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Abstract
Let f1, f2 be linearly independent solutions of f ′′ + A f = 0, where the coefficient A is
an analytic function in the open unit disc D of the complex plane C. It is shown that many
properties of this differential equation can be described in terms of the subharmonic auxiliary
function u = − log ( f1/ f2)#. For example, the case when supz∈D |A(z)|(1−|z|2)2 < ∞ and
f1/ f2 is normal, is characterized by the condition supz∈D |∇u(z)|(1− |z|2) < ∞. Different
types of Blaschke-oscillatory equations are also described in terms of harmonic majorants of
u. Even if f1, f2 are bounded linearly independent solutions of f ′′ + A f = 0, it is possible
that supz∈D |A(z)|(1− |z|2)2 = ∞ or f1/ f2 is non-normal. These results relate to sharpness
discussion of recent results in the literature, and are succeeded by a detailed analysis of
differential equations with bounded solutions. Analogues for the Nevanlinna class are also
considered, by taking advantage of Nevanlinna interpolating sequences. It is shown that,
instead of considering solutions with prescribed zeros, it is possible to construct a bounded
solution of f ′′ + A f = 0 in such a way that it solves an interpolation problem natural to
bounded analytic functions, while |A(z)|2(1−|z|2)3 dm(z) remains to be aCarlesonmeasure.

Keywords Blaschke product · Bounded solution · Growth of solution · Interpolation ·
Linear differential equation · Nevanlinna class · Normal function · Oscillation of solution
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1 Introduction

Let Hol(D) be the collection of analytic functions in the open unit disc D of the complex
plane C. For 0 ≤ α < ∞, let L∞

α denote the space of f : D → C for which ‖ f ‖L∞
α

=
supz∈D | f (z)|(1 − |z|2)α < ∞, and write H∞

α = L∞
α ∩ Hol(D) and H∞ = H∞

0 for short.
We are interested in the relation between the growth of the coefficient A ∈ Hol(D) and the
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420 J. Gröhn

oscillation and growth of solutions of

f ′′ + A f = 0. (1)

By [43, Theorems 3–4], the following conditions are equivalent:

(i) A ∈ H∞
2 ;

(ii) zero-sequences of all non-trivial solutions ( f 
≡ 0) of (1) are separated with respect to
the hyperbolic metric.

We refer to [3] for a far reaching generalization concerning the connection between the
growth of the coefficient A ∈ Hol(D) and the minimal separation of zeros of non-trivial
solutions of (1). It has been unclear whether

(iii) all solutions of (1) belong to the Korenblum space
⋃

0<α<∞ H∞
α ,

is equivalent to the conditions above. Recall that, if f1, f2 are linearly independent solutions
of (1) for A ∈ Hol(D), then theWronskian determinantW ( f1, f2) = f1 f ′

2− f ′
1 f2 reduces to

a non-zero complex constant, and consequently, any solution of (1) can be written as a linear
combination of f1, f2.

In view of results in the literature, the condition (iii) is a natural candidate for a descrip-
tion of the growth of solutions of (1) under (i). Pommerenke used a classical comparison
theorem [40, Example 1] to prove that (i) ⇒ (iii). This implication has been rediscovered
with different methods: growth estimates [20, Theorem 4.3(2)], [23, Theorem 3.1]; succes-
sive approximations [9, Theorem I]; and straight-forward integration [16, Theorem 2], [24,
Corollary 4(a)]. We point out that, even if ‖A‖H∞

2
> 0 is arbitrarily small, some solutions of

(1) may be unbounded. Any coefficient condition A ∈ H∞
α for 0 < α < 2 implies bounded-

ness of all solutions of (1) by [20, Theorem 4.3(1)]. For more involved growth estimates in
the case of slowly growing solutions, see [12,14].

The difficulty in the converse assertion (iii) ⇒ (i) lies in the fact that the assumption con-
cerns all solutions. The existence of one non-trivial slowly growing solution is not sufficient,
as f (z) = exp(−(1 + z)/(1 − z)) is a bounded solution of (1) for A(z) = −4z/(1 − z)4,
z ∈ D. Two classical methods to attack problems of this type are the Bank-Laine approach
and arguments based on the Schwarzian derivative. In the former case, let E = f1 f2 denote
the product of two linearly independent solutions of (1) for A ∈ Hol(D). By [27, pp. 76–77],

4A =
(
E ′

E

)2

−
(
W ( f1, f2)

E

)2

− 2
E ′′

E
.

The Bank-Laine representation is usually used in conjunction with estimates that appear in
Wiman-Valiron and Nevanlinna theories. The latter method is based on [27, Theorem 6.1]: if
f1, f2 are linearly independent solutions of (1) for A ∈ Hol(D), then w = f1/ f2 is a locally
univalent meromorphic function in D such that the Schwarzian derivative

Sw =
(

w′′

w′

)′
− 1

2

(
w′′

w′

)2

is not only analytic inD but also satisfies Sw = 2A. Both approaches represent the coefficient
function A in terms of the linearly independent solutions f1, f2, and are indispensable tools
in the case of fast growing solutions (and also in oscillation theory). However, if all solutions
are slowly growing functions in D, then neither of these techniques seem to be sufficiently
delicate to produce sharp growth estimates for the coefficient A.
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2 Results

Many of the following results are converse growth estimates as theymeasure the growth of the
coefficient in terms of solutions. We begin with studying equations with bounded solutions.
The preliminary results in Sect. 2.1 not only set the stage for forthcoming findings but also
provide a sharpness discussion for [12,44]. The significant part of this article is devoted to the
study of the subharmonic auxiliary function u = − log ( f1/ f2)# where f1, f2 are linearly
independent solutions of (1). This approach leads to several new characterizations which are,
in essence, based on identities obtained in Sect. 2.2. Our intention is to compare properties
of u to the coefficient A, to the quotient f1/ f2 and to any non-trivial solution of (1). Results
concerning equations with bounded solutions have natural counterparts in the setting of the
Nevanlinna class, which are considered in Sect. 2.4. These results depend on recent advances
concerning Nevanlinna interpolating sequences. Finally, in Sect. 2.6, we show that fixed
points can be prescribed for a solution of (1) in such a way that all solutions remain bounded.

2.1 Bounded solutions

The following result indicates that the implication (iii) ⇒ (i), mentioned in the Introduction,
fails to be true.

Theorem 1 Consider the differential equation (1) in D.

(i) There exists A ∈ Hol(D)\H∞
2 such that all solutions of (1) are bounded.

(ii) Let 0 < p < ∞. There exists A ∈ Hol(D)\H∞
2 such that all solutions of (1) belong to

H∞
p while one of the solutions is non-normal.

The class of normal functions consists of those meromorphic functions for which
supz∈D w#(z)(1 − |z|2) < ∞, where w# = |w′|/(1 + |w|2) is the spherical derivative.
A function w meromorphic in D is normal if and only if

{w ◦ ϕ : ϕ conformal automorphism of D}
is a normal family in D in the sense of Montel [30]. We consider the normality of solutions
of (1) as well as the normality of the quotient of two linearly independent solutions. If
A ∈ H∞

2 , then normal solutions of (1) are described by [17, Proposition 7], and the case
when the quotient is normal will be characterized in Sect. 2.5. Note that the coefficient
condition A ∈ H∞

2 allows non-normal solutions by [10, Theorem 3] and [11, Theorem 1];
and even the normality of all solutions is not sufficient for A ∈ H∞

2 by Theorem 1(i) above.
If f1, f2 ∈ H∞ are linearly independent solutions of (1) for A ∈ Hol(D), then A ∈ H∞

3
by a result of Steinmetz [44, p. 130]. Theorem 1(i) shows that this result cannot be improved
to A ∈ H∞

2 . The intermediate conclusion A ∈ H∞
α for α = 5/2 has been obtained in

[12, Theorem 6] under the weaker assumption f1, f2 ∈ B, while the question of finding the
best possible α remains open. Here B is the Bloch space, which contains f ∈ Hol(D) for
which ‖ f ‖B = ‖ f ′‖H∞

1
< ∞. The desired conclusion A ∈ H∞

2 has been obtained in [12,
Theorem 7] under the additional assumption inf z∈D(| f1(z)| + | f2(z)|) > 0. We proceed to
state two generalizations in this respect. Theorem 15 in Sect. 4 shows that it is not necessary to
take the infimumover thewhole unit discwhile Theorem2 below implies thatwemay take the
infimum of a function which is significantly larger than | f1| + | f2|. The latter generalization
is based on having specific information about the structure of the ideal IH∞( f1, f2) generated
by the solutions f1, f2 ∈ H∞.
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422 J. Gröhn

A positive Borel measure μ on D is called a Carleson measure, if for fixed 0 < p < ∞
there exists C = C(p) with 0 < C < ∞ such that

∫

D

| f (z)|p dμ(z) ≤ C lim
r→1−

1

2π

∫ 2π

0
| f (reiθ )|p dθ = C ‖ f ‖p

H p , f ∈ Hol(D).

Here H p is the standard Hardy space. By [8, Lemma 3.3, p. 231], such measures μ are char-
acterized by supa∈D

∫
D

|ϕ′
a(z)| dμ(z) < ∞, where ϕa(z) = (ζ − z)/(1− az) is a conformal

automorphism of D which coincides with its own inverse. Since |A|2 is subharmonic for
A ∈ Hol(D), we deduce A ∈ H∞

2 whenever |A(z)|2(1−|z|2)3 dm(z) is a Carleson measure.
This Carleson measure condition appears several times in the literature: in connection to
solutions of (1) with uniformly separated zeros [11,15] and in relation to solutions in Hardy
spaces [14,17].

Theorem 2 If f1, f2 ∈ H∞ are linearly independent solutions of (1) for A ∈ Hol(D) such
that

inf
a∈D

n∑

k=0

(∣
∣( f1 ◦ ϕa)

(k)(0)
∣
∣ + ∣

∣( f2 ◦ ϕa)
(k)(0)

∣
∣
)

> 0 (2)

for some n ∈ N ∪ {0}, then |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure.

Let f1, f2 ∈ H∞ be linearly independent solutions of (1) for A ∈ Hol(D). In [44],
Steinmetz proved ( f1/ f2)# ∈ L∞

2 and asked whether this can be improved to ( f1/ f2)# ∈
L∞
1 ? It turns out that Steinmetz’s result is best possible up to a multiplicative constant. Recall

that the sequence {zn} ⊂ D is said to be uniformly separated, if it is separated in the hyperbolic
metric and

∑
n(1− |zn |)δzn is a Carleson measure. Here δzn is the Dirac measure with point

mass at zn ∈ D.

Theorem 3 Let Λ ⊂ D be uniformly separated. Then, there exists A ∈ Hol(D) such that
|A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure and (1) admits two linearly independent
solutions f1, f2 ∈ H∞ such that inf zn∈Λ ( f1/ f2)#(zn)(1 − |zn |2)2 > 0.

In [7, Theorem 1.1], Fournier, Kraus and Roth obtain sharp estimates for w#(0), where
w is a meromorphic function in D with spherical derivative uniformly bounded away from
zero.

Instead of considering prescribed zeros of solutions—which is the approach in Theorem 3,
among many other results—we may also consider solutions which satisfy an interpolation
problem natural for bounded analytic functions. Such result has been the objective of recent
research. Our solution to this problem is based on combining classical interpolation results
by Earl and Øyma.

Theorem 4 Let {zn} ⊂ D be uniformly separated and {wn} ⊂ C bounded. Then, there exists
A ∈ Hol(D) such that |A(z)|2(1− |z|2)3 dm(z) is a Carleson measure (1) admits a solution
f ∈ H∞ which satisfies f (zn) = wn for all n, while all solutions of (1) are bounded.

In Sect. 5 we consider oscillation of solutions of such differential equations whose solu-
tions are bounded, and concentrate on the zeros and critical points.
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2.2 Identities

We take a short side-track to consider properties of the differential equation (1) assuming
that the coefficient A is merely analytic in D. Suppose for a moment that f is a zero-free
solution of (1). In this case log f ∈ Hol(D) and

A = − f ′′/ f = −(log f )′′ − (
(log f )′

)2
. (3)

Our next objective is to obtain a similar representation which takes account on both linearly
independent solutions and allows them to have zeros in D. Let

∂ f = 1

2

(
∂ f

∂x
− i

∂ f

∂ y

)

, ∂ f = 1

2

(
∂ f

∂x
+ i

∂ f

∂ y

)

,

denote the complex partial derivatives of f . Note that ∂ f and ∂ f exist as long as ∂ f /∂x and
∂ f /∂ y exist, and then the gradient ∇ f = (∂ f /∂x, ∂ f /∂ y) satisfies |∇ f |2 = 2(|∂ f |2 +
|∂ f |2). If f has continuous second-order derivatives (denoted by f ∈ C2), then the Laplacian
Δ f can be written in the form Δ f = 4 ∂∂ f = 4 ∂∂ f .

