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Abstract
In this paper, we study Lagrangian surfaces satisfying ∇∗T = 0 , where T = −2∇∗( Ǎ�ω)

and Ǎ is the Lagrangian trace-free second fundamental form. We obtain a gap lemma for
such a Lagrangian surface.

Mathematics Subject Classification 35K55 · 53D12

1 Introduction

Gap phenomena form an interesting topic in differential geometry, with many related results
to be found. Sacks-Uhlenbeck’s well-known energy gap lemma for harmonic maps (see
[12]) is such an example. The following result by Kuwert-Schätzle for the Willmore surfaces
immersed in Euclidean space is one of our motivations:

Theorem (Gap lemma for Willmore surfaces, [3, Th. 1.1] or [7, Th. 2.7]) Let f : � → R
n

be a properly immersed (compact or non-compact) Willmore surface, and let ��(0) :=
f −1(B�(0)). Then there exists ε0(n) > 0 such that if

lim inf
ρ→∞

1

�4

∫
��(0)

|A|2dμ = 0

and
∫

�

|Å|2dμ < ε0(n),

where Å is the trace-free second fundamental form of f (�), f is an embedded plane or
sphere.

The small energy condition above is natural in the variational sense since it can be geomet-
rically interpreted as howdifferent of an immersion frombeing the simplest geometricmodels
such as planes and standard spheres. Our personal interest is on Lagrangian submanifolds
which often play an important role in symplectic geometry where objects often have a natural
presentation as Lagrangian manifolds. And they also arise in many problems of mechanics
and physics. Models such as the Lagrangian planes, the Clifford torus and Whitney spheres
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1602 L. Zhang

are the simplest objects to study in Lagrangian geometry. Followed by Kuwert-Schätzle’s
idea, Luo-Wang proved a similar result under Lagrangian settings:

Theorem (Gap lemma forHWsurfaces, [9,Th. 4.3])Let f : � → C
2 be a properly immersed

HW surface, then there exists ε0(n) > 0 such that if the norm of the second fundamental
form ‖A‖L2 < ε0(n), it must be a Lagrangian plane.

According to their paper, it still remains open if there is a similar gap phenomenon for the
Whitney sphere in the class of HW surfaces (see [9] for the definition). To reformulate, we
introduce a (0,2)-tensor T := ∇(H�ω) − 1

2 div J H · g and consider the equation ∇∗T = 0
in this paper. From a geometric point of view, the tensor T measures the deviation of the
mean curvature vector field from a conformal field and one can easily check that Whitney
spheres satisfy the equation. Therefore it is natural to ask if the Whitney sphere is unique
under some small energy conditions. Instead of considering an energy condition on Å, we
introduce a Lagrangian trace-free second fundamental form Ǎ (see definition in Sect. 2) for
its close relationship with Whitney spheres. The following is our main result:

Theorem 1.1 Assume f : � → C
2 is a properly immersed Lagrangian surface (compact

or non-compact) such that ∇∗T = 0, given γ ∈ C1
c (�) a positive function that satisfies

|∇γ | ≤ C0
R for any R > 0, there exists a constant ε0 > 0 such that if

∫
{γ>0}

| Ǎ|2dμ ≤ ε0,

we have
∫

�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ ≤ C

R2

∫
{γ>0}

|A|2dμ.

Combining the previous result with a classification theorem from Lagrangian geometry (see
[4] or [5]), we obtain a gap theorem which answers the above question:

Theorem 1.2 Assume f : � → C
2 is a properly immersed Lagrangian surface (compact or

non-compact) that satisfies ∇∗T = 0, and let ��(0) = f −1(B�(0)), then there exists ε0 > 0
such that if

∫
�

| Ǎ|2dμ ≤ ε0 and lim inf
�→∞

1

�2

∫
��(0)

|A|2dμ = 0,

then f is either a Lagrangian plane in C
2 or a Whitney immersion.

Our method to prove these therorems is establishing a Bochner type identity for the
Lagrangian trace free curvature as Kuwert-Schätzle. But the difficulty here is that our con-
dition on Ǎ does not imply a control on H as in their case. Therefore we write the Bochner
identity in terms of the tensor T so that we can make good use of its relationship with Ǎ.

We organize this paper as follows: in Sect. 2 we introduce some elementary notions
on Lagrangian submanifolds as well as the Willmore functional. Section 3 is devoted to a
curvature estimate for Lagrangian surfaces which is essential for us to get the main gap
theorem. In Sect. 4, we will give a connection between our problem and the case of studying
gap phenomena for the HW surfaces.

