λ1) ,

with D the divisor at infinity, hence there exists a modular form of weight 10 vanishing with
multiplicity 2 on H1. We call this form χ10 (up to a normalization to be determined later).
The automorphism group of a generic product of elliptic curves has an extra involution
(when compared with the automorphism group of a generic principally polarized abelian
surface) and it acts by −1 on L , hence every modular form of even weight vanishes with
even multiplicity along H1.

Restriction to H1 yields for even k an exact sequence

0 → H0(A2 ⊗ F3, L
k ⊗ O(−2H1)) → H0(A2 ⊗ F3, L

k) → H0
(
H1, L

k
|H1

)

and in view of the degree 2 morphism A1 × A1 → A1,1 induced by interchanging the two
factors, we can identify this with

0 → Mk−10(�2) → Mk(�2) → Sym2(Mk(�1)) , (2.1)

where the second arrow is multiplication by χ10. Moreover Mk−10(�2) = (0) for k < 8 since
L is ample onA∗

2 ⊗ F3. The exact sequence (2.1) and the fact that we know Mk(�1) implies
that dim Mk(�2) = 1 for k = 2, 4, 6, 8 and dim M10(�2) = 2 and M10(�2) is generated by
ψ5
2 and χ10.
We now turn to the construction of the other generators. We use the ideas of [2]. The

Torelli map defines an embedding M2 ⊗ F3 → A2 ⊗ F3. A smooth projective curve of
genus 2 can be given by an equation

y2 = f (x) with f =
6∑

i=0

ai x
6−i . (2.2)

We let V = 〈x1, x2〉 be theF3-vector space generated by x1, x2 andwrite f as a homogeneous
polynomial

∑6
i=0 ai x

6−i
1 xi2. Note that a curve as in (2.2) comes with a basis of the space of

regular differentials, viz. dx/y, xdx/y.
We have a description of M2 ⊗ F3 as the stack quotient [X 0/GL(V )] with X 0 ⊂ X =

Sym6(V )⊗det(V )−2 the locus given by the non-vanishing of the discriminant, see [3, Section
3, p. 3].

The pullback to X 0 of the Hodge bundle under the composition of X 0 → M2 with the
Torelli map M2 ↪→ A2 is the equivariant bundle V on X 0 as the basis dx/y, xdx/y of the
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space of regular differentials on the curve y2 = f (x) shows. The pullback of L is det(V ).
As a consequence pulling back defines a homomorphism

μ : R2(F3) → I (2.3)

with I the ring of invariants of the action of GL(V ) on Sym6(V ). Here an invariant is a
polynomial in a0, . . . , a6, the coefficients of f that is invariant under SL(V ). Since the image
of M2 in A2 is a Zariski open part with complement H1, not every invariant corresponds to
a modular form; but every invariant corresponds to a rational modular form that is regular
outside H1. In particular, it becomes regular on all ofA2 when multiplied with a sufficiently
high power of χ10. This provides us with homomorphisms

R2(F3)
μ−→I

ν−→R2(F3)χ10 ,

where R2(F3)χ10 is obtained from R2(F3) by allowing powers of χ10 in the denominator.
We have ν ◦ μ = id.

This generalizes as follows to vector-valued modular forms. For each finite dimensional
irreducible representation ρ of GL(2) there is a vector bundle E

ρ
2 obtained from E2 by

applying a Schur functor. Such a ρ is of the form Sym j (St) ⊗ detk(St) with St the standard
representation of GL(V ). A section of Sym j (E2) ⊗ det(E2)

k over A2 is called a modular
form of degree 2 and weight ( j, k). The Koecher principle also applies to these modular
forms: sections of Eρ

2 over A2 extend over Ã2, see [7, Prop. 1.5, p. 140]. We write

Mj,k(�2) = H0(Ã2 ⊗ F3,Sym
j (E2) ⊗ det(E2)

k)

and we consider the R2(F3)-module

M = ⊕ j,kM j,k(�2) .

It is even a ring. The map (2.3) can be extended to a map from M to the ring of covariants.
Here a covariant can be described as an invariant for the action of GL(V ) on V ⊕ Sym6(V ).
Alternatively, covariants can be obtained by taking an equivariant embedding of an irreducible
GL(V )-representation U → Symd(Sym6(V )), or equivalently, an equivariant map

ϕ : F3 → Symd(Sym6(V )) ⊗U∨

and then � = ϕ(1) is a covariant. If U is an irreducible representation of highest weight
(w1, w2) then one may view � as a homogeneous form in a0, . . . , a6 of degree d and in
x1, x2 of degree w1 −w2, see [2,9,19]. For example, takingU = Sym6(V ) and d = 1 yields
the covariant � = f , the universal binary sextic. Covariants form a ring C that was much
studied in the 19th and early 20th century. Grace and Young determined generators of this
ring in [9].