We have been unable to find a reference for the following result, which is known for
experts in another form. We will present a short proof of Theorem 5 for the convenience of
the reader.

Theorem 5 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Then,

(i) Δu = 4 e−2u;
(ii) Δu + |∇u|2 = e−uΔeu;
(iii) A = −∂2u − (∂u)2.

Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D). The function u =
− log ( f1/ f2)# has several interesting properties, which make up the bulk of this paper.
The underlying reason for the relevance of u is its connection to regular conformal metrics
of constant curvature. Actually, u is closely related to the general solution of Liouville’s
equation in the case of D. This point of view is elaborated further in Remark 1, Sect. 6.
For the classical representation of regular conformal metrics of constant curvature in terms
of analytic functions, see [31]. Nevertheless, we choose to proceed without the notation of
conformal metrics.

Theorem 5(i) implies Δu = 4 (( f1/ f2)#)2 ≥ 0. Therefore u is subharmonic, and
r �→ (1/(2π))

∫ 2π
0 u(reiθ ) dθ is a non-decreasing and convex function of log r . Theo-

rem 5(iii) is a counterpart of (3). As W ( f1, f2) is a non-zero complex constant, ∂u =
( f ′

1 f 1 + f ′
2 f 2)/(| f1|2 + | f2|2) is finite-valued throughout D.

2.3 Blaschke-oscillatory equations

The differential equation (1) is said to be Blaschke-oscillatory, if A ∈ Hol(D) and the zero-
sequence {zn} of any non-trivial solution of (1) satisfies the Blaschke condition

∑
n(1 −

|zn |) < ∞. Such differential equations are characterized by the fact that the quotient of
any two linearly independent solutions belongs to the Nevanlinna class [22, Lemma 3]. The
Nevanlinna classN consists of those meromorphic functionsw inD such that

∫
D

w#(z)2(1−
|z|2) dm(z) < ∞; see Sect. 7. A meromorphic functionw is said to be of uniformly bounded
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424 J. Gröhn

characteristic, that is w ∈ UBC, if w#(z)2(1 − |z|2) dm(z) is a Carleson measure. We refer
to [38, Theorem 3] for more details.

Let u 
≡ −∞ be a subharmonic function in D. A harmonic function h is said to be
a harmonic majorant for u if u ≤ h in D. The least harmonic majorant û is a harmonic
majorant which is point-wise smaller than any other harmonic majorant for u. If f ∈ Hol(D),
then it is well-known that f ∈ N if and only if log+ | f | admits a harmonic majorant, while
f ∈ H p if and only if | f |p has a harmonic majorant.

Theorem 6 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Then,

(i) f1/ f2 ∈ N if and only if u has a harmonic majorant;
(ii) f1/ f2 ∈ N and is normal if and only if ua(z) = u(a + (1− |a|)z) − u(a), a ∈ D, have

harmonic majorants with supa∈D ûa(0) < ∞;
(iii) f1/ f2 ∈ UBC if and only if supa∈D(û(a) − u(a)) < ∞.

Moreover,

(iv) all solutions of (1) belong to N if and only if u has a positive harmonic majorant;
(v) all solutions of (1) belong to H p, for 0 < p < ∞, if and only if exp( p

2 u) has a harmonic
majorant;

(vi) all solutions of (1) belong to H∞ if and only if exp(u) ∈ L∞.

Recall that the following conditions are equivalent for any subharmonic function u in the
unit disc (see [8, p. 66] for more details): (a) u has a positive harmonic majorant; (b) the sub-
harmonic function u+ = max{u, 0} has a harmonic majorant; (c) u is majorized by a Poisson
integral of a finite measure on ∂D. In Theorem 6, it is possible that u admits a harmonic majo-
rant which takes negative values, since there are Blaschke-oscillatory equations (1) whose
non-trivial solutions lie outsideN [22, Section 4.3]. Although the items (iv)–(vi) are imme-
diate, their assertions raise an interesting observation. Since we may describe the behavior of
all solutions of (1) in terms of f1/ f2, no essential information is reduced in this quotient. In
Remark 2, Sect. 7, we illustrate that the growth of solutions of Blaschke-oscillatory equations
is severely restricted.

There are normal functionswhich do not belong toN . Classical example of such a function
is the elliptic modular function [30, p. 57]. If f1, f2 are linearly independent solutions of
(1) for A ∈ Hol(D), then f1/ f2 ∈ N provided that f1/ f2 is normal and the set where
| f1|2 + | f2|2 takes small values, is not too large.

Proposition 1 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D). The
differential equation (1) is Blaschke-oscillatory if f1/ f2 is normal and there exists0 < δ < ∞
such that

∫
{z∈D : | f1(z)|2+| f2(z)|2<δ} dm(z)/(1 − |z|2) < ∞.

2.4 Nevanlinna interpolating sequences

By recent advances concerning free interpolation in N [18,19,32], there is an astound-
ing resemblance between uniformly separated sequences and Nevanlinna interpolating
sequences. Therefore the following results can be interpreted as Nevanlinna analogues of
ones that are either presented in Sect. 2.1 or already appear in the literature.

A sequence Λ ⊂ D is called (free) interpolating forN if the trace ofN on Λ is ideal [18,
p. 3]. That is, for any g ∈ N and for any bounded sequence {wn} ∈ C, there exists f ∈ N
such that f (zn) = wn g(zn) for all zn ∈ Λ. The collection of (free) interpolating sequences
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Converse growth estimates for ODEs… 425

for N is denoted by IntN . Note that Λ ∈ IntN if and only if the trace N | Λ contains all
bounded sequences [18, Remark 1.1], and in particular, all sequences in IntN satisfy the
Blaschke condition.

Let Har+(D) denote the space of positive harmonic functions inD. By [18, Theorem 1.2],
Λ ∈ IntN if and only if there exists h ∈ Har+(D) such that

∏

zk∈Λ\{zn}

∣
∣
∣
∣
zk − zn
1 − zk zn

∣
∣
∣
∣ ≥ e−h(zn), zn ∈ Λ. (4)

The reader is invited to compare (4) to the classical description (20) of uniformly separated
sequences, which are precisely the interpolating sequences for H∞.

Theorem 7 Let Λ ∈ IntN . Then, there exist h ∈ Har+(D) and A ∈ Hol(D) such that
|A(z)|(1− |z|2)2 ≤ eh(z), z ∈ D, and (1) admits a non-trivial solution whose zero-sequence
is Λ.

By [18,Corollary 1.9], Theorem7allows us the prescribe any separatedBlaschke sequence
to be a zero-sequence of a non-trivial solution of (1). Theorem 7 should be compared to
[11, Theorem 1], according to which any separated sequence of sufficiently small upper
uniform density can appear as a subset of the zero-sequence of a non-trivial solution of
(1) under the coefficient condition A ∈ H∞

2 . The coefficient condition in Theorem 7 is of
different nature as it controls the growth in an average sense. On one hand, the restriction
|A(z)|(1 − |z|2)2 ≤ eh(z), z ∈ D and h ∈ Har+(D), passes through functions such as
A(z) = (e/(1 − z))k for any 0 < k < ∞. On the other hand, it implies that there exists
0 < C < ∞ such that

∫ 2π

0
log+ |A(reiθ )| dθ ≤ 2 log+ 1

1 − r
+ C, r → 1−, (5)

which is an estimate that cannot be improved even if A ∈ H∞
2 . Estimate (5) reveals that such

coefficient A lies close to N as it is non-admissible.
The following result is an analogue of [10, Theorem 5], and is related to the classical 0, 1-

interpolation result due toCarleson [2, Theorem2]. TheNevanlinna counterpart of Carleson’s
result is presented in Sect. 9.

Theorem 8 Assume that α, β ∈ C\{0} are distinct values. Let {zn}, {ζn} be any Blaschke
sequences, and let B{zn} and B{ζn} be the corresponding Blaschke products. If there exists
h ∈ Har+(D) such that

∣
∣B{zn}(z)

∣
∣ + ∣

∣B{ζn}(z)
∣
∣ ≥ e−h(z), z ∈ D, (6)

then there exists A ∈ Hol(D) and H ∈ Har+(D) such that |A(z)|(1− |z|2)2 ≤ eH(z), z ∈ D,
and (1) admits a solution f with f (zn) = α and f (ζn) = β for all n.

We turn to study differential equations with solutions in N . It turns out that Steinmetz’s
approach from [44, Theorem, p. 129] applies with obvious changes.

Theorem 9 If f1, f2 ∈ N are linearly independent solutions of (1) for A ∈ Hol(D), then there
exists H ∈ Har+(D) such that |A(z)|(1−|z|2)3 ≤ eH(z) and ( f1/ f2)#(z)(1−|z|2)2 ≤ eH(z),
z ∈ D.

Wemay also askwhen the stronger estimate |A(z)|(1−|z|2)2 ≤ eH(z), z ∈ D, is obtained?
The following result is analogous to Theorem2; generalization of the assumption (7) to higher
derivatives is left to the interested reader.
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426 J. Gröhn

Theorem 10 If f1, f2 ∈ N are linearly independent solutions of (1) for A ∈ Hol(D) such
that

∑

j=1,2

(
| f j (z)| + | f ′

j (z)|(1 − |z|2)
)

≥ e−h(z), z ∈ D, (7)

for h ∈ Har+(D), then there exists H ∈ Har+(D) such that |A(z)|(1−|z|2)2 ≤ eH(z), z ∈ D.

The sequence Λ ⊂ D is called h-separated, if there exists h ∈ Har+(D) such that
the pseudo-hyperbolic discs Δp(zn, e−h(zn)), zn ∈ Λ, are pairwise disjoint. Recall that
the pseudo-hyperbolic disc of radius 0 < δ < 1, centered at z ∈ D, is given by
Δp(z, δ) = {w ∈ D : �p(z, w) < δ} where �p(z, w) = |w − z|/|1 − wz| is the pseudo-
hyperbolic distance between z, w ∈ D. The following result corresponds to Schwarz’s
findings [43, Theorems 3-4] in the case A ∈ H∞

2 .

Proposition 2 Suppose that there exist A ∈ Hol(D) and H ∈ Har+(D) such that |A(z)|(1−
|z|2)2 ≤ eH(z), z ∈ D. Then, there exists h ∈ Har+(D) such that the zero-sequence of any
non-trivial solution of (1) is h-separated.

Conversely, suppose that A ∈ Hol(D) and there exists h ∈ Har+(D) such that the zero-
sequence of any non-trivial solution of (1) is h-separated. Then, there exists H ∈ Har+(D)

such that |A(z)|(1 − |z|2)2 ≤ eH(z), z ∈ D.

2.5 Point-wise growth restrictions

A function ω : D → (0,∞) is said to be a weight if it is bounded and continuous. The
weight ω is radial if ω(z) = ω(|z|) for all z ∈ D, and is called regular if it is radial and for
each 0 ≤ s < 1 there exists a constant C = C(s, ω) with 1 ≤ C < ∞ such that

C−1 ω(t) ≤ ω(r) ≤ C ω(t), 0 ≤ r ≤ t ≤ r + s(1 − r) < 1. (8)

For a general reference for regular weights, see [39, Chapter 1]. For a weight ω, let L∞
ω

denote the growth space which consists of functions f : D → C for which ‖ f ‖L∞
ω

=
supz∈D | f (z)| ω(z) < ∞, and denote H∞

ω = L∞
ω ∩ Hol(D).

Theorem 11 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Suppose that ω is a regular weight which satisfies supz∈D ω(z)/(1 −
|z|) < ∞. Then, |∇u| ∈ L∞

ω if and only if A ∈ H∞
ω2 and ( f1/ f2)# ∈ L∞

ω .

