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Abstract
Weprove aGAGA-style result for toric vector bundleswith smooth base and give an algebraic
construction of the Frölicher approximating vector bundle that has recently been introduced
by Dan Popovici using analytic techniques. Both results make use of the Rees-bundle con-
struction.

1 Introduction

A toric variety over a field k is an algebraic variety X over k with a G
n
m-action that has a

dense open orbit on which the group acts simply transitively. A vector bundle on such X is
called toric if it is equipped with a G

n
m-action s.t. the projection is an equivariant map.

Toric varieties and vector bundles are an important source of examples in algebraic geom-
etry. Just as normal toric varieties can be studied by combinatorial data, toric vector bundles
(and also more general classes of equivariant sheaves) on a given normal toric variety X have
been classified in terms of linear-algebra-data (roughly as vector spaces and filtrations with
certain compatibility conditions), c.f. [10,11,13,14,18].

If k = C, for every toric variety X over C one also has a natural notion of holomorphic
toric vector bundles over X an, the latter meaning (the set of complex points of) X seen as a
complex analytic space. One obtains an analytification functor:

toric vector bundles on X −→ holomorphic toric vector bundles on X an

The first main result of this article is that for smooth toric varieties, this functor is an equiv-
alence of categories:

Theorem A For a smooth toric variety X over C, analytification induces an equivalence of
categories between algebraic toric vector bundles on X and holomorphic toric vector bundles
on X an . The same is true for toric vector bundles with equivariant connections.

Of course, there is the known GAGA-principle by Serre [22], asserting an equivalence
of the categories of coherent sheaves on a complex projective variety and its analytification.
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772 J. Stelzig

The above theorem is not a formal consequence of this. For instance, X is not assumed to be
projective and even for projective X , the equivariant structure is sheaf-theoretically described
by an isomorphism of sheaves over G

n
m × X , which is not projective.

We do not need the full classification of toric vector bundles. In fact, it is enough for
our purposes to consider algebraic toric vector bundles on affine spaces and we include a
brief but largely self-contained treatment of these in Sect. 2. A key notion is the Rees-bundle
construction, which associates to (suitable) multifiltered vector spaces (V , F1, . . . , Fn) a
toric vector bundle ξAn (V , F1, . . . , Fn) on A

n .
Toric vector bundles have also been studied in connection with Hodge theory, see e.g.

[5–7,12,16,17,23,24], in part apparently independent of the classification. A basic idea is
that, since a Hodge structure is a multifiltered vector space, one may apply Rees-bundle like
constructions to it and obtain a toric vector bundle.

Recently in [19], Popovici introduced the so-called Frölicher approximating bundle, in
order to give a more conceptual proof of his earlier result that deformation limits of Moishe-
zon manifolds are again Moishezon. This construction associates to every compact complex
manifold X and every integer k a holomorphic vector bundle Ak on C (thus necessarily
trivial) which interpolates between the de-Rham cohomology and the degenerating page of
the Frölicher spectral sequence. I.e., it comes equipped with distinguished isomorphisms
Ak(h) ∼= Hk

dR(X , C) for h �= 0 and Ak(0) ∼= ⊕
p+q=k E

p,q∞ . The construction is analytic,
in particular it involves choosing a metric and introducing Laplace-type pseudo-differential
operators for the higher pages of the Frölicher spectral sequence. We show here that this
bundle can be seen as a special case of the Rees-bundle construction, thereby giving a purely
algebraic description, which makes the equivariant, metric-independent and functorial fea-
tures of this construction transparent.

Theorem B For a compact complex manifold X and the k-th Frölicher approximating bundle
Ak , there is a canonical isomorphism

Ak ∼= ξA1(Hk
dR(X , C), F)an ,

where F denotes the Hodge-filtration.

2 Preliminaries

This section collects somebasic notions and result frommore general theorywhich are needed
later on. No claim to originality is made here: All results (except possibly for mistakes on the
author’s behalf) are contained in one or more of [5–7,10–14,16–18,23,24]. If we give only
one reference for an omitted proof we do not mean to imply any kind of priority.

2.1 Definitions

Throughout all the section, we fix an algebraically closed field k of characteristic zero and
denote by G an algebraic group over k, which will soon be set to be the algebraic n-torus
G

n
m . We first repeat some standard definitions. Even though everything is formulated for

algebraic varieties, the reader may note that, mutatis mutandis, most of the definitions make
sense in the holomorphic, smooth or even continuous setting. Sections 2 and 3 of [15] may
be a helpful reference.
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Toric vector bundles: GAGA and Hodge theory 773

Definition 1 A G-variety is an algebraic variety X over k together with an action ρX :
G × X −→ X of the group G. If G = G

n
m and there is a dense open orbit on which it acts

simply transitively, (X , ρX ) is called a toric variety.

Example 2 Any variety is a G-variety for the trivial action. The varieties G
l
m × A

n−l for the
natural action of G

n
m by multiplication are toric.

