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Abstract
We conjecture that the set of homogeneous probability measures on the maximal Satake
compactification of an arithmetic locally symmetric space S = �\G/K is compact. More
precisely, given a sequence of homogeneous probability measures on S, we expect that
any weak limit is homogeneous with support contained in precisely one of the boundary
components (including S itself). We introduce several tools to study this conjecture and we
prove it in a number of cases, including when G = SL3(R) and � = SL3(Z).
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1 Introduction

1.1 Background andmotivations

The study of sequences of measures invariant under unipotent flows has been a central theme
in homogeneous dynamics, and the deep theorems obtained have had several important
arithmetic applications. Prototypical in this respect is Margulis’s proof of the Oppenheim
Conjecture concerning the values of irrational indefinite quadratic forms at integral vectors
[12]. Margulis obtained his result by characterising SO(2, 1)-orbits on the homogeneous
space SL3(Z)\SL3(R).

More generally, let G be a semisimple algebraic group over Q and let G := G(R)+. Let
� ⊂ G(Q) be an arithmetic lattice (henceforth known as an arithmetic subgroup) contained
in G and let HR be a real algebraic subgroup of GR such that H := HR(R)+ is generated
by its one parameter unipotent subgroups. In her seminal works [15,16], Ratner obtained
a classification of the H -invariant ergodic measures on the homogeneous space �\G and
proved that the closure of an H -orbit is a homogeneous subspace of �\G.

For any algebraicQ-subgroupH ofGwithoutQ-rational characters,�\G admits a canoni-
cal H -invariant probabilitymeasureμH with support�∩H\H ⊆ �\G, where H := H(R)+.
For any g ∈ G, we denote by μH ,g the push-forward of μH by the right-multiplication-by-g
map. That is, μH ,g is supported on � ∩ H\Hg. Such a measure is called homogeneous or
arithmetic.

Mozes–Shah [14] and Eskin–Mozes–Shah [9,10] started the study of weak convergence
of sequences (μn)n∈N = (μHn,gn

)n∈N of homogeneous measures associated with sequences
(Hn)n∈N of subgroups ofG and sequences (gn)n∈N of elements of G. With natural hypothe-
ses on the Hn and gn , it follows from the work of Mozes–Shah [14] that, if μ is a weak
limit of (μn)n∈N in the space of probability measures on �\G, then μ is homogeneous itself.
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Furthermore, they showed that, if μ is a weak limit of (μn)n∈N in the space of probability
measures on the one-point-compactification �\G ∪ {∞} of �\G, then μ is either a homo-
geneous probability measure on �\G, or equal to the Dirac delta measure at infinity. In
[10], building on the earlier work of Dani–Margulis [8], Eskin–Mozes–Shah proved a non-
divergence criterion for sequences of homogeneous measures and, motivated by a counting
problem for lattice points on homogeneous varieties, applied this to show in [9] that, when,
for all n ∈ N, Hn = H, for a fixed reductive subgroup H of G not contained in a proper
Q-parabolic subgroup of G, any weak limit μ of μn = μH ,gn is homogeneous. All of these
works relied on the fundamental results of Ratner.

The aim of this paper is to study these questions for (arithmetic) locally symmetric spaces
in the case when a sequence of homogeneous measures diverges. More precisely, we study
weak limits of homogeneous measures on suitable compactifications of locally symmetric
spaces.

Fix a maximal compact subgroup K of G and denote by X = G/K the associated
Riemannian symmetric space. Let S = �\X be the corresponding locally symmetric space
and let

π : �\G −→ S : �g 	→ �gK

be the projection map. A homogeneous probability measure on S is defined as the push
forward π∗(μH ,g) of a homogeneous probability measure μH ,g on �\G, for any H of type
H (see Sect. 2.10).

The key point is that locally symmetric spaces have natural compactifications of the form

�\XS
max = �\X ∪

∐

P

�P\XP , (1)

whereP varies over a (finite) set of representatives for the�-conjugacy classes ofQ-parabolic
subgroups of G, and the boundary components �P\XP are themselves locally symmetric
spaces. We will be mainly concerned with the maximal Satake compactification of S in this
text, but we also discuss the Baily-Borel compactification when S is a hermitian locally
symmetric space.

We make the following, seemingly natural conjecture, which we state in a more precise
form in Sect. 3 (see Conjectures 3.1, 3.3).

Conjecture 1.1 Suppose that μ is a probability measure on �\XS
max equal to the weak limit

of a sequence (μHn ,gn )n∈N of homogeneous probability measures on S. Then μ is a homo-
geneous probability measure supported on precisely one of the boundary components.

The main purpose of this work is to discuss Conjecture 1.1 and to establish it under
additional restrictions. The novelty here is that we do not assume thatHn is not contained in
a proper rational parabolic of G, and we therefore need to study the behavior of sequences
of homogeneous measures when the mass escapes at infinity.

The original motivation for this work concerned the case when S is a hermitian locally
symmetric space. Then the Baily–Borel compactification of S realises S as a quasi-projective
algebraic variety and S has an interpretation as amoduli space for interesting structures (often,
abelian varieties with level structures and endomorphisms). The boundary components of
the Baily–Borel compactification of S are themselves hermitian locally symmetric spaces.
In this situation, the André–Oort and Zilber–Pink conjectures predict strong restrictions on
the distribution of special (or weakly special) subvarieties of S, which are homogeneous
subvarieties of S also possessing hermitian locally symmetric structures. Several results
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on the equidistribution of sequences of measures associated with special subvarieties were
obtained by Clozel and the third author [6,21], and these played a central role in the first proof
of the André–Oort Conjecture under the generalised Riemann hypothesis by Klingler, Yafaev
and the third author [11,22]. This paper deals principallywith the convergence ofmeasures on
general locally symmetric spaces and their Satake compactifications, but we hope to discuss
the Baily–Borel compactification, and possible applications, in a future work.

1.2 Overview of the results

Section 2 is mainly preliminary. We recall relevant results on root systems, parabolic sub-
groups and ergodic theory on homogeneous spaces. We make repeated use of the rational
Langlands decomposition of G associated with a parabolic subgroup P ofG defined over Q,
which is described in Sect. 2.6. We recall here that this decomposition is of the form

G = NPAPMPK ,

where NP is the unipotent radical of P := P(R)+, AP is the identity component of a real
algebraic split torus, APMP is a Levi subgroup of P and K is a maximal compact subgroup
of G.

In Sect. 3, we recall definitions and properties of the maximal Satake compactification of a
locally symmetric space S, and of the Baily–Borel compactification when S is hermitian. We
then formulate our main conjectures on general sequences of homogeneous measures for the
maximal Satake (Conjecture 3.1) and the Baily–Borel (Conjecture 3.3) compactifications.
Theorem 3.4 shows that the conjecture for the Satake compactification implies the one for
the Baily–Borel compactification.

In Sects. 4 and 5,we prove two convergence criteria for sequences (μn)n∈N = (μHn ,gn )n∈N
of homogeneous measures. Theorem 4.6 gives a sufficient condition, in terms of (φ, χ)-
functions, as introduced by Borel [3, Section 14], under which {μn}n∈N is sequentially
compact. Theorem 5.1 gives a sufficient condition under which μn converges to a homoge-
neous measureμ on a boundary component �P\XP of the maximal Satake compactification
of �\X . These two results are crucial in the rest of the paper and are the main tools at our
disposal. In order to use these criteria, it is necessary to

• understand the set of rational parabolic subgroups of G containing Hn ;
• for each parabolic subgroup P containing Hn , compute the rational Langlands decom-

position

gn = unanmnkn ∈ G = NPAPMPK ;
• for any α in a set of simple roots for the action of AP on NP, understand the behavior of

α(an) as n → ∞ (positivity, boundedness, convergence to ∞).

In Sects. 6 and 7, we prove Conjecture 3.1 in full generality when the Q-rank ofG is 0 or
1. Then, for anyG, Theorem 10.1 establishes Conjecture 3.1 when, for all n ∈ N,H = Hn is
the semisimple non-compact part of a Levi subgroup of a maximal parabolic subgroup over
Q.

Theorem8.1,which is one of themain results of the paper, establishesConjecture 3.1 in the
case when G = SL3 and � = SL3(Z). The complexity of the general problem can already
be seen from the various cases we have to face in this situation. Theorem 9.2 establishes
Conjecture 3.1 when, for r ∈ N, G = SLr

2 and � = SL2(Z)r . This, of course, is an instance
when S is hermitian.
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Theorem11.1 establishesConjecture 3.1when, for eachn ∈ N,Hn is equal to the unipotent
radicalN of a minimal parabolic subgroup P0 ofG. In this case, a weak limitμ of a sequence
(μN ,gn )n∈N can be a homogeneous measure supported on any boundary component �P\XP .
The proof is constructive and explains, in terms of the rational Langlands decompositions of
the gn relative to P0, on which boundary component μ is supported.

In Sect. 12, we recall some basic properties of the Tits building B of G. In particular, we
discuss the notion of a Levi sphere, as introduced by Serre [18], which is a sub-simplicial
complex S of B contained in an apartment of B. The simplices of S parametrise the rational
parabolic subgroups ofG containing a fixed Levi subgroup of some parabolic subgroup. This
notion is used in Sect. 13 to study the conjecture when we translate subgroups Hn of MP,
for some parabolic subgroup P, by elements an ∈ AP. We show that S can be described as
the unit sphere in the Lie algebra aP of AP. We then find a simplex in S corresponding to
a parabolic subgroup Q such that Q = NQAPMP and the roots of AP in NQ take positive
values on exp−1(an) ∈ aP . This allows us to apply Theorem 5.1.

2 Preliminaries

2.1 Borel probability measures

Let S be a metric space and let � be its Borel σ -algebra. By a Borel probability measure on
S, we mean a Borel probability measure on �. We let P(S) denote the space of all Borel
probability measures on S. We say that a sequence (μn)n∈N in P(S) converges (weakly) to
μ ∈ P(S) if we have

∫

S
f dμn →

∫

S
f dμ, as n → ∞,

for all bounded continuous functions f on S.

2.2 Algebraic groups

By an algebraic group G, we refer to a linear algebraic group defined over Q and by an
algebraic subgroup ofGwe again refer to an algebraic subgroup defined overQ. We will use
boldface letters to denote algebraic groups (which, again, are always defined over Q). If G
is an algebraic group, we will denote its radical by RG and its unipotent radical by NG. We
will write G◦ for the (Zariski) connected component of G containing the identity. We will
denote the Lie algebra of G by the corresponding mathfrak letter g, and we will denote the
(topological) connected component of G(R) containing the identity by the corresponding
Roman letter G. We will denote by GQ the intersection G(Q) ∩ G. We will retain any
subscripts or superscripts in these notations. If M and A are algebraic subgroups of G, we
will write ZM(A) for the centraliser of A in M and NM(A) for the normaliser of A in M.