The following result follows directly from Theorem 11 with ω(z) = 1 − |z|2, z ∈ D.
This corollary concerns those differential equations (1) which have both desired properties
mentioned in Sect. 2.1: A ∈ H∞

2 and ( f1/ f2)# ∈ L∞
1 .

Corollary 1 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Then, |∇u| ∈ L∞

1 if and only if A ∈ H∞
2 and f1/ f2 is normal.

Corollary 1 can also be deduced by combining several results in the literature. The first part
follows from [1, Theorem 6], while the second part can be concluded from [48, Theorem 1]
and [48, Corollary to Theorem 2]. Note that f1/ f2 is uniformly locally univalent provided
that A ∈ H∞

2 , which can be seen by applying Nehari’s univalency criterion [34, Theorem I]
locally.
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Corollary 2 Let f1, f2 be linearly independent solutions of (1) for A ∈ H∞
ω2 , and define

u = − log ( f1/ f2)#. Suppose that ω is a regular weight which satisfies supz∈D ω(z)/(1 −
|z|) < ∞. Then, the following statements are equivalent:

(i) |∇u| ∈ L∞
ω ;

(ii) ( f1/ f2)# ∈ L∞
ω ;

(iii) (| f ′
1| + | f ′

2|)/(| f1| + | f2|) ∈ L∞
ω ;

(iv) Δu ∈ L∞
ω2 .

If ω(z) = 1 − |z|2, z ∈ D, then Corollary 2 provides a complete description of those
differential equations (1) for A ∈ H∞

2 , where the quotient of two linearly independent
solutions is normal. Such characterizations are important in oscillation theory. Since normal
functions are Lipschitz-continuous, as mappings fromD equipped with the hyperbolic metric
to the Riemann sphere equipped with the chordal metric, the normality of f1/ f2 implies
that its the zeros and poles (which correspond to the zeros of f1 and f2, respectively) are
separated in the hyperbolic metric. Finally, we point out that Corollary 2(iii) does not extend
to higher derivatives, since there are differential equations (1) with A ∈ Hol(D) and |A| =
(| f ′′

1 | + | f ′′
2 |)/(| f1| + | f2|) ∈ L∞

2 such that the quotient f1/ f2 of linearly independent
solutions f1, f2 is non-normal; see [28] and Theorem 3.

2.6 Prescribed fixed points

The point z0 ∈ D is said to be a fixed point of f ∈ Hol(D) if f (z0) = z0. There are a lot of
known results according to which zeros and critical points (i.e., zeros of the derivative) can
be prescribed for solutions of (1) for A ∈ Hol(D). See [11,13,21,22] among many others.
For example, the proof of Theorem 3 depends on such an argument. It turns out that fixed
points can be prescribed for a solution of (1) under the coefficient condition A ∈ Hol(D) in
such a way that all solutions of the differential equation remain bounded. Such differential
equations were studied in detail in Sect. 2.1.

Theorem 12 Let Λ ⊂ D be a Blaschke sequence, and let 0 < ε < 1. Then, there exists
a coefficient A ∈ Hol(D) such that |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure; the
differential equation (1) admits a solution f , which satisfies ‖ f ‖H∞ < 1 + ε and has fixed
points {0} ∪ Λ; all solutions of (1) are bounded.

If we assume that prescribed fixed points are uniformly separated, then we can go further
and dictate their type. In this paper, we make distinction between three different types:
the fixed point z0 ∈ D of f ∈ Hol(D) is said to be attractive if | f ′(z0)| < 1, neutral if
| f ′(z0)| = 1, and repulsive if | f ′(z0)| > 1.

Theorem 13 Let Λ ⊂ D\{0} be uniformly separated. Then, there exists a coefficient A ∈
Hol(D) such that |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure; the differential equation
(1) admits a bounded solution for which every point in Λ is a fixed point of prescribed type;
all solutions of (1) are bounded.

Theorem 13 has a natural counterpart in the setting of Nevanlinna interpolating sequences.
Note that Theorem 12 is valid for sequences Λ ∈ IntN as it is.

Theorem 14 Let Λ ⊂ D\{0} and Λ ∈ IntN . Then, there exists a coefficient A ∈ Hol(D)

and H ∈ Har+(D) such that |A(z)|2(1 − |z|2)2 ≤ eH(z), z ∈ D, and (1) admits a solution
for which every point in Λ is a fixed point of prescribed type.
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3 Proof of Theorem 1

The following argument is based on concrete construction.

Proof (of Theorem 1) (i) Let 0 < p < 1/2, and

f1(z) = exp

(

i · p

2π

(

log
2i

1 − z

)2 )

, z ∈ D.

Note that the function z �→ 2i/(1 − z) maps D onto {z ∈ C : Im z > 1}. Since

Re

(

i · p

2π

(

log
2i

1 − z

)2 )

= − p

π
log

2

|1 − z| arg
2i

1 − z
, z ∈ D,

we deduce 2−p(1 − |z|)p ≤ | f1(z)| ≤ 1 for z ∈ D. Since f1 is zero-free, we conclude
A = − f ′′

1 / f1 ∈ Hol(D). Moreover, A /∈ H∞
2 because

A(z) = p
p
(
log 2i

1−z

)2 − iπ log 2i
1−z − iπ

π2(1 − z)2
, z ∈ D.

It remains to show that all solutions of (1) are bounded. Note that

f2(z) = f1(z)
∫ z

0

1

f1(ζ )2
dζ, z ∈ D, (9)

is a bounded solution of (1), and f2 is linearly independent to f1. Here we integrate along the
straight line segment. This completes the proof of (i), since every solution of (1) is a linear
combination of f1, f2.

(ii) Let 0 < p < 1/2, and

f1(z) = exp

(

i · p

π

(

log
1 + z

1 − z

)2 )

, z ∈ D.

Similar function has been utilized in [29, pp. 142–143]. We point out that f1 has asymptotic
values 0 and∞ at z = 1, and hence f1 is not normal. This fact alone implies that the zero-free
function f1 cannot be a solution of (1) for A ∈ H∞

2 ; see [17, Proposition 7]. As in the part
(i), we deduce

(
1 − |z|
1 + |z|

)p

≤ | f1(z)| ≤
(
1 + |z|
1 − |z|

)p

, z ∈ D. (10)

Since f1 is zero-free, we conclude A = − f ′′
1 / f1 ∈ Hol(D). Moreover, A /∈ H∞

2 as

A(z) = 8p
2p

(
log 1+z

1−z

)2 − iπ z log 1+z
1−z − iπ

π2(1 − z2)2
, z ∈ D.

It remains to show that all solutions of (1) belong to H∞
p . On one hand, it is clear that

f1 ∈ H∞
p by (10). On the other hand, (9) is a solution of (1) which is linearly independent to

f1. Since z �→ ∫ z
0 dζ/ f1(ζ )2 is bounded in D, we have f2 ∈ H∞

p . This completes the proof
of Theorem 1. ��
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4 Proof of Theorem 2

We offer two different proofs for Theorem 2. We begin by considering a more general result
which implies Theorem 2 as a corollary. The following lemma indicates that any analytic
function, which satisfies H∞

α -type estimate outside a small exceptional set, actually belongs
to H∞

α .

Lemma 1 Let f ∈ Hol(D) and 0 ≤ α < ∞. Then f ∈ H∞
α , if there exist pairwise disjoint

discs Δp(zn, δ), zn ∈ D and 0 < δ < 1, such that

sup

{

| f (z)|(1 − |z|2)α : z ∈ D\
⋃

n

Δp(zn, δ)

}

< ∞. (11)

Proof Let z ∈ Δp(zn, δ) for some n, and let S be the supremum in (11). By the maximum
modulus principle, there exists ζ ∈ ∂Δp(zn, δ) such that | f (ζ )| = max

{| f (ξ)| : ξ ∈
Δp(zn, δ)

}
. By the standard estimates, there exists a constant C = C(δ) with 0 < C < ∞

such that

| f (z)|(1 − |z|2)α ≤ | f (ζ )|(1 − |z|2)α ≤ Cα| f (ζ )|(1 − |ζ |2)α ≤ CαS.

The assertion f ∈ H∞
α follows. ��

Recall that the space BMOA consists of those functions in H2 whose boundary values
have bounded mean oscillation on ∂D, or equivalently, of those functions f ∈ Hol(D) for
which | f ′(z)|2(1−|z|2) dm(z) is a Carlesonmeasure.Wewrite ‖ f ‖2BMOA = supa∈D ‖ fa‖2H2

where fa(z) = f (ϕa(z)) − f (a) for a, z ∈ D.

Theorem 15 If f1, f2 ∈ B are linearly independent solutions of (1) for A ∈ Hol(D), and
there exist pairwise disjoint discs Δp(zn, δ), zn ∈ D and 0 < δ < 1, with

inf

{

| f1(z)| + | f2(z)| : z ∈ D\
⋃

n

Δp(zn, δ)

}

> 0, (12)

then A ∈ H∞
2 . If f1, f2 ∈ BMOA and the sequence {zn} ⊂ D in (12) is uniformly separated,

then |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure.

The first part of Theorem 15 improves [12, Theorem 7] by Example 1(ii) below. When
comparing Theorem 15 to Theorem 2 note that in the former result it is not required that
f1, f2 ∈ H∞.

Proof (of Theorem 15) Let f1, f2 ∈ B be linearly independent solutions of (1) and suppose
that (12) holds. Denote Ω = ⋃

n Δp(zn, δ). Since

|A| = | f1| + | f2|
| f1| + | f2| |A| = | f ′′

1 | + | f ′′
2 |

| f1| + | f2| , (13)

we deduce

sup
z∈D\Ω

|A(z)|(1 − |z|2)2 ≤ ‖ f ′′
1 ‖H∞

2
+ ‖ f ′′

2 ‖H∞
2

inf z∈D\Ω
(| f1(z)| + | f2(z)|

) .

Since A ∈ Hol(D), we conclude A ∈ H∞
2 by Lemma 1. This completes the proof of the first

part of Theorem 15.
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If f1, f2 ∈ BMOA and {zn} ⊂ D in (12) is uniformly separated, then we write

sup
a∈D

∫

D

|A(z)|2(1 − |z|2)3 1 − |a|2
|1 − az|2 dm(z) = I1 + I2,

where I1, I2 are defined as below. By (13) and [42, Theorem 4.2.1], we deduce

I1 = sup
a∈D

∫

D\Ω
|A(z)|2(1 − |z|2)3 1 − |a|2

|1 − az|2 dm(z)

� sup
a∈D

∫

D

(| f ′′
1 (z)|2 + | f ′′

2 (z)|2)(1 − |z|2)3 1 − |a|2
|1 − az|2 dm(z) < ∞. (14)

Actually, (14) is bounded above by a constant multiple of ‖ f1‖2BMOA + ‖ f2‖2BMOA. Since
A ∈ H∞

2 by the first part of the proof, standard estimates yield

I2 = sup
a∈D

∑

n

∫

Δp(zn ,δ)
|A(z)|2(1 − |z|2)3 1 − |a|2

|1 − az|2 dm(z)

� ‖A‖2H∞
2

sup
a∈D

∑

n

(1 − |a|2)(1 − |zn |2)
|1 − azn |2 < ∞. (15)

The sum in (15) is finite by the uniform separation of {zn}. This completes the proof of
Theorem 15. ��

If {zn} ⊂ D is a Blaschke sequence, then the Blaschke product

B(z) = B{zn}(z) =
∏

n

|zn |
zn

zn − z

1 − znz
, z ∈ D,

is a bounded analytic function which vanishes precisely on {zn}. Let f1, f2 ∈ H∞. By [45,
Theorem 3], the ideal

JH∞( f1, f2) =
{
f ∈ H∞ : ∃ c = c( f ) > 0 such that | f | ≤ c

(| f1| + | f2|
)}

contains aBlaschke productwhose zeros form afinite union of uniformly separated sequences
if and only if (2) holds. If B is such a Blaschke product, then there exists a constant 0 < δ < 1
and a subsequence {z′n}of zeros of B such that the discsΔp(z′n, δ),n ∈ N, are pairwise disjoint
and

inf

{

|B(z)| : z ∈ D\
⋃

n

Δp(z
′
n, δ)

}

> 0. (16)

This follows from [26, Lemmas 1 and 3]; see also [35, Lemma 1]. Therefore Theorem 15
gives an immediate proof for Theorem 2. We also present another proof which, in addition,
provides a concrete representation for the coefficient A.

