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Abstract

We conjecture that the set of homogeneous probability measures on the maximal Satake
compactification of an arithmetic locally symmetric space S = I'\G/K is compact. More
precisely, given a sequence of homogeneous probability measures on S, we expect that
any weak limit is homogeneous with support contained in precisely one of the boundary
components (including S itself). We introduce several tools to study this conjecture and we
prove it in a number of cases, including when G = SL3(R) and I' = SL3(Z).
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1 Introduction
1.1 Background and motivations

The study of sequences of measures invariant under unipotent flows has been a central theme
in homogeneous dynamics, and the deep theorems obtained have had several important
arithmetic applications. Prototypical in this respect is Margulis’s proof of the Oppenheim
Conjecture concerning the values of irrational indefinite quadratic forms at integral vectors
[12]. Margulis obtained his result by characterising SO(2, 1)-orbits on the homogeneous
space SL3(Z)\SL3(R).

More generally, let G be a semisimple algebraic group over Q and let G := G(R)*. Let
I' € G(Q) be an arithmetic lattice (henceforth known as an arithmetic subgroup) contained
in G and let HR be a real algebraic subgroup of Gg such that H := Hg(R)™" is generated
by its one parameter unipotent subgroups. In her seminal works [15,16], Ratner obtained
a classification of the H-invariant ergodic measures on the homogeneous space I'\G and
proved that the closure of an H -orbit is a homogeneous subspace of I'\G.

For any algebraic Q-subgroup H of G without Q-rational characters, I"'\ G admits a canoni-
cal H-invariant probability measure p jy with support 'NH\H C I'\G,where H := H(R)™".
For any g € G, we denote by uy ¢ the push-forward of ;g by the right-multiplication-by-g
map. That is, j1py ¢ is supported on I' N H\ Hg. Such a measure is called homogeneous or
arithmetic.

Mozes—Shah [14] and Eskin—Mozes—Shah [9,10] started the study of weak convergence
of sequences (Un)neN = (UH,, n )nen of homogeneous measures associated with sequences
(H,)nen of subgroups of G and sequences (g, ),en of elements of G. With natural hypothe-
ses on the H, and g, it follows from the work of Mozes—Shah [14] that, if u is a weak
limit of (i, )N in the space of probability measures on I'\ G, then u is homogeneous itself.
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Convergence of measures on compactifications. .. 1295

Furthermore, they showed that, if @ is a weak limit of (u,),en in the space of probability
measures on the one-point-compactification I'\G U {oo} of I'\ G, then w is either a homo-
geneous probability measure on I'\G, or equal to the Dirac delta measure at infinity. In
[10], building on the earlier work of Dani—Margulis [8], Eskin—-Mozes—Shah proved a non-
divergence criterion for sequences of homogeneous measures and, motivated by a counting
problem for lattice points on homogeneous varieties, applied this to show in [9] that, when,
for all n € N, H, = H, for a fixed reductive subgroup H of G not contained in a proper
Q-parabolic subgroup of G, any weak limit u of w, = @y g, is homogeneous. All of these
works relied on the fundamental results of Ratner.

The aim of this paper is to study these questions for (arithmetic) locally symmetric spaces
in the case when a sequence of homogeneous measures diverges. More precisely, we study
weak limits of homogeneous measures on suitable compactifications of locally symmetric
spaces.

Fix a maximal compact subgroup K of G and denote by X = G/K the associated
Riemannian symmetric space. Let S = I'\ X be the corresponding locally symmetric space
and let

7:I\G— S:Tg—TgkK

be the projection map. A homogeneous probability measure on S is defined as the push
forward 7, (up, ) of a homogeneous probability measure 11y, on I'\G, for any H of type
H (see Sect. 2.10).

The key point is that locally symmetric spaces have natural compactifications of the form

M Xy = \X U] [Tr\Xp. )
P

where P varies over a (finite) set of representatives for the I'-conjugacy classes of Q-parabolic
subgroups of G, and the boundary components I'p\ X p are themselves locally symmetric
spaces. We will be mainly concerned with the maximal Satake compactification of S in this
text, but we also discuss the Baily-Borel compactification when S is a hermitian locally
symmetric space.

We make the following, seemingly natural conjecture, which we state in a more precise
form in Sect. 3 (see Conjectures 3.1, 3.3).
Conjecture 1.1 Suppose that p is a probability measure on r‘\inSnax equal to the weak limit
of a sequence (ug,,g,)neN Of homogeneous probability measures on S. Then w is a homo-
geneous probability measure supported on precisely one of the boundary components.

The main purpose of this work is to discuss Conjecture 1.1 and to establish it under
additional restrictions. The novelty here is that we do not assume that H,, is not contained in
a proper rational parabolic of G, and we therefore need to study the behavior of sequences
of homogeneous measures when the mass escapes at infinity.

The original motivation for this work concerned the case when S is a hermitian locally
symmetric space. Then the Baily—Borel compactification of S realises S as a quasi-projective
algebraic variety and S has an interpretation as a moduli space for interesting structures (often,
abelian varieties with level structures and endomorphisms). The boundary components of
the Baily—Borel compactification of S are themselves hermitian locally symmetric spaces.
In this situation, the André—Oort and Zilber—Pink conjectures predict strong restrictions on
the distribution of special (or weakly special) subvarieties of S, which are homogeneous
subvarieties of S also possessing hermitian locally symmetric structures. Several results
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on the equidistribution of sequences of measures associated with special subvarieties were
obtained by Clozel and the third author [6,21], and these played a central role in the first proof
of the André—Oort Conjecture under the generalised Riemann hypothesis by Klingler, Yafaev
and the third author [11,22]. This paper deals principally with the convergence of measures on
general locally symmetric spaces and their Satake compactifications, but we hope to discuss
the Baily—Borel compactification, and possible applications, in a future work.

1.2 Overview of the results

Section 2 is mainly preliminary. We recall relevant results on root systems, parabolic sub-
groups and ergodic theory on homogeneous spaces. We make repeated use of the rational
Langlands decomposition of G associated with a parabolic subgroup P of G defined over Q,
which is described in Sect. 2.6. We recall here that this decomposition is of the form

G = NpApMpK,

where Np is the unipotent radical of P := P(R)™, Ap is the identity component of a real
algebraic split torus, Ap Mp is a Levi subgroup of P and K is a maximal compact subgroup
of G.