2.3 Parabolic subgroups

A parabolic subgroup P of a connected algebraic group G is an algebraic subgroup such
that the quotient of G by P is a projective algebraic variety. In particular, G is a parabolic
subgroup of itself. However, by amaximal parabolic subgroup, we refer to a maximal proper
parabolic subgroup. Note that RG is contained in every parabolic subgroup of G.
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Lemma 2.1 (Cf. [5, Proposition 4.4]) LetP be a parabolic subgroups ofG. ThenNG(P) = P.
IfQ is a another parabolic subgroup ofG, then (P∩Q)NP is a parabolic subgroup ofG,

which is equal to P if and only if Q contains a Levi subgroup of P.

Corollary 2.2 Let P be a parabolic subgroup of G. Then NG(NP) = P.

Proof Let g ∈ NG(NP)(Q). Then Q := gPg−1 is a parabolic subgroup of G containing
NP. Therefore, P ∩ Q contains the parabolic subgroup (P ∩ Q)NP of G, and is, therefore, a
parabolic subgroup of G itself. By [5, Section 4.3], we have Q = P and so g ∈ P(Q). The
result follows from the fact that NG(NP)(Q) is Zariski dense in NG(NP). �

2.4 Cartan involutions

Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Then
there exists a unique involution θ on G such that K is the fixed point set of θ . We refer to θ

as the Cartan involution of G associated with K .

2.5 Boundary symmetric spaces

LetG be a semisimple algebraic group and let K be amaximal compact subgroup ofG. Let P
be a parabolic subgroup ofG. As in [2], (I.1.10), we have the real Langlands decomposition
(with respect to K )

P = NPMP AP ,

where LP := MP AP is the unique Levi subgroup of P such that KP := LP ∩K = MP ∩K
is a maximal compact subgroup of LP , and AP is the maximal split torus in the centre of
LP . We denote by XP the boundary symmetric space MP/KP , on which P acts through its
projection on to MP .

2.6 Rational Langlands decomposition

Let G be a connected algebraic group and let K be a maximal compact subgroup of G.
Let P be a parabolic subgroup of G. As in [2], (III.1.3), we have the rational Langlands
decomposition (with respect to K )

P = NPMPAP.

We let 
(P, AP) denote the set of characters of AP occuring in its action on nP . Since
G = PK , the rational Langlands decomposition of P yields

G = NPMPAPK .

In particular, if g ∈ G, we can write g as

g = nmak ∈ NPMPAPK ,

and we denote the (uniquely determined) AP-component aP,K (g).
We remind the reader that the groups AP and MP are not necessarily associated with

algebraic groups defined overQ. However, by [2, Proposition III.1.11], there exists an n ∈ NP
such that nMPn−1 and nAPn−1 are associated with algebraic groups defined over Q. In
particular, the product NPMP is associated with a connected algebraic group over Q, which
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Convergence of measures on compactifications… 1299

we always denoteHP. Clearly,HP is a groupwith no rational characters. Note that the rational
Langlands decomposition with respect to nKn−1 is

P = NP · nMPn
−1 · nAPn

−1,

from which it follows that HP depends only on P.

2.7 Standard parabolic subgroups

Let G be a reductive algebraic group and let A be a maximal split subtorus of G. The non-
trivial characters of A that intervene in the adjoint representation of G restricted to A are
known as the Q-roots of G with respect to A.

LetP0 be aminimal parabolic subgroup ofG containingA.We let
(P0,A) denote the set
of characters of A occurring in its action on n, where N := NP0 . As explained in [2, III.1.7],

(P0,A) contains a unique subset � := �(P0,A) such that every element of 
(P0,A) is a
linear combination, with non-negative integer coefficients, of elements belonging to �. On
the other hand, P0 is determined by A and �. We refer to � as a set of simple Q-roots of G
with respect to A.

For a subset I ⊆ �, we define the subtorus

AI := (∩α∈I ker α)◦

of A. Then the subgroup PI of G generated by ZG(AI ) and N is a parabolic subgroup of
G. We refer to PI as a standard parabolic subgroup of G. Every parabolic subgroup of
G containing P0 is equal to PI for some uniquely determined subset I ⊆ �. For ease of
notation, when I = � \ {α}, for some α ∈ �, we will write Pα instead of P�\{α}. We will
use the following lemma in Sect. 11.

Lemma 2.3 Let P be a parabolic subgroup of G containing N. Then P contains P0. That is,
P is a standard parabolic subgroup of G.

Proof By assumption N is contained in P ∩ P0, and, hence, Q := (P ∩ P0)N, which, by
Lemma 2.1, is a parabolic subgroup ofG. However,Q is contained in P0, which is minimal.
Hence, Q = P0, which implies that P ∩ P0 = P0 and we conclude that P contains P0. �

Let K be a maximal compact subgroup of G such that A is invariant under the Cartan
involution of G associated with K . Then, as in [8, Section 1], ZG(AI ) is the Levi subgroup
of P appearing in the rational Langlands decomposition of P with respect to K . Note that
AI is the maximal split subtorus of the centre of ZG(AI ) and we can write ZG(AI ) as an
almost direct productMIAI , whereMI is a reductive group with no rational characters. The
rational Langlands decomposition is then

PI = NI MI AI ,

whereNI := NPI . We will also writeHI := NIMI . For ease of notation, when I = � \ {α},
for someα ∈ �,wewillwriteAα ,Mα ,Nα andHα instead ofAI ,MI ,NI andHI , respectively.

2.8 Root systems

Consider the situation described in Sect. 2.7. Let X∗(A) denote the character module of A,
and let X∗(A)Q denote the Q-vector space X∗(A) ⊗Z Q. (We will also later refer to the
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cocharacter module X∗(A) of A.) Fix a non-degenerate scalar product (·, ·) on X∗(A)Q that
is invariant under the action ofNG(A)(Q). Then the Q-roots ofGwith respect toA equipped
with the inner product (·, ·) constitute a root system in X∗(A)Q. We refer the reader to [19,
Section 3.5] for further details.

Let � denote a set of simple Q-roots ofG with respect to A and fix a subset I ⊆ �. Then
AI := (A ∩ MI )

◦ is a maximal split subtorus of MI and the elements of I restrict to a set
of simple Q-roots of MI with respect to AI . Furthermore, A is equal to the almost direct
product AIAI , from which it follows that NMI (A

I ) is a subgroup of NG(A). For ease of
notation, when I = � \ {α}, for some α ∈ �, we will write Aα instead of AI .

The isogeny AI × AI → A : (a, b) 	→ ab yields an identification

X∗(A)Q = X∗(AI )Q ⊕ X∗(AI )Q (2)

such that the projection π1 (respectively, π2) on to the first (respectively, second) factor is
given by restricting to the corresponding subtorus. It follows that the restriction of (·, ·) to
X∗(AI )Q is a non-degenerate scalar product that is invariant with respect to the action of
NMI (A

I )(Q).

Lemma 2.4 The decomposition (2) is orthogonal with respect to (·, ·).
Proof Note that the elements of I restrict to a basis of X∗(AI )Q and are trivial on AI .
Choose any β ∈ X∗(AI )Q, and any α ∈ I , and let w ∈ NMI (A

I )(Q) be an element such
that w(α) = −α. Since w ∈ MI , we have w(β) = β. Therefore,

(α, β) = (w(α),w(β)) = (−α, β) = −(α, β) = 0,

which proves the claim. �

2.9 Quasi-fundamental weights

Consider the situation described in Sect. 2.8. A set of quasi-fundamental weights in X∗(A)Q
is a set of elements χα , one for each α ∈ �, such that

(χα, β) = dα · δαβ for all α, β ∈ �,

where dα ∈ Q>0 for all α ∈ �. We use the prefix quasi- to emphasise that we place no
(further) restrictions on the dα .

Lemma 2.5 Let {χα}α∈� denote a set of quasi-fundamental weights in X∗(A)Q. Then, as a
linear combination of the α ∈ �, each χα has positive coefficients.

Proof The coefficients in question are, up to scaling, simply those of the inverse of the so-
called Cartan matrix, which always has positive coefficients (see, for example, [23, Section
2.1]). �
Lemma 2.6 Let {χα}α∈� denote a set of quasi-fundamental weights in X∗(A)Q. Then the
restrictions of the χα for α ∈ I constitute a set of quasi-fundamental weights in X∗(AI )Q
with respect to the restriction of (·, ·).
Proof Let α, β ∈ I . Then

dα · δαβ = (χα, β) = (π1(χα) + π2(χβ), π1(β)) = (π1(χα), π1(β)),

where the second equality follows from the fact that π2(β) = 0 for any β ∈ I , and the third
equality follows from Lemma 2.4. �
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Finally, we make an observation.

Lemma 2.7 Let β ∈ � \ I . Then, as a linear combination of the Q-simple roots π1(α), for
α ∈ I , the restriction π1(β) has non-positive coefficients.

Proof Recall the basic fact that the scalar product of any two distinct simple roots is non-
positive. Therefore, for any α ∈ I ,

(π1(α), π1(β)) = (α, β)

is non-positive, where we use the fact that π2(α) = 0. Therefore, if we let {χα}α∈I denote
a set of quasi-fundamental weights in X∗(AI )Q, then π1(β), as a linear combination of the
χα , has non-positive coefficients. Hence, the result follows from Lemma 2.5. �

2.10 Groups of typeH

We say that an algebraic group G is of type H if RG is unipotent and the quotient of G
by RG is an almost direct product of almost Q-simple algebraic groups whose underlying
real Lie groups are non-compact. In particular, an algebraic group of type H has no rational
characters.

2.11 Probability measures on homogeneous spaces

LetG denote an algebraic group and let � denote an arithmetic subgroup ofG(Q) contained
in G. We will henceforth refer to such a group as arithmetic subgroup of GQ. If H is a
connected algebraic subgroup of G possessing no rational characters, then there is a unique
Haar measure on H such that its pushforward μ to �\G is a Borel probability measure on
�\G. For g ∈ G, we refer to the pushforward of μ under the right-multiplication-by-g map
as the homogeneous probability measure on �\G associated with H and g.

Remark 2.8 It is clear that, for any γ ∈ �, the homogeneous probability measure on �\G
associated withH and g is equal to the homogenous probability measure on �\G associated
with γHγ −1 and γ g.

The following well-known fact summarises our heavy reliance on the fundamental results
of Ratner [15] and of Mozes and Shah [14].

Theorem 2.9 For each n ∈ N, let Hn be a connected algebraic subgroup of G of typeH, let
gn ∈ G and letμn be the homogeneous probability measure on �\G associated withHn and
gn. Assume that (μn)n∈N converges to μ ∈ P(�\G). Then μ is the homogeneous probability
measure on �\G associated with a connected algebraic subgroup H of G of type H and an
element g ∈ G, and, furthermore, Hn is contained in H for all n large enough.

We give a brief summary of the arguments.