The maps R2(F3) → I → R2(F3)χ10 now extend to

M
μ−→ C ν−→Mχ10 ,

where Mχ10 is obtained from M by admitting powers of χ10 as denominators. We have
ν ◦ μ = idM .

The image under ν of the covariant f , the universal binary sextic, is a rationalmodular form
χ6,−2, that is, a rational section of Sym6(E2)⊗ det(E2)

−2 that is regular after multiplication
by an appropriate power ofχ10. The power−2 comes from the twisting used in the description
of the stack quotient [X 0/GL(V )], where X 0 ⊂ Sym6(V ) ⊗ det(V )−2, see [3, Section 3, p.
3].
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This construction was given in [2] in characteristic zero and yields a meromorphic mod-
ular form, here denoted ϕ6,−2, that becomes holomorphic after multiplication by χ10. The
reduction of the characteristic zero rational modular form ϕ6,−2 yields a rational modular
form in characteristic 3. This implies that χ6,−2 becomes regular after multiplication by χ10.
We can write the form χ6,−2 locally on A2 ⊗ F3 symbolically as

χ6,−2 =
6∑

i=0

αi X
6−i
1 Xi

2 , (2.4)

where the monomials X6−i
1 Xi

2 are dummies to indicate the coordinates in the fibres of
Sym6(E2) ⊗ det(E2)

−2. Here we view αi locally as a rational function on A2 ⊗ F3. Using
the local expression (2.4) one can give the image ν(T ) of an invariant T = T (a0, . . . , a6)
locally by T (α0, . . . , α6).

We note that interchanging X1 and X2 induces an involution replacing αi by α6−i .
Comparing with the characteristic 0 case and using semi-continuity we see that the orders

of the rational functions αi along the divisor H1 are at least equal to the orders of their
complex analogues along H1. The Fourier expansion in characteristic 0 given in [2, page
1658] implies the following inequalities for the orders of αi along H1 in characteristic 3:

ordH1(α0, . . . , α6) = (≥ 2,≥ 1,≥ 0,≥ −1,≥ 0,≥ 1,≥ 2) . (2.5)

Moreover, the symmetry that interchanges x1 and x2 implies that the orders of αi and α6−i

along H1 are equal. Another way to see the estimates for the orders is by developing χ6,8 =
χ6,−2χ10 along the locus A1,1 ⊗ F3 ⊂ A2 ⊗ F3. Since the pullback of the Hodge bundle E2

to A1 ×A1 via A2
1 → A1,1 ⊂ A2 is ⊕6

i=0 p
∗
1(E1)

i ⊗ p∗
2(E1)

6−i the restriction of αiχ10 lies
in S14−i (�1) ⊗ S8+i (�1) and this is zero. The next Taylor term in the Taylor development
along A1,1 lies in S15−i (�1) ⊗ S9+i (�1) and this is zero for i 
= 3.

The ring of invariants I for the action ofGL(V )onSym6(V ) in characteristic 3 is generated
by invariants A, B, C , D and E of degree 2, 4, 6, 10 and 15, see e.g. [11] or [8]. The
invariants A, B,C, D that we use here can be expressed in the reductions modulo 3 of
the invariants J2, J4, J6 et J10 given in [15]: A = −J2(mod3), B = −J4(mod3), C =
−J6 − A3(mod3), D = J10(mod3). The invariant E can be found in [12, p. 848].

The invariant A has the form A = a1a5 − a2a4. We know of the existence of a modular
formψ2 of weight 2. Under the mapμ it must map to a non-zero multiple of A. We fixψ2 by
requiring μ(ψ2) = A. The restriction to H1 of the Hasse invariant ψ2 is a non-zero multiple
of Sym2(b2), with b2 the Hasse invariant for g = 1, hence ψ2 does not vanish identically on
H1.

By the inequalities (2.5) and the expression for Awe see that ordH1(α2) = 0 = ordH1(α4)

and

ordH1(α0, . . . , α6) = (≥ 2,≥ 1, 0,≥ −1, 0,≥ 1,≥ 2) .