Proof (of Theorem 2) By (2) and [45, Theorem 3], the ideal IH∞( f1, f2) contains a Blaschke
product B whose zeros form a finite union of uniformly separated sequences. This is equiva-
lent to the fact that there exist functions g1, g2 ∈ H∞ such that f1g1+ f2g2 = B.Differentiate
this identity twice, and then apply (1) to f ′′

1 and f ′′
2 , to obtain

A = 2( f ′
1g

′
1 + f ′

2g
′
2) + f1g′′

1 + f2g′′
2 − B ′′

B
. (17)
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As in the proof of Theorem 15, by taking account on (16), we conclude that |A(z)|2(1 −
|z|2)3 dm(z) is a Carleson measure. ��

One of the objectives in Sect. 2.1 was to generalize a result according to which A ∈
H∞
2 if f1, f2 ∈ B are linearly independent solutions of (1) for A ∈ Hol(D) such that

inf z∈D(| f1(z)| + | f2(z)|) > 0. The Cauchy-Schwarz inequality gives

|W ( f1, f2)|2 ≤ (| f1|2 + | f2|2) (| f ′
1|2 + | f ′

2|2). (18)

Since f ′
1, f ′

2 ∈ H∞
1 , we deduce | f1(z)| + | f2(z)| � 1 − |z|2, z ∈ D, without using any

additional assumptions.

Example 1 Let f1, f2 ∈ H∞ be linearly independent solutions of (1) for A ∈ H∞
2 . This

example concerns different situations that may happen.

(i) There are a lot of examples in which inf z∈D(| f1(z)| + | f2(z)|) > 0. See the discussion
after the proof of [11, Theorem 2], for example.

(ii) The proof of Theorem 3 below produces an example, where the condition (12) holds;
take {zn} as in Theorem 3 and note that | f1| + | f2| ≥ | f1|, where f1 has the desired
property. At the same time, | f1(zn)| + | f2(zn)| � 1 − |zn |2 as n → ∞. Not only
inf z∈D(| f1(z)| + | f2(z)|) > 0 fails to be true but also it breaks down in the worst
possible way.

(iii) Let f1(z) = (1 − z2)1/2 and f2(z) = (1 − z2)1/2 log((1 + z)/(1 − z)), z ∈ D. These
functions are linearly independent solutions of (1) for the coefficient A(z) = 1/(1−z2)2,
z ∈ D, which evidently satisfies A ∈ H∞

2 . Since both solutions have radial limit zero
along the positive real axis, the condition (12) cannot hold for any pairwise disjoint
pseudo-hyperbolic discs.

5 Proofs of Theorems 3 and 4

The first part of the proof of Theorem 3 follows directly from that of [11, Corollary 3]. The
new contribution lies in the fact that the differential equation in question admits only bounded
solutions.

Proof (of Theorem 3) Let B = BΛ be the Blaschke product corresponding to the
uniformly separated sequence Λ = {zn}. By (20) and Cauchy’s integral formula,
supzn∈Λ |B ′′(zn)|/|B ′(zn)|2 < ∞. Let f1 = BeBk , where k ∈ H∞ is a solution of the
interpolation problem

k(zn) = − B ′′(zn)
2 B ′(zn)2

, zn ∈ Λ.

As in the proof of Theorem 15, the coefficient A = − f ′′
1 / f1 ∈ Hol(D) induces a Carleson

measure |A(z)|2(1 − |z|2)3 dm(z). Now, f1 is a solution of (1) which has precisely the
prescribed zeros Λ.

Since Λ is uniformly separated, there exists a constant 0 < δ < 1 such that Ω =⋃
zn∈Λ Δp(zn, δ) is a union of pairwise disjoint pseudo-hyperbolic discs. Fix any α ∈ D\Ω ,

and define the meromorphic function f2 by

f2(z) = f1(z)
∫ z

α

1

f1(ζ )2
dζ, z ∈ D. (19)

123



432 J. Gröhn

Choose the path of integration by the following rules. If z ∈ D\Ω , then the whole path lies
in D\Ω . If z ∈ Δp(zn, δ) for some zn ∈ Λ, then the path stays in (D\Ω)∪Δp(zn, δ). Then,
each point z ∈ D can be reached by a path which satisfies these properties and is also of
uniformly bounded Euclidean length. The following argument is standard. In a sufficiently
small pseudo-hyperbolic neighborhood of α, f2 represents an analytic function such that
f1 f ′

2− f ′
1 f2 is identically one. As a solution of (1) function f2 admits an analytic continuation

to D, and this continuation agrees with the representation (19).
There exists a constant μ = μ(Λ) such that |B(ζ )| ≥ μ > 0 for ζ ∈ D\Ω; see [4,

Theorem 1] for example. We deduce

| f2(z)| ≤ |B(z)|e|B(z)||k(z)|
∫ z

α

|dζ |
|B(ζ )|2e−2|B(ζ )||k(ζ )| ≤ e3‖k‖H∞

μ2

∫ z

α

|dζ |,

for z ∈ D\Ω . Lemma 1 implies that f2 ∈ H∞. Since W ( f1, f2) = 1, we obtain

( f1/ f2)
#(zn) (1 − |zn |2)2 = 1

| f2(zn)|2 (1 − |zn |2)2 = | f ′
1(zn)|2(1 − |zn |2)2

= |B ′(zn)|2(1 − |zn |2)2, zn ∈ Λ.

This completes the proof as Λ is uniformly separated. ��
The proof of Theorem 4 depends on a supporting result, which is considered next. Suppose

that f ∈ Hol(D), f : D → D, f (0) = 0 and | f ′(0)| ≥ δ for some 0 < δ ≤ 1. By Cauchy’s
integral formula and Schwarz’s lemma,

| f ′(0)| − | f ′(z)| ≤ 12 |z|
(1 − |z|)2 , z ∈ D.

If 0 < η < 1 satisfies 12η/(1− η)2 < δ/2, then | f ′(z)| ≥ δ/2 for all |z| < η. The following
lemma is a conformally invariant version of this property.

Lemma 2 Suppose that f ∈ Hol(D) and f : D → D. Assume that there exists a sequence
Λ ⊂ D such that inf zn∈Λ | f ′(zn)|(1−|zn |2) ≥ δ > 0. If 0 < η < 1 satisfies 12η/(1−η)2 <

δ/2, then there exist a constant ν = ν(δ) such that

| f ′(z)|(1 − |z|2) ≥ ν > 0, z ∈
⋃

zn∈Λ

Δp(zn, η).

Proof Let zn ∈ Λ be fixed, and define gzn = ϕ f (zn) ◦ f ◦ ϕzn . Now gzn : D → D is analytic,
gzn (0) = 0, and

|g′
zn (0)| = ∣

∣ϕ′
f (zn)

(
f (zn)

)∣
∣ | f ′(zn)|(1 − |zn |2) ≥ | f ′(zn)|(1 − |zn |2) ≥ δ.

The property above implies

|g′
zn (z)| = ∣

∣ϕ′
f (zn)

(
f (ϕzn (z))

)∣
∣ · | f ′(ϕzn (z))| · |ϕ′

zn (z)| ≥ δ/2, |z| < η.

If we denote w = ϕzn (z), then |z| < η if and only if w ∈ Δp(zn, η). Consequently,

| f ′(w)|(1 − |w|2) ≥ δ

2
· 1 − |ϕzn (w)|2
1 − |ϕ f (zn)

(
f (w)

)|2
(
1 − | f (w)|2), w ∈ Δ(zn, η).

Since �p(w, zn) < η, we have �p( f (w), f (zn)) < η by Schwarz’s lemma. Therefore there
exists a constant δ� = δ�(δ, η) > 0 such that

| f ′(w)|(1 − |w|2) ≥ δ�
(
1 − | f (zn)|2

) ≥ δ�| f ′(zn)|(1 − |zn |2) ≥ δ�δ, w ∈ Δ(zn, η),
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by the Schwarz–Pick lemma. The claim follows for ν = δ�δ. ��

Proof (of Theorem 4) The proof is divided into two steps. The first step takes advantage of
two results concerning interpolation in H∞.
Construction of auxiliary functions. Let B = BΛ be the Blaschke product corresponding to
the uniformly separated sequence Λ = {zn}, and let {wn} be the bounded target sequence for
the desired interpolation. Consequently,

inf
zn∈Λ

|B ′(zn)|(1 − |zn |2) = inf
zn∈Λ

∏

zk∈Λ\{zn}

∣
∣
∣
∣
zk − zn
1 − zk zn

∣
∣
∣
∣ = δ > 0. (20)

Let 0 < η < 1 satisfy 12η/(1 − η)2 < δ/2. Then, in particular, η < δ/3. Earl’s
interpolation theorem [6, Theorem 2], applied with η instead of δ, shows that

{
h ∈ H∞ : h(zn) = wn for all zn ∈ Λ

}
(21)

can be solved by a constant multiple of a Blaschke product. More precisely, there exist
C = C(Λ, {wn}, η) ∈ C and a Blaschke product I = I (Λ, {wn}, η) such that

(i) h = C I solves the interpolation problem (21);
(ii) the zeros Λ� = {ζn} of I = I{ζn} satisfy ζn ∈ Δp(zn, η) for all n.

The standard estimates show that

inf
ζn∈Λ�

|I ′(ζn)|(1 − |ζn |2) = inf
ζn∈Λ�

∏

ζk∈Λ�\{ζn}

∣
∣
∣
∣

ζk − ζn

1 − ζ kζn

∣
∣
∣
∣ ≥ δ

3
> 0,

and therefore {ζn} is also uniformly separated.
By applying Lemma 2 to the Blaschke product B, there exists another constant ν such that

|B ′(ζn)|(1 − |ζn |2) ≥ ν > 0 for all ζn ∈ Λ�. According to Øyma’s interpolation theorem
[37, Theorem 1], there exists g ∈ H∞ such that

g(ζn) = − I ′′(ζn)
2 I ′(ζn) B ′(ζn)

, g′(ζn) = 0, ζn ∈ Λ�. (22)

Note that the target sequence for g is bounded by the obtained estimates.
Construction of the differential equation. Let f = C I eBg ∈ Hol(D), where C ∈ C and
I , B, g are functions as in the above construction. Clearly, f (zn) = wn for all zn ∈ Λ. The
zeros of f are precisely the points in Λ�, and they are pairwise pseudo-hyperbolically close
to the corresponding points in Λ by (ii). Since

f ′′(ζn) = CeB(ζn)g(ζn)
(
I ′′(ζn) + 2 I ′(ζn)B ′(ζn)g(ζn)

)
= 0, ζn ∈ Λ�,

the function

A = − f ′′

f
= − I ′′ + 2 I ′(Bg)′

I
− (

(Bg)′
)2 − (Bg)′′,

is analytic inD.More precisely, the points inΛ� are removable singularities for the coefficient
A as g solves the interpolation problem (22). As in the proof of Theorem 15, we conclude
that |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure. The fact that all solutions of (1) are
bounded follows as in the proof of Theorem 3. This completes the proof of Theorem 4. ��
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5.1 Separation of zeros and critical points

Let A ∈ H∞
2 , and let f be a non-trivial solution of (1). By [43, Theorem 3], the zeros of

f are separated in the hyperbolic metric by a constant depending only on ‖A‖H∞
2
, and by

[10, Corollary 2], the hyperbolic distance between any zero and any critical point of f is
uniformly bounded away from zero in a similar fashion. Moreover, [10, Example 1] shows
that critical points of f need not to obey any kind of separation. The situation becomes
more difficult if we consider similar questions between zeros and critical points of linearly
independent solutions. See [10, Section 4] for related discussion.

The following result concerns differential equations with bounded solutions. The proof is
based on an auxiliary estimate [5, Lemma 7, p. 209]: If f ∈ H∞

α for 0 ≤ α < ∞, then there
exists a constant C = C(α) with 0 < C < ∞ such that

∣
∣| f (z1)|(1 − |z1|2)α − | f (z2)|(1 − |z2|2)α

∣
∣ ≤ C �p(z1, z2)‖ f ‖H∞

α
(23)

for all points z1, z2 ∈ D with �p(z1, z2) ≤ 1/2. The sharpness discussion of Proposition 3
below is omitted.

Proposition 3 Suppose that A ∈ Hol(D) and all solutions of (1) are bounded.