Proof of Theorem 2.9 By [7, Lemme 3.1], for every n ∈ N, the subgroup of g−1
n Hngn gener-

ated by the unipotent one-parameter subgroups of G contained in g−1
n Hngn acts ergodically

on �\G with respect to μn . By [14, Corollary 1.1], we conclude that the group generated
by the unipotent one-parameter subgroups of G contained in the invariance group of μ acts
ergodically on �\G with respect to μ. By [15], the support of μ is a closed orbit of its
invariance group. Therefore, the first claim follows from [7, Lemme 3.2]. The second claim
follows from [14, Theorem 1.1 (2)] and [7, Lemme 3.2]. �
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3 Formulating the conjectures

3.1 Themaximal Satake compactification

Let G be a semisimple algebraic group of adjoint type and let K be a maximal compact
subgroup of G. Denote by X the symmetric space G/K and let � denote an arithmetic
subgroup of G(Q) contained in G. We let

QX
S
max :=

∐

P

XP ,

where P varies over the (rational) parabolic subgroups of G. We endow QX
S
max with the

topology defined in [2, III.11.2]. Then, by [2, Proposition III.11.7], the action of GQ on X

extends to a continuous action on QX
S
max and, by [2, Theorem III.11.9], the quotient

�\XS
max := �\QX

S
max,

endowed with the quotient topology, is a compact Hausdorff space, inside of which �\X is

a dense open subset. We refer to �\XS
max as the maximal Satake compactification of �\X .

For any parabolic subgroup P of G, we will denote by �P := � ∩ P . Then, if C is any
set of representatives for the (rational) parabolic subgroups of G modulo �-conjugation, the

maximal Satake compactification �\XS
max is equal to the disjoint union of the �P\XP , with

P varying over the members of C.

3.2 Main conjecture

Consider the situation described in Sect. 3.1. IfH is a connected algebraic subgroup ofG of
type H and g ∈ G, the homogeneous probability measure on �\G associated with H and g

pushes forward to �\XS
max under the natural maps

�\G → �\X → �\XS
max.

We refer to this probability measure as the homogeneous probability measure on �\XS
max

associated with H and g. Similarly, if P is a parabolic subgroup of G, H is a subgroup of

P of type H and g ∈ P , we can define the homogeneous probability measure on �\XS
max

associated with P, H and g in precisely the same way via the natural maps

�P\P → �P\XP → �\XS
max.

The following conjecture is a more precise version of Conjecture 1.1 in this setting, and
is the main statement that we will endeavour to prove in certain cases.

Conjecture 3.1 For each n ∈ N, letHn be a connected algebraic subgroup ofG of typeH, let

gn ∈ G and let μn be the homogeneous probability measure on �\XS
max associated with Hn

and gn . Suppose that (μn)n∈N converges to a limitμ ∈ P(�\XS
max). Thenμ is homogeneous.

Furthermore, if μ is associated with a parabolic subgroup P of G, a connected algebraic
subgroup H of P of type H and an element g ∈ P , then Hn is contained in H for n large
enough.
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Now consider another maximal compact subgroup gKg−1 of G, for some g ∈ G (recall
that they are all of this form). It is straightforward to verify that we obtain a homeomorphism
between the maximal Satake compactifications of �\X corresponding to K and gKg−1. In
particular, Conjecture 3.1 is equivalent to the same statement in which K is replaced with
gKg−1 and the gn are replaced with gng−1.

Similarly, for a fixed c ∈ GQ, we obtain a homeomorphism

�\QX
S
max → (c�c−1)\QX

S
max

of compactifications induced by the homeomorphism x 	→ cx on QX
S
max (recall that the

action is continuous). It follows that Conjecture 3.1 is equivalent to the same statement in
which we replace � with c�c−1, and we replace the Hn with cHnc−1 and the gn with cgn .

Nontheless, despite the aformentioned observations, we are unable to provide an argument
that Conjecture 3.1 is independent of the choice of �. Of course, Conjecture 3.1 for �

immediately implies Conjecture 3.1 for any arithmetic subgroup containing �. However,
it is not clear that Conjecture 3.1 for � implies Conjecture 3.1 for an arithmetic subgroup
contained in �. Largely speaking, our arguments do not rely on the specific choice of �,
though we do make use of the fact that � = SL3(Z) in Sect. 8, for example.

3.3 Baily–Borel compactification

Let (G,X) denote a Shimura datum, where G is a semisimple algebraic group of adjoint
type, and let X denote a connected component of X. Let K be a maximal compact subgroup
of G and identify X with G/K . Let � denote an arithmetic subgroup of GQ.

Via the Harish–Chandra realization, we consider X as a bounded domain in C
N for

some N ∈ N, and we let X̄ denote the closure of X therein. Then, as in [1, Section 1.5], X̄
decomposes into a disjoint union of boundary components and we let X∗ denote the union of
the rational boundary components, as defined in [1, Sect. 3.5]. By [1, Sect. 1.4], the action
of G on X extends to a continuous action of G on X̄ and, by [1, Section 4.8], this restricts to
an action of GQ on X∗.

We equip X∗ with the Satake topology, described in [1, Theorem 4.9]. For this topology,
the action of GQ is continuous and, by [1, Corollary 4.11], the quotient

�\XBB := �\X∗

endowed with the quotient topology, is a compact Hausdorff space, inside of which �\X is

a dense open subset. In fact, the main result of [1] is that �\XBB
possesses the structure of

a complex projective variety. We refer to it as the Baily–Borel compactification of �\X . In
this case, �\XBB

is the disjoint union of �\X and boundary components corresponding to
�-conjugacy classes of maximal parabolic subgroups of G.

Note that, for any Shimura datum (G,X), if X is a connected component of X, then the
action of G on X factors through Gad, where Gad denotes the quotient of G by its centre.
Furthermore, by [13, Proposition 3.2], the image inGad(Q)of an arithmetic subgroupofG(Q)

is an arithmetic subgroup. Therefore, any connected component of any Shimura variety is
accounted for in our description.
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3.4 Relationship between the compactifications

Consider the situation described in Sect. 3.3 and suppose temporarily thatG is Q-simple. By
[1, Theorem 3.7],

X∗ =
∐

P

e(P),

where P varies over the maximal parabolic subgroups of G and G itself, and e(P) is the
unique rational boundary component normalized by P .

Let P be a maximal parabolic subgroup of G and let P0 be a minimal parabolic subgroup
of G contained in P. Let A be a maximal split subtorus of G contained in P0. Therefore, P
is equal to PJ for a unique subset J ⊆ � := �(P0,A).

Fix the canonical numbering

� = {α1, . . . , αs},
as in [1, Section 2.8], and, for b = 0, 1, . . . , s − 1, let

θ(b) := {αb+1, . . . , αs}.
For b = s, let θ(b) denote the empty set. By [2, III.4.2], if αb ∈ � is the unique element not
in J , we may identify e(P) with the boundary symmetric space XQ , where Q := Pθ(b). As
in, [2, Proposition I.11.3], this does not depend on the choice of P0 or A.

Now let P be any parabolic subgroup ofG, and choose P0, A and � in the manner above.
That is, P = PJ for a unique subset J ⊆ � (though, we have chosen a new �, of course).
We let b = 0, 1, . . . , s be the smallest index such that I := θ(b) is contained in J , and we
let I ′ denote J \ I .

If b = 0, then P is equal toG. Therefore, assume that b > 0. As in [2, Proposition I.11.3],

XP = XPI × XPI ′

and this splitting is independent of our choices for P0 and A. Note that XPI is also the
boundary component e(Pαb ) of X

∗ corresponding to the maximal parabolic subgroup Pαb .
In particular, varying over the proper parabolic subgroups P of G, the projection maps

XP → XPI

extend the identity map on X to a surjective �-equivariant map from

QX
S
max → X∗

that is also continuous by Proposition 3.2 below. More generally, when G is semisimple of
adjoint type, X is equal to a product X1 × · · · × Xr of irreducible factors corresponding

to the Q-simple factors of G. The partial compactifications QX
S
max and X∗ of X are then

the products of the partial compactifications of the irreducible factors and we obtain a map
between them by taking the product of the maps defined above.

Proposition 3.2 The surjective �-equivariant map from QX
S
max to X∗ defined above is con-

tinuous. Therefore, we obtain a continuous surjective map

�\XS
max → �\XBB

.

Proof See [2, Proposition III.15.2] and [2, Proposition III.15.4]. �

123



Convergence of measures on compactifications… 1305

3.5 Conjecture for Baily–Borel compactification

Consider the situation described in Sect. 3.3. IfG = G1×· · ·×Gr denotes the decomposition
of G into its Q-simple factors, we say that a parabolic subgroup P of G is of type BB if it
is equal to a product of parabolic subgroups Pi of Gi such that Pi is either maximal or Gi

itself.
As before, if H is a connected algebraic subgroup of G of type H and g ∈ G, the homo-

geneous probability measure on �\G associated with H and g pushes forward to �\XBB

under the natural maps

�\G → �\X → �\XBB
.

We refer to this probability measure as the homogeneous probability measure on �\XBB

associated with H and g. Similarly, if P is a parabolic subgroup of G of type BB, H is a
subgroup of P of typeH and g ∈ P , we can define the homogeneous probability measure on

�\XBB
associated with P, H and g in precisely the same way via the natural maps

�P\P → �PI \XPI → �\XBB

for some set I as constructed in Sect. 3.4.
The following conjecture is a more precise version of Conjecture 1.1 in this setting.

Conjecture 3.3 For each n ∈ N, letHn be a connected algebraic subgroup ofG of typeH, let

gn ∈ G and let μn be the homogeneous probability measure on �\XBB
associated with Hn

and gn . Suppose that (μn)n∈N converges to a limitμ ∈ P(�\XBB
). Thenμ is homogeneous.

Furthermore, if μ is associated with a parabolic subgroup P ofG of type BB, a connected
algebraic subgroup H of P of type H and an element g ∈ P , then Hn is contained in H for
n large enough.

Finally, we show that Conjecture 3.1 implies Conjecture 3.3.

Theorem 3.4 Consider the situation described in Conjecture 3.3. If the conclusion of Con-

jecture 3.1 holds (that is, for the homogeneous probability measures on �\XS
max associated

with the Hn and gn), then the conclusion of Conjecture 3.3 holds.

Proof Let σn denote the homogeneous probability measure on �\XS
max associated with Hn

and gn . By Proposition 3.2, there exists a continuous surjective map

π : �\XS
max → �\XBB

,

which is the quotient of the map QX
S
max → X∗ described in Sect. 3.4. Since π is the identity

map on �\X , the homogeneous probability measure μn on �\XBB
associated with Hn and

gn is equal to π∗σn .
Therefore, suppose that there exists a parabolic subgroup P of G, a connected algebraic

subgroup H of P of type H and an element g ∈ P such that some subsequence of (σn)n∈N
converges to the homogeneous probability measure σ on �\XS

max associated with P, H and
g. Extract such a subsequence and suppose thatHn is contained inH for n large enough. We
conclude that (μn)n∈N converges to π∗σ .
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As in Sect. 3.4, for each i ∈ {1, . . . r}, there exists a maximal split torus Ai of Gi , a set
�i of Q-simple roots of Gi with respect to Ai with the canonical numbering

�i = {αi,1, . . . , αi,si },
and subsets Ii = {αi,bi , . . . , αi,si } ⊆ Ji ⊆ �i such that P is the product of the PJi and the

map QX
S
max → X∗ is the product of the natural projections

XPJi
→ XPIi

.