In degree 4 we find another invariant B, not a multiple of A2:

B = 2 a0a1a5a6 + a0a2a4a6 + 2 a0a2a
2
5 + 2 a0a

3
4 + 2 a21a4a6 + 2 a1a2a4a5

+ a1a
2
3a5 + a1a3a

2
4 + 2 a32a6 + a22a3a5 + a22 a

2
4 + 2 a2a

2
3a4.

Since we know dim M4(�2) = 1 there cannot be a regular modular form in weight 4 that
is not a multiple of ψ2

2 . This implies that ordH1(α3) < 0 and hence ordH1(α3) = −1. Thus
B = (a1a5 − a2a4)a23 + (a1a24 + a22a5)a3 + · · · defines a rational modular form χB = ν(B)
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of weight 4 with order −2 along H1. Since χ10 vanishes with multiplicity 2 along H1 we
thus find that

χ14 := χBχ10

is a regular modular form of weight 14.
The vector space of invariants of degree 6 is generated by A3, AB and an invariant C

C = 2 a63 + A a43 + 2(a1a
2
4 + a22a5)a

3
3 + · · ·

and we see that χC = ν(C) has order −6 along H1. In degree 10 there is a new invariant

D = (a1a5)
3a43 + (a0a

3
2a

3
5 + a31a

3
4a6 + 2a31a

2
4a

2
5 + 2a21a

2
2a

3
5)a

3
3 + · · ·

yielding a modular form that vanishes with multiplicity ≥ 2 on H1. Indeed, since α1α5
vanishes with multiplicity ≥ 2 the first term (α1α5)

3α4
3 vanishes with order ≥ 2; the next

terms also vanish with order ≥ 2 as one easily checks. Therefore χD is regular and vanishes
with multiplicity ≥ 2. Since χD is not zero, it must be a multiple of χ10 and then vanishes on
H1 with multiplicity 2. This implies that the order of vanishing of α1 and α5 along H1 is 1.

Corollary 1 We have ordH1(α0, . . . , α6) = (≥ 2, 1, 0,−1, 0, 1,≥ 2).

We fix χ10 by setting it equal to χD = ν(D). This fixes χ14 too.
In a similar manner one checks that the rational modular form ψS = ν(S) with S equal

to

S = B3 + A3C − A2B2 = (a1a
2
4 + a22a5)

3a33 + · · ·
is regular too.Weputψ12 = ψS .We thusfind a 3-dimensional subspace ofM12(�2)generated
byψ6

2 , ψ2χ10 andψ12. From the fact that B and D are not divisible by Awe see that χ14 does
not lie in ψ2M12(�2). Therefore dim M12(�2) < dim M14(�2). Since we know by (2.1) that
dim M14(�2) ≤ 4 we conclude that dim M12(�2) = 3.

A further generator is

χ36 = ν(CD3) = χCχ3
10 .

Since the orders of χC and χ10 along H1 are −6 and 2 the modular form χ36 is regular and
does not vanish identically on H1. The modular form χ36 is not contained in the subring
generated by ψ2,χ10, ψ12 and χ14 as one sees by looking at the invariants. We have the
identity

(B3 + A3C − A2B2)D3 = B3D3 + A3CD3 − A2DB2D2

by which we can express ψ12χ
3
10 in the other generators:

ψ12χ
3
10 = χ3

14 + ψ3
2χ36 − ψ2

2χ10χ
2
14 . (2.6)

Since A, B,C, D are generators of the ring of invariants and are algebraically independent
the forms ψ2, χ10, ψ12, χ14 are algebraically independent. The form χ36 then satisfies the
algebraic relation (2.6) and since there is no non-trivial relation of lower weight involving
χ36 it implies that this relation generates the ideal of relations between the generators ψ2,
χ10, ψ12, χ14 and χ36.

The forms ψ2, χ10, ψ12, χ14 and χ36 generate a subring Rev of the ring Rev
2 (F3) with

generating function

G = (1 − t42)

(1 − t2)(1 − t10)(1 − t12)(1 − t14)(1 − t36)
.
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and by the Riemann-Roch theorem we have dim Mk(�2) = k3/1080 + O(k2) for even k.
Note that

42

2 · 10 · 12 · 14 · 36 = 1

2880
.

On the other hand we have c1(L)3 = 1/2880, see [22, p. 74]. We can use the degree of
Proj(Rev

2 (F3)) to show that there cannot be more generators ofRev
2 (F3), but one can see this

also in a more elementary way as follows.
Let d(k) = dim Mk(�2) and r(k) = dim Rk where Rk = Rev ∩ Mk(�2).

Proposition 1 We have d(k) = r(k) for even k ≥ 0.