123



An energy gap phenomenon for the Whitney sphere 1603

2 Preliminary on the Lagrangian geometry

In this section, let’s recall some elementary notions in the Lagrangian geometry. LetC2 = R
4

be the 2-dimensional complex plane with the standard metric ds2 = dx2i +dy2i (also denoted
as 〈 , 〉) and ω = dxi ∧ dyi be the standard symplectic structure associated with it. Let
J be the standard complex structure of C2 such that J 2 = −idC2 . These structures above
satisfy the relationship: 〈V , W 〉 = ω(V , J W ) for any vectors V and W . Here we order the
coordinates as (x1, y1, x2, y2). We denote the connection on C

2 induced by the Euclidean
metric as D. Now for an immersion f : � → C

2, we define the second fundamental form
A := (D2 f )⊥, i.e. the normal part of the second order covariant derivative of f , the mean
curvature H = tr A, and the trace-free second fundamental form Å := A − 1

2 g ⊗ H as usual.

Definition 2.1 Let � be a surface in C
2, with tangent and normal bundles, T � and N�,

respectively. Then � is Lagrangian if and only if one of the following equivalent conditions
holds:

(1) ω restricted to � is zero,
(2) J T � = N�, where J is the standard complex structure on C

2,

We usually treat f (�) and � as the same if there is no confusion. Hence the first condition
has an alternative version:

Definition 2.2 An immersion f from a surface � into C
2 is called a Lagrangian immersion

if f ∗ω = 0.

The second condition allows us to choose frames properly which will be helpful when we
are doing geometric calculations.

The Lagrangian subspaces or planes are the simplest Lagrangian surfaces inC2, and there
are also some well-known but non-trivial examples such as the Clifford torus and Whitney
spheres.

Example 2.1 (Lagrangianplanes inC2C2
C
2)All 2 dimensional subspaces ofR4 whose restriction

of symplectic form ω to this subspace is identically equal to zero is called Lagrangian planes.

Example 2.2 (Whitney immersions inC
2C2

C
2)

� : S
2 −→ C

2

(x1, x2, x3) �−→ r

1 + x23
(x1, x1x3, x2, x2x3) + −→

C
(2.1)

is a family of Lagrangian immersion. Here we embed S2 into R3 with center at the origin to
get its local coordinates at first. The image of� inC2 is called aWhitney sphere and denoted

as SW , and the constants r and
−→
C will be referred as the radius and the center respectively.

Topologically, it is well-known that there is no embedded sphere in C
2 as a Lagrangian

submanifold. Whitney spheres have possibly the simplest behaviour in this case because
they only have one double point.

Castro-Urbano [4] (or Ros-Urbano [11] for higher dimensional case) proved the following
famous classification theorem:

Theorem ([11, Th. 2]) Let 	 : M → C
n be a Lagrangian immersion of an n-dimensional

submanifold M, then

A(v,w) = 1

4
{〈v,w〉H + 〈Jv, H〉Jw + 〈Jw, H〉Jv}
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1604 L. Zhang

holds for any vectors v and w tangent to M if and only if 	(M) is either an open set of the
Whitney sphere or is totally geodesic.

This reminds us of a classical theorem in R
n which states that if Å = 0, the immersion is

either a plane or a standard sphere. Catro-Urbano’s result is much more complicated to prove
than this classical theorem.Motivated by this, we can define a similar quantity for Lagrangian
surfaces:

Ǎ(v,w) := A(v,w) − 1

4
{〈v,w〉H + 〈Jv, H〉Jw + 〈Jw, H〉Jv}. (2.2)

Wecall Ǎ theLagrangian trace-free second fundamental formandan immersion isLagrangian
umbilical if it satisfies Ǎ = 0.