Definition 3 An equivariant sheaf (ofOX -modules) on aG-variety (X , ρX ) is tuple (V,�),
where V is a sheaf and � is an isomorphism

� : ρ∗
XV −→ pr∗2 V

of OG×X -modules that satisfies the cocycle condition

pr∗23 � ◦ (IdG ×ρX )∗� = (μG × IdX )∗�,

where pr23, IdG ×ρX , μG × IdX are maps G × G × X −→ G × X given by projection,
action and multiplication respectively.

One may check that if V is a coherent and locally free, i.e. the sections of a vector bundle
E −→ X , this definition is equivalent to requiring E to be aG-variety s.t. the action commutes
with the projection.

Example 4 Let �X be the sheaf of Kähler differentials. Recall that for any product X × Y
there is a canonical identification �X×Y ∼= pr∗X �X ⊕ pr∗Y �Y . As a consequence one may
equip �X with the structure of an equivariant sheaf via

�� : ρ∗
X�X −→ �G×X ∼= pr∗G �G ⊕ pr∗X �X −→ pr∗X �X ,

where the first map is pullback via ρX and the second map is projection.

Recall that for a connection ∇ : V −→ V ⊗ �X and a map f : Y −→ X , there is a
well-defined notion of pullback f ∗∇ : f ∗V −→ f ∗V ⊗ �Y which is again a connection: If
locally ∇ = d + ω with ω a section of �1

X (End(V)), then f ∗∇ = d + f ∗ω. More globally,
one considers f −1∇ and prolongs it to f ∗V = f −1V ⊗ f −1OX

OY via the Leibniz-rule.

Definition 5 An equivariant connection on an equivariant sheaf (V,�) on a toric variety
(X , ρX ) is a connection ∇ : V −→ V ⊗ �X such that the following diagram commutes:

V V ⊗ �X

ρX ∗ pr∗XV ρX ∗(pr∗XV ⊗ pr∗X�X )

∇

�ad �ad⊗�ad
�X

ρX ∗(pr∗X∇)X

Here, (pr∗X∇)X denotes the composite of pr∗X∇ : pr∗XV −→ pr∗XV ⊗ �G×X with Id⊗res
where res : �G×X −→ pr∗X�X is projection.

On affine schemes, the above notions can, as usual, be translated into commutative algebra
and it is this description that will be used later on in this section.

Proposition 6 The global sections functors yield equivalences of categories between:
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774 J. Stelzig

1. The category of quasi-coherent equivariant sheaves on an affine toric variety X = Spec A
and the category of n-graded A-modules.

2. The category of equivariant vector bundles with connection on a toric variety X = Spec A
and the category of n-graded A modules M which are locally free of finite rank and
equipped with a map

∇ : M −→ M ⊗ �A,

that satisfies the Leibniz rule and respects the grading. Here, �A denotes the module of
Kähler differentials, the generators of which satisfy deg(dXi ) = deg(Xi ), and the right
hand side has the tensor product grading.

The proof is standard and we omit it.1 Let us just describe how the n-grading on A is defined:
The action ρX induces a coaction ρ∗

X : A −→ A ⊗ k[z±1
1 , . . . , z±1

n ] and for any multiindex
p = (p1, . . . , pn) ∈ Z

n , one sets

Ap := {a ∈ A | ρ∗(a) = a ⊗ z p1q · ... · z pnn }.

2.2 Toric vector bundles on affine and projective spaces

It is well-known that one can further simplify the commutative algebra from the previous
section and describe equivariant sheaves on normal toric varieties in terms of linear algebra.
We keep notations from the previous subsection, and recall how this works for the case
X = A

n = Spec k[z1, . . . , zn]. We will only use these results for k = C, but everything
works for algebraically closed fields of characteristic zero.

Notational conventions: We fix some natural number n and denote by for any toric variety
X by Bun(X , G

n
m) the category of locally free coherent equivariant sheaves on X with

morphisms equivariant morphisms of sheaves (not necessarily of constant rank). By Filnk , we
denote the category of finite dimensional k-vector spaces (V , F1, . . . , Fn) with n separated
and exhaustive descending filtrations (i.e. FP

i = {0} and F p
i = V for P � 0 � p). We

sometimes write simply V instead of (V , F1, . . . , Fn) for an object in Filnk . Morphisms in
Filnk are linear maps ϕ : V → V ′ such that ϕ(F p

i ) ⊆ F p
i . Given two filtered vector spaces

(V , F), (V ′, F ′), the tensor product V ⊗k V ′ is equipped with the filtration (F ⊗ F ′)· =∑
p+q=· F p ⊗k F ′q and this induces a tensor product on Filnk .