(i) It is possible that for each 0 < δ < 1 there exists a solution of (1), depending on δ,
which has two distinct zeros z1, z2 ∈ D such that �p(z1, z2) < δ.

(ii) Critical points of non-trivial solutions are not separated in any way.

Let f1, f2 ∈ H∞ be linearly independent solutions of (1).

(iii) If z1 ∈ D is a zero and z2 ∈ D is a critical point of f1, then there exists a constant
0 < C < ∞ such that

�p(z1, z2) ≥ C
|W ( f1, f2)|

‖ f1‖H∞‖ f2‖H∞
max

{
1 − |z1|, 1 − |z2|

}
. (24)

(iv) If z1 ∈ D is a zero of f1, and z2 ∈ D is a zero of f2, then (24) holds.
(v) If z1 ∈ D is a critical point of f1, and z2 ∈ D is that of f2, then (24) holds.

Proof (i) Let the coefficient A ∈ Hol(D)\H∞
2 be as in Theorem1(i). If the pseudo-hyperbolic

distance between any distinct zeros of any non-trivial solution of (1) is uniformly bounded
away from zero, then A ∈ H∞

2 by [43, Theorem 4]. This is a contradiction, and therefore (i)
holds in this particular case.

(ii) The assertion follows from [10, Example 1], since in this example all solutions of (1)
are bounded; use (9) to obtain a bounded linearly independent solution.

(iii) Let f1 ∈ H∞ be the non-trivial solution of (1) with f1(z1) = 0 = f ′
1(z2). If

�p(z1, z2) > 1/2, then there is nothing to prove. Otherwise, let f2 ∈ H∞ be a solution
of (1), which is linearly independent to f1. Since f1(z2) f ′

2(z2) = W ( f1, f2), there exists
a constant 0 < C1 < ∞ such that

�p(z1, z2) ≥ | f1(z2)|
C1 ‖ f1‖H∞

= |W ( f1, f2)|
C1 ‖ f1‖H∞| f ′

2(z2)|
≥ |W ( f1, f2)|(1 − |z2|2)

C1 ‖ f1‖H∞‖ f2‖H∞

by (23); note that ‖ f ′
2‖H∞

1
≤ ‖ f2‖H∞ by standard estimates. Analogously, since

− f ′
1(z1) f2(z1) = W ( f1, f2), there exists another constant 0 < C2 < ∞ such that

�p(z1, z2) ≥ | f ′
1(z1)|(1 − |z1|2)
C2 ‖ f ′

1‖H∞
1

= |W ( f1, f2)|(1 − |z1|2)
C2 ‖ f ′

1‖H∞
1

| f2(z1)| ≥ |W ( f1, f2)|(1 − |z1|2)
C2 ‖ f1‖H∞‖ f2‖H∞

.
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Statements (iv) and (v) are proved similarly. In the case of (iv) apply (23) to f1, f2 ∈ H∞,
and in the case of (v) apply (23) to f ′

1, f ′
2 ∈ H∞

1 . ��

6 Proof of Theorem 5

After the proof of Theorem 5, we consider its relation to conformal metrics of constant
curvature.We also discuss an application concerning Carlesonmeasures induced by bounded
solutions of (1) for A ∈ Hol(D).

Proof (of Theorem 5) It is clear that u is sufficiently smooth to be in the class C2.
(i) Since ( f1/ f2)′ = −W ( f1, f2)/ f 22 , we deduce

(
f1
f2

)#

= |W ( f1, f2)|
| f1|2 + | f2|2 , ∂u = f ′

1 f1 + f ′
2 f2

| f1|2 + | f2|2 .

We compute

Δu = 4 ∂(∂u) = 4
| f1 f ′

2 − f ′
1 f2|2

(| f1|2 + | f2|2)2 = 4 e−2u .

(ii) As above, we obtain

1

4
Δu = ∂

(
∂u

) = | f ′
1|2 + | f ′

2|2
| f1|2 + | f2|2 − f1 f ′

1 + f2 f ′
2

| f1|2 + | f2|2 · f ′
1 f1 + f ′

2 f2
| f1|2 + | f2|2

= | f ′
1|2 + | f ′

2|2
| f1|2 + | f2|2 − (

∂u
) · (

∂u
)
.

Since u is real-valued, Δu = (Δeu)/(eu) − 4 |∂u|2 = (Δeu)/(eu) − |∇u|2.
(iii) We deduce

∂2u = f ′′
1 f 1 + f ′′

2 f 2
| f1|2 + | f2|2 − (∂u)2 = − A| f1|2 + A| f2|2

| f1|2 + | f2|2 − (∂u)2 = −A − (∂u)2,

which completes the proof. ��
Remark 1 Let f1 and f2 be linearly independent solutions of (1) for A ∈ Hol(D). As in the
proof of Theorem 5(i), we deduce that v = −u = log ( f1/ f2)# is a solution of the Liouville
equation Δv = −4 e2v . Recall that λ(z)|dz| is said to be a conformal metric on D if the
conformal density λ : D → R is strictly positive and continuous. If λ ∈ C2, then λ(z)|dz|
is called a regular conformal metric on D. The (Gauss) curvature κ : D → R of the regular
conformal metric λ(z)|dz| is given by κ = −Δ(log λ)/λ2. In conclusion, ( f1/ f2)#(z)|dz|
defines a regular conformal metric of constant curvature 4 on D.

As an application of Theorem 5, we return to consider differential equations with
bounded solutions. Theorem 3 shows that, even if f1, f2 ∈ H∞ are linearly indepen-
dent solutions of (1) for A ∈ Hol(D), it may happen that f1/ f2 is non-normal and
(( f1/ f2)#)2 log(1/|z|) dm(z) is not a Carleson measure. The following result and Theo-
rem 5(ii) imply that this Carleson measure condition becomes true if the exponent 2 is
replaced by any smaller value.

Theorem 16 Let f1, f2 ∈ H∞ be linearly independent solutions of (1) for A ∈ Hol(D). Then,
(| f ′

1|2+| f ′
2|2)(| f1|2+| f2|2)ε−1 log(1/|z|) dm(z) is a Carlesonmeasure for any 0 < ε < ∞.
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Let Ω ⊂ R
2 be a domain with smooth boundary, and let u1, u2 be C2-functions on Ω .

The classical Green theorem asserts
∫

∂Ω

(

u1
∂u2
∂n

− u2
∂u1
∂n

)

ds =
∫

Ω

(
u1 Δu2 − u2 Δu1

)
dxdy, (25)

where ∂/∂n denotes differentiation in the direction of outward pointing normal and ds is
the arc length on ∂Ω . The following argument is based on a modification of Uchiyama’s
lemma. We refer to [36, p. 290] and [46, Lemma 2.1] for the original statement. Suppose
that f ∈ Hol(D) and ϕ ∈ C2 is a subharmonic function in D. By the theorems of Green and
Fubini, we deduce

1

2π

∫ 2π

0
eϕ(reiθ )| f (reiθ )|2 dθ − eϕ(0)| f (0)|2

= 1

2π

∫

D(0,r)
Δ(eϕ | f |2)(z) log r

|z| dm(z)

for any 0 < r < 1. Since

|ζ1 + ζ2|2 ≥ (|ζ1| − |ζ2|
)2 ≥ 1

2
|ζ1|2 − |ζ2|2, ζ1, ζ2 ∈ C,

we obtain

Δ(eϕ | f |2) = eϕ(Δϕ)| f |2 + 4 eϕ |(∂ϕ) f + f ′|2 ≥ eϕ
(
Δϕ + 2 |∂ϕ|2

)
| f |2 − 4 eϕ | f ′|2,

and finally

1

2π

∫

D(0,r)
| f (z)|2eϕ(z)

(
Δϕ(z) + 2 |∂ϕ(z)|2

)
log

r

|z| dm(z)

≤ 1

2π

∫ 2π

0
eϕ(reiθ )| f (reiθ )|2 dθ + 2

π

∫

D(0,r)
eϕ(z)| f ′(z)|2 log r

|z| dm(z)

(26)

for any 0 < r < 1.

Proof (of Theorem 16) Let f1, f2 ∈ H∞ be linearly independent solutions of (1) for A ∈
Hol(D). Without loss of generality, we may assume that W ( f1, f2) = 1. We conclude that
ϕ = ε u = ε log(| f1|2 + | f2|2) is bounded from above and subharmonic in D, as Δϕ =
4 ε (( f1/ f2)#)2 ≥ 0 by Theorem 5(i). By the Littlewood-Paley formula [8, Lemma 3.1], we
obtain

‖ f ‖2H2 = | f (0)|2 + 2

π

∫

D

| f ′(z)|2 log 1

|z| dm(z), f ∈ Hol(D),

and therefore a standard convergence argument applied to (26) reveals that

1

2π

∫

D

| f (z)|2eϕ(z)
(
Δϕ(z) + 2 |∂ϕ(z)|2

)
log

1

|z|dm(z)

≤ 2
(‖ f1‖2H∞ + ‖ f2‖2H∞

)ε‖ f ‖2H2

for any f ∈ H2. This proves that eϕ(z)(Δϕ(z) + 2 |∂ϕ(z)|2) log(1/|z|) dm(z) is a Carleson
measure, and therefore by Theorem 5(ii), we deduce

eϕ
(
Δϕ + 2 |∂ϕ|2) = (| f1|2 + | f2|2

)ε
(

ε Δu + ε2

2
|∇u|2

)

≥ min
{
ε, ε2/2

}(| f1|2 + | f2|2
)ε Δeu

eu
.
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This completes the proof of Theorem 16. ��

7 Proofs of Theorem 6 and Proposition 1

Recall that the meromorphic function g in the unit disc belongs to the Nevanlinna classN if
and only if the Ahlfors-Shimizu characteristic

T0(r , g) = 1

π

∫ r

0

( ∫

D(0,t)
g#(z)2 dm(z)

)
dt

t
= 1

π

∫

D(0,r)
g#(z)2 log

r

|z| dm(z)

is uniformly bounded for 0 < r < 1. The equivalence of the representations above follows
from Fubini’s theorem.

Let u 
≡ −∞ be subharmonic in D. Function u admits a harmonic majorant in D if and
only if limr→1−

∫ 2π
0 u(reiθ ) dθ < ∞, and in this case, the least harmonic majorant for u is

û(z) = lim
r→1−

1

2π

∫ 2π

0
u(reiθ )

r2 − |z|2
|reiθ − z|2 dθ < ∞, z ∈ D.

See [41, Theorem 3.3] for more details. In the proof of Theorem 6 we take advantage of
the following well-known fact: If u ∈ C2 is subharmonic and ϕ is analytic, then u ◦ ϕ is
subharmonic with Δ(u ◦ ϕ) = ((Δu) ◦ ϕ) |ϕ′|2.
Proof (of Theorem 6) (i) By Green’s theorem (25) with u1 = 1, u2 = u, we obtain

d

dt

∫ 2π

0
u(teiθ ) dθ = 4

t

∫

D(0,t)

(
( f1/ f2)

#(z)
)2

dm(z), 0 < t < 1,

as Δu = 4 (( f1/ f2)#)2 by Theorem 5(i). By integrating from 0 to r , we conclude
1/(2π)

∫ 2π
0 u(reiθ ) dθ = u(0) + 2 T0

(
r , f1/ f2

)
for any 0 < r < 1. Consequently, u admits

a harmonic majorant if and only if f1/ f2 ∈ N .
(ii) Let a ∈ D. By Green’s theorem and Theorem 5(i),

1

2π

∫ 2π

0
u
(
a + (1 − |a|) reiθ ) dθ − u(a)

= 2

π

∫ r

0

( ∫

D(a,t(1−|a|))
( f1/ f2)

#(z)2 dm(z)

)
dt

t
, 0 < r < 1.

By letting r → 1−, we deduce

sup
a∈D

ûa(0) = sup
a∈D

2

π

∫ 1

0

( ∫

D(a,t(1−|a|))
( f1/ f2)

#(z)2 dm(z)

)
dt

t
. (27)

This completes the proof of (ii), as f1/ f2 is a normal function in the Nevanlinna class if and
only if the right-hand side of (27) is finite [38, Theorem 1].