3 Estimates for Lagrangian surfaces with locally small L2-norm of Ǎ

3.1 Preparations

Let {ei } be a local orthonormal frame for � and we denote hi = 〈H , Jei 〉 = H�ω(ei ) and
Ai jk = 〈A(ei .e j ), Jek〉 = A�ω(ei , e j , ek) in local orthonormal coordinates. We would like
to point out that A is fully symmetric:

Ai jk = 〈Dei e j , Jek〉 = −〈e j , J Dei ek〉 = 〈Je j , Dei ek〉 = Aik j , (3.1)

where D is the connection of the ambient space C2. Hence it doesn’t matter which two of its
three indices are contracted.We denote g as the inducedmetric on� by f ,∇ as its connection
and dμ as the induced area form. For any tensor fields S ∈ 
(T � ⊗ · · · ⊗ T �︸ ︷︷ ︸

r

⊗N�) on

�, we define its covirant derivative as ∇⊥S = (DX S)⊥ and its adjoint covariant derivative
as ∇⊥∗S = −ei�∇⊥

ei
S. We can verify that they have the relationship

∫
�

〈∇⊥S, T 〉dμ =
∫

�

〈S,∇⊥∗T 〉dμ

for any tensor fields S ∈ 
(T � ⊗ · · · ⊗ T �︸ ︷︷ ︸
r

⊗N�) and T ∈ 
(T � ⊗ · · · ⊗ T �︸ ︷︷ ︸
r+1

⊗N�). In

the following, we will omit the superscript of∇⊥ if there is no confusion and hence the rough
Laplace operator on the normal bundle can be written as ΔS = −∇∗∇S. The fundamental
curvature functions of submanifold geometry can be expressed as

K = 1

2
(|H |2 − |A|2) = 1

4
|H |2 − 1

2
|Å|2, (3.2)

(∇X A)(Y , Z) = (∇Y A)(X , Z), (∇X H)(Y , Z) = (∇Y H)(X , Z), (3.3)

R⊥(X , Y )φ = A(ei , X)〈A(ei , Y ), φ〉 − A(ei , Y )〈A(ei , X), φ〉. (3.4)

for any tangential vector fields X , Y and normal vector fields φ.
The following proposition links those geometric quantities together:
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An energy gap phenomenon for the Whitney sphere 1605

Proposition 3.1 Assume f : � → C
2 is a immersed Lagrangian surface (compact or non-

compact), then its Lagrangian second fundamental form Ǎ satisfies

| Ǎ|2 = |A|2 − 3

4
|H |2, (3.5)

−2∇∗( Ǎ�ω) = ∇(H�ω) − 1

2
div J H · g. (3.6)

Proof In local orthonormal coordinates,wedenote Ǎi jk = 〈 Ǎ(ei .e j ), Jek〉 = Ǎ�ω(ei , e j , ek).
We use either property (3.1) or definition (2.2) to see that Ǎi jk is fully symmetric. Hence we
have

| Ǎ|2 = Ǎi jk Ǎi jk

= [Ai jk − 1

4
(δi j hk + δikh j + δ jkhi )]2

= Ai jk Ai jk − 3

4
hi h

i .

For the second identity, we use Codazzi equation (3.3) to get

−∇∗( Ǎ�ω)(ei , e j ) = Ǎi jl,l

= Ai jl,l − 1

4
(δi j div J H + hi, j + h j,i )

= Aill, j − 1

4
(δi j div J H + 2hi, j )

= hi, j − 1

4
(δi j div J H + 2hi, j ).

��
Definition 3.1 We define a (0,2)-tensor

T := −2∇∗( Ǎ�ω) = ∇(H�ω) − 1

2
div J H · g,

or in local orthonormal basis:

Ti j := −2 Ǎi jl,l = hi, j − 1

2
hl,l gi j ,

where we have used Einstein’s summation convention.

One can see that T is symmetric and actually the trace-free part of ∇(H�ω). To proceed we
need a Bochner type identity which allows us to work globally. To make it clearer, instead
of presenting it with coordinate free form straightly, we will introduce its local form at first
and switch to its global form later in subsect. 3.2.

Proposition 3.2 (Bochner identity) If f : � → C
2 is a properly immersed Lagrangian

surface, in local coordinates we have

Ǎi jk,mm = 3K Ǎi jk

+ Ti j,k − 1
2 δi j Tkm,m

3
+ Tjk,i − 1

2 δ jk Tim,m

3
+ Tik, j − 1

2 δik Tjm,m

3
. (3.7)
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1606 L. Zhang

Proof Writing Ǎ under local coordinates:

Ǎi jk,mm = Ǎi jm,km + 1

4
(δi j hm,km − δi j hk,mm + δimh j,km − δikh j,mm

+ δ jmhi,km − δ jkhi,mm),

we commute the second order derivative of Ǎ by Ricci’s identity:

Ǎi jm,km = Ǎi jm,mk + Ǎl jm Rl
ikm + Ǎlim Rl

jkm + Ǎli j Rl
mkm .