We write A := k[z1, . . . , zn] and B := k[z±1
1 , . . . , z±1

n ]. We view these as equipped
with the standard n-grading, i.e., z pi has i-th degree p and zero else. For a multiindex p =
(p1, . . . , pn) ∈ Z

n , we write |p| := ∑n
i=1 pi and z p := z p11 · ... · z pnn ∈ B. For n filtrations

Fi on some vector space, we set F p := F p1
1 ∩ ... ∩ F pn

n . Given some λ ∈ Z, we use the
notation λp := (λp1, . . . , λpn) and p ±i λ := (p1, . . . , pi−1, pi ± λ, pi+1, . . . , pn) ∈ Z

n

and similarly with ≥i instead of ±i . We abbreviate (0, . . . , 0) to just 0. Also, for p, r ∈ Z
n ,

we write p ≥ r :⇔ pi ≥ ri ∀i ∈ {1, . . . , n}.
From filtrations to sheaves: Starting from a multi-filtered vector space (V , F1, . . . , Fn),
denote by

Rsn(V ) := F0(V ⊗k B) =
∑

p∈Zn

F pV ⊗k z
−p A ⊆ V ⊗k B

1 See e.g. [4, Exposé I, Prop. 4.7.3] for equivalence 1. The statement for connections is a direct consequence
of this and the fact that a connection is entirely determined by the induced map on global sections.
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Toric vector bundles: GAGA and Hodge theory 775

the Rees-module associated with V . Since it is an A-submodule of V ⊗ B, it is always
torsion free. Define the (algebraic)Rees-sheaf ξAn (V ) to be the coherent sheaf associated to
this module, with G

n
m-equivariant structure corresponding to the grading. This construction

is functorial.
It turns out that every toric vector bundle is of the form ξAn (V ). To formulate this more

precisely, we need two definitions:

Definition 7 A splitting for a set of filtrations F1, . . . , Fn on a vector space V is a decompo-
sition

V =
⊕

p∈Zn

V p s.t. Fr
i V =

⊕

p∈Zn

pi≥r

V p.

For n = 1, 2, one can always construct a splitting by choosing appropriate bases. For
n = 1, one sees this by taking successive vector space complements for the inclusions
F p+1 ⊆ F p . For n = 2, a (notationally more awkward) variant of this method of ‘taking
complements’ still works, but three or more filtrations may or may not be splittable. In fact,
given three distinct lines 	1, . . . , 	3 ⊆ k2, define F0

i := k2, F1
i := 	i , F2

i := {0}. Then any
splitting would have to involve all three lines as summands, but their sum is not direct.2

Definition 8 A map

f : (V , F1, . . . , Fn) −→ (W ,G1, . . . ,Gn)

in Filnk is called r -strict if for every collection {i1, . . . , ir } of indices in {1, . . . , n} and all
r -tuples of integers (p1, . . . , pr ) ∈ Z

r ,

f (F p1
i1

∩ · · · ∩ F pr
ir

) = Gpr
i1

∩ · · · ∩ Gpr
ir

∩ im( f ).

E.g., 1-strictness coincides with usual strictness for all filtrations and if there exist splittings
for the Fi and Gi respected by f , then f is n-strict.

Denoting by Filn,spli t table
k the full subcategory of Filnk consisting of those multifiltered

vector spaces that admit a splitting, one has:

Theorem 9 The functor ξAn induces an equivalence of categories

Bun(An, G
n
m) Filn,spli t table

k ,

which is compatible with direct sums and tensor products and where maps with constant rank
on the left side correspond to maps that are n-strict on the right hand side. For n = 1, 2 one
has Filnk = Filn,spli t table

k .

We will not reproduce a proof here (see e.g. [14, Thm 2.2.1], [13, Thm 1.2.2]), but just
explain why the existence of splittings is the right condition on ξAn (V ) to be a vector bundle
and why n-strictness corresponds to morphisms of constant rank.

Lemma 10 The functors ξAn (_) behave as follows when restricted to torus-invariant subsets:

2 c.f. [16, p. 13].
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776 J. Stelzig

1. There is a functorial, G
n
m-equivariant isomorphism

ξAn (V , F1, . . . , Fn)|Gm×An−1 ∼= pr∗
An−1 ξAn−1(V , F2, . . . , Fn)

and similarly for other subvarieties of the form A
r × G

s
m × A

t . In particular, there is an
equivariant isomorphism ξAn (V )|Gn

m
∼= OGn

m
⊗k V .

2. Given (V , F1, . . . , Fn) in Filnk , set D
p := F p

∑n
i=1 F

p+i 1
. There is a functorial isomorphism,

equivariant for theG
n
m-action given by the restricted action on the left and by the grading

on the right.

ξAn (V )|{0} ∼=
⊕

p∈Zn

D−p

Proof (Sketch of proof)By Proposition 6, it suffices to give the isomorphisms on the modules
of global sections, where restriction to an affine open subset corresponds to a localisation
and restriction to a closed subset to a quotient.

Note that, as a vector space, Rsn(V ) = ⊕
p∈Zn F pz−p . So, if we consider the ideal

I = (z1, . . . , zn) corresponding to 0 ∈ A
n , then the isomorphism in 2. is given as

Rsn(V )/I Rsn(V ) ∼=
⊕

p∈Zn

Dpz−p

by projection in each summand. Since the grading is given by the z−p , we have the sign
switch in the statement. As for 1, the restriction corresponds to inverting z1. Thus, one has

Rsn(V )z1 =
⊕

p∈Zn

(
∑

r≤p1

F (r ,p2,...,pn)

)

z−p

∼=
⊕

p2,...,pn∈Z
F (p2,...,pn)z−p2

2 · ... · z−pn
n ⊗k k[z±1

1 ]

∼= Rsn−1(V , F2, . . . , Fn) ⊗k[z2,...,zn ] k[z±1 , z2, . . . , zn]
where the equality

∑
r≤p1 F

(r ,p2,...,pn) = F (p2,...,pn) is a consequence of the assumption that
the filtrations are exhaustive (i.e. Fr

1 = V for r small enough). ��
How to see whether ξAn (V ) is a vector bundle? For example this is the case if V = k

so that each filtration has a single jumping index ri , i.e. F
ri+1
i = 0 ⊆ Fri

i = k. Denoting
r = (r1, . . . , rn), the Rees module is then just z−r k[z1, . . . , zn], which is a free module of
rank one. Let us denote the resulting Rees-bundle by OAn (r).