If Ii is not equal to �i , we let Pi := Pαi,bi
. Otherwise, we let Pi := Gi . We let Q denote

the product of the Pi , which is a parabolic subgroup of G of type BB. Then, as a boundary
component in X∗, the product of the XPIi

is equal to e(Q). Since P is contained in Q, we

see that π∗σ is the homogeneous probability measure on �\XBB
associated with P, H and

g. The result follows. �

Remark 3.5 If �\XS
τ is another (well-defined) Satake compactification of �\X , then, by [2,

Proposition III.15.2], there is a continuous surjection

�\XS
max → �\XS

τ

and the proof of Theorem 3.4 generalises to �\XS
τ . We direct the reader to [2, I.4.39] for the

construction.

4 The criterion for convergence in 0\G
4.1 The dP,K functions

Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Let
P be a proper parabolic subgroup of G and let nP denote the dimension of nP. Consider the
nP-th exterior product

VP := ∧nPg

of g and let LP denote the one-dimensional subspace given by ∧nPnP. Then VP is a linear
representation of G and, since P normalizes NP, LP is a linear representation of P. That is,
P acts on LP via a character χP. Clearly,

χP|AP =
∑

α∈
(P,AP)

nαα, (3)

where nα is the dimension of the corresponding root space in g.

Lemma 4.1 Let � be a set of simple Q-roots of G with respect to A. For each α ∈ �, let χα

denote the restriction of χPα to A. Then the χα constitute a set of quasi-fundamental weights
in X∗(A)Q.

Proof Let α ∈ �. By Lemma 2.4, we obtain a decomposition

X∗(A)Q = X∗(Aα)Q ⊕ X∗(Aα)Q
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that is orthogonal with respect to (·, ·). Therefore,
(χα, α) = (π2(χα), π2(α)) = (dαπ2(α), π2(α)) = dα · (π2(α), π2(α)),

for some dα ∈ Q>0, where the first equality follows from the fact that π1(χα) = 0 (since
Aα is contained in the kernel of the character χα), and the second equality follows from the
fact that χα is a sum of positive roots and X∗(Aα)Q is one-dimensional. On the other hand,
if β �= α, then

(χα, β) = (π2(χα), π1(β)) = 0,

where we use the fact that π2(β) = 0. �
Fix a K -invariant norm ‖ · ‖P on VP ⊗Q R and let vP ∈ LP ⊗Q R be such that ‖vP‖P = 1.

We obtain a function dP,K on G defined by

dP,K (g) := ‖g · vp‖P.

Note that, for any g ∈ G, we can write g = kp, where k ∈ K and p ∈ P . Therefore,

dP,K (g) = ‖g · vp‖P = ‖p · vp‖P = χP(p) · ‖vp‖P = χP(p)

(note that χP is necessarily positive on the connected component P). In particular, dP,K is
a function on G of type (P, χP), as defined in [3, Section 14.1]. Furthermore, it does not
depend on the choices of ‖ · ‖P and vP. The following lemma will allow us to relate the
behaviour of the α ∈ 
(P, AP) with the behaviour of dP,K .

Lemma 4.2 Let g ∈ G. Then

dP,K (g−1) =
∏

α∈
(P,AP)

α(aP,K (g))−nα .

Proof First we decompose

g = nmak ∈ NPMPAPK ,

where, by definition, a = aP,K (g). Therefore, since dP,K is left K -invariant and trivial on
HP (because HP has no rational characters),

dP,K (g−1) = dP,K (a−1) = χP(a)−1.

Therefore, the result follows from (3). �
Now let� be an arithmetic subgroup ofGQ. The following property of dP,K was observed

in [8, Lemma 2.4].

Lemma 4.3 Let f ∈ G(Q) and let g ∈ G. Then there exists a constant c > 0 such that
dP,K (gγ f ) ≥ c for all γ ∈ �.

Proof Let δ > 0. Then, by [8, Lemma 2.4], the set

�δ := {γ ∈ � : dP,K (gγ f ) < δ}
is finite. If �δ is empty, we are done. Otherwise, let

c := min{dP,K (gγ f ) : γ ∈ �δ}.
Since c > 0, the proof is complete. �
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4.2 The criterion

LetG be a connected algebraic groupwith no rational characters and letL be a Levi subgroup
of G. Then G is the semidirect product of L and N := NG. We denote by π the natural
(surjective) morphism from G to L.

Let P0 be a minimal parabolic subgroup of L and let A be a maximal split subtorus of L
contained in P0. Let K denote a maximal compact subgroup of L such that A is invariant
under the Cartan involution of G associated with K . For any proper parabolic subgroup P of
L, we obtain a function dP,K on L , as defined in Sect. 4.1, and, for each α ∈ � := �(P0,A),
we write dα := dPα,K .

Let � be an arithmetic subgroup of GQ and let �L := π(�). By [13, Proposition 3.2], �L

is an arithmetic subgroup of L(Q). By [3, Théorème 13.1], there exists a finite subset F of
LQ and a t > 0 such that

L = K AtωF−1�L ,

where ω is a compact subset of HP0 and

At := {a ∈ A : α(a) ≤ t for all α ∈ �}.
Definition 4.4 We refer to a set F as above as a �-set for L.

Fix a �-set F for L and let σ denote the Lebesgue measure on R. We will require the
following result due to Dani and Margulis.

Theorem 4.5 (Cf. [8, Theorem 2]) For any ε > 0 and θ > 0, there exists a compact subset
C := C(ε, θ) of �L\L such that, for every unipotent one-parameter subgroup {u(t)}t∈R of
L and every l ∈ L, either

σ({t ∈ [0, T ] : �Ll
−1u(t)−1 ∈ C}) ≥ (1 − ε)T

for all large T ∈ R, or there exists α ∈ � and λ ∈ �L F such that dα(lλ) < θ and

l−1u(t)l ∈ λPαλ−1

for all t ∈ R.

Proof In the case thatL is semisimple, [8, Theorem 2] states that there exists a compact subset
C := C(ε, θ) of L/�L such that, for every unipotent one-parameter subgroup {u(t)}t∈R of
L and every l ∈ L , either

σ({t ∈ [0, T ] : u(t)l�L ∈ C}) ≥ (1 − ε)T

for all large T ∈ R, or there exists α ∈ � and λ ∈ �L F such that dα(lλ) < θ and

l−1u(t)l ∈ λPαλ−1

for all t ∈ R. We have a natural homeomorphism

φ : L/�L → �L\L
defined by l�L 	→ �Ll−1, and u(t)l�L ∈ C if and only if �Ll−1u(t)−1 ∈ φ(C). This
concludes the proof in the case that L is semisimple.

Now consider the semisimple group Lad, that is, the quotient of L by its centre Z, which
is a torus. We let ad denote the natural surjective morphism from L to Lad. Since every
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parabolic subgroup of L contains Z, ad induces a bijection between parabolic subgroups
of L and Lad. In particular, Pad

0 := ad(P0) is a minimal parabolic subgroup of Lad and
Aad := ad(A) is a maximal split subtorus of Lad contained in Pad

0 . In particular, for each
element α ∈ �ad := �(Pad

0 ,Aad), we obtain a maximal parabolic subgroup Pα of Lad and a
character χα on Pα . The restriction of ad to A yields an embedding

ad∗ : X∗(Aad) → X∗(A)

and, since the action of A on nP0 (which we may identify with nPad
0
), factors through Aad,

we have � = ad∗(�ad). It follows that, for any a ∈ A and any α ∈ �,

χad∗(α)(a) = χα(ad(a)).

Now let l ∈ L and let ad∗(α) ∈ �, for some α ∈ �ad. Writing

l = kamn ∈ K Aad∗(α)Mad∗(α)Nad∗(α) (4)

we have

dad∗(α)(l) = χad∗(α)(a) = χα(ad(a)) = dα(ad(l)), (5)

where the last equality comes from applying ad to (4).
By [13, Proposition 5.1], the inducedmaps from L to Lad and from A to Aad are surjective.

In particular, K ad := ad(K ) is a maximal compact subgroup of Lad. By [13, Proposition
3.2], ad(�L ) is an arithmetic subgroup of Lad

Q
. It follows that

Lad = ad(L) = K adAad
t ad(ω)ad(F)−1ad(�L).

That is, ad(F) is a ad(�L)-set for Lad. Therefore, fix ε > 0 and θ > 0, and letCad denote the
compact subset of ad(�L)\Lad afforded to us by Theorem 4.5. We claim that the preimage
C of Cad under the natural map

�L\L → ad(�L)\Lad

is compact. This is because the fibre above each point is isomorphic to�L∩Z(L)\Z(L); since
G was assumed to have no rational characters, neither does Z(L), and so �L ∩ Z(L)\Z(L)

is compact, by [13, Theorem 3.3].
Let {u(t)}t∈R be a unipotent one-parameter subgroup of L . Then {ad(u(t))}t∈R is a unipo-

tent one-parameter subgroup of Lad. Let l ∈ L such that

σ({t ∈ [0, T ] : �Ll
−1u(t)−1 ∈ C}) < (1 − ε) · T

for arbitrarily large T ∈ R. Then

σ({t ∈ [0, T ] : ad(�L)ad(l)−1ad(u(t))−1 ∈ Cad}) < (1 − ε) · T
for arbitrarily large T ∈ R. Therefore, by Theorem 4.5, there exists α ∈ �ad and ad(λ) ∈
ad(�L)ad(F) such that dα(ad(l)ad(λ)) < θ and

ad(l)−1ad(u(t))ad(l) ∈ ad(λ)Pαad(λ)−1

for all t ∈ R. Therefore, the result follows from (5). �
For any connected algebraic subgroup H of G and any g ∈ G, we define

δK ,�,F (H, g) := inf{dα(π(g)−1λ) : λ ∈ �L F, α ∈ �, H ⊂ NλPαλ−1}
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(where we take the value to be ∞ if the infimum is varying over the empty set). By Lemma
4.3, we have δK ,�,F (H, g) > 0. Our criterion is the following.

Theorem 4.6 For each n ∈ N, let Hn be a connected algebraic subgroup of G of typeH, let
gn ∈ G and letμn be the homogeneous probability measure on �\G associated withHn and
gn. Assume that

lim inf
n→∞ δK ,�,F (Hn, gn) > 0.

Then the set {μn}n∈N is sequentially compact in P(�\G).

Proof By Prokhorov’s Theorem, it suffices to show that the set of measures {μn}n∈N is tight
on �\G. That is, for every ε > 0, there exists a compact subset C of �\G such that

μn(C) ≥ 1 − ε, for all n ∈ N.

By abuse of notation, denote also by π the natural surjection from�\G to�L\L and suppose
that the set {π∗(μn)}n∈N of pushforward mesures is tight on �L\L . By definition, for any
ε > 0, there exists a compact set CL of �L\L such that

π∗(μn)(CL) ≥ 1 − ε, for all n ∈ N.