In Sect. 3, we recall definitions and properties of the maximal Satake compactification of a
locally symmetric space S, and of the Baily—Borel compactification when § is hermitian. We
then formulate our main conjectures on general sequences of homogeneous measures for the
maximal Satake (Conjecture 3.1) and the Baily—Borel (Conjecture 3.3) compactifications.
Theorem 3.4 shows that the conjecture for the Satake compactification implies the one for
the Baily—Borel compactification.

In Sects. 4 and 5, we prove two convergence criteria for sequences (i, )neN = (U H,,g, )neN
of homogeneous measures. Theorem 4.6 gives a sufficient condition, in terms of (¢, x)-
functions, as introduced by Borel [3, Section 14], under which {u,},en is sequentially
compact. Theorem 5.1 gives a sufficient condition under which w, converges to a homoge-
neous measure 1 on a boundary component I p\ X p of the maximal Satake compactification
of '\ X. These two results are crucial in the rest of the paper and are the main tools at our
disposal. In order to use these criteria, it is necessary to

o understand the set of rational parabolic subgroups of G containing H,;
e for each parabolic subgroup P containing H,,, compute the rational Langlands decom-
position

8n = Upapmuk, € G = NpApMpK;

e for any « in a set of simple roots for the action of Ap on Np, understand the behavior of
a(ay) as n — oo (positivity, boundedness, convergence to 00).

In Sects. 6 and 7, we prove Conjecture 3.1 in full generality when the Q-rank of G is 0 or
1. Then, for any G, Theorem 10.1 establishes Conjecture 3.1 when, foralln € N, H = H,, is
the semisimple non-compact part of a Levi subgroup of a maximal parabolic subgroup over
Q.

Theorem 8.1, which is one of the main results of the paper, establishes Conjecture 3.1 in the
case when G = SL3 and I = SL3(Z). The complexity of the general problem can already
be seen from the various cases we have to face in this situation. Theorem 9.2 establishes
Conjecture 3.1 when, for r € N, G = SL), and I' = SL,(Z)". This, of course, is an instance
when S is hermitian.
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Theorem 11.1 establishes Conjecture 3.1 when, foreachn € N, H,, is equal to the unipotent
radical N of a minimal parabolic subgroup Py of G. In this case, a weak limit j of a sequence
(LN, g, )nen can be a homogeneous measure supported on any boundary component I'p\ X p.
The proof is constructive and explains, in terms of the rational Langlands decompositions of
the g, relative to Py, on which boundary component  is supported.

In Sect. 12, we recall some basic properties of the Tits building B of G. In particular, we
discuss the notion of a Levi sphere, as introduced by Serre [18], which is a sub-simplicial
complex S of B contained in an apartment of B. The simplices of S parametrise the rational
parabolic subgroups of G containing a fixed Levi subgroup of some parabolic subgroup. This
notion is used in Sect. 13 to study the conjecture when we translate subgroups H,, of Mp,
for some parabolic subgroup P, by elements a, € Ap. We show that S can be described as
the unit sphere in the Lie algebra ap of Ap. We then find a simplex in S corresponding to
a parabolic subgroup Q such that Q = NgApMp and the roots of Ap in N take positive
values on exp~!(a,) € ap. This allows us to apply Theorem 5.1.

2 Preliminaries
2.1 Borel probability measures

Let S be a metric space and let X be its Borel o -algebra. By a Borel probability measure on
S, we mean a Borel probability measure on . We let P(S) denote the space of all Borel
probability measures on S. We say that a sequence (4,),eN in P(S) converges (weakly) to
€ P(S) if we have

/fdun—>/fdu, asn — 0o,
s N

for all bounded continuous functions f on S.

2.2 Algebraic groups

By an algebraic group G, we refer to a linear algebraic group defined over Q and by an
algebraic subgroup of G we again refer to an algebraic subgroup defined over Q. We will use
boldface letters to denote algebraic groups (which, again, are always defined over Q). If G
is an algebraic group, we will denote its radical by Rg and its unipotent radical by Ng. We
will write G° for the (Zariski) connected component of G containing the identity. We will
denote the Lie algebra of G by the corresponding mathfrak letter g, and we will denote the
(topological) connected component of G(R) containing the identity by the corresponding
Roman letter G. We will denote by Gq the intersection G(Q) N G. We will retain any
subscripts or superscripts in these notations. If M and A are algebraic subgroups of G, we
will write Zp(A) for the centraliser of A in M and Nyf(A) for the normaliser of A in M.

2.3 Parabolic subgroups

A parabolic subgroup P of a connected algebraic group G is an algebraic subgroup such
that the quotient of G by P is a projective algebraic variety. In particular, G is a parabolic
subgroup of itself. However, by a maximal parabolic subgroup, we refer to a maximal proper
parabolic subgroup. Note that Rg is contained in every parabolic subgroup of G.

@ Springer



1298 C.Daw et al.

Lemma 2.1 (Cf. [5, Proposition 4.4]) Let P be a parabolic subgroups of G. Then Ng (P) = P.
If Q is a another parabolic subgroup of G, then (P N Q)Np is a parabolic subgroup of G,
which is equal to P if and only if Q contains a Levi subgroup of P.

Corollary 2.2 Let P be a parabolic subgroup of G. Then Ng(Np) = P.

Proof Let g € Ng(Np)(Q). Then Q := gPg !isa parabolic subgroup of G containing
Np. Therefore, P N Q contains the parabolic subgroup (P N Q)Np of G, and is, therefore, a
parabolic subgroup of G itself. By [5, Section 4.3], we have Q = P and so g € P(Q). The
result follows from the fact that Ng (Np)(Q) is Zariski dense in Ng (Np). ]

2.4 Cartan involutions

Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Then
there exists a unique involution 6 on G such that K is the fixed point set of 8. We refer to 6
as the Cartan involution of G associated with K .

2.5 Boundary symmetric spaces

Let G be a semisimple algebraic group and let K be a maximal compact subgroup of G. Let P
be a parabolic subgroup of G. As in [2], (I.1.10), we have the real Langlands decomposition
(with respect to K)

P=NpMpAp,

where L p := Mp Ap is the unique Levi subgroup of P suchthat Kp := LpNK = MpNK
is a maximal compact subgroup of L p, and Ap is the maximal split torus in the centre of
Lp. We denote by X p the boundary symmetric space Mp /K p, on which P acts through its
projection on to Mp.

2.6 Rational Langlands decomposition

Let G be a connected algebraic group and let K be a maximal compact subgroup of G.
Let P be a parabolic subgroup of G. As in [2], (III.1.3), we have the rational Langlands
decomposition (with respect to K )

P = NpMpAp.