(iii) The assertion is in some sense a meromorphic counterpart of [47, Theorem 5.1]. Fix
a ∈ D, and take r to be sufficiently large to satisfy |a| < r < 1. Define ψ(z) = r ϕa/r (z/r),
z ∈ D. By Green’s theorem,

1

2π

∫ 2π

0
u(reiθ )

r2 − |a|2
|reiθ − a|2 dθ − u(a) = 1

2π

∫ 2π

0
(u ◦ ψ)(reit ) dt − (u ◦ ψ)(0)

= 1

2π

∫

D(0,r)
Δu(z) log

1

|ϕa/r (z/r)| dm(z).
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By using standard estimates and letting r → 1−, we conclude that û(a) − u(a) �∫
D

Δu(z)(1 − |ϕa(z)|2) dm(z), where the comparison constants are independent of a ∈ D.
Theorem 5(i) implies

sup
a∈D

(
û(a) − u(a)

) � sup
a∈D

∫

D

(
( f1/ f2)

#(z)
)2

(1 − |z|2) 1 − |a|2
|1 − az|2 dm(z).

The part (iii) follows as f1/ f2 ∈ UBC if and only if (( f1/ f2)#(z))2(1 − |z|2) dm(z) is
a Carleson measure [38, Theorem 3].

The proofs of (iv)-(vi) are straight-forward and hence omitted. Note that the function
eu = (| f1|2 + | f2|2)/|W ( f1, f2)| is subharmonic in D. ��

It is well-known that non-trivial solutions of a Blaschke-oscillatory equation (1), A ∈
Hol(D), may lie outside the Nevanlinna class N [22, Section 4.3]. In the following remark,
we deduce an estimate according to which the Nevanlinna characteristic of solutions of
Blaschke-oscillatory equations cannot grow arbitrarily fast.

Remark 2 Let f1 be a non-trivial solution of a Blaschke-oscillatory equation (1) for A ∈
Hol(D). Let f2 be another solution of (1), which is linearly independent to f1. Note that
f2/ f1 ∈ N by [22, Lemma 3], and ( f2/ f1)′ = W ( f1, f2)/ f 21 by straight-forward computa-
tion. Kennedy’s estimate [25, Theorem 1] implies

S =
∫ 1

0
(1 − r)e2 T (r ,( f2/ f1)′) dr < ∞. (28)

Nevanlinna’s first theorem shows that (28) remains to be true, if T (r , ( f2/ f1)′) is replaced by
2 T (r , f1). This places a severe restriction for the growth of T (r , f1) as r → 1−. It implies
T (r , f1) ≤ (1/2) log(

√
2S/(1 − r)) for all 0 < r < 1. Therefore all solutions of (1) are

non-admissible [22, p. 53].

Proof (of Proposition 1) Recall that ( f1/ f2)# = |W ( f1, f2)|/(| f1|2 + | f2|2). Now
∫

D

(
( f1/ f2)

#)2(1 − |z|2) dm(z)

≤ |W ( f1, f2)|2
δ2

∫

{z∈D : | f1(z)|2+| f2(z)|2≥δ}
(1 − |z|2) dm(z)

+
(

sup
z∈D

( f1/ f2)
#(z)2(1 − |z|2)2

) ∫

{z∈D : | f1(z)|2+| f2(z)|2<δ}
dm(z)

1 − |z|2 .

Therefore f1/ f2 belongs to the Nevanlinna class by the assumption. ��
We briefly consider two applications of Proposition 1. Suppose that f1, f2 are linearly

independent solutions of (1) for A ∈ Hol(D) and assume that (12) holds for some Blaschke
sequence {zn} ⊂ D and 0 < δ < 1. Denote this infimum by 0 < s < ∞. We deduce

∫

{z∈D : | f1(z)|2+| f2(z)|2<s2/2}
dm(z)

1 − |z|2 ≤
∑

n

∫

Δp(zn ,δ)

dm(z)

1 − |z|2

�
∑

n

(1 − |zn |) < ∞,

where the pseudo-hyperbolic discs Δp(zn, δ) are not necessarily pairwise disjoint. In such a
case the normality of f1/ f2 implies that f1/ f2 ∈ N by Proposition 1.
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The same conclusion is obtained if f1/ f2 is normal and | f1| + | f2| is uniformly bounded
from below for all points in D which lie outside a horodisc (that is, a disc internally tangent
to ∂D). The details are omitted.

8 Proof of Theorem 7

We begin with a lemma, which is needed in the proof of Theorem 7. This auxiliary result is
based on the well-known Harnack inequalities: if h ∈ Har+(D), then

1 − �p(z, w)

1 + �p(z, w)
≤ h(z)

h(w)
≤ 1 + �p(z, w)

1 − �p(z, w)
, z, w ∈ D.

Let f ∈ Hol(D) and recall that f ∈ N if and only if there exists h ∈ Har+(D) such that
log+ | f | ≤ h, which is equivalent to the fact | f | ≤ eh . There is no reason to expect that any
order derivative of f would belong to N . However, for every k ∈ N, there exists a constant
C = C(k) with 0 < C < ∞ such that

| f (k)(z)|(1 − |z|2)k ≤ eC h(z), z ∈ D, (29)

by Cauchy’s integral formula and Harnack’s inequality. See [19, Lemma 2.1].

Lemma 3 Suppose that f ∈ Hol(D) and it satisfies | f (z)|(1 − |z|2)k ≤ eh(z), z ∈ D, for
k ∈ N ∪ {0} and h ∈ Har+(D). If f vanishes on a sequence Λ ∈ IntN , then there exists
H ∈ Har+(D) such that | f (z)|(1 − |z|2)k ≤ �p(Λ, z) eH(z), z ∈ D.

Proof Consider a dyadic partition of D into Whitney squares of the type

Q = QI = {
z ∈ D : 1 − |I |/(2π) ≤ |z| < 1, arg z ∈ I

}

where �(Q) = |I | is the arc-length of the interval I ⊂ ∂D. The top part of Q is T (Q) =
{z ∈ Q : 1 − �(Q)/(2π) ≤ |z| ≤ 1 − �(Q)/(4π)}.

Let Q be any Whitney square in the dyadic partition. Let Ω1 ⊂ D such that

T (Q) ⊂ Ω1, �p
(
∂Ω1, ∂T (Q)

) = diam p
(
T (Q)

)
,

and let Ω2 be another set such that Ω1 ⊂ Ω2 ⊂ D and �p(∂Ω2, ∂Ω1) = 4 diamp Ω1. Here
diam p denotes the pseudo-hyperbolic diameter. Define g ∈ H(D) by

g(z) = f (z)

( ∏

zk∈Λ∩ Ω1

zk − z

1 − zk z

)−1

, z ∈ D.

Wemay assume thatΛ∩Ω1 is not empty, for otherwise the assertion follows for all z ∈ T (Q)

by trivial reasons. Fix any zn ∈ Λ ∩ Ω1. We deduce

|g(ζ )| ≤ (1 − |ζ |2)−keh(ζ )

�p(zn, ζ )

( ∏

zk∈Λ∩ Ω1 : zk 
=zn

∣
∣
∣
∣
zk − ζ

1 − zkζ

∣
∣
∣
∣

)−1

, ζ ∈ ∂Ω2.

Since Λ ∈ IntN , [18, Theorem 1.2] implies that there exists h1 ∈ Har+(D) with

|g(ζ )| � (1 − |ζ |2)−keh(ζ )+h1(zn) � (1 − |zn |2)−ke(Ch+h1)(zn), ζ ∈ ∂Ω2,
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where 0 < C < ∞ is a universal constant by Harnack’s inequalities. The maximummodulus
principle extends this estimate for all z ∈ Ω2, and therefore

| f (z)| ≤ |g(z)|
∏

zk∈Λ∩ Ω1

∣
∣
∣
∣
zk − z

1 − zk z

∣
∣
∣
∣ � (1 − |zn |2)−ke(Ch+h1)(zn) �p(Λ, z),

for z ∈ T (Q). By Harnack’s inequalities, there exists H ∈ Har+(D) such that the assertion
holds for all z ∈ T (Q). Since the argument is independent of the Whitney square Q, the
proof is complete. ��

Proof (of Theorem 7) Let B = BΛ be the Blaschke product with zeros Λ ∈ IntN and let
f = BeBg , where g ∈ Hol(D) is a solution of the interpolation problem

g(zn) = wn, wn = − B ′′(zn)
2
(
B ′(zn)

)2 , zn ∈ Λ. (30)

As Λ ∈ IntN , [18, Theorem 1.2] implies that there exists h1 ∈ Har+(D) with

|B ′(zn)|(1 − |zn |2) =
∏

zk∈Λ : zk 
=zn

∣
∣
∣
∣
zk − zn
1 − zk zn

∣
∣
∣
∣ ≥ e−h1(zn), zn ∈ Λ. (31)

Since there exists a constant 0 < C < ∞ such that

log+ |wn | = log+
∣
∣
∣
∣
∣

B ′′(zn)
2
(
B ′(zn)

)2

∣
∣
∣
∣
∣
≤ C + 2 h1(zn), zn ∈ D,

[18, Theorem 1.2] ensures that {wn} ∈ N | Λ. Therefore we may assume g ∈ N .
By straight-forward computation, f is a solution of (1) for A ∈ Hol(D), where

A = − f ′′

f
= − B ′′ + 2B ′(B ′g + Bg′)

B
− (

(Bg)′
)2 − (Bg)′′. (32)

The interpolation property (30) guarantees that every point zn ∈ Λ is a removable singularity
for A. It remains to show that there exists h ∈ Har+(D) such that |A(z)|(1 − |z|2)2 ≤ eh(z),
z ∈ D. Since Bg ∈ N , (29) implies that the two right-most terms in (32) are of the desired
type. Since B ′′ + 2B ′(B ′g + Bg′) vanishes on the sequence Λ, Lemma 3 shows that there
exists h2 ∈ Har+(D) such that

∣
∣B ′′(z) + 2B ′(z)

(
B ′(z)g(z) + B(z)g′(z)

)∣
∣(1 − |z|2)2 ≤ �p(Λ, z) eh2(z), z ∈ D.

And finally, by [19, Theorem 1.2], there exists h3 ∈ Har+(D) such that |B(z)| ≥
�p(Λ, z)e−h3(z), z ∈ D. We deduce Theorem 7 by combining the estimates. ��

9 Proof of Theorem 8

The following result is an analogue of Carleson’s [2, Theorem 2], which characterizes those
cases in which the classical 0, 1-interpolation is possible. The proof of Proposition 4 is based
on the Nevanlinna corona theorem by Mortini [33, Satz 4]: Given f1, f2 ∈ N , the Bézout
equation f1g2 + f2g2 = 1 can be solved with functions g1, g2 ∈ N if and only if there exists
h ∈ Har+(D) such that | f1(z)| + | f2(z)| ≥ e−h(z), z ∈ D.
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Proposition 4 Let {zn}, {ζn} be Blaschke sequences. Then, there exists f ∈ N such that
f (zn) = 0 and f (ζn) = 1 for all n if and only if there exists h ∈ Har+(D) such that (6)
holds.

Proof Assume that there exists f ∈ N such that f (zn) = 0 and f (ζn) = 1 for all n. By the
classical factorization theorem, there exist functions g1, g2 ∈ N such that f = B{zn}g1 =
1+B{ζn}g2. Here B{zn} and B{ζn} are Blaschke products with zeros {zn} and {ζn}, respectively.
As g1, g2 ∈ N , there exist h1, h2 ∈ Har+(D) such that |g1| ≤ eh1 and |g2| ≤ eh2 .We deduce

1 = ∣
∣B{zn}g1 − B{ζn}g2

∣
∣ ≤ eh1+h2

(|B{zn}| + |B{ζn}|
)
,

which proves the first part of the assertion.
Assume that there exists h ∈ Har+(D) such that (6) holds. By the Nevanlinna corona

theorem, there exist g1, g2 ∈ N such that B{zn}g1 + B{ζn}g2 = 1. Then, the function f =
B{zn}g1 ∈ N satisfies the desired 0, 1-interpolation. ��

Proof (of Theorem8)ByProposition 4, there exists g ∈ N such that g(zn) = 0 and g(ζn) = 1
for all n. Now f (z) = exp(logα + g(z) log(β/α)), z ∈ D, satisfies the desired interpolation
property, and is a zero-free solution of (1) for A ∈ Hol(D),

A(z) = − f ′′(z)
f (z)

= −
(

g′(z) log β

α

)2

− g′′(z) log β

α
, z ∈ D.