Proposition 11 Let (V , F1, . . . , Fn) be in Filnk . The following assertions are equivalent:

1. The filtrations F1, . . . , Fn are splittable.
2. ξAn (V , F1, . . . , Fn) is a vector bundle.
3. The spaces Dp = F p

∑n
i=1 F

p+i 1
satisfy

∑
p∈Zn dim Dp = dim V .

If one of these conditions is satisfied, any splitting V = ⊕
p∈Zn V p determines an isomor-

phism

ξAn (V ) ∼=
⊕

p∈Zn

V p ⊗k OAn (p).
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Toric vector bundles: GAGA and Hodge theory 777

Proof We first show 1. ⇒ 2.: If V = ⊕
V p is a splitting of the Fi , there is an isomorphism

ξAn (V ) = ⊕
ξAn (V p) ∼= ⊕

V p ⊗ OAn (p), which is free.
From 2. to 3., note that a vector bundle has constant fibre dimension. By Lemma 10, the

fibre over any point (e.g. (1, . . . , 1)) in G
n
m is canonically identified with V , while the fibre

over 0 is canonically identified with
⊕

Dp .
Finally, assuming 3., choose, for every p ∈ Z

n , subspaces V p ⊆ F p s.t. V p projects
isomorphically onto Dp . By construction, we have

F p =
∑

r∈Zn

r≥p

V r .

In particular,

dim V ≤
∑

p∈Zn

dim V p =
∑

p∈Zn

dim Dp = dim V .

Therefore, there has to be an equality and the sum of the V p is direct. ��
Proposition 12 Let f : V −→ W be a map in Filnk and ξAn ( f ) the associated map of
Rees-sheaves.

• The morphism induced by the inclusion ker f ↪→ V gives a canonical identification

ξAn (ker f ) ∼= ker ξAn ( f ).

• There is an exact sequence

0−→T −→ coker ξAn ( f )
ϕ−→ ξAn (coker f ) −→ 0,

where coker ξAn ( f ) is the sheaf-theoretic cokernel and T is the torsion subsheaf. Further,

f is r-strict ⇔ codim(supp(T )) > r .

Proof It suffices to check this on global sections, i.e. on the Rees-module. For the first point,
note that for any p ∈ Z

n , a section vp ⊗ z p with vp ∈ F p
V is mapped to zero iff vp ∈ ker f .

For the second point, let π : W → coker f denote the projection. The global sections of
the two right members of the claimed sequence are then given (where the sum is direct as
k-vector spaces) by

�(An, coker ξAn ( f )) =
⊕

p∈Zn

F p
W

f (F p
V )

z−p

and

�(An, ξAn (coker f )) =
⊕

p∈Zn

πF p
W z−p.

Denoting by ϕ p : F p
W

f (F p
V )

−→ πF p
W the natural map, we can define the map ϕ to be induced

by the direct sum of the ϕ p . Using

ker ϕ p = {w ∈ F p
W | ∃q ∈ N

n s.t. w ∈ f (F p−q
W )} mod f (F p

V ),

one verifies that ker ϕ = T coincides with the torsion subsheaf.
For simplicity, we verify the statement on the dimension of the support of T only in the

case r = n: In fact, n-strictness is equivalent to the condition that all theϕ p are isomorphisms,
which is in turn equivalent to ϕ being an isomorphism. ��
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778 J. Stelzig

3 Toric GAGA

In this section, we are interested in the case k = C and we only treat vector bundles, not more
general equivariant sheaves. We consider equivariant connections and weaker (than being
algebraic) regularity conditions on transition functions and group actions.

Notations and conventions: Let Gran
C

denote the category of finite dimensional n-
graded C-vector spaces. For G = (C×)n or G = T

n := (S1)n , by Bunω(Cn,G)

with ω ∈ {alg, hol, sm, cont}, we mean algebraic, holomorphic, smooth or continuous G-
equivariant bundles on C

n when meaningful. Morphisms are not supposed to have constant
rank. We identify Bun(An, G

n
m) from the previous section with Bunalg(Cn, (C×)n) (by con-

sidering the complex valued points) and we switch freely between geometric vector bundles
and locally free sheaves over the corresponding structure sheaf. By Repω(G), with ω as
above, we denote algebraic, holomorphic, smooth or continuous representations of G. Those
cases of interest to us are related to each other by the following diagram:

Bunalg(Cn, (C×)n) Repalg((C×)n)

Bunhol(Cn, (C×)n) Rephol((C×)n)

Gran
C

Bunsm(Cn, T
n) Repsm(Tn)

Buncont(Cn, T
n) Repcont(Tn)

(∗)

Here, the vertical arrows forget some structure (or in sheaf-theoretic terms, tensor by a
bigger structure sheaf and restrict the action), the horizontal ones are restriction to the fibre
at 0 and the diagonal ones are given by the rule (V , ρ) �→ V = ⊕

p∈Zn V p where V p with
p = (p1, . . . , pn) is the eigenspace of the character

χp : (λ1, . . . , λn) �→ λ−p := λ
−p1
1 · · · · · λ

−pn
n .