We let (P, Ap) denote the set of characters of Ap occuring in its action on np. Since
G = PK, the rational Langlands decomposition of P yields

G = NpMpApK.
In particular, if ¢ € G, we can write g as
g = nmak € NpMpApK,

and we denote the (uniquely determined) Ap-component ap  (g).

We remind the reader that the groups Ap and Mp are not necessarily associated with
algebraic groups defined over Q. However, by [2, Proposition III.1.11], there existsann € Np
such that nMpn~! and nApn~' are associated with algebraic groups defined over Q. In
particular, the product Np Mp is associated with a connected algebraic group over Q, which
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we always denote Hp. Clearly, Hp is a group with no rational characters. Note that the rational
Langlands decomposition with respect to nKn~! is

P = Np-nMpn~—' - nApn~!,

from which it follows that Hp depends only on P.

2.7 Standard parabolic subgroups

Let G be a reductive algebraic group and let A be a maximal split subtorus of G. The non-
trivial characters of A that intervene in the adjoint representation of G restricted to A are
known as the Q-roots of G with respect to A.

Let Pg be a minimal parabolic subgroup of G containing A. We let @ (Py, A) denote the set
of characters of A occurring in its action on n, where N := Np,. As explained in [2, III.1.7],
@ (Po, A) contains a unique subset A := A(Pp, A) such that every element of ®(Py, A) isa
linear combination, with non-negative integer coefficients, of elements belonging to A. On
the other hand, Py is determined by A and A. We refer to A as a set of simple Q-roots of G
with respect to A.

For a subset I € A, we define the subtorus

A = (Nges kera)®

of A. Then the subgroup P; of G generated by Zg(A;) and N is a parabolic subgroup of
G. We refer to P; as a standard parabolic subgroup of G. Every parabolic subgroup of
G containing Py is equal to P; for some uniquely determined subset / € A. For ease of
notation, when I = A\ {«}, for some o € A, we will write Py, instead of Pa\ (). We will
use the following lemma in Sect. 11.

Lemma 2.3 Let P be a parabolic subgroup of G containing N. Then P contains Py. That is,
P is a standard parabolic subgroup of G.

Proof By assumption N is contained in P N Py, and, hence, Q := (P N Py)N, which, by
Lemma 2.1, is a parabolic subgroup of G. However, Q is contained in Py, which is minimal.
Hence, Q = Pp, which implies that P N Pg = Py and we conclude that P contains Py. ]

Let K be a maximal compact subgroup of G such that A is invariant under the Cartan
involution of G associated with K. Then, as in [8, Section 1], Zg (A7) is the Levi subgroup
of P appearing in the rational Langlands decomposition of P with respect to K. Note that
A7 is the maximal split subtorus of the centre of Zg(A;) and we can write Zg(A,) as an
almost direct product M;A;, where M is a reductive group with no rational characters. The
rational Langlands decomposition is then

P =NiMjAy,

where N; := Np,. We will also write H; := N;M;. For ease of notation, when I = A\ {«},
forsomea € A, we will write Ay, My, Ny and Hy, instead of A7, M, N; and H;, respectively.

2.8 Root systems

Consider the situation described in Sect. 2.7. Let X*(A) denote the character module of A,
and let X*(A)g denote the Q-vector space X*(A) ®z Q. (We will also later refer to the
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1300 C.Daw et al.

cocharacter module X, (A) of A.) Fix a non-degenerate scalar product (-, -) on X*(A)q that
is invariant under the action of Ng (A) (Q). Then the Q-roots of G with respect to A equipped
with the inner product (-, -) constitute a root system in X*(A)qg. We refer the reader to [19,
Section 3.5] for further details.

Let A denote a set of simple Q-roots of G with respect to A and fix a subset I C A. Then
Al .= (A NM;)° is a maximal split subtorus of M; and the elements of / restrict to a set
of simple Q-roots of M; with respect to A’. Furthermore, A is equal to the almost direct
product A’A;, from which it follows that Nwm, (A1) is a subgroup of Ng(A). For ease of
notation, when I = A \ {«}, for some o € A, we will write A? instead of A’.

The isogeny A’ x A; — A : (a, b) — ab yields an identification

X*(A)g = X*(ANg @ X*(A1)g )

such that the projection 1 (respectively, 72) on to the first (respectively, second) factor is
given by restricting to the corresponding subtorus. It follows that the restriction of (-, -) to
X*(A! )@ is a non-degenerate scalar product that is invariant with respect to the action of

Ny, (AD(Q).
Lemma 2.4 The decomposition (2) is orthogonal with respect to (-, -).

Proof Note that the elements of I restrict to a basis of X*(Af )o and are trivial on A;.
Choose any f € X*(A1)qg, and any o € I, and let w € Ny, (AT)(Q) be an element such

that w(a) = —a. Since w € My, we have w(8) = B. Therefore,
(o, B) = (w(a), w(B)) = (—a, B) = — (&, B) =0,
which proves the claim. O

2.9 Quasi-fundamental weights
Consider the situation described in Sect. 2.8. A set of quasi-fundamental weights in X*(A)q
is a set of elements x,, one for each @ € A, such that

(Xa» B) = do - S forall o, B € A,

where d, € Q¢ for all « € A. We use the prefix quasi- to emphasise that we place no
(further) restrictions on the d,, .

Lemma 2.5 Let {xq}aca denote a set of quasi-fundamental weights in X*(A)qg. Then, as a
linear combination of the a« € A, each xq has positive coefficients.

Proof The coefficients in question are, up to scaling, simply those of the inverse of the so-
called Cartan matrix, which always has positive coefficients (see, for example, [23, Section
2.1]). O

Lemma2.6 Let {xq}aca denote a set of quasi-fundamental weights in X*(A)q. Then the
restrictions of the xq for o € I constitute a set of quasi-fundamental weights in X*(A! Io)
with respect to the restriction of (-, -).

Proof Let«, B € I. Then

do - 8ap = (Xa» B) = (m1(Xa) + m2(xp), w1 (B)) = (1 (Xa), T1(B)),

where the second equality follows from the fact that 72 (8) = O for any B € I, and the third
equality follows from Lemma 2.4. O
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Finally, we make an observation.

Lemma2.7 Let B € A\ I. Then, as a linear combination of the Q-simple roots (), for
o € I, the restriction w1 (B) has non-positive coefficients.