By (29), there exists H ∈ Har+(D) such that |A(z)|(1 − |z|2)2 ≤ eH(z), z ∈ D. ��

10 Proofs of Theorems 9 and 10, and Proposition 2

The following proof proceeds along the same lines as that in [44, p. 129].

Proof (of Theorem 9) If f1, f2 are linearly independent solutions of (1) for A ∈ Hol(D),
then

W ( f1, f2) A = f ′
1 f

′′
2 − f ′′

1 f ′
2, ( f1/ f2)

# = |W ( f1, f2)|/(| f1|2 + | f2|2).
Since W ( f1, f2) is a non-zero complex constant, the estimate (29) and the fact f1, f2 ∈
N imply that there exists h1 ∈ Har+(D) such that |A(z)|(1 − |z|2)3 ≤ eh1(z), z ∈ D.
Moreover, the Cauchy-Schwarz inequality (18) and the estimate (29) show that there exists
h2 ∈ Har+(D) such that ( f1/ f2)#(z)(1 − |z|2)2 ≤ eh2(z), z ∈ D. The claim follows by
choosing H = h1 + h2 ∈ Har+(D). ��

The proof of Theorem 10 is analogous to that proof of Theorem 2, which is presented in
the end of Sect. 4.

Proof (of Theorem 10) By (7) and [19, Theorem 1], the ideal IN ( f1, f2) contains a Blaschke
product B whose zero-sequence belongs to IntN . This is equivalent to the fact that there exist
functions g1, g2 ∈ N such that f1g1 + f2g2 = B. Differentiate f1g1 + f2g2 = B twice, and
apply (1) to f ′′

1 and f ′′
2 to obtain (17). Note that A ∈ Hol(D) by assumption. As in the proof of

Theorem 7, we conclude that there exists H ∈ Har+(D) such that supz∈D |A(z)|(1−|z|2)2 ≤
eH(z), z ∈ D. ��
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Proof (of Proposition 2) Proposition 2 follows directly from [3, Theorem 15] if ψ :
D → (0, 1/2) given by ψ(z) = e−H(z)/2e−1, z ∈ D and H ∈ Har+(D), satisfies
supa,z∈D ψ(a)/ψ

(
ϕa(ψ(a)z)

)
< ∞. Now

sup
a,z∈D

exp

(
H(a)

2

(
H

(
ϕa(e−H(a)/2e−1z)

)

H(ϕa(0))
− 1

))

≤ sup
a,z∈D

exp

(
H(a)

2

(
1 + �p

(
0, e−H(a)/2e−1z

)

1 − �p
(
0, e−H(a)/2e−1z

) − 1

))

by Harnack’s inequalities. This is bounded by

sup
0≤x<∞

exp

(
x

2

(
1 + e−x/2e−1

1 − e−x/2e−1 − 1

))

<
3

2
,

which implies the assertion. ��

10.1 Separation of zeros and critical points

We proceed to state an analogue of Proposition 3. If f ∈ Hol(D) and

‖ f ‖ = sup
z∈D

| f (z)|(1 − |z|2)αe−h(z) < ∞ (33)

for 0 ≤ α < ∞ and h ∈ Har+(D), then there exists C = C(α) > 0 such that
∣
∣
∣| f (z1)|(1 − |z1|2)αe−h(z1) − | f (z2)|(1 − |z2|2)αe−h(z2)

∣
∣
∣ ≤ C �p(z1, z2) ‖ f ‖,

for all points z1, z2 ∈ D with �p(z1, z2) ≤ 1/2. This estimate follows immediately from
(23): If f ∈ Hol(D) satisfies (33) for 0 ≤ α < ∞ and h ∈ Har+(D), then (23) can be applied
to f e−h−ih� ∈ H∞

α , where h� is a harmonic conjugate of h.

Proposition 5 Let f1, f2 ∈ N be linearly independent solutions of (1) for A ∈ Hol(D).

(i) If z1 ∈ D is a zero and z2 ∈ D is a critical point of f1, then there exists h ∈ Har+(D)

such that

�p(z1, z2) � max
{
(1 − |z1|)e−h(z1), (1 − |z2|)e−h(z2)

}
. (34)

(ii) If z1 ∈ D is a zero of f1, and z2 ∈ D is a zero of f2, then there exists h ∈ Har+(D) such
that (34) holds.

(iii) If z1 ∈ D is a critical point of f1, and z2 ∈ D is a critical point of f2, then there exists
h ∈ Har+(D) such that (34) holds.

The proof of Proposition 5 is omitted.

11 Proofs of Theorem 11 and Corollary 2

The proof of Theorem 11 is based on a smoothness property, which is considered first. Let
ω be a radial weight on D. Then,

�ω(z1, z2) =
∫

〈z1,z2〉
|dz|
ω(z)

, z1, z2 ∈ D,
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defines a distance function. Here, we integrate along the hyperbolic segment 〈z1, z2〉 between
the points z1, z2 ∈ D, where the hyperbolic segment is a closed subset of the corresponding
hyperbolic geodesic. For ω(z) = 1 − |z|2, z ∈ D, the function �ω reduces to the standard
hyperbolic distance �h :

�h(z1, z2) = 1

2
log

1 + �p(z1, z2)

1 − �p(z1, z2)
, �p(z1, z2) =

∣
∣
∣
∣
z2 − z1
1 − z2z1

∣
∣
∣
∣ , z1, z2 ∈ D.

Lemma 4 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Let ω be a radial weight. If

sup
z∈D

|∇u(z)| ω(z) ≤ Λ < ∞, (35)

then

e−Λ�ω(z1,z2) ≤ | f1(z1)|2 + | f2(z1)|2
| f1(z2)|2 + | f2(z2)|2 ≤ eΛ�ω(z1,z2), z1, z2 ∈ D. (36)

Conversely, if (36) holds for some constant 0 < Λ < ∞, then (35) is satisfied.

Proof Assume that (35) holds. Let z1, z2 ∈ D be distinct points, and let γ = γ (t), 0 ≤ t ≤ 1,
be a parametrization of 〈z1, z2〉. Schwarz’s inequality and (35) imply

∣
∣
∣
∣log

| f1(z1)|2 + | f2(z1)|2
| f1(z2)|2 + | f2(z2)|2

∣
∣
∣
∣ = ∣

∣u(z1) − u(z2)
∣
∣ ≤

∣
∣
∣
∣

∫ 1

0
∇u(γ (t)) · γ ′(t) dt

∣
∣
∣
∣

≤
∫ 1

0
|∇u(γ (t))| |γ ′(t)| dt ≤ Λ�ω(z1, z2).

From this estimate we deduce (36).
Assume that (36) holds for some constant 0 < Λ < ∞. Fix z2 ∈ D. Since

lim
z1→z2

|z1 − z2|
�h(z1, z2)

= lim
z1→z2

�p(z1, z2)
1
2 log

1+�p(z1,z2)
1−�p(z1,z2)

· |1 − z1z2| = 1 − |z2|2,

and

|z1 − z2|
�h(z1, z2)

· 1

maxz∈〈z1,z2〉
1−|z|2
ω(z)

≤ |z1 − z2|
�ω(z1, z2)

≤ |z1 − z2|
�h(z1, z2)

· 1

minz∈〈z1,z2〉
1−|z|2
ω(z)

for any z1 ∈ D, we conclude that limz1→z2 |z1 − z2|/�ω(z1, z2) = ω(z2) by the continuity
of ω. Therefore,

|∇u(z2)| ω(z2) = lim
z1→z2

∣
∣
∣
∣
u(z1) − u(z2)

z1 − z2

∣
∣
∣
∣

|z1 − z2|
�ω(z1, z2)

≤ lim
z1→z2

Λ�ω(z1, z2)

�ω(z1, z2)
= Λ.

This completes the proof of Lemma 4. ��
The following lemma is important for our cause due to the representation (13).

Lemma 5 Let f1, f2 be linearly independent solutions of (1) for A ∈ Hol(D), and define
u = − log ( f1/ f2)#. Suppose that ω is a regular weight which satisfies supz∈D ω(z)/(1 −
|z|) < ∞. If |∇u| ∈ L∞

ω , then

| f ( j)
1 | + | f ( j)

2 |
| f1| + | f2| ∈ L∞

ω j , j ∈ N.
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Proof By the assumption, there exists a positive constant c such that the discs D(z) =
D(z, cω(z)) satisfy D(z) ⊂ D(z, (1 − |z|)/2), z ∈ D. Let ζ ∈ ∂D(z). Since 〈z, ζ 〉 ⊂
D(z, (1 − |z|)/2), a straight-forward argument based on (8) reveals

�ω(z, ζ ) � 1 − |z|2
ω(z)

�h(z, ζ ) � 1 − |z|2
ω(z)

�p(z, ζ ) � |z − ζ |
ω(z)

= c.

Therefore supz∈Dmaxζ∈∂D(z) �ω(z, ζ ) < ∞.
By Cauchy’s integral formula,

| f ( j)
1 (z)| + | f ( j)

2 (z)| ≤ 2 max
{| f ( j)

1 (z)|, | f ( j)
2 (z)|}

≤
(

max
ζ∈∂D(z)

(| f1(ζ )| + | f2(ζ )|)
)

2 j !
c j ω(z) j

, z ∈ D.
(37)

Now (37) and Lemma 4 imply

| f ( j)
1 (z)| + | f ( j)

2 (z)|
| f1(z)| + | f2(z)| ≤ 2 j !√2

c j ω(z) j

(

max
ζ∈∂D(z)

| f1(ζ )|2 + | f2(ζ )|2
| f1(z)|2 + | f2(z)|2

)1/2

≤ 2 j !√2

c j ω(z) j
exp

(‖|∇u|‖L∞
ω

2
max

ζ∈∂D(z)
�ω(z, ζ )

)

� 1

ω(z) j

for z ∈ D. The assertion of Lemma 5 follows. ��

Finally, proceed to prove Theorem 11. We take advantage of Yamashita’s [48, Corollary
to Theorem 2, p. 161], which uses the following notation. For a meromorphic function f and
z ∈ D, let ρ(z, f ) be the maximum of 0 < r ≤ 1 such that f is univalent in Δp(z, r), and
let ρa(z, f ) be the maximum of 0 < r ≤ 1 such that f (w) 
= −1/ f (z) for all w ∈ Δp(z, r).
Note that −1/ f (z) is the antipodal point of f (z) in the Riemann sphere.

Proof (of Theorem 11) First, assume that |∇u| ∈ L∞
ω . By the representation (13) and

Lemma 5, we conclude that A ∈ H∞
ω2 . By Theorem 5(i) and (ii),

4
((

f1/ f2
)#

)2 = Δu ≤ Δeu

eu
= | f ′

1|2 + | f ′
2|2

| f1|2 + | f2|2 ≤ 2

( | f ′
1| + | f ′

2|
| f1| + | f2|

)2

,

and therefore ( f1/ f2)# ∈ L∞
ω by Lemma 5.

Second, let A ∈ H∞
ω2 and ( f1/ f2)# ∈ L∞

ω . Since f1/ f2 is meromorphic in D and has
zero-free spherical derivative, Yamashita’s [48, Corollary to Theorem 2, p. 161] implies

(1 − |z|2)
∣
∣
∣
∣

−z

1 − |z|2 − ∂u(z)

∣
∣
∣
∣ ≤ 2

min{ρ(z, f1/ f2), ρa(z, f1/ f2)} , z ∈ D.

We deduce

|∇u(z)| ≤ 2

1 − |z|2
(

1 + 2

min
{
ρ(z, f1/ f2), ρa(z, f1/ f2)

}

)

, z ∈ D.

Denote h = f1/ f2. It suffices to show that both ρ(z, h) and ρa(z, h) are bounded from below
by a constant multiple of ω(z)/(1 − |z|2) as |z| → 1−.

Let ψ : D → (0,∞) be the weight ψ(z) = cω(z)/(1 − |z|2), where 0 < c < 1 is
a sufficiently small constant whose value is determined later. By the assumption, we may
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assume that ψ : D → (0, 1/2) and therefore ϕa(ψ(a)z) ∈ Δp(a, 1/2) for all a, z ∈ D. By
(8) and standard estimates,

sup
a,z∈D

ψ(a)

ψ
(
ϕa(ψ(a)z)

) = sup
a,z∈D

ω(a)

ω
(
ϕa(ψ(a)z)

) · 1 − |ϕa(ψ(a)z)|2
1 − |a|2 < ∞.