Proposition 13 In the diagram (∗), all arrows induce bijections on isomorphism classes. The
sides of the triangles on the right are equivalences of categories.

Proof It iswell-known that all sides of the triangles on the right are equivalences of categories.
For the convenience of the reader, let us recall one possible strategy of proof: Let V be some
continuous representation of T

n . Since T
n is compact, one can choose an invariant scalar

product on V and thereby find a decomposition of V into irreducible summands. Since T
n

is Abelian, and by Schur’s Lemma ([2, p. 69]), stating that maps between two irreducible
representations are zero if they are nonisomorphic and amultiple of the identity otherwise, all
irreducible components are 1-dimensional. Since T

n = (S1)n , one is thus reduced to classify
continuous group homomorphisms S1 → S1 which one checks to be z �→ z p for p ∈ Z.
Therefore, V = ⊕

p∈Zn V p with V p the eigenspace of χp . But these are even algebraic and
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Toric vector bundles: GAGA and Hodge theory 779

defined on (C×)n , so the same decomposition holds also in Repω(G) for ω = alg, hol, sm.
The statement about maps also follows from Schur’s Lemma.

To aG-representation (V , ρ) in Repω(G), one can associate the trivial (geometric) vector
bundle Ṽ := C

n × V with product action

λ.(x, v) = (λ.x, ρ(λ)x).

We also denote this Ṽ ω if we want to emphasize that we consider it as a bundle in
Bunω(Cn,G). E.g., in the notation of the previous section, Ṽ alg = ⊕

p∈Zn V p ⊗C OAn ,
where as above V p is the eigenspace of χp , but equipped with the trivial action.

The invariant global sections of Ṽ ω can be identified with equivariant (algebraic, holo-
morphic, smooth or continuous) maps C

n −→ V and the restriction of Ṽ to 0 is canonically
isomorphic to (V , ρ), i.e. V �→ Ṽ gives a section of the functors from Bunω(Cn,G) to
Repω(G). In particular, all horizontal arrows in (∗) are essentially surjective.

BecauseC
n isT

n-equivariantly contractible to the fixed point 0, the restriction to the fibre

Bunω(Cn, T
n) −→ Repω(Tn)

induces a bijection on isomorphism classes3 for ω ∈ {sm, cont} and by Theorem 9 and
Proposition 11, so does

Bunalg(Cn, (C×)n) −→ Gran
C
.

Finally, by a general Theorem of Heinzner and Kutzschebauch on equivariant bundles on
Stein spaces4 the forgetful functor

Bunhol(Cn, (C×)n) −→ Buncont(Cn, T
n)

induces a bijection on isomorphism classes. The remaining arrows are bijections on iso-
morphism classes by commutativity of the diagram induced by (∗) on isomorphism classes.

��
For the functor from algebraic to holomorphic bundles, even more is true:

Proposition 14 The functor

Bunalg(Cn, (C×)n) −→ Bunhol(Cn, (C×)n)

is an equivalence of categories.

Proof We already know that it is essentially surjective by Proposition 13. It is also obviously
faithful, so what remains to be checked is that it is full. Consider a map of equivariant
holomorphic bundlesV −→ W . Without loss of generality, wemay assumeV = Ṽ ,W = W̃
for some (C×)n-representations V ,W . In this case, the statement follows from the following
lemma applied to the bundle Hom(V,W). ��

3 This follows from the ‘homotopy invariance of isomorphism classes of equivariant vector bundles’: Given a
compact topological group G and two equivariantly homotopic equivariant maps f0, f1 : X −→ Y between
G-spaceswith X paracompact. Then for anyvector bundleV onY the pullbacks f ∗

0 V and f ∗
1 V are equivariantly

isomorphic. This is essentially proven in [1], p. 40f. However, there only the case of a compact Hausdorff base
and a finite group is treated. See [21] for the case of a compact group (but still compact base) and, e.g., [26, p.
21] for the case of non-equivariant bundles over a paracompact base, which can be adapted to the equivariant
case by a standard averaging trick.
4 [9, p. 341], see also [8, par. 1.4.] for the notions used in the statement.
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780 J. Stelzig

Lemma 15 Let V be an object of Rephol((C×)n). For any equivariant section z �→ (z, s(z))
of the bundle Ṽ hol, there are a finite subset I ⊆ Z

n≥0 and elements vp ∈ V−p for all p ∈ I
s.t.

s =
∑

p∈I
z pvp.