Proof Recall the basic fact that the scalar product of any two distinct simple roots is non-
positive. Therefore, for any o € I,

(i (), m1(B)) = (. B)

is non-positive, where we use the fact that (o) = 0. Therefore, if we let {xq}qes denote
a set of quasi-fundamental weights in X*(A' )@, then 71 (B), as a linear combination of the
Xa» has non-positive coefficients. Hence, the result follows from Lemma 2.5. O

2.10 Groups of type H

We say that an algebraic group G is of type H if Rg is unipotent and the quotient of G
by Rg is an almost direct product of almost Q-simple algebraic groups whose underlying
real Lie groups are non-compact. In particular, an algebraic group of type H has no rational
characters.

2.11 Probability measures on homogeneous spaces

Let G denote an algebraic group and let I denote an arithmetic subgroup of G(Q) contained
in G. We will henceforth refer to such a group as arithmetic subgroup of Gg. If H is a
connected algebraic subgroup of G possessing no rational characters, then there is a unique
Haar measure on H such that its pushforward p to I'\G is a Borel probability measure on
I'\G. For g € G, we refer to the pushforward of x under the right-multiplication-by-g map
as the homogeneous probability measure on I'\G associated with H and g.

Remark 2.8 1t is clear that, for any y € I', the homogeneous probability measure on I'\G
associated with H and g is equal to the homogenous probability measure on I'\ G associated
with yHy ! and yg.

The following well-known fact summarises our heavy reliance on the fundamental results
of Ratner [15] and of Mozes and Shah [14].

Theorem 2.9 For eachn € N, let H,, be a connected algebraic subgroup of G of type H, let
gn € G and let u,, be the homogeneous probability measure on I'\G associated with H,, and
gn- Assume that ((,)neN converges to i € P(I'\G). Then w is the homogeneous probability
measure on I'\G associated with a connected algebraic subgroup H of G of type H and an
element g € G, and, furthermore, H,, is contained in H for all n large enough.

We give a brief summary of the arguments.

Proof of Theorem 2.9 By [7, Lemme 3.1], for every n € N, the subgroup of g, ! H, g, gener-
ated by the unipotent one-parameter subgroups of G contained in g, ' H, g, acts ergodically
on I'\G with respect to u,. By [14, Corollary 1.1], we conclude that the group generated
by the unipotent one-parameter subgroups of G contained in the invariance group of u acts
ergodically on I'\G with respect to w. By [15], the support of w is a closed orbit of its
invariance group. Therefore, the first claim follows from [7, Lemme 3.2]. The second claim
follows from [14, Theorem 1.1 (2)] and [7, Lemme 3.2]. ]
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1302 C.Daw et al.

3 Formulating the conjectures
3.1 The maximal Satake compactification

Let G be a semisimple algebraic group of adjoint type and let K be a maximal compact
subgroup of G. Denote by X the symmetric space G/K and let I' denote an arithmetic
subgroup of G(Q) contained in G. We let

=S
QX max = ]_[XP*
P

where P varies over the (rational) parabolic subgroups of G. We endow inax with the

topology defined in [2, III.11.2]. Then, by [2, Proposition III.11.7], the action of Gg on X

extends to a continuous action on st and, by [2, Theorem III.11.9], the quotient

max
-5 )
T\X pax := M\ X

max”>

endowed with the quotient topology, is a compact Hausdorff space, inside of which I'\ X is

a dense open subset. We refer to I'\ X ., as the maximal Satake compactification of '\ X.
For any parabolic subgroup P of G, we will denote by I'p := I' N P. Then, if C is any

set of representatives for the (rational) parabolic subgroups of G modulo I'-conjugation, the
maximal Satake compactification I"\ X iax

P varying over the members of C.

is equal to the disjoint union of the I'p\ X p, with

3.2 Main conjecture

Consider the situation described in Sect. 3.1. If H is a connected algebraic subgroup of G of

type H and g € G, the homogeneous probability measure on I'\ G associated with H and g
s
max

pushes forward to I'\ X ., under the natural maps

S
max*

NG - MNX —-nI\X
We refer to this probability measure as the homogeneous probability measure on I'\ X rSnax

associated with H and g. Similarly, if P is a parabolic subgroup of G, H is a subgroup of
S

P of type H and g € P, we can define the homogeneous probability measure on T'\X .

associated with P, H and g in precisely the same way via the natural maps

S
max*

FP\P - FP\XP - F\X

The following conjecture is a more precise version of Conjecture 1.1 in this setting, and
is the main statement that we will endeavour to prove in certain cases.

Conjecture 3.1 Foreachn € N, let H, be a connected algebraic subgroup of G of type H, let

gn € G and let p,, be the homogeneous probability measure on I'\ X .. associated with H,,

and g,,. Suppose that (u,),cn converges to alimit u € P(I'\ X ,Snax). Then w is homogeneous.

Furthermore, if 1 is associated with a parabolic subgroup P of G, a connected algebraic
subgroup H of P of type H and an element g € P, then H,, is contained in H for n large
enough.

max

@ Springer



Convergence of measures on compactifications. .. 1303

Now consider another maximal compact subgroup gKg~! of G, for some g € G (recall
that they are all of this form). It is straightforward to verify that we obtain a homeomorphism
between the maximal Satake compactifications of I'\ X corresponding to K and gKg~!. In
particular, Conjecture 3.1 is equivalent to the same statement in which K is replaced with
gKg~ ! and the g, are replaced with g, g~ '
Similarly, for a fixed ¢ € G, we obtain a homeomorphism

S
max

< _ =)
T\OXmax = (€T O\ X ax

of compactifications induced by the homeomorphism x — cx on QYISMX (recall that the

action is continuous). It follows that Conjecture 3.1 is equivalent to the same statement in
which we replace I" with cCe™ !, and we replace the H,, with c¢H,,c~! and the gn with cgy,.

Nontheless, despite the aformentioned observations, we are unable to provide an argument
that Conjecture 3.1 is independent of the choice of I". Of course, Conjecture 3.1 for I
immediately implies Conjecture 3.1 for any arithmetic subgroup containing I". However,
it is not clear that Conjecture 3.1 for I" implies Conjecture 3.1 for an arithmetic subgroup
contained in I'. Largely speaking, our arguments do not rely on the specific choice of T,
though we do make use of the fact that I' = SL3(Z) in Sect. 8, for example.

3.3 Baily-Borel compactification

Let (G, X) denote a Shimura datum, where G is a semisimple algebraic group of adjoint
type, and let X denote a connected component of X. Let K be a maximal compact subgroup
of G and identify X with G/K. Let I" denote an arithmetic subgroup of G.