Function h is locally univalent and meromorphic, and its Schwarzian derivative satisfies
Sh = 2A. Let ga(z) = (h ◦ ϕa)(ψ(a)z) for a, z ∈ D. By the chain rule,

|Sga (z)| = ∣
∣Sh

(
ϕa(ψ(a)z)

)∣
∣
∣
∣ϕ′

a

(
ψ(a)z

)∣
∣2 ψ(a)2

≤
2 ‖A‖H∞

ω2

ω
(
ϕa(ψ(a)z)

)2

(
1 − |ϕa(ψ(a)z)|2)2
(
1 − |ψ(a)z|2)2

c2ω(a)2

(1 − |a|2)2 , a, z ∈ D.

We deduce that ‖Sga‖H∞ ≤ π2/2 for any a ∈ D, provided that 0 < c < 1 is sufficiently
small. Therefore ga is univalent in the unit disc [34, Theorem II] for any a ∈ D. This
is equivalent to the fact that h is univalent in Δp(a, ψ(a)) for any a ∈ D, and therefore
ρ(a, h) ≥ ψ(a) for a ∈ D.

It remains to estimate ρa(z, h). Let σ denote the spherical distance on the Riemann sphere.
By the assumption h# ∈ L∞

ω , we obtain

σ
(
h(z), h(ζ )

) ≤
∫

h(〈z,ζ 〉)
|dξ |

1 + |ξ |2 =
∫

〈z,ζ 〉
h#(ξ) |dξ |

≤
(

sup
ξ∈〈z,ζ 〉

1 − |ξ |2
ω(ξ)

)

�h(z, ζ )

for any z, ζ ∈ D. If ζ ∈ Δp(z, ψ(z)), which is a subset of Δp(z, 1/2), then

σ
(
h(z), h(ζ )

) ≤
(

sup
ξ∈〈z,ζ 〉

1 − |ξ |2
ω(ξ)

)

2 �p(z, ζ ) � 1 − |z|2
ω(z)

· cω(z)

1 − |z|2

with an absolute comparison constant. Then, h(z) and h(ζ ) cannot be antipodal points if
0 < c < 1 is sufficiently small. Therefore ρa(z, h) ≥ ψ(z) for z ∈ D, which completes the
proof of Theorem 11. ��

Corollary 1 allows us to reach the desired conclusion A ∈ H∞
2 under the assumption

|∇u| ∈ L∞
1 . The following lemma shows that, in this sense, Corollary 1 improves [12, The-

orem 7], according to which the same conclusion holds if the linearly independent solutions
f1, f2 ∈ B satisfy inf z∈D(| f1(z)| + | f2(z)|) > 0.

Lemma 6 The following assertions hold.

(i) If f1, f2 ∈ B are linearly independent solutions of (1) for A ∈ Hol(D), and
inf z∈D(| f1(z)| + | f2(z)|) > 0, then |∇u| ∈ L∞

1 for u = − log ( f1/ f2)#.
(ii) There exists A ∈ H∞

2 such that (1) admits linearly independent solutions f1, f2 such
that inf z∈D(| f1(z)| + | f2(z)|) = 0 but |∇u| ∈ L∞

1 .
(iii) There exists A ∈ Hol(D) such that (1) admits linearly independent solutions f1, f2 with

f1/ f2 bounded (and hence normal) but |∇u| /∈ L∞
1 .
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Proof (i) Since f1, f2 ∈ B satisfy inf z∈D(| f1(z)| + | f2(z)|) > 0, we deduce

|∇u(z)| = 2 |∂u(z)| = 2

∣
∣ f ′

1(z) f1(z) + f ′
2(z) f2(z)

∣
∣

| f1(z)|2 + | f2(z)|2
≤ 2max{‖ f1‖B, ‖ f2‖B}

1 − |z|2
| f1(z)| + | f2(z)|

| f1(z)|2 + | f2(z)|2 � 1

1 − |z|2 , z ∈ D.

(ii) Consider the analytic and univalent function h(z) = − log(1 − z), z ∈ D. Define
A = Sh/2, where Sh is the Schwarzian derivative of h. Then, A(z) = 4−1(1 − z)−2, z ∈ D,
and clearly A ∈ H∞

2 . It is well-known that (1) admits two linearly independent solutions
f1, f2 such that h = f1/ f2. In this case

|W ( f1, f2)|
| f1(z)|2 + | f2(z)|2 = h#(z) = 1

|1 − z|(1 + | log(1 − z)|2) , z ∈ D,

is unbounded in D, while |∇u| ∈ L∞
1 by Corollary 1 (h is normal as it is univalent).

Part (iii) follows by the proof of Theorem 1(ii). An application of Corollary 1 reveals that
|∇u| /∈ L∞

1 . ��
It is a natural question to ask how |∇u| ∈ L∞

1 compares to Theorem 15? On one hand,
Lemma 6(ii) serves as an example where |∇u| ∈ L∞

1 but (12) fails for any pairwise disjoint
pseudo-hyperbolic discs (consider the positive real axis). On the other hand, Example 1(ii)
in Sect. 4 implies that there are cases in which (12) is satisfied but |∇u| /∈ L∞

1 ( f1/ f2 is not
normal). In both of these examples, the coefficient function satisfies A ∈ H∞

2 .

Proof (of Corollary 2) The assertions (i) and (ii) are equivalent by Theorem 11. Note that (i)
implies (iii) by Lemma 5, while (iii) implies (i), and also (ii), by Theorem 5(ii). Finally, (ii)
is equivalent to (iv) according to Theorem 5(i). ��

The arguments in this section are build on the representation (13) for the coefficient A.
Derivatives of the coefficient can be controlled by expressions of similar type. For example,
by differentiating (1) we obtain f ′′′ + A′ f + A f ′ = 0, and

|A| = | f ′
1| + | f ′

2|
| f ′

1| + | f ′
2|

|A| = | f ′′′
1 + A′ f1| + | f ′′′

2 + A′ f2|
| f ′

1| + | f ′
2|

≥ |A′| | f1| + | f2|
| f ′

1| + | f ′
2|

− | f ′′′
1 | + | f ′′′

2 |
| f ′

1| + | f ′
2|

.

Therefore, by applying (13),

|A′| ≤ | f ′
1| + | f ′

2|
| f1| + | f2|

(

|A| + | f ′′′
1 | + | f ′′′

2 |
| f ′

1| + | f ′
2|

)

= | f ′
1| + | f ′

2|
| f1| + | f2| · | f ′′

1 | + | f ′′
2 |

| f1| + | f2| + | f ′′′
1 | + | f ′′′

2 |
| f1| + | f2| .

12 Proof of Theorem 12

It is natural to require that solution with prescribed fixed points is bounded in D. Under this
requirement, Theorem 12 is best possible. This is a consequence of the following auxiliary
result.

Lemma 7 The following assertions hold.
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(i) The identity function is the only one in { f ∈ H∞ : ‖ f ‖H∞ ≤ 1} which has more than
one fixed point.

(ii) The identity function is the only one inN which has more fixed points than the Blaschke
condition allows.

The proof of the lemma is straight-forward and hence omitted.

Proof (of Theorem12)Let B = B{zn} be theBlaschke productwith zeros {zn}. Let 0 < ε < 1,
and define f1(z) = z + εz3B(z), z ∈ D. The fixed points of f1 are precisely {0} ∪ {zn}. By
the Schwarz lemma |z3 B(z)| ≤ |z| for z ∈ D, and therefore (1−ε)|z| ≤ | f1(z)| ≤ (1+ε)|z|
for any z ∈ D.

Since f1 has only one zero in D and f ′′
1 (0) = 0, we deduce A = − f ′′

1 / f1 ∈ Hol(D). If
0 < δ < 1, then

sup
δ<|z|<1

|A(z)| ≤ ε

(1 − ε)δ
sup

δ<|z|<1

(
|B ′′(z)| + 6 |B ′(z)| + 6 |B(z)|

)
,

and consequently, |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure. If f2 is defined by (19)
for fixed α ∈ D\{0}, then f2 ∈ H∞ is a solution of (1) and is linearly independent to f1.
Consequently, all solutions of (1) are bounded. ��

13 Proofs of Theorems 13 and 14

Proof (of Theorem 13) Let Λ ⊂ D\{0} be a uniformly separated sequence. Then, the corre-
sponding Blaschke product B = BΛ satisfies (20).

Let h ∈ H∞ be a function which satisfies h(zn) = log zn for zn ∈ Λ. The existence
of such h is guaranteed by Carleson’s interpolation theorem [2, Theorem 3]. Let {Cn} be
the sequence of real numbers defined as follows: Whenever zn ∈ Λ is prescribed to be
an attractive fixed point define Cn = 1/2, if neutral choose Cn = 1, while otherwise take
Cn = 2. By (20), we obtain

sup
zn∈Λ

∣
∣
∣
∣

1

B ′(zn)

(
Cn

zn
− h′(zn)

)∣
∣
∣
∣ ≤ sup

zn∈Λ

1 − |zn |2
δ

(
2

infn |zn | + |h′(zn)|
)

< ∞,

and hence {wn} = {(Cn/zn − h′(zn))/B ′(zn)} is a bounded sequence. The aforementioned
Carleson’s result guarantees that there exists g ∈ H∞ with g(zn) = wn for zn ∈ Λ. Define
f1 = exp(h + Bg), and note that f1 is not only in H∞ but also is uniformly bounded away
from zero. Moreover,

f1(zn) = zn, f ′
1(zn) = zn

(
h′(zn) + B ′(zn)g(zn)

)
= Cn, zn ∈ Λ.

The points zn ∈ Λ are fixed points of the prescribed type. The coefficient A = − f ′′
1 / f1 ∈

Hol(D) satisfies |A| � | f ′′
1 | in D, and therefore |A(z)|2(1 − |z|2)3 dm(z) is a Carleson

measure. The fact that all solutions of (1) are bounded follows as in the proof of Theorem 12.
��

Note that the solution f1 in Theorem 13, which has prescribed fixed points of pregiven
type, may have fixed points which do not belong to Λ.

Remark 3 If A ∈ Hol(D) and z0 ∈ D, then (1) admits a unique solution f such that the
initial conditions f (z0) = α ∈ C and f ′(z0) = β ∈ C are satisfied. Therefore fixed
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points of solutions of (1) are not always distinct from zeros or critical points. In the proof of
Theorem 13, {Cn} ⊂ C can be any sequence with the property supn |Cn |(1− |zn |2) < ∞. If
we take Cn = 0 for all n, then every point zn ∈ Λ is not only a fixed point but also a critical
point of the solution f1.

Proof (of Theorem 14) Let Λ ∈ IntN be the sequence of non-zero points, and let B = BΛ

be the corresponding Blaschke product. Since Λ ∈ IntN , [18, Theorem 1.2] implies that
there exists h1 ∈ Har+(D) such that (31) holds.

Let h ∈ N be a function which satisfies h(zn) = log zn for zn ∈ Λ. SinceΛ is Nevanlinna
interpolating, the existence of such function h is guaranteed by [18, Theorem 1.2]. Let {Cn}
be the sequence of real numbers defined as in the proof of Theorem 13. As h ∈ N , (29)
implies that there exists a constant 0 < C < ∞ and h2 ∈ Har+(D) such that

∣
∣
∣
∣

1

B ′(zn)

(
Cn

zn
− h′(zn)

)∣
∣
∣
∣ ≤ 1 − |zn |2

e−h1(zn)

(
2

infn |zn | + eCeh2(zn)

1 − |zn |2
)

, zn ∈ Λ.

Since {wn} = {(Cn/zn − h′(zn))/B ′(zn)} ∈ N | Λ by [18, Theorem 1.2], there exists g ∈ N
with g(zn) = wn for zn ∈ Λ. Define f = exp(h + Bg), and note that

f (zn) = zn, f ′(zn) = zn
(
h′(zn) + B ′(zn)g(zn)

)
= Cn, zn ∈ Λ.

The points zn ∈ Λ are fixed points of the prescribed type. Finally, the coefficient

A = − f ′′/ f = −(
(h + Bg)′

)2 − (h + Bg)′′ ∈ Hol(D)

satisfies |A(z)|(1 − |z|2)2 ≤ eH(z), z ∈ D and H ∈ Har+(D), by (29). ��
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