Proof It suffices to check the equality on the dense open subset U = (C×)n ⊆ C
n . Since

(C×)n acts simply transitively on U , a section is determined by its value s(1, . . . , 1) =∑
p∈I vp . Because the section extends to the whole ofC

n , necessarily I ⊆ Z
n≥0. This implies

the lemma. ��
Remark 16 The other two forgetful functors are still faithful and essentially surjective, but no
longer full: E.g. consider any equivariant line bundle L . Then Hom(L, L) is the (equivari-
antly) trivial bundle. An S1-invariant continuous section s of the trivial bundle C × C can be
given by prescribing an arbitrary continuous functionR≥0 → C (the restriction to s|R≥0 ), but
these sections do not have to be smooth, and even if they are, they don’t have to be constant
(i.e. C

×-equivariant).

Remark 17 Using the whole diagram (∗) and in particular [9] to show essential surjectivity of
analytification seems to be quite an overkill. It would be interesting to see a direct derivation
of the classification of isomorphism classes in Bunhol(Cn, (C×)n).

Theorem 18 For any smooth toric variety X, analytification yields an equivalence of cate-
gories

{
equivariant algebraic vector
bundles on X

}

←→
{
equivariant holomorphic
vector bundles on Xan

}

Proof For any groups G,G ′ and G-space X , one obtains by pullback an identification of
the G × G ′-equivariant bundles over X × G ′ and the G-equivariant bundles over X . In fact,
any equivariant bundle on X × G ′ is trivialized in the fibre direction by the action of G ′, so
one can pick transition functions depending only on the base. Also, an invariant section has
to be constant along the fibre. In particular, equivariant maps (invariant sections of a homo-
morphism bundle) of bundles on X × G ′ correspond to equivariant maps between bundles
on X . This reasoning works regardless whether one works in the algebraic or holomorphic
category. In particular, there is an equivalence

Bunω(Cn × (C×)m, (C×)n+m) −→ Bunω(Cn, (C×)n)

for ω = alg, hol and so by Proposition 14, analytification gives an equivalence of algebraic
and holomorphic equivariant bundles over C

n × (C×)m . One concludes by noting that every
toric variety is covered by open sets equivariantly isomorphic to C

n × (C×)m for some
n,m ∈ Z≥0, the intersections of which have again this form.5 ��
Corollary 19 Let X be a smooth toric variety. Analytification yields an equivalence of cate-
gories

{
equivariant algebraic vector
bundles wi th an equivariant connection on X

}

←→
⎧
⎨

⎩

equivariant holomorphic
vector bundles wi th an
equivariant connection on X an

⎫
⎬

⎭
.

It restricts to an equivalence of the subcategories of vector bundles with flat connections.

5 See [3, thm. 3.1.19, thm. 1.3.12, ex. 1.2.21].
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Toric vector bundles: GAGA and Hodge theory 781

Proof That the functor is fully faithful follows from the corresponding statement for bundles
without a connection. In fact, a map between algebraic vector bundles with connection is
compatible with the connections if and only if its analytification is. Similarly, a connection
is flat if and only if its analytification is. For essential surjectivity, we can assume that
X = C

n × (C×)m with action by multiplication of (C×)n+m and that a holomorphic bundle
V is given in trivialized form, i.e., as V = pr∗

Cn Ṽ(0) ⊗ pr∗
(C×)m

O(C×)m . One checks that on
these (trivial) bundles the canonical connection d is equivariant, so any connection is given
as

∇ = d + �,

where � is a global invariant holomorphic 1-form on C
n × (C×)m with values in the vector

space End(V(0)). Arguing as in the proof of Lemma 15, such a form can be written as

� =
∑

p∈Zn≥0

n+m∑

i=1

Ap,i z
p1
1 · ... · z pnn dzi

zi
,

where the Ap,i are endomorphisms of V(0) of multidegree −p (which are taken to be
zero if they would cause a pole, i.e., if pi = 0). In particular, the connection is algebraic. ��
For flat connections, there is also a nicer comparison to representations, which also accounts
for the smooth case. Let Bunω∇(Cn, (C×)n) with ω ∈ {alg, hol} denote the category of
(C×)n algebraic or holomorphic equivariant vector bundles with an equivariant connec-
tion and denote by Bunω

∇� (C
n, (C×)n) the respective subcategories of flat connections. Let

Bunsm∇� (C
n, T

n) be the category of smooth equivariant vector bundles with flat equivariant
connections. As above, there is a commutative diagram:

Bunalg∇� (C
n, (C×)n) Repalg((C×)n)

Bunhol∇� (C
n, (C×)n) Rephol((C×)n)

Bunsm∇� (C
n, T

n) Repsm(Tn)

(∗∗)

Here, horizontal arrows are again restriction to 0 and vertical ones forget about the stronger
regularity conditions imposed.

Proposition 20 In the diagram (∗∗), all arrows are equivalences of categories.

Proof Since we already know the functors in the right column and the one from algebraic
to holomorphic bundles to be an equivalence, it suffices to show that restriction to the fixed
point is an equivalence in the holomorphic and smooth cases. We do this in the holomorphic
case, the smooth case works the same way.