Via the Harish—-Chandra realization, we consider X as a bounded domain in CV for
some N € N, and we let X denote the closure of X therein. Then, as in [1, Section 1.5], X
decomposes into a disjoint union of boundary components and we let X* denote the union of
the rational boundary components, as defined in [1, Sect. 3.5]. By [1, Sect. 1.4], the action
of G on X extends to a continuous action of G on X and, by [1, Section 4.8], this restricts to
an action of Gg on X*.

We equip X* with the Sarake ropology, described in [1, Theorem 4.9]. For this topology,
the action of G is continuous and, by [1, Corollary 4.11], the quotient

mx’? .= r\x*

endowed with the quotient topology, is a compact Hausdorff space, inside of which I'\ X is

a dense open subset. In fact, the main result of [1] is that '\ X e possesses the structure of
a complex projective variety. We refer to it as the Baily—Borel compactification of '\ X. In

this case, '\ X  is the disjoint union of I'\ X and boundary components corresponding to
I'-conjugacy classes of maximal parabolic subgroups of G.

Note that, for any Shimura datum (G, X), if X is a connected component of X, then the
action of G on X factors through G, where G denotes the quotient of G by its centre.
Furthermore, by [13, Proposition 3.2], the image in G*(Q) of an arithmetic subgroup of G(Q)
is an arithmetic subgroup. Therefore, any connected component of any Shimura variety is
accounted for in our description.
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3.4 Relationship between the compactifications

Consider the situation described in Sect. 3.3 and suppose temporarily that G is Q-simple. By

[1, Theorem 3.7],
x*=]Jew.
P

where P varies over the maximal parabolic subgroups of G and G itself, and e(P) is the
unique rational boundary component normalized by P.

Let P be a maximal parabolic subgroup of G and let Py be a minimal parabolic subgroup
of G contained in P. Let A be a maximal split subtorus of G contained in Py. Therefore, P
is equal to P; for a unique subset / € A := A(Py, A).

Fix the canonical numbering

A:{Oll,...,O[S},
asin [1, Section 2.8], and, forb =0, 1,...,5s — 1, let
o) :={apt1, .., o}

For b = s, let 6(b) denote the empty set. By [2, II1.4.2], if & € A is the unique element not
in J, we may identify e(P) with the boundary symmetric space X g, where Q := Py(;). As
in, [2, Proposition 1.11.3], this does not depend on the choice of Py or A.

Now let P be any parabolic subgroup of G, and choose Py, A and A in the manner above.
That is, P = P for a unique subset J/ C A (though, we have chosen a new A, of course).
Weletb =0, 1,...,s be the smallest index such that / := 6(b) is contained in J, and we
let I’ denote J \ 1.

If b = 0, then P is equal to G. Therefore, assume that b > 0. As in [2, Proposition I.11.3],

Xp=Xp xXp,

and this splitting is independent of our choices for Py and A. Note that X p, is also the
boundary component e(P,,) of X* corresponding to the maximal parabolic subgroup Py, .
In particular, varying over the proper parabolic subgroups P of G, the projection maps

X p — X Py
extend the identity map on X to a surjective I"-equivariant map from

X = X
that is also continuous by Proposition 3.2 below. More generally, when G is semisimple of

adjoint type, X is equal to a product X| x --- x X, of irreducible factors corresponding

to the Q-simple factors of G. The partial compactifications QYISnax and X* of X are then
the products of the partial compactifications of the irreducible factors and we obtain a map

between them by taking the product of the maps defined above.

S

max 0 X* defined above is con-

Proposition 3.2 The surjective I"-equivariant map from QY
tinuous. Therefore, we obtain a continuous surjective map

nx. T\’

max

Proof See [2, Proposition II1.15.2] and [2, Proposition II1.15.4]. ]
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3.5 Conjecture for Baily-Borel compactification

Consider the situation described in Sect. 3.3. If G = G X - - - X G, denotes the decomposition
of G into its Q-simple factors, we say that a parabolic subgroup P of G is of type BB if it
is equal to a product of parabolic subgroups P; of G; such that P; is either maximal or G;
itself.

As before, if H is a connected algebraic subgroup of G of type H and g € G, the homo-

geneous probability measure on I'\G associated with H and g pushes forward to I'\ X Be
under the natural maps

NG — MNx - nx "

We refer to this probability measure as the homogeneous probability measure on I'\ X BB
associated with H and g. Similarly, if P is a parabolic subgroup of G of type BB, H is a
subgroup of P of type H and g € P, we can define the homogeneous probability measure on

\X  associated with P, H and g in precisely the same way via the natural maps
——<BB
FP\P — Fpl \Xp[ — F\X

for some set / as constructed in Sect. 3.4.
The following conjecture is a more precise version of Conjecture 1.1 in this setting.

Conjecture 3.3 Foreachn € N, let H,, be a connected algebraic subgroup of G of type H, let

gn € G and let u, be the homogeneous probability measure on I'\ X BE associated with H,,

and g,. Suppose that (i, ), N converges to a limit u € P(WBB). Then p is homogeneous.

Furthermore, if i is associated with a parabolic subgroup P of G of type B B, a connected
algebraic subgroup H of P of type H and an element g € P, then H,, is contained in H for
n large enough.

Finally, we show that Conjecture 3.1 implies Conjecture 3.3.

Theorem 3.4 Consider the situation described in Conjecture 3.3. If the conclusion of Con-
S
max

Jjecture 3.1 holds (that is, for the homogeneous probability measures on '\ X .., associated

with the H,, and g, ), then the conclusion of Conjecture 3.3 holds.

S

max associated with H,,

Proof Let o, denote the homogeneous probability measure on I"\ X
and g,. By Proposition 3.2, there exists a continuous surjective map

S
max

X ST,

S
max

which is the quotient of the map g X,,,, — X* described in Sect. 3.4. Since 7 is the identity

map on '\ X, the homogeneous probability measure j, on I'\ X e associated with H,, and
gn is equal to m,0,.
Therefore, suppose that there exists a parabolic subgroup P of G, a connected algebraic

subgroup H of P of type H and an element g € P such that some subsequence of (0,,),eN

e =S . .
converges to the homogeneous probability measure o on I'\ X . associated with P, H and

g. Extract such a subsequence and suppose that H,, is contained in H for n large enough. We
conclude that (i,,),eN converges to .o .
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As in Sect. 3.4, for each i € {1, ...r}, there exists a maximal split torus A; of G;, a set
A; of Q-simple roots of G; with respect to A; with the canonical numbering

A ={oj1, ..., i),

and subsets I; = {o; p;, ..., 5} € Ji € A; such that P is the product of the P, and the
map @Yiax — X™ is the product of the natural projections
X P, = X P
If I; is not equal to A;, we let P; := Py, , . Otherwise, we let P; := G;. We let Q denote

the product of the P;, which is a parabolic sﬁbgroup of G of type BB. Then, as a boundary
component in X*, the product of the X P, is equal to e(Q). Since P is contained in Q, we

see that .o is the homogeneous probability measure on I'\ X bE associated with P, H and
g. The result follows. O

Remark 3.5 If I\ X f is another (well-defined) Satake compactification of I"\ X, then, by [2,
Proposition II1.15.2], there is a continuous surjection

MXo. — X,

max

and the proof of Theorem 3.4 generalises to '\ X f . We direct the reader to [2, 1.4.39] for the
construction.