Since arithmetic quotients of unipotent algebraic groups are compact, it follows, as before,
that π−1(CL) is compact. Since

μn(π
−1(CL)) = π∗(μn)(CL) ≥ 1 − ε, for all n ∈ N,

we conclude that {μn}n∈N is tight on �\G.
Therefore, it suffices to show that {π∗(μn)}n∈N is tight on�L\L . To that end, fix an ε > 0.
For each n ∈ N, we let Ln and ln denote π(Hn) and π(gn), respectively, noting that

Ln is a connected algebraic subgroup of L of type H. We let {un(t)}t∈R be a unipotent
one-parameter subgroup of l−1

n Lnln such that the trajectory {�Llnu−1
n (t)}t∈R is uniformly

distributed in �L\�L Lnln . That is, for any bounded continuous function f on �L\L , we
have

lim
T→∞

1

T

∫ T

0
f (�Llnu

−1
n (t)) dt =

∫

�L\L
f dπ∗(μn). (6)

(The existence of such a subgroup is guaranteed by Birkhoff’s Ergodic Theorem.) For any
θ > 0, we are afforded, by Theorem 4.5, a compact set Cθ := C(ε/2, θ) of �L\L such that,
for each n ∈ N, either

σ({t ∈ [0, T ] : �Llnu
−1
n (t) ∈ Cθ }) ≥ (1 − ε/2)T , (7)

for all large T ∈ R, or there exists α ∈ � and λ ∈ �L F such that dα(l−1
n λ) < θ and

lnun(t)l
−1
n ∈ λPαλ−1

for all t ∈ R.
If (7) holds, for n ∈ N, it follows immediately from (6) that

π∗(μn)(Cθ ) ≥ 1 − ε.

Otherwise, we conclude that there exist αn ∈ � and λn ∈ �L F such that dαn (l
−1
n λn) < θ

and

lnun(t)l
−1
n ∈ λn Pαnλ

−1
n
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for all t ∈ R. Since Pαn is defined over Q, the subspace �L\�Lλ−1
n Pαnλn is closed in

�L\L and, since �L\{�Llnu−1
n (t)l−1

n }t∈R is dense in �L\�L Ln , we conclude that �\�Ln

is contained in �L\�Lλ−1
n Pαnλn . This implies that the Lie algebra of Ln is contained in the

Lie algebra of λ−1
n Pαnλn and, therefore, Ln is contained in λ−1

n Pαnλn itself. In particular,Hn

is contained in NλnPαnλ
−1
n and

δK ,�,F (Hn, gn) < θ.

Therefore, for each k ∈ N, let θk > 0 such that θk → 0 as k → ∞. Let Ck := Cθk . As
explained above, either

π∗(μn)(Ck) ≥ 1 − ε,

for all n ∈ N, and we conclude that {π∗(μn)}n∈N is tight on �L\L , or there exists nk ∈ N

such that

δK ,�,F (Hnk , gnk ) < θk .

However, the latter contradicts the assumption of the theorem, hence, the proof is complete.
�

5 The criterion for convergence in 0\XS
max

LetG denote a semisimple algebraic group of adjoint type and let K denote a maximal com-
pact subgroup of G. Let X denote the symmetric space G/K and let � denote an arithmetic
subgroup of GQ. Our criterion is as follows.

Theorem 5.1 For each n ∈ N, let Hn denote a connected algebraic subgroup of G of type
H, let gn denote an element of G and let μn denote the homogeneous probability measure

on �\XS
max associated with Hn and gn.

Suppose that there exists a parabolic subgroup P of G such that,

(i) for all n ∈ N, Hn is contained in HP,
(ii) we can write

gn = hnankn ∈ HPAPK ,

such that

α(an) → ∞, as n → ∞, for all α ∈ 
(P, AP),

and,
(iii) if we denote by νn the homogeneous probability measure on �HP\HP associated with

Hn and hn, then (νn)n∈N converges to ν ∈ P(�HP\HP).

Then there exists a connected algebraic subgroupH of P of typeH and an element g ∈ P

such that (μn)n∈N converges to the homogeneous probability measure on�\XS
max associated

with P, H and g, and, furthermore, Hn is contained in H for n large enough.

Proof Consider the natural maps

π : �\G → �\XS
max and πP : �P\P → �P\XP → �\XS

max
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1312 C. Daw et al.

as in Sect. 3.2. The measure μn is equal to π∗(ι∗(νn) · an), where ι denotes the natural inclu-
sion of �HP\HP in �\G. Furthermore, by Theorem 2.9, there exists a connected algebraic
subgroupH of P of typeH and an element g ∈ P such that ν is the homogeneous probability
measure on �HP\HP associated with H and g, and Hn is contained in H for n large enough.
Therefore, it suffices to show that the sequence (μn)n∈N converges to the pushforwardπP∗(ν).

To that end, let f be a continuous function on �\XS
max (which is automatically bounded

because �\XS
max is compact). Fix an ε > 0 and let C be a compact subset of �HP\HP such

that νn(C) > 1 − ε, for all n ∈ N, and ν(C) > 1 − ε as well. Finally, let φ and ψ be
two bounded non-negative continuous functions on �HP\HP such that φ + ψ = 1, the set
supp(φ) is compact, and the set supp(ψ) is contained in the complement of C .

We are interested in
∫

�\XS
max

f dπ∗((ι∗νn) · an) =
∫

�\�HPan
f ◦ π dι∗(νn) · an

=
∫

�\�HP

f ◦ π ◦ ran dι∗(νn) =
∫

�HP \HP

f ◦ π ◦ ran ◦ ι dνn,

where ran denotes the homeomorphism of �\G given by multiplication by an on the right.
We write the last integral as the sum

∫

�HP \HP

( f ◦ π ◦ ran ◦ ι)φ dνn +
∫

�HP \HP

( f ◦ π ◦ ran ◦ ι)ψ dνn,

which, by assumption, is equal to
∫

�HP \HP

( f ◦ π ◦ ran ◦ ι)φ dνn + O(ε).

It follows immediately from [2, III.11.2] that, for any h ∈ HP,

π(ran (ι(�HPh))) → πP(�HPh)

uniformly on compact sets, as n → ∞. Therefore, as functions on �HP\HP, we see that

f ◦ π ◦ ran ◦ ι → f ◦ πP

uniformly, as n → ∞, for all �HPh ∈ C . In particular,
∫

�HP \HP

( f ◦ π ◦ ran ◦ ι)φ dνn =
∫

�HP \HP

( f ◦ πP)φ dνn + O(ε),

for sufficiently large n.
We have

∫

�HP \HP

( f ◦ πP)φ dνn =
∫

�HP \HP

( f ◦ πP)φ dν + O(ε),

for sufficiently large n, whereas,
∫

�HP \HP

( f ◦ πP)φ dν =
∫

�HP \HP

( f ◦ πP) dν + O(ε),

by the definition of C . Therefore, since
∫

�HP \HP

( f ◦ πP) dν =
∫

�\XS
max

f dπP∗(ν),
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the result follows from the fact that ε > 0 can be chosen arbitrarily. �

6 Groups ofQQQ-rank 0

Having established our criteria for convergence, we now move on to proving various cases
of Conjecture 3.1.

Theorem 6.1 Conjecture 3.1 holds when G has Q-rank 0 (that is, G is Q-anisotropic).

Proof In this case, G has only one rational parabolic subgroup, namely, G itself. Therefore,
by Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous prob-
ability measures on �\G associated with the Hn and the gn is convergent in P(�\G). By
Theorem 2.9, the limit measure is the homogeneous probability measure on �\G associated
with a connected algebraic subgroup H of G of type H and an element g ∈ G, and, further-
more,Hn is contained inH for all n large enough. We pushforward all measures to �\X and
the theorem follows. �

7 Groups ofQQQ-rank 1

Theorem 7.1 Conjecture 3.1 holds when G has Q-rank 1.

Proof Consider the situation described in Sect. 3.2 and suppose that G has Q-rank 1. Let A
be a maximal split subtorus of G (so the dimension of A is equal to 1) and let P denote a
minimal parabolic subgroup of G containing A. The set � := �(P,A) contains only one
element, which we denote α. After possibly replacing K , we can and do assume that A is
invariant under the Cartan involution of G associated with K .

Let F denote a �-set for G. Then, in the notation of Sect. 4.2, we obtain, for each n ∈ N,
a positive real number δK ,�,F (Hn, gn). Suppose that

lim inf
n→∞ δK ,�,F (Hn, gn) > 0. (8)

By Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous
probability measures on �\G associated with the Hn and the gn is convergent in P(�\G),
in which case the proof concludes as in the proof of Theorem 6.1.

Therefore, suppose that (8) does not hold. Since G has Q-rank 1, every proper parabolic
subgroup of G is minimal. Since the minimal parabolic subgroups of G belong to a single
G(Q)-conjugacy class, it follows from [3, Proposition 15.6] that every maximal parabolic
subgroup ofG is conjugate to P by an element of �F . Therefore, by Lemma 4.2, we can and
do extract a subsequence such that, for every n ∈ N, there exists λn ∈ �F such that Hn is
contained in λnPλ−1

n and, if

λ−1
n gn = hnankn ∈ HPAPK ,

then,

α(an) → ∞, as n → ∞.

Furthermore, after possibly extracting a subsequence, we can and do assume that λn = γnc,
where γn ∈ �, and c ∈ F is fixed. Therefore, we can and do replace Hn with λ−1

n Hnλn and
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gn with λ−1
n gn and relabel them Hn and gn , respectively. In particular, Hn is contained in P

and

gn = hnankn ∈ HP APK .

Since MP is Q-anisotropic, it contains no proper parabolics, and we conclude as in the
proof of Theorem 6.1 that, after possibly extracting a subsequence, the sequence of homo-
geneous probability measures on �HP\HP associated with the Hn and the hn is convergent
in P(�HP\HP). Therefore, the theorem follows from Theorem 5.1. �

We remark that, whenG hasQ-rank 1, every proper parabolic subgroup P is minimal (and
maximal). In particular, HP is anisotropic over Q. It can happen, then, that MP is compact

for all such P and that the boundary components of �\XS
max (except for �\X ) are points. In

which case, Theorem 7.1 generalises [14, Corollary 1.3], from a one-point-compactification
to a finitely-many-points-compactification.

Unfortunately, it does not seem possible to generalise the above approach to the general
case by way of induction. The argument breaks down at the second stage as one moves to a
non-maximal parabolic subgroup. This is in some sense because of Lemma 2.7. We proceed
to the case G = SL3, in part to explain this problem more explicitly.

8 The case of SL3

Unable to go beyond the rank 1 case in full generality, we consider the specific case of
G = SL3. Already in this case, one can appreciate the complexity of the general problem,
and the obstructions to performing an inductive argument.

Theorem 8.1 Conjecture 3.1 holds when G = SL3, K = SO(3), and � = SL3(Z).

Proof Let � := {α1, α2} be the set of simple Q-roots of G with respect to the maximal
diagonal torus A, where α1 is defined by

diag(x, y, (xy)−1) 	→ xy−1,

and α2 is defined by

diag(x, y, (xy)−1) 	→ y(xy) = xy2.