Sending (V ,∇) to ker∇ is an equivalence of categories between flat equivariant con-
nections and equivariant local systems on C

n . Since C
n is contractible, any local system

is necessarily trivial. So restriction from global sections to any point is an isomorphism.
In particular, restriction to the fixed point 0 induces an equivalence of categories with
Rephol((C×)n).
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For completeness, here is an explicit description of the pseudo-inverse to the restriction
functor in (∗∗): For any representation (V , ρ) in Rephol((C×)n), as before, consider the
bundle Ṽ with product action. Its sheaf of sections V ⊗COCn is equipped with the canonical
equivariant connection d given by

d(v ⊗ f ) = v ⊗ d f

and sending a map f : (V , ρV ) −→ (W , ρW ) of representations to f ⊗ Id this defines the
pseudo-inverse

Rephol((C×)n) −→ Bun∇� (Cn, (C×)n).

��
Remark 21 It is a natural task to extend these results to arbitrary coherent sheaves and possibly
singular toric varieties. The coherent sheaf case might be approachable by the same methods
as in this article: One would want some sort of equivariant resolution by vector bundles in
the holomorphic setting (whose existence the author is currently unaware of). For the case
of singular base, the present method of reducing to C

n appears to be unsuitable.

Remark 22 An early impetus for the questions treated in this section came from studying
Kapranov’s proof [12] of the equivalence between (complex) Mixed Hodge Structures and
algebraic toric vector bundles with an equivariant connection on C

2. A crucial step in the
proof consists in an application of the equivariant Radon–Penrose transform, that yields an
equivalence between equivariant holomorphic vector bundles with a connection on C

2 and
a certain holomorphic toric vector bundle on P

2
C
\{[1, 0, 0]}. The latter are then related to

triples of opposed filtrations via the Rees-bundle construction. One then has to check that if
a bundle on one side of the equivalence is algebraic, so is its counterpart on the other side.
By Theorem 18 and Corollary 19 this last step is in a certain sense redundant: The algebraic
and holomorphic categories on both sides are equivalent.

4 The Frölicher approximating bundle

For a complex manifold X , denote by (C∞· (X , C), d) the complex of C-vector spaces given
by complex-valued differential forms and exterior differentiation. This complex carries a
filtration given by

F pC∞· (X , C) :=
⊕

r+s=·r≥p

C∞
p,q(X , C),

where C∞
p,q(X , C) denotes the subspace of forms of type p, q . This filtration induces a

filtration on Hk
dR(X , C), still denoted F·, by

F pHk
dR(X , C) := im

(
ker d ∩ F pC∞

k (X , C) −→ Hk
dR(X , C)

)
.

The filtration F on C∞· (X , C) induces the so-called Frölicher spectral sequence

E p,q
1 (X) = Hq(X ,�

p
X ) �⇒ (H p+q

dR (X , C), F).
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In [19] (from which we adopt some notations in this section), Dan Popovici associates
with every compact connected complex manifold X a holomorphic vector bundle, called
the Frölicher approximating vector bundle (short FAVB), denoted Ak on C together with
distinguished isomorphisms of the fibres:

ψh : Ak
h

∼=
{
Hk
dR(X , C) if h �= 0

⊕
p+q=k E

p,q∞ (X) if h = 0.
(∗)

Here, E∞(X) denotes the limiting page of the Frölicher spectral sequence of X . Recall that
convergence of the spectral sequence means that the separated and exhaustive descending
filtration F on Hk

dR(X , C) satisfies E p,q∞ = gr pF H
p+q
dR . Further, E p,q∞ ∼= E p,q

r for any r with
the property that all differentials entering or leaving the bidegree (p, q) are zero from page
Er onward. In particular, one could replace ∞ in the statement with the minimal r0 s.t. the
spectral sequence degenerates at Er0 (e.g. one always has r0 ≤ dimC X + 1).

Popovici’s construction depends on the choice of a metric on X . Let us briefly recall
it: The main point consists in contructing a C∞-family of Laplace-type pseudo-differential
operators (�̃h)h∈C on the space of k-forms C∞

k (X , C). The kernels of �̃h form a C∞-vector
bundle over C. Then one computes that inclusion and projection induce isomorphisms

ker �̃h ∼=
{
Hk
dh

(X , C) if h �= 0
⊕

p+q=k E
p,q∞ (X) if h = 0.

(∗∗)

Here, Hdh (X , C) denotes cohomology with respect to the ‘twisted’ differential dh = h∂ +∂ .
For every 0 �= h ∈ C, the map

θh : C∞
k (X , C) −→ C∞

k (X , C)
∑

p+q=k

ωp,q �−→
∑

p+q=k

h pωp,q

induces isomorphisms Hk
dR(X , C) ∼= Hk

dh
(X , C). This varies holomorphically in h, hence

the bundle ker �̃ is holomorphic over C
× (even a constant local system). Therefore, it is nec-

essarily also holomorphic over the whole of C by Riemann’s removable singularity theorem.
We show now thatAk can be identified with a Rees-bundle. Slightly abusing notation, we

identify Ak with its sheaf of sections.

Theorem 23 Let X be a compact connected complex manifold and Ak the k-th Frölicher
approximating bundle. There is a canonical isomorphism

Ak ∼= ξA1(Hk
dR(X , C), F)an

where F denotes the Hodge filtration and the superscript an means analytification.