4 The criterion for convergence in N'\G
4.1 The dp  functions

Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Let
P be a proper parabolic subgroup of G and let np denote the dimension of np. Consider the
np-th exterior product

Vp = A"Pg

of g and let Lp denote the one-dimensional subspace given by A"Pnp. Then Vp is a linear
representation of G and, since P normalizes Np, Lp is a linear representation of P. That is,
P acts on Lp via a character xp. Clearly,

Ky = D Nac, ©)

aed(P,Ap)
where n,, is the dimension of the corresponding root space in g.
Lemma 4.1 Let A be a set of simple Q-roots of G with respect to A. For each o € A, let xy
denote the restriction of xp, to A. Then the xo constitute a set of quasi-fundamental weights
in X*(A)qQ.
Proof Leta € A. By Lemma 2.4, we obtain a decomposition

X*(A)g = X*(A%)g ® X" (Ay)g
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that is orthogonal with respect to (-, -). Therefore,
Kar» @) = (M2 (Xa), m2(@)) = (dam2(@), M2(0)) = dg - (m2(@0), T2 (),

for some d, € Q-¢, where the first equality follows from the fact that 71 (xy) = O (since
A“ is contained in the kernel of the character x, ), and the second equality follows from the
fact that y, is a sum of positive roots and X*(Ay)q is one-dimensional. On the other hand,
if 8 # «, then

(Xas B) = (m2(Xa), 71(B)) = 0,

where we use the fact that 75 (8) = 0. m]

Fix a K-invariant norm || - |[p on Vp @ R and let vp € Lp ®q R be such that ||vp|lp = 1.
We obtain a function dp g on G defined by

dp k(g) = llg - vpllp.
Note that, for any g € G, we can write g = kp, where k € K and p € P. Therefore,
dp k(g) = llg - vplle = lIp - vpllp = xp(p) - llvpllp = xp(p)

(note that xp is necessarily positive on the connected component P). In particular, dp x is
a function on G of type (P, xp), as defined in [3, Section 14.1]. Furthermore, it does not
depend on the choices of || - ||[p and vp. The following lemma will allow us to relate the
behaviour of the o € ®(P, Ap) with the behaviour of dp k.

Lemma4.2 Let g € G. Then

dp k(e = [] «tapxie)™

aed (P, Ap)
Proof First we decompose
g = nmak € NpMpApK,

where, by definition, a = ap g (g). Therefore, since dp g is left K-invariant and trivial on
Hp (because Hp has no rational characters),

dp k(g™ =dp k(@) = xp(@)".
Therefore, the result follows from (3). m]

Now let I" be an arithmetic subgroup of G . The following property of dp g was observed
in [8, Lemma 2.4].

Lemmad4.3 Let f € G(Q) and let g € G. Then there exists a constant ¢ > 0 such that
dp.x(gyf) =cforally €T.

Proof Let § > 0. Then, by [8, Lemma 2.4], the set
Fs:={y el :dpk(gyf) <3}

is finite. If ['s is empty, we are done. Otherwise, let

c:=min{dp k (gy f) : v € I's}.

Since ¢ > 0, the proof is complete. O
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4.2 The criterion

Let G be a connected algebraic group with no rational characters and let L be a Levi subgroup
of G. Then G is the semidirect product of L. and N := Ng. We denote by 7 the natural
(surjective) morphism from G to L.

Let Py be a minimal parabolic subgroup of L and let A be a maximal split subtorus of L
contained in Py. Let K denote a maximal compact subgroup of L such that A is invariant
under the Cartan involution of G associated with K. For any proper parabolic subgroup P of
L, we obtain a function dp_x on L, as defined in Sect. 4.1, and, foreach o € A := A(Py, A),
we write dy, 1= dp, k-

Let I" be an arithmetic subgroup of G and let I'y, := 7 (I"). By [13, Proposition 3.2], 'y,
is an arithmetic subgroup of L(Q). By [3, Théoreme 13.1], there exists a finite subset F of
Lg and at > 0 such that

L=KAwoF Ty,
where w is a compact subset of Hp, and
Ay :={a€e A:a(a) <tforalla € A}.
Definition 4.4 We refer to a set F as above as a I"-set for L.

Fix a I'-set F for L and let o denote the Lebesgue measure on R. We will require the
following result due to Dani and Margulis.

Theorem 4.5 (Cf. [8, Theorem 2]) For any € > 0 and 0 > 0, there exists a compact subset
C := C(e,0) of UL\ L such that, for every unipotent one-parameter subgroup {u(t)};cr of
L and everyl € L, either

ot el0,T1: Tl un™ " eCh) =1 -T
foralllarge T € R, or there exists « € A and A € 'L F such that dy(I)) < 6 and
I u)l € AP ™!
forallt € R.

Proof Inthe case that L is semisimple, [8, Theorem 2] states that there exists a compact subset
C := C(e,0) of L/T' such that, for every unipotent one-parameter subgroup {u(¢)};cr of
L and every [ € L, either

o({tel0,T]:u@)iTpeCh>(1—-e)T
for all large T € R, or there exists « € A and A € I'p F such that d, (I1) < 6 and
17 u(n)l € AP ™!
for all t € R. We have a natural homeomorphism
¢:L/Tp - T\L

defined by [Ty, + T'zI7!, and u(t)IT; € C if and only if Tzl 'u(t)~! € ¢(C). This
concludes the proof in the case that L is semisimple.