By [3, Section 1.10], it suffices in this case to take F := {1}.
Suppose that

lim inf
n→∞ δK ,�,F (Hn, gn) > 0. (9)

Then, by Theorem 4.6, the set of measures corresponding to our sequence is sequentially
compact in P(�\G) and our claim follows with P = G from Theorem 2.9.

Therefore, suppose that (9) does not hold. By Lemma 4.2, we can and do extract a subse-
quence such that, for some α ∈ �, and for every n ∈ N, there exists γn ∈ � such that Hn is
contained in γnPαγ −1

n and, if we write

γ −1
n gn = hnankn ∈ HαAαK ,

then

α(an) → ∞, as n → ∞.
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Therefore, we replace Hn with γ −1
n Hnγn and gn with γ −1

n gn and relabel them Hn and gn ,
respectively. That is, Hn is contained in Hα and

gn = hnankn ∈ HαAαK .

By the symmetry of our arguments, we can and do assume that α = α2. That is,

α2(an) → ∞, as n → ∞.

The elements ofMα
∼= SL2 have the form

⎛

⎝
∗ ∗ 0
∗ ∗ 0
0 0 1

⎞

⎠

and the restriction of β := α1 to Mα yields a set of Q-simple roots with respect to the
maximal torusAα ofMα . We let Kα := Mα ∩ K ∼= SO(2) and, again, we can and do choose
Fα := {1}. If

lim inf
n→∞ δKα,{β},Fα (Hn, hn) > 0, (10)

then, by Theorem 4.6, the conditions of Theorem 5.1 are satisfied with P = Pα , and the result
follows.

Therefore, suppose that (10) does not hold. We can and do extract a subsequence such
that, for every n ∈ N, there exists γn ∈ Mα(Z) such that Hn is contained in the parabolic
subgroupNαγnPα

∅γ −1
n ofHα , where Pα

∅ denotes the standard minimal parabolic subgroup of
Mα whose elements are of the form

⎛

⎝
∗ ∗ 0
0 ∗ 0
0 0 1

⎞

⎠ ,

and, if we write

γ −1
n hn = snbnln ∈ NαH

α
∅ · Aα · Kα,

where Hα
∅ := HPα

∅ , then

β(bn) → ∞, as n → ∞.

Therefore, we replace Hn with γ −1
n Hnγn and gn with γ −1

n gn and relabel them Hn and gn ,
respectively. That is, Hn is contained in N∅ = NαHα

∅ and

gn = sn · bnan · lnkn ∈ H∅ · A∅ · K ,

where

β(bn) → ∞ and α(an) → ∞, as n → ∞.

However (and herein lies the problem), whereas

β(bnan) → ∞, as n → ∞
(because β(an) = 1, for all n ∈ N), the behaviour of α(bnan) is not clear, because

α(bn) = β(bn)
−1/2 → 0, as n → ∞.
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Recall that, by Lemma 2.7, the exponent here is necessarily non-positive. Of course, if

α(bnan) → ∞, as n → ∞,

then the result follows from Theorem 5.1, with P = P∅, where we use the fact that, since N∅
is unipotent, the space N∅(Z)\N∅ is compact. Therefore, we can and do suppose that

α(bnan) → c ∈ [0,∞), as n → ∞.

It is sufficient, as we do, to restrict to the following cases.
Case 1: Suppose that, for all n ∈ N, Hn is not contained in Nβ .
We know that Hn is contained in

Hβ = NβMβ,

for all n ∈ N, and so, by assumption, the projection of Hn to Mβ is Nβ

∅ := NPβ

∅
, where Pβ

∅
denotes the standard minimal parabolic ofMβ , whose elements are of the form

⎛

⎝
1 0 0
0 ∗ ∗
0 0 ∗

⎞

⎠ .

The Bruhat decomposition of Mβ (see [3, 11.4 (ii)]) yields the decomposition

Mβ(Q) = Pβ

∅ (Q) ∪ Pβ

∅ (Q)ηPβ

∅ (Q),

where the union is disjoint and

η :=
⎛

⎝
1 0 0
0 0 −1
0 1 0

⎞

⎠

represents the non-trivial element of the Weyl group. Therefore, since, by Corollary 2.2, the
normaliser of Nβ

∅ in Mβ is Pβ

∅ and, by Lemma 2.1, the normaliser of Pβ

∅ is Pβ

∅ itself, we
deduce that the projection of Hn to Mβ is only contained in one parabolic subgroup of Mβ

(namely, Pβ

∅ ).
We can write

bnan = βnαn ∈ Aβ Aβ.

In particular,

α(βn) = α(βnαn) = α(bnan) → c, as n → ∞,

where we use the fact that αn ∈ Aβ . Therefore, if we put Kβ := Mβ ∩ K and Fβ := {1},
then, by the previous discussion,

lim inf
n→∞ δKβ ,{α},Fβ (Hn, snβn) = lim

n→∞ α(βn)
−1 = c−1 > 0.

Hence, by Theorem 4.6, the set of probability measures on Hβ(Z)\Hβ associated with the
Hn and snβn is sequentially compact. Furthermore, we claim that

β(αn) → ∞, as n → ∞.

To see this, write

bn = diag(yn, y
−1
n , 1) and an = diag(xn, xn, x

−2
n ),
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so that

yn → ∞ and xn → ∞, as n → ∞.

Therefore, if

βn = diag(1, wn, w
−1
n ) and αn = diag(z−2

n , zn, zn),

we have z−2
n = ynxn , which yields

β(αn) = z−3
n = (ynxn)

3/2 → ∞, as n → ∞. (11)

Therefore, after possibly extracting a subsequence, the result follows in this case from The-
orem 5.1, with P = Pβ .

Case 2: Suppose that, for all n ∈ N, Hn is contained in Nβ .
Case 2.1: Suppose that c ∈ (0,∞).

After possibly extracting a subsequence, the sequence of measures onHβ(Z)\Hβ associ-
ated with the Hn and snβn converges and the result follows in this case, with P = Pβ , from
Theorem 5.1, and the fact demonstrated above that

β(αn) → ∞, as n → ∞.

Case 2.2: Suppose that c = 0.
Case 2.2.1: Suppose that, for all n ∈ N, sn ∈ Nβ .

For all n ∈ N,

ηHnη
−1 ⊆ Nβ � N∅ = H∅

and

ηsnη
−1 ∈ Nβ � N∅ = H∅.

Furthermore,

α(ηβnαnη
−1) = α(ηβnη

−1)α(αn) = α(βn)
−1 → ∞, as n → ∞,

and

β(ηβnαnη
−1) = η(β)(βnαn) = (β + α)(βnαn) = ynx

3
n → ∞, as n → ∞.

Since η ∈ � ∩ K , the homogeneous probability measure on �\XS
max associated withHn and

gn is equal to the homogeneous probability measure on �\XS
max associated with ηHnη

−1

and ηgnη−1. Therefore, the result follows in this case, with P = P∅, from Theorem 5.1.

Case 2.2.2: Suppose that, for all n ∈ N, sn /∈ Nβ .
By assumption,

sn =
⎛

⎝
1 ∗ ∗
0 1 tn
0 0 1

⎞

⎠ ,

where tn ∈ R \ {0}, and so

snβn =
⎛

⎝
1 ∗ ∗
0 wn tnw−1

n
0 0 w−1

n

⎞

⎠ .
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Therefore, by [3, Section 1.10], there exist γn ∈ Mβ(Z) and mn ∈ Kβ such that

γnsnβnmn =
⎛

⎝
1 ∗ ∗
0 1 un
0 0 1

⎞

⎠

⎛

⎝
1 ∗ ∗
0 vn 0
0 0 v−1

n

⎞

⎠ ,

where un ∈ [0, 1] and vn ≥ t := 2/
√
3.

Case 2.2.2.1: Suppose that vn remains bounded, as n → ∞.
In this case, we can rewrite

�Hngn = � · γnHnγ
−1
n · γnsnβnmn · αn · m−1

n lnkn

and the result follows, with P = Pβ , from Theorem 5.1 since the set of measures on
Hβ(Z)\Hβ associated with the γnHnγ

−1
n and γnsnβnmn is sequentially compact and

β(αn) → ∞, as n → ∞.

Case 2.2.2.2: Suppose that vn → ∞, as n → ∞.
If we denote

cn :=
⎛

⎝
1 0 0
0 vn 0
0 0 v−1

n

⎞

⎠ ,

then

α(cnαn) = α(cn) → ∞, as n → ∞
and we can write

�Hngn = �Hn · νn · cnαn · m−1
n lnkn,

where νn ∈ N∅ and so the result depends on the behaviour of β(cnαn).

Case 2.2.2.2.1: Suppose that

β(cnαn) → ∞, as n → ∞.

In this case, the result follows, with P = P∅, from Theorem 5.1.

Case 2.2.2.2.2: Suppose that β(cnαn) converges to a limit d ∈ (0,∞).
We can write

cnαn = dnen ∈ AαA
α,

and so

β(en) = β(dnen) = β(cnαn) → d, as n → ∞.

Therefore, after possibly extracting a subsequence, the result follows, with P = Pα , from
Theorem 5.1, since

�Hngn = �Hn · νnen · dn · m−1
n lnkn

and the the set of measures on Hα(Z)\Hα associated with the Hn and νnen is sequentially
compact, whereas, since dn is a bounded distance from cnαn ,

α(dn) → ∞, as n → ∞.
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Case 2.2.2.2.3: Suppose that

β(cnαn) → 0, as n → ∞.

Case 2.2.2.2.3.1: Suppose that, for all n ∈ N, Hn is not contained in the unipotent group
whose elements are of the form

⎛

⎝
1 0 ∗
0 1 0
0 0 1

⎞

⎠ .

That is, as before, the projection of the Hn to Mα is contained in only one parabolic
subgroup of Mα , namely, Pβ

∅ , the standard minimal parabolic, whose elements are of the
form

⎛

⎝
∗ ∗ 0
0 ∗ 0
0 0 1

⎞

⎠ .

Therefore, precisely as in Case 1, we deduce that the set ofmeasures onHα(Z)\Hα associated
with the Hn and νnen is sequentially compact, and the result follows, with P = Pα , from
Theorem 5.1 since

α(dn) → ∞, as n → ∞.

Case 2.2.2.2.3.2: Suppose that, for all n ∈ N, every element of Hn is of the form
⎛

⎝
1 0 ∗
0 1 0
0 0 1

⎞

⎠ .

In particular, H := Hn is fixed, and we write H0 for the fundamnetal domain of H whose
elements are of the form

⎛

⎝
1 0 u
0 1 0
0 0 1

⎞

⎠ , where u ∈ [0, 1].

Since H is contained in the centre of N∅, we have

�Hgn = �H0gn = �νn(cnαn) · (cnαn)
−1H0(cnαn) · m−1

n lnkn .

Also, after possibly extracting a subsequence, we can and do assume that the sequence of
points �νncnαnK converges to a point

�P xP ∈ �P\XP ⊆ �\XS
max,

where P is a parabolic subgroup of G. We claim, then, that the sequence of measures on

�\XS
max associated withH and the gn converges to the Dirac measure associated with �P xP .