Hence

R.H .S. = Ǎi jm,mk + Ǎl jm Rl
ikm + Ǎlim Rl

jkm + Ǎli j Rl
mkm + 1

4
(h j,ki + hi,k j

− δikh j,mm − δ jkhi,mm).

Now by the definition of Ǎ again, we may commute the order of j and m:

Ǎi jm,mk = Ǎimm, jk + 1

4
(δimhm, jk − δi j hm,mk + δimhm, jk − δimh j,mk + δmmhi, jk − δ jmhi,mk).

So

R.H .S. = Ǎimm, jk + Ǎl jm Rl
ikm + Ǎlim Rl

jkm + Ǎli j Rl
mkm + 1

4
(h j,ki + hi,k j

− δikh j,mm − δ jkhi,mm) + 1

4
(δimhm, jk − δi j hm,mk + δimhm, jk

− δimh j,mk + δmmhi, jk − δ jmhi,mk),

where Ǎimm, jk = 0 because Ǎ is trace-free.
For surfaces, we have Ri jkl = K (gik g jl − gil g jk) by definition. It holds

R.H .S. = Ǎl jm K (δlkδim − δlmδik) + Ǎlim K (δlkδ jm − δlmδ jk) + Ǎli j K (δlkδmm

− δlmδkm) + 1

4
(h j,ki + hi,k j − δikh j,mm − δ jkhi,mm) + 1

4
(δimhm, jk

− δi j hm,mk + δimhm, jk − δimh j,mk + δmmhi, jk − δ jmhi,mk)

= 3K Ǎi jk + 1

4
(2hi, jk + h j,ki + hi,k j ) − 1

4
(δikh j,mm + δ jkhi,mm + δi j hm,mk)

= 3K Ǎi jk + 2hi, jk + h j,ki + hi,k j − δikh j,mm − δ jkhi,mm − δi j hm,mk

4
.

Substituting terms like hi, jk with (Ti j,k + 1
2 δi j hl,lk) above, we get

R.H .S. = 3K Ǎi jk + 2Ti j,k + Tjk,i + Tik, j

4
− δ jkhi + δikh j

8
K − δikh j,mm + δ jkhi,mm

8

= 3K Ǎi jk + 2Ti j,k + Tjk,i + Tik, j − δik Tjm,m − δ jk Tim,m

4
,

Since Ǎ is fully symmetric, we can apply themethod of symmetrization to get (3.9) as desired.
��
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An energy gap phenomenon for the Whitney sphere 1607

3.2 Curvature estimates

The methods we use in this part are similar to Kuwert–Schätzle’s work in [7].

Lemma 3.1 Assume f : � → C
2 is a properly immersed Lagrangian surface (compact or

non-compact), and let γ be a cut-off function with ‖∇γ ‖L∞ = 
, then we have:
∫

�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ

≤ C
∫

�

〈∇∗T , H〉γ 2dμ + C
∫

�

| Ǎ|4γ 2dμ + C
2
∫

{γ>0}
|A|2dμ. (3.8)

where C is a positive constant independent of f .

Proof Multiplying (3.9) by Ǎ we get

Ǎi jk,mm Ǎi jk = 3K Ǎi jk Ǎi jk

+
(

Ti j,k − 1
2 δi j Tkm,m

3
+ Tjk,i − 1

2 δ jk Tim,m

3
+ Tik, j − 1

2 δik Tjm,m

3

)
Ǎi jk . (3.9)

Since Ǎ is trace-free, terms like δi j Tkm,m Ǎi jk will vanish. Now (3.9) becomes

〈Δ Ǎ, Ǎ〉 = 〈∇T , Ǎ〉 + 3K | Ǎ|2. (3.10)

Using the Gauß equation (3.2) and proposition 3.1, we have K = |H |2
8 − | Ǎ|2

2 . Multiplying
(3.10) by γ 2 and integrating it on the surface, we have

∫
�

〈Δ Ǎ, γ 2 Ǎ〉dμ =
∫

�

〈∇T , γ 2 Ǎ〉dμ + 3

8

∫
�

|H |2| Ǎ|2γ 2dμ − 3

2

∫
�

| Ǎ|4γ 2dμ.(3.11)

As for the L.H.S., we obtain

L.H .S. = −
∫

�

〈∇∗∇ Ǎ, γ 2 Ǎ〉dμ

= −
∫

�

|∇ Ǎ|2γ 2dμ − 2
∫

�

〈∇ Ǎ, γ∇γ ⊗ Ǎ〉dμ.