Now consider the semisimple group L4, that is, the quotient of L by its centre Z, which
is a torus. We let ad denote the natural surjective morphism from L to L. Since every
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parabolic subgroup of L contains Z, ad induces a bijection between parabolic subgroups
of L and L. In particular, Pgd := ad(Pp) is a minimal parabolic subgroup of L2 and
A2 .= ad(A) is a maximal split subtorus of L2 contained in Pgd. In particular, for each
elementa € AY := A(Pgd, A, we obtain a maximal parabolic subgroup P,, of L2 and a
character x, on Py. The restriction of ad to A yields an embedding

ad* : X*(A*) > X*(A)
and, since the action of A on np, (which we may identify with nPgd), factors through A,

we have A = ad*(A2). It follows that, for anya € Aandany o € A,
Xad*(@) (@) = xa(ad(a)).
Now let/ € L and let ad*(«) € A, for some o« € A%, Writing
I = kamn € K Auq* (o) Mag* (o) Nad* (@) “4)
we have
dad* (@) (1) = Xad*(@) (@) = xa(ad(a)) = dqy(ad(1)), )

where the last equality comes from applying ad to (4).

By [13, Proposition 5.1], the induced maps from L to L4 and from A to A% are surjective.
In particular, K* := ad(K) is a maximal compact subgroup of L. By [13, Proposition
3.2], ad(I"y) is an arithmetic subgroup of L%‘. It follows that

LY = ad(L) = K™ AMad(w)ad(F) 'ad(I'y).

That is, ad(F) is a ad(I'z )-set for L2, Therefore, fix € > 0 and 6 > 0, and let C denote the
compact subset of ad(I"; )\ L2 afforded to us by Theorem 4.5. We claim that the preimage
C of C* under the natural map

I \L — ad(I'z)\L*

is compact. This is because the fibre above each point is isomorphicto I'y NZ(L)\ Z(L); since
G was assumed to have no rational characters, neither does Z(L), and so 'y N Z(L)\Z(L)
is compact, by [13, Theorem 3.3].

Let {u(¢)};cr be a unipotent one-parameter subgroup of L. Then {ad(u(¢))};cRr is a unipo-
tent one-parameter subgroup of L. Let [ € L such that

o{rel0, T1: Tl lu) ' eCh) <1 —e€)- T
for arbitrarily large 7 € R. Then
o({t €[0,T]:ad(Tad() 'adw@) ' e C¥) < (1 —€)- T

for arbitrarily large T € R. Therefore, by Theorem 4.5, there exists « € A% and ad(A) €
ad(I'z)ad(F) such that d,(ad(/)ad(X)) < 6 and

ad() " 'ad(u(¢))ad(l) € ad(r)Pyad(r)~!
for all # € R. Therefore, the result follows from (5). O

For any connected algebraic subgroup H of G and any g € G, we define

Sk.a.r(H, g) :=inf{dy(m(g)"'A) i A e TLF, « € A, HC NAP,A ™'}
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(where we take the value to be oo if the infimum is varying over the empty set). By Lemma
4.3, we have g A r(H, g) > 0. Our criterion is the following.

Theorem 4.6 Foreachn € N, let H,, be a connected algebraic subgroup of G of type H, let
gn € G and let ., be the homogeneous probability measure on I'\G associated with H,, and
8n. Assume that

liminf 6x A r(Hp, g1) > 0.
n—oo
Then the set {jin}neN is sequentially compact in P(I'\G).

Proof By Prokhorov’s Theorem, it suffices to show that the set of measures {u, },en is tight
on I'\G. That is, for every € > 0, there exists a compact subset C of '\ G such that

mn(C)>1—¢, foralln € N.

By abuse of notation, denote also by  the natural surjection from I'\ G to I'; \ L and suppose
that the set {mm,(u,)}nen of pushforward mesures is tight on I'z\ L. By definition, for any
€ > 0, there exists a compact set Cy, of I'7\ L such that

T (n)(Cr) > 1 —¢€, foralln € N.

Since arithmetic quotients of unipotent algebraic groups are compact, it follows, as before,
that 7 ~1(Cp) is compact. Since

(TN (CL)) = mu(1a)(CL) > 1 — €, foralln € N,

we conclude that {u, },en is tight on '\ G.
Therefore, it suffices to show that {7, (1) }nen is tighton 'z \ L. To thatend, fix ane€ > 0.
For each n € N, we let L,, and /,, denote = (H,,) and 7 (g,), respectively, noting that
L, is a connected algebraic subgroup of L of type H. We let {u,(¢)};cr be a unipotent
one-parameter subgroup of /- UL, such that the trajectory {I’ lau, L(1)},er is uniformly
distributed in 'z \I'y L,[,,. That is, for any bounded continuous function f on I'z\L, we
have

T
lim o~ / f@ Ll (1)) dt = / f (). ©)
T Jo 7\L

T—o0

(The existence of such a subgroup is guaranteed by Birkhoff’s Ergodic Theorem.) For any
6 > 0, we are afforded, by Theorem 4.5, a compact set Cy := C(€/2, 0) of 't \ L such that,
for each n € N, either

o({t €0, T1: Tplyuy, ' (1) € Co}) = (1 — /)T, (7
for all large T € R, or there exists « € A and A € ' F such that d, (ln_l)\) < @ and
Lty (DI € APyAT!

for all t € R.
If (7) holds, for n € N, it follows immediately from (6) that

k() (Co) = 1 — €.

Otherwise, we conclude that there exist &, € A and A, € ' F such that d, (I, ) <o
and

Littn (DI € oy P 1y

@ Springer



Convergence of measures on compactifications. .. 1311

for all t+ € R. Since P, is defined over QQ, the subspace FL\FLA;IP%A,, is closed in
' \L and, since FL\{FLlnu;l(t)ln_l}teR is dense in I'y\I'y L,,, we conclude that '\I"'L,
is contained in 'z \I" LA;1 Py, An. This implies that the Lie algebra of L, is contained in the
Lie algebra of k;lPan A, and, therefore, L, is contained in l;l P, An itself. In particular, H,
is contained in NA,, Py, A, and

Sk.a,F(Hy, g1) < 0.

Therefore, for each k € N, let 6, > 0 such that 6y — 0 as k — oo. Let Cx := Cg,. As
explained above, either

T () (Ci) = 1 — €,

for all n € N, and we conclude that {7, (14,)}nen is tight on 'y \ L, or there exists ny € N
such that

Ok, a,F My, gny) < Ok.

However, the latter contradicts the assumption of the theorem, hence, the proof is complete.
O

==
5 The criterion for convergence in N\ X .

Let G denote a semisimple algebraic group of adjoint type and let K denote a maximal com-
pact subgroup of G. Let X denote the symmetric space G/K and let I denote an arithmetic
subgroup of Gg. Our criterion is as follows.