To see this, note that, by [2, Theorem III.11.9], there exist γn ∈ � such that

γnνncnαn = (πn, ρn, on, μnκn) ∈ NP × AP × exp a⊥
P × MPK

(wherewe are using the horospherical decomposition ofGwith respect toP as in [2, III.11.2]),
where μnKP → xP ∈ XP , and

α(ρn) → ∞, as n → ∞, for all α ∈ 
(P, AP).
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On the other hand, since, by (11),

(β + α)(cnαn) = vnz
−3
n → ∞, as n → ∞,

every sequence (θn)n∈N, with θn ∈ (cnαn)
−1H0(cnαn) converges to the identity. In particular,

the sequence (κnθnκ
−1
n )n∈N also converges to the identity so, if we write

κnθnκ
−1
n = (π ′

n, ρ
′
n, o

′
n, μ

′
nκ

′
n),

then the individual components must each converge to the identity. Therefore,

γnνncnαnθnK = πnρnonμnκnθnκ
−1
n K = πnρnonμnπ

′
nρ

′
no

′
nμ

′
nK ,

which we can write as

(π ′′
n , ρnρ

′
n, ono

′
n, μnμ

′
nK ),

where μnμ
′
nK → xP ∈ XP , and

α(ρnρ
′
n) → ∞, as n → ∞, for all α ∈ 
(P, AP).

In particular, by [2, III.11.2], any sequence (�xn)n∈N, with xn ∈ HgnK , converges to �P xP ,
from which the claim follows. �

9 A product of modular curves

Next, we digress to prove a far simpler case, but one for which there is a Baily-Borel com-
pactification.

First, we prove a simple lemma.

Lemma 9.1 LetH denote a connected algebraic subgroup of SL2 of typeH. ThenH is either
trivial, SL2 itself, or γNγ −1, for some γ ∈ SL2(Z), where N denotes the unipotent radical
of the Borel subgroup B of SL2 consisting of upper triangular matrices.

Proof IfH is semisimple, thenH = SL2. IfNH is non-trivial and not semisimple, thenNH is
non-trivial. Furthermore, since NH is unipotent, it is contained in some parabolic subgroup
of SL2. Hence, NH is the unipotent radical of a Borel subgroup. Since every Borel subgroup
of SL2 is of the form γBγ −1, for some γ ∈ SL2(Z), we deduce that NH = γNγ −1, for
some γ ∈ SL2(Z). Furthermore, by definition,H is contained in the normaliser ofNH, which
is γBγ −1. That is, H is contained in γBγ −1 = NHγDγ −1, where D denotes the diagonal
torus. Since H is of type H, we conclude that H = NH = γNγ −1. �
Theorem 9.2 Let r ∈ N. Conjecture 3.1 holds when G = SLr

2, K = SO(2)r , and � =
SL2(Z)r .

Proof For each i ∈ I := {1, . . . , r}, let πi : G → SL2 denote the projection of G on to its
i th factor. After possibly extracting a subsequence, we obtain a partition I s ∪ I u ∪ I t of I
into three disjoint subsets, where

• i ∈ I s if and only if, for all n ∈ N, πi (Hn) = SL2,
• i ∈ I u if and only if, for all n ∈ N, πi (Hn) = γi,nNγ −1

i,n , for some γi,n ∈ SL2(Z), and
• i ∈ I t if and only if, for all n ∈ N, πi (Hn) = {1}.
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For each n ∈ N, we let γn ∈ SL2(Z)r be the element whose i th entry is equal to γi,n if i ∈ I u

and is trivial otherwise. We replace Hn with γ −1
n Hnγn and gn with γ −1

n gn and relabel them
Hn and gn , respectively. That is, the assertions above on the πi (Hn) now hold with γi,n = 1
for all i ∈ I u and all n ∈ N.

Let D denote the diagonal torus of SL2. Then A := Dr is a maximal split torus of G
such that A is invariant under the Cartan involution of G associated with K . Furthermore,
P0 := Br is a minimal parabolic subgroup ofG (indeed, it is a Borel subgroup) that contains
A.

We let � := �(P0,A), which can naturally be indexed by I . In particular, for each i ∈ I ,
we obtain a maximal standard parabolic Pi of G by replacing the i th factor ofG with a copy
of B. This exhausts the maximal standard parabolic subgroups.

For each i ∈ I , we obtain a function di := dPi ,K on G. As before, F := {1} is a �-set
for G. Note that the maximal parabolic subgroups of G that contain the Hn are those Pi for
i ∈ I u and those γPiγ

−1 for i ∈ I t and any γ ∈ �.
After possibly extracting a subsequence, we can define a partition I t+ ∪ I t− of I t into two

disjoint subsets, where

• i ∈ I t+ if and only if

inf{di (g−1
n γ ) : γ ∈ SL2(Z)r } → 0, as n → ∞, and

• i ∈ I t− if and only if

inf{di (g−1
n γ ) : γ ∈ SL2(Z)r } → ci ∈ (0,∞], as n → ∞.

Similarly, we can define a partition I u+ ∪ I u− of I u into two disjoint subsets, where

• i ∈ I u+ if and only if di (g−1
n ) → 0, as n → ∞, and

• i ∈ I u− if and only if di (g−1
n ) → ci ∈ (0,∞], as n → ∞.

In particular, by Lemma 4.2, after possibly replacingHn with γ −1
n Hnγn and gn with γ −1

n gn ,
for some γn ∈ � (with trivial entries outside of the factors in I t+), and relabelling them Hn

and gn , respectively, we can write gn = (gi,n)ri=1, where gi,n ∈ SL2(R), such that

gi,n = ui,nai,nki,n ∈ N · D · SO(2)

and

φ(ai,n) → ∞, as n → ∞,

for all i ∈ I t+ ∪ I u+, where we denote by φ the single element of �(B,D). We can also,
without loss of generality, assume that ki,n = 1, for all i ∈ I and for all n ∈ N.

We define hn = (hi,n)ri=1 ∈ G and θn = (θi,n)
r
i=1 ∈ A, where

• hi,n = gi,n and θi,n = 1, for all i ∈ I s ∪ I u− ∪ I t−, and
• hi,n = ui,n and θi,n = ai,n , for all i ∈ I t+ ∪ I u+.

That is, for all i ∈ I and all n ∈ N, we have gn = hnθn .
Let J := I s ∪ I u− ∪ I t− and consider the standard parabolic subgroup P := PJ of G. By

definition,

P =
r∏

i=1

PJ ,i ,
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where PJ ,i = B if i /∈ J and PJ ,i = SL2 otherwise. The rational Langlands decomposition
with respect to K is P = NJ AJ MJ , where

NJ =
r∏

i=1

NJ ,i , AJ =
r∏

i=1

AJ ,i , and MJ =
r∏

i=1

MJ ,i ,

where

• for i /∈ J , we have NJ ,i = N , AJ ,i = D and MJ ,i = {1}, and,
• for i ∈ J , we have NJ ,i = {1}, AJ ,i = {1} and MJ ,i = SL2.

Let H := HP. Then Hn is contained in H and hn ∈ H for all n ∈ N. Let �H := � ∩ H .
Then, by Theorem 4.6, the set of homogeneous probability measures on �H\H associated
with the Hn and hn is sequentially compact in P(�H\H). Furthermore, gn = hnθn , and

α(θn) → ∞, as n → ∞, for all α ∈ 
(P, AP).

Therefore, the result follows from Theorem 5.1. �

10 Translates of the Levi of a maximal parabolic subgroup

We now move on to proving cases of Conjecture 3.1 in which we impose conditions on the
Hn and gn instead of the group G.

The title of this section is slightly inaccurate; a Levi subgroup cannot be of typeH. Recall
that, for any reductive algebraic group M, we can write M as the almost direct product
RMMder, where Mder is the derived subgroup of M. Then Mder is a semisimple group and,
as such, is equal to the almost direct product of its almost Q-simple factors. We write Mnc

(respectively, Mc) for the product of those factors whose underlying real Lie groups are
non-compact (respectively, compact). In particular, Mnc is of type H.

Theorem 10.1 Let P0 be a minimal parabolic subgroup of G and let A be a maximal split
subtorus of G contained in P0. Then Conjecture 3.1 holds when, for all n ∈ N, Hn = Mnc

α ,
for some α ∈ � := �(P0,A).

Proof After possibly replacing K , we can and do assume that A is invariant under the Cartan
involution of G associated with K .

Let F denote a �-set for G. If

lim inf
n→∞ δK ,�,F (Hn, gn) > 0, (12)

then, by Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous
probability measures on �\G associated with the Hn and the gn is convergent in P(�\G),
in which case the proof concludes as in the proof of Theorem 6.1.

Therefore, suppose that (12) does not hold. By Lemma 4.2, we can and do extract a
subsequence such that, for some β ∈ �, and for every n ∈ N, there exists λn ∈ �F such that
Hn is contained in λnPβλ−1

n and, if we write

λ−1
n gn = hnankn ∈ Hβ AβK ,

then

β(an) → ∞, as n → ∞.
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Furthermore, after possibly extracting a subsequence, we can and do assume that λn = γnc,
where γn ∈ �, and c ∈ F is fixed. Therefore, we can and do replace Hn with λ−1

n Hnλn and
gn with λ−1

n gn and relabel them Hn and gn , respectively. That is, Hn is contained in Hβ and

gn = hnankn ∈ Hβ AβK .

Now, if theQ-rank ofG is r , then theQ-rank ofHn is r −1. On the other hand, ifHn were
contained in a parabolic subgroup of Hβ , it would ncessarily be contained in a semisimple
subgroup ofQ-rank r−2, which is a contradiction. Therefore,Hn is contained in no parabolic
subgoup ofHβ , and we conclude from Theorem 4.6, after possibly extracting a subsequence,
the sequence of homogeneous probability measures on �Hβ \Hβ associated with the Hn and
the hn is convergent in P(�Hβ \Hβ). Therefore, the result follows from Theorem 5.1 with
P = Pβ . �

11 Translates of the unipotent radical of a minimal parabolic

We will prove the following case of Conjecture 3.1.

Theorem 11.1 Conjecture 3.1 holds when, for each n ∈ N, Hn is equal to the unipotent
radical of a minimal parabolic subgroup of G.

Proof After possibly extracting a subsequence and conjugating, we can and do assume that,
for all n ∈ N, Hn = NP for a fixed minimal parabolic subgroup P of G. Let A denote a
maximal split subtorus of G contained in P. We can and do assume that A is invariant under
the Cartan involution of G associated with K . Writing

gn = νnmnankn ∈ NPMPAPK ,

we see that the homogeneous probability measure on �\XS
max associated with NP and gn is

equal to the homogeneous probability measure associated with NP and mnan .
Let � := �(P,A) and, for any subset I ⊆ �, let PI denote the standard parabolic

subgroup of G associated with I . Then A = AIAI and we write

an = an,I a
I
n , where an,I ∈ AI and a

I
n ∈ AI .