Corollary 24 The bundle Ak carries a (necessarily unique) algebraic and C
×-equivariant

structure which is independent of the choice of a metric. The association X �−→ Ak is
contravariantly functorial for maps between (compact) complex manifolds.

Note that the Rees-bundle construction makes perfect sense for infinite dimensional vector
spaces, yielding a quasi-coherent (and for one filtration or two filtrations with the same proof
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as in Proposition 11: locally free) sheaf. Hence, one can also omit the compactness condition
and use ξA1(Hk

dR(X , C), F) as a definition of the FAVB for arbitrary complex manifolds
(although one may argue that the filtration used here is not the ‘right’ filtration to consider
in the non-compact case).

By Lemma 10, the bundle ξA1(Hk
dR(X , C), F) has the desired identifications (∗). The

isomorphism with Ak will follow from the following general ‘base-change-property’ for
Rees-bundles.

Lemma 25 Given a complex manifold X and k ∈ Z, consider the complex (A·, dξ ) of
sheaves on C defined by A· = ξA1(C∞· (X , C), F) and dξ = ξA1(d). There is a canonical
identification of toric vector bundles on C:

Hk(A an• , d an
ξ

)
/T ∼= ξA1(Hk

dR(X , C), F)an

where T denotes the torsion subsheaf.
There are canonical isomorphisms

αk : Ak −→ ˜C∞
k (X , C) ⊗ C[z]

∑

p+q=k

ωp,q · p(z±1) �−→
∑

p+q=k

ωp,q p(z±1)z p

under which dξ gets identified with dz = z · (∂ ⊗ Id) + (∂ ⊗ Id).

Proof The first part is a direct application of Proposition 12, i.e. the fact that the Rees-
construction commutes with kernels and commutes with cokernels up to torsion. The
isomorphism in the second part is the trivialization from Proposition 11 (note that there
is the canonical splitting of F given by C∞

k (X , C) = ⊕
p+q=k C

∞
p+q(X , C)). ��

Proof of Theorem 23 Consider the holomorphic bundle ker �̃z as a subsheaf ofC∞
k (X , C)⊗C

OC. By equation (∗∗), it is contained in ker dz∩C∞
k (X , C)⊗COC

∼= Ak∩ker dξ and therefore
projects to Hk

(
Aan· , danξ

)
mod T . The result now follows from (∗) and Lemma 10. ��

We end this section and the article by sketching a few open ends and questions:

• (Second filtration) The FAVB bundle does not see the real structure on Hk
dR(X , C). To

remedy this, one can take the conjugate Hodge-filtration into account and obtain a bundle
on A

2, given as ξA2(Hk
dR(X , C), F, F̄), which is now also equivariant with respect G

2
m

and the antilinear involution on the base given by (z1, z2) �→ (z̄2, z̄1) and hence descends
to a real bundle onA

2
R
. One can also form ξP1(H

k
dR(X , C), F, F̄), i.e. descend the bundle

to projective space. If the Hodge-filtrations induce a pure Hodge structure of someweight
k′ (not necessarily = k) on k, this is a Twistor Structure in the sense of Simpson [24]
(after forgetting most of the action). Let us instead continue to consider it as a bundle on
C
2. Its restriction to A

1 × {h} (h �= 0) yields the FAVB, while its restriction to {h} × A
1

(h �= 0) yields the analogous bundle for the conjugate spectral sequence. It is, similarly to
Proposition 25, isomorphic to the cohomology (modulo torsion) of the de-Rham complex
with parameters z1, z2 and deformed differential, now given by z1∂ + z2∂ . The fibre of
ξA2(Hk

dR(X , C), F, F̄) over (0, 0) is given by the space

D =
⊕

p,q∈Z

F p ∩ F̄q

F p+1 ∩ F̄q + F p ∩ F̄q+1
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The dimensions bp,q
k of the bigraded components of D are called the generalized Betti

numbers and satisfy bk(X) = ∑
p,q b

p,q
k (X). For p + q �= k, their nonvanishing is

an obstruction to the de-Rham cohomology being pure (meaning the existence of a
decomposition Hk

dR(X , C) = ⊕
p+q=k F

p ∩ F̄q ), see also [25] for a more conceptual
interpretation. Can one also describe this bundle, arising from two filtrations, as the
kernel of a family of differential operators? In particular, is there a harmonic theory for
(the bigraded components of) the space D? These questions might be more approachable
for the class of page-r -∂∂-manifolds introduced in [20].

• (Relative version) In [19] Popovici also considers the situation of a family of compact
complex manifolds i.e. a proper holomorphic submersion π : X −→ B and constructs a
bundleAk onC×B, s.t. the restriction to each sliceC×{b} is the FAVB for Xb = π−1(b).
Is there also a purely algebraic construction for this bundle? To make the Rees-bundle
constructionwork in the relative setting, onemaybe should answer the followingquestion:
Are the F pHk

dR(Xb, C) fibres of a coherent subsheaf of the (flat) holomorphic vector
bundle Rkπ∗C ⊗ OB? It would also be interesting to consider the two-filtration version
above in the relative setting.
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