Proof We know that d(k) ≥ r(k) for even k and d(k) = r(k) for even 0 ≤ k ≤ 14. Suppose
by induction that d(k) = r(k) for even k ≤ m. The exact sequence (2.1) gives the upper bound
d(k) ≤ r(k−10)+c(k)(c(k)+1)/2 for k ≤ m+10,where c(k) = dim Mk(�1) = �k/12�+1.
Using the generating function G one sees that r(k) − r(k − 10) = c(k)(c(k) + 1)/2 for
k 
≡ 0 (mod12) and k 
≡ 2 (mod12). Hence d(k) = r(k) for even k ≤ m + 10 with
k 
≡ 0, 2(mod12). But we have

d(k + 2) − d(k) ≥ r(k + 2) − r(k) ,

as we show in the next lemma. This proves d(k) = r(k) for even k ≤ m + 10. Therefore we
conclude the proof by induction. ��
Lemma 1 We have d(k + 2) − d(k) ≥ r(k + 2) − r(k) for even k ≥ 0.

Proof We can write Rk+2 = ψ2Rk ⊕ Nk+2 with Nk+2 the subspace with basis the forms
χa
10ψ

b
12χ

c
14χ

d
36 with a, b, c, d ≥ 0 and c ≤ 2 in view of the relation (2.6). Then we have

dim Nk+2 = r(k + 2) − r(k). The inequality d(k + 2) − d(k) ≥ dim Nk+2 follows from
the fact that Nk+2 ∩ ψ2Mk(�2) = (0). To see this fact, suppose that f ∈ Mk(�2) such that
f /∈ Rk and ψ2 f ∈ Rk+2. Then ψ2 f = P with P a sum of monomials χa

10ψ
b
12χ

c
14χ

d
36 with

c ≤ 2. Then P = ν(Q) with Q a polynomial in

D, B3 + A3C − A2B2, BD,CD3 .

Since P = ψ2 f this polynomial must be divisible by A. But this implies that if Q 
= 0 then
it must have at least one monomial with c ≥ 3, but we excluded this. ��

The invariant E of degree 15 is of the form

E = (a1a
2
4 − a22a5)

3a63 + · · ·
and ν(E) has order −3 along H1. Therefore

χ35 := ν(ED2)

is a regular modular form. It vanishes on H1 and on the Humbert surface H4 of discriminant
4, both with multiplicity 1. The surfaces H1 and H4 parametrize abelian surfaces that possess
an extra involution. Locally near H4 the extra automorphism corresponds to the symmetry
that interchanges x1 and x2.

We know that the cycle class of 2 H4 on A∗
2 ⊗ F3 is 60λ1, see [21, Prop. 3.3, p. 217].

Therefore the divisor ofχ35 is H1+H4 and since the closure of H1 contains the 1-dimensional
cusp χ35 is a cusp form. Then χ2

35 is of even weight, hence can be expressed as a polynomial
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in ψ2, χ10, ψ12, χ14 and χ36. If ψ is an odd weight modular form then it must vanish on H1

and H4, hence it will be divisible by χ35.
The relation between the space of binary sextics and themoduli spaceM2 (see for example

[3, Section 4]) implies that a modular form χ is a cusp form if and only if the invariant μ(χ)

is divisible by the discriminant D in I . From the form of the generators one easily sees that
χ10, χ14, χ36 and χ35 generate the ideal of cusp forms. This completes the proof.

Remark 1 One can use the knowledge of the dimensions of Mk(�2) to deduce non-vanishing
of H1(Ã2 ⊗F3, Lk) for certain values of k. The short exact sequence of sheaves on Ã2 ⊗F3

0 → Lk ⊗ O(−V 1) → Lk → Lk
|V 1

→ 0

gives rise to a long exact sequence which can be identified with

0 → Mk−2(�2) → Mk(�2) → H0(V 1, L
k) → H1(Ã2 ⊗ F3, L

k−2) → · · ·
For example, if dim Mk−2(�2) = dim Mk(�2)we get an injection H0(V 1, Lk) → H1(Ã2⊗
F3, Lk−2) and if k ≡ 0(mod 4) and k ≥ 0 one can show that H0(V 1, Lk) 
= 0 by showing
that H0(V 1[2], Lk)S6 
= (0), the space of invariants under the symmetric group S6 acting
on H0(V 1[2], Lk) with V1[2] the 3-rank ≤ 1 locus in the level 2 moduli space Ã2[2]. Thus
for example, H1(Ã2 ⊗ F3, L14) 
= (0).
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