Now for the first term of R.H.S., we use the definition of T and integrate it by parts

∫
�

〈∇T , γ 2 Ǎ〉dμ =
∫

�

〈T , γ 2∇∗ Ǎ〉dμ − 2
∫

�

〈T ⊗ ∇γ, γ Ǎ〉dμ

= −1

2

∫
�

〈T , T 〉γ 2dμ − 2
∫

�

〈T ⊗ ∇γ, γ Ǎ〉dμ

= −1

2

∫
�

〈T ,∇ H − 1

2
div J H · g〉γ 2dμ − 2

∫
�

〈T ⊗ ∇γ, γ Ǎ〉dμ

= −1

2

∫
�

〈T ,∇ H〉γ 2dμ − 2
∫

�

〈T ⊗ ∇γ, γ Ǎ〉dμ

= −1

2

∫
�

〈∇∗T , H〉γ 2dμ +
∫

�

〈T , H ⊗ ∇γ 〉γ dμ − 2
∫

�

〈T ⊗ ∇γ, γ Ǎ〉dμ.
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Hence with the help of |T | ≤ c|∇ Ǎ| and |∇γ | ≤ C0

2 we have

∫
�

(|∇ Ǎ|2 + 3

8
|H |2| Ǎ|2)γ 2dμ

= 1

2

∫
�

〈∇∗T , H〉γ 2dμ + 3

2

∫
�

| Ǎ|4γ 2dμ − 2
∫

�

〈∇ Ǎ, γ∇γ ⊗ Ǎ〉dμ

−
∫

�

〈T , H ⊗ ∇γ 〉γ dμ + 2
∫

�

〈T ⊗ ∇γ, γ Ǎ〉dμ

≤ 1

2

∫
�

〈∇∗T , H〉γ 2dμ + 3

2

∫
�

| Ǎ|4γ 2dμ + C0

2
∫

{γ>0}
| Ǎ|2dμ + 1

2

∫
�

|∇ Ǎ|2γ 2dμ

+ C0

2
∫

{γ>0}
|H |2dμ

≤ 1

2

∫
�

〈∇∗T , H〉γ 2dμ + 3

2

∫
�

| Ǎ|4γ 2dμ + 1

2

∫
�

|∇ Ǎ|2γ 2d + C
2
∫

{γ>0}
|A|2dμ.

��

We now need the general Sobolev inequality of Michael-Simon to absorb
∫
�

| Ǎ|4γ 2dμ.

Theorem (Sobolev inequality with m = 2, [10, Th. 2.1]) Let f : � → C
2 be an immersion

and v be a non-negative C1
c (U ) function on �, where U ⊆ C

2 is a domain contains f (�).
Then

∫
�

v2dμ ≤ c

( ∫
�

|∇v|dμ

)2

+ c

( ∫
�

v|H |dμ

)2

, (3.12)

where H is the mean curvature vector and c is a constant independent of f .

Lemma 3.2 Under the same assumption as in Lemma 3.1,

∫
�

| Ǎ|4γ 2dμ ≤ C
∫

{γ>0}
| Ǎ|2dμ

∫
�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ + C
2
( ∫

{γ>0}
| Ǎ|2dμ

)2

(3.13)

holds.

Proof Substituting v = | Ǎ|2γ in (3.12), we have
∫

�

| Ǎ|4γ 2dμ

≤ c

( ∫
�

| Ǎ||∇ Ǎ|γ dμ

)2

+ c

( ∫
�

| Ǎ|2|∇γ |dμ

)2

+ c

( ∫
�

| Ǎ|2|H |γ dμ

)2

≤ c′
∫

{γ>0}
| Ǎ|2dμ

∫
�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ + c
2
( ∫

{γ>0}
| Ǎ|2dμ

)2

.

��
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Proof of the Theorem 1.1 By combining Lemma 3.1 and Lemma 3.2, one can straightfor-
wardly get∫

�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ ≤ C ′
∫

{γ>0}
| Ǎ|2dμ

∫
�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ

+ C ′
2
∫

{γ>0}
|A|2dμ + C ′
2

( ∫
{γ>0}

| Ǎ|2dμ

)2

.