For each α ∈ �, let dα := dPα,K and let χα := χPα . Let F be a �-set for G. Note that,
for any I ⊆ �, and any λn ∈ �F ∩ Pα(Q),

dα((aI
n )

−1m−1
n λn) = χα((aI

n )
−1)χα(m−1

n )χα(λn).

Furthermore, by Lemma 4.3, χα(λn) = dα(λn) ≥ c1, for some c1 > 0 depending only on G
and F , and χα(m−1

n ) = 1 because mn ∈ MP ⊆ Mα . Therefore,

dα((aI
n )

−1m−1
n λn) ≥ c1 · χα((aI

n )
−1).

Choose I ⊆ � maximal such that there exists c2 > 0 satisfying

χα((aI
n )

−1) > c2

for every n ∈ N and α ∈ �. That is, I is a maximal subset such that, for the corresponding
decomposition of an , all of the characters χα are bounded below on (aI

n )
−1. Note that such

a set exists because, when I is empty,MI = MP is anisotropic and so aI
n = 1.
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By Lemma 2.3, NP is contained in a parabolic subgroupQ ofG if and only ifQ = PI for
some subset I ⊆ �. Therefore, Theorem 4.6 implies that the set of homogeneous probability
measures on �I \HI associated with NP and the mnaI

n is sequentially compact. We are using
here the fact that, by Lemma 2.1, for any α ∈ �, Pα is its own nomalizer in G. Hence, for
any λ ∈ �F , we have λPαλ−1 = Pα if and only if λ ∈ �F ∩ Pα(Q).

Therefore, Theorem 11.1 follows from Theorem 5.1, if we can show that

α(an,I ) → ∞, as n → ∞, for all α ∈ � \ I .

To that end, let α ∈ � \ I and let Iα := I ∪ {α}. Recall that Iα restricts to a set of simple
Q-roots ofMIα with respect to AIα . As in [2, III.1.16], we obtain a maximal proper standard
parabolic PIα

I ofMIα and a rational Langlands decomposition

P Iα
I = N Iα

I M Iα
I AIα

I ,

such that

PI = NIα N
Iα
I · MIα

I · AIα
I AIα

is the rational Langlands decomposition of PI . In particular, AI = AIα
I AIα and so

an,I = an,Iαa
Iα
n,I , where an,Iα ∈ AIα and aIα

n,I ∈ AIα
I .

Therefore,

α(an,I ) = α(an,Iαa
Iα
n,I ) = α(aIα

n,I ).

We also have the decomposition

an = an,Iαa
Iα
n , where an,Iα ∈ AIα and aIα

n ∈ AIα ,

and, from the maximality of I , we know that, after possibly extracting a subsequence, we
can and do assume that, for some β ∈ �,

χβ((aIα
n )−1) → 0, as n → ∞.

We note that β ∈ Iα since, otherwise, χβ would be trivial on AIα . The decompositions

A = AIαAIα = AIAI = AIAIα
I AIα

yield aIα
n = aI

na
Iα
n,I and, since χβ((aI

n )
−1) > c2, for every n ∈ N, we conclude that

χβ((aIα
n,I )

−1) → 0 as n → ∞.

Now since X∗(AIα
I ) is a one dimensional Z-module and the restriction of α to AIα

I is
non-trivial,

χ
β|AIα

I
= cβ(α) · α|AIα

I

for some cβ(α) ∈ Q, and we claim that cβ(α) > 0. To see this, recall from Lemma 4.1 that
χβ belongs to a set of quasi-fundamental weights in X∗(A)Q. Therefore, by Lemma 2.6, its
restriction toAIα belongs to a set of quasi-fundamental weights in X∗(AIα )Q. It follows from
Lemma 2.5, then, that the restriction of χβ toAIα is a non-negative linear combination of the
elements of Iα . Since χ

β|AIα
I
is non-zero, the claim follows. We conclude that

α(an,I ) = α(aIα
n,I ) → ∞ as n → ∞,
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as required. �

12 Digression on Levi spheres

Before proving a final case of Conjecture 3.1, we recall some facts pertaining to buildings
and so-called Levi spheres. We refer the reader to [4,17,20] for more details on buildings.

LetG be a reductive algebraic group, containing a non-trivial split torus, and letB := B(G)

be its associated (Tits) building. That is,B is a simplicial complexwhose simplices are in one-
to-one correspondence with the (rational) parabolic subgroups ofG. If s ∈ B is a simplex, we
denote by Ps the corresponding parabolic subgroup ofG, and if P is a parabolic subgroup of
G, we denote by sP ∈ B the corresponding simplex. Then s ∈ B is a face of t ∈ B if and only
if Pt is contained in Ps . In particular, the vertices of B are in one-to-one correspondence with
themaximal proper parabolic subgroups ofG, and the empty simplex corresponds toG itself.
The set of types of vertices of B is in bijection with the set of vertices of the (rational) Dynkin
diagram ofG. The apartments of B are in one-to-one correspondence with the maximal split
tori of G.

Let P0 be a minimal parabolic subgroup of G and let A be a maximal split subtorus of G
contained in P0. The set � := �(P0,A) is a set of simple Q-roots of G with respect to A.
Let V := X∗(A) ⊗ R and let V ∗ := X∗(A) ⊗ R. There is a canonical perfect pairing

〈·, ·〉 : V × V ∗ → R,

and we identify V ∗ with the dual of V . We choose a basis {ψα}α∈� of V ∗ such that 〈ψβ, α〉 =
δβα , for all β, α ∈ �.

LetW denote the Weyl group of A (which acts linearly on V and V ∗). We equip V with a
W -invariant scalar product (·, ·), which allows us to identify V with its dual and, therefore,
with V ∗. Since (·, ·) and 〈·, ·〉 are W -invariant, this identification is W -equivariant.

The exponential map

Lie(A) → A : a 	→ exp(a)

is an isomorphism of real Lie groups, and the map

A → V : a 	→ (logα(a))α∈�

is also an isomorphism. Therefore, we have obtained identifications Lie(A) = A = V , which
are all W -equivariant.

For each α ∈ V ∗, we define a hyperplane

Hα := {x ∈ V : 〈x, α〉 = 0},
a half-space

�α := {x ∈ V : 〈x, α〉 > 0},
and its closure

�α := {x ∈ V : 〈x, α〉 ≥ 0}.
Note that, for any w ∈ W , wHα = Hwα and w�α = �wα .

For I ⊂ �, we define

CI :=
⋂

α∈I
Hα ∩

⋂

α/∈I
�α,

123



1326 C. Daw et al.

and so

wCI =
⋂

α∈I
Hwα ∩

⋂

α/∈I
�wα,

for anyw ∈ W . ThewCI yield a partition of V and so, if we denote by [wCI ] the intersection
ofwCI with the unit sphere S(V ) in V , we obtain a partition of S(V ) and, in fact, the simplices
of a simplicial complex S := S(W ,�), for which the simplex [w1CI1 ] is a face of [w2CI2 ]
if and only if, as subsets of S(V ), [w1CI1 ] is contained in the closure of [w2CI2 ]. One may
verify that the map

S → A : [wCI ] 	→ swPIw
−1

is a W -equivariant isomorphism of simplicial complexes.
A Levi sphere of S, as defined in [18, Section 2.1.6], is a simplicial subcomplex of S

given by the intersection of S with a subvector space of V . Let I be a subset of � and let

AI := (∩α∈I ker α)◦,

as usual. Under the above identification,

Lie(AI ) = ∩α∈I Hα

and SI := Lie(AI ) ∩ S is a (standard) Levi sphere. The simplices of SI parametrize the
parabolic subgroups associated with A containing the Levi subgroup AIMI of PI . The
simplices of SI of maximal dimension parametrize the parabolic subgroups associated with
A such that AIMI is a Levi subgroup of those parabolic subgroups.

13 Translates of subgroups of MI by elements of AI

Finally, we prove the following case of Conjecture 3.1.

Theorem 13.1 Let P0 be a minimal parabolic subgroup of G and let A be a maximal split
subtorus of G contained in P0 such that A is invariant under the Cartan involution of G
associated with K . Then Conjecture 3.1 holds when, for some I ⊆ � := �(P0,A), and for
each n ∈ N, Hn is a subgroup ofMI and gn ∈ AI .

Proof Since gn ∈ AI , we relabel it an . Since an ∈ A, there exists, by Sect. 12, wn ∈ W
and Jn ⊆ � such that an ∈ wnCJn . Since W and � are finite, after possibly extracting a
subsequence, we can and do assume that w := wn and J := Jn are fixed.

Lemma 13.2 We have wAJw
−1 ⊆ AI .

Proof Let β ∈ I . Since w� is a set of simple Q-roots for G with respect to A, we can write
β = ∑

α∈� aαwα for some aα ∈ Q. Since an ∈ wCJ ∩ AI , we have

1 = β(an) =
∏

α∈�

wα(an)
aα =

∏

α/∈J

wα(an)
aα ,

for every n ∈ N. Since β is either positive or negative with respect to the ordering given by
w�, either aα ≥ 0 for all α ∈ �, or aα ≤ 0 for all α ∈ �. Therefore, since wα(an) > 1 for
all α /∈ J , we conclude that aα = 0 for all α /∈ J . That is, β is contained in the Q-span of
the set wJ , which proves the claim. �
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Since wα(an) > 1, for all n ∈ N and all α /∈ J , after possibly extracting a subsequence,
we can and do assume that

wα(an) → cα ∈ [1,∞], as n → ∞.

Therefore, we can write � \ J as the disjoint union of two subsets R∞ and R0 defined such
that α ∈ � \ J is a member of R0 if and only if cα ∈ [1,∞) (and α ∈ � \ J is a member of
R∞ if and only if cα = ∞).

Let A∞ := AJ∪R0 and A0 := AJ∪R∞ . Then AJ = A∞A0 and we can write an ∈
wAJw

−1 as an,∞an,0, where an,∞ ∈ wA∞w−1 and an,0 ∈ wA0w
−1. In particular, for

every α ∈ R∞
wα(an,∞) = wα(an) → ∞, as n → ∞,

and, for every α ∈ R0,

wα(an,0) = wα(an) → cα ∈ [1,∞), as n → ∞.

As in the proof of [3, Proposition 12.6], we can representw by an element in K (which we
also denote by w) (where we use the fact that the Weyl group of A is naturally a subgroup of
theWeyl group ofAR). Therefore, if we letP := wPJ∪R0w

−1, then AP is equal towA∞w−1.
Note that A0 is contained in A, which we may write as the direct product AJ∪R0 AJ∪R0 .

Therefore, we my write

an,0 = bn · cn ∈ wAJ∪R0w−1 · wAJ∪R0w
−1.

From the above, the an,0 are contained in a compact subset of wAw−1. Therefore, the bn
and cn are contained in compact subsets of wAJ∪R0w−1 and wAJ∪R0w

−1, respectively.
We conclude that, after possibly extracting a subsequence, we can and do assume that the
sequence of homogeneous probability measures on �HP\HP associated with the Hn and bn
converges. On the other hand, we have

wα(cnan,∞) → ∞, as n → ∞
for every α ∈ R∞, and so the result follows from Theorem 5.1. �
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