If we choose ε0 < min{1, 1
2C ′ } and assume

∫
{γ>0} | Ǎ|2dμ ≤ ε0, it holds

∫
�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ ≤ C ′′
2

1 − C ′ ∫{γ>0} | Ǎ|2dμ

∫
{γ>0}

|A|2dμ ≤ C̃
2
∫

{γ>0}
|A|2dμ,

let ψ ∈ C1(R) be a non-negative function which satisfies:

ψ(t) =
{
1, t ≤ 1

2 ,

0, t ≥ 1.

and γ (p) = ψ( 1
R | f (p)|) ∈ C1

c (�) be the cut-off function for any p ∈ � and radius R > 0,

then 
 ≤ C0
R holds and we obtain

∫
�

(|∇ Ǎ|2 + |H |2| Ǎ|2)γ 2dμ ≤ C

R2

∫
{γ>0}

|A|2dμ

as dersired. ��
Proof of the Theorem 1.2 Letting R → ∞ in (3.14), we have Ǎ = 0 by the arbitrariness of
cut off function γ . Then using the classification theorem for Lagrangian umblical surfaces
(see [4,11]), we see that f is either a Lagrangian plane or a Whitney sphere. ��

4 On the relationship withWillmore immersion

For an immersed surface f : � → R
n , the Willmore functional is defined by

W( f ) =
∫

�

|Å|2dμ, (4.1)

where we denote dμ as the induced area element on � by f .
The Euler–Lagrange operator of (4.1) is

W = ΔH + Q(Å)H , (4.2)

where

Q(Å)φ = �2
i, j=1Å(ei , e j )〈Å(ei , e j ), φ〉 (4.3)

under an orthonormal basis {e1, e2}. The following lemma reveals the relationship between
T and the Euler–Lagrange equation of the Willmore functional:

Lemma 4.1 If f : � → C
2 is a properly immersed Lagrangian surface, the Euler–Lagrange

equation of the Willmore functional can be reformulated as:

W = ΔH + 1

8
|H |2H + Q( Ǎ)H + Ǎ(J H , J H).
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1610 L. Zhang

or in the dual form associated with the symplectic form ω:

W�ω = −2∇∗T + 1

2
| Ǎ|2H�ω + Q( Ǎ)H + Ǎ�ω(J H , J H). (4.4)

Proof By (4.2) and (4.3), we have

Q(A)

= A(ei , e j )〈A(ei , e j ), H〉
= [ Ǎi jh + 1

4
(δi j hh + δihh j + δ jhhi )][ Ǎi js + 1

4
(δi j hs + δish j + δ jshi )]〈Jes, H〉Jeh

= Ǎi js〈 Ǎi jh, H〉〈Jes, H〉Jeh + Ǎi jhhi h j Jeh + 5

8
|H |2H

= Q( Ǎ)H + Ǎ(J H , J H) + 5

8
|H |2H .

Using the Ricci identity (3.4), the Gauß equation (3.2) and the Codazzi equation (3.3), we
calculate

∇∗T (ei ) = −Tki,k

= −hi,kk + 1

2
δki hl,lk

= −hi,kk + 1

2
(hi,ll + hs Rs

lli )

= −1

2
Δ(H�ω)(ei ) − K

2
hi

= −1

2
Δ(H�ω)(ei ) − 1

2
(
|H |2
8

− | Ǎ|2
2

)H�ω(ei ),

where K is the Gaussian curvature of the surface. Substituting the above two formulas into
(4.2) we complete the proof. ��

The Willmore Lagrangian surface is a Lagrangian surface satisfying the Euler-Lagrange
equation (4.2) Now let’s recall Urbano and Castro’s classification theorem as follows:

Theorem (Uniqueness of Willmore Lagrangian spheres, [5, Cor. 1]) The Whitney sphere is
the only Willmore Lagrangian surface of genus 0 in C

2.

Then we obtain a gap-lemma for Willmore Lagrangian surfaces.

Corollary 4.1 (Gap theorem for Willmore Lagrangian surfaces) Let f : � → C
2 be a closed

Lagrangian surface satisfies W = 0, then there exists a universal constant ε0 such that if∫
�

| Ǎ|2dμ ≤ ε0,

f is a Whitney immersion.

Proof Using the Gauß-Bonnet formula and (3.5), we see that if f is Lagrangian immersion,
we have ∫

�

| Ǎ|2dμ = 1

2

∫
�

|Å|2dμ − 2πχ(�).

If
∫
�

| Ǎ|2dμ is sufficiently small, χ(�) must be non-negative, which means that it is either
a sphere or a torus. However the result of [7] eliminates the torus case given the Willmore
energy is sufficiently small. ��
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