Theorem 5.1 For each n € N, let H,, denote a connected algebraic subgroup of G of type
H, let g, denote an element of G and let |, denote the homogeneous probability measure

=5 . .
on '\ X .. associated with H,, and g,,.
Suppose that there exists a parabolic subgroup P of G such that,

(i) foralln € N, H,, is contained in Hp,
(i) we can write

8n = hpank, € HpApK,
such that
a(ay) — 00, asn — 00, foralla € ®(P, Ap),

and,
(iii) if we denote by v, the homogeneous probability measure on I g, \ Hp associated with
H,, and h,, then (v;)nen converges to v € P(I" gy, \ Hp).

Then there exists a connected algebraic subgroup H of P of type H and an element g € P

such that (1) nen converges to the homogeneous probability measure on '\ X . associated

with P, H and g, and, furthermore, H,, is contained in H for n large enough.
Proof Consider the natural maps

S =9

7 :I\G — I'\Xx and 7p : Tp\P — I'p\Xp — '\ X .«
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as in Sect. 3.2. The measure p, is equal to 74 (¢4 (v,) - a, ), where ¢ denotes the natural inclu-
sion of 'y, \ Hp in I'\G. Furthermore, by Theorem 2.9, there exists a connected algebraic
subgroup H of P of type H and an element g € P such that v is the homogeneous probability
measure on I' g, \ Hp associated with H and g, and Hj, is contained in H for n large enough.
Therefore, it suffices to show that the sequence (i, ),y converges to the pushforward mp, (v).

To that end, let f be a continuous function on I"'\ X

because F\iXiax is compact). Fix an € > 0 and let C be a compact subset of I"z;, \ Hp such
that v,(C) > 1 — ¢, forall n € N, and v(C) > 1 — € as well. Finally, let ¢ and y be
two bounded non-negative continuous functions on Iy, \ Hp such that ¢ 4+ = 1, the set
supp(¢) is compact, and the set supp(y) is contained in the complement of C.

We are interested in

/WS fdm((Levy) - ay) = / fomdi(vy) - ay

I'\T Hpay

max (Which is automatically bounded

max

:/ forrorandL*(vn):/ fomorg otdy,,
I\I Hp

Lhp \Hp

where r,, denotes the homeomorphism of I"'\G given by multiplication by a, on the right.
We write the last integral as the sum

/ (forrora”ot)qﬁdv,,—i—f (fomorg, o)y dvy,
Chp \Hp

U hp \Hp

which, by assumption, is equal to
[ (fomory, o) dv, + O(e).
I'mp \Hp

It follows immediately from [2, III.11.2] that, for any & € Hp,
7(ra, (T aph))) — 7p(IEph)
uniformly on compact sets, as n — oo. Therefore, as functions on I' g, \ Hp, we see that
fomory, ot — fomp

uniformly, as n — oo, for all 'y, h € C. In particular,
[ Gemerevpdn=[ (fomnpdn+ o,
Chp \ Hp Cyp \ Hp

for sufficiently large n.
We have

/ (f omp)¢ dvy =/ (f omp)p dv+ Of(e),
I'mp \Hp

[ hp \ Hp

for sufficiently large n, whereas,

f (f omp)¢ dv 2/ (f omp) dv+ O(e),
Ip \ Hp

Chp \Hp

by the definition of C. Therefore, since
/ (fomp)dv = /‘75 [ dape(v),
T hp \Hp T\X
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the result follows from the fact that € > 0 can be chosen arbitrarily. O

6 Groups of Q-rank 0

Having established our criteria for convergence, we now move on to proving various cases
of Conjecture 3.1.

Theorem 6.1 Conjecture 3.1 holds when G has Q-rank O (that is, G is Q-anisotropic).

Proof In this case, G has only one rational parabolic subgroup, namely, G itself. Therefore,
by Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous prob-
ability measures on I'\G associated with the H,, and the g, is convergent in P(I'\G). By
Theorem 2.9, the limit measure is the homogeneous probability measure on I'\ G associated
with a connected algebraic subgroup H of G of type H and an element g € G, and, further-
more, H,, is contained in H for all n large enough. We pushforward all measures to I'\ X and
the theorem follows. O

7 Groups of Q-rank 1

Theorem 7.1 Conjecture 3.1 holds when G has Q-rank 1.

Proof Consider the situation described in Sect. 3.2 and suppose that G has Q-rank 1. Let A
be a maximal split subtorus of G (so the dimension of A is equal to 1) and let P denote a
minimal parabolic subgroup of G containing A. The set A := A(P, A) contains only one
element, which we denote «. After possibly replacing K, we can and do assume that A is
invariant under the Cartan involution of G associated with K.

Let F denote a I'-set for G. Then, in the notation of Sect. 4.2, we obtain, for eachn € N,
a positive real number 6 A, r(Hy,, g,). Suppose that

liminf 6x A r(Hpy, g1) > 0. 8)
n—0oo

By Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous
probability measures on I'\ G associated with the H,, and the g, is convergent in P(I"'\G),
in which case the proof concludes as in the proof of Theorem 6.1.

Therefore, suppose that (8) does not hold. Since G has Q-rank 1, every proper parabolic
subgroup of G is minimal. Since the minimal parabolic subgroups of G belong to a single
G(Q)-conjugacy class, it follows from [3, Proposition 15.6] that every maximal parabolic
subgroup of G is conjugate to P by an element of I F. Therefore, by Lemma 4.2, we can and
do extract a subsequence such that, for every n € N, there exists A, € I'F such that H,, is
contained in A,PA; ! and, if

Ailgn = hyayk, € HpApK,
then,
a(ay,) — 00, asn — oo.
Furthermore, after possibly extracting a subsequence, we can and do assume that A, = yj,c,

where y, € T, and ¢ € F is fixed. Therefore, we can and do replace H,, with A, 'H, 2, and
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gn With A l'¢, and relabel them H,, and g,, respectively. In particular, H,, is contained in P
and

8n = hnankn € HpApK.

Since Mp is Q-anisotropic, it contains no proper parabolics, and we conclude as in the
proof of Theorem 6.1 that, after possibly extracting a subsequence, the sequence of homo-
geneous probability measures on I'g, \ Hp associated with the H,, and the h,, is convergent
in P(I" g \ Hp). Therefore, the theorem follows from Theorem 5.1. O

We remark that, when G has Q-rank 1, every proper parabolic subgroup P is minimal (and

maximal). In particular, Hp is anisotropic over Q. It can happen, then, that Mp is compact

for all such P and that the boundary components of I'\ X ,Snax (except for I'\ X) are points. In

which case, Theorem 7.1 generalises [14, Corollary 1.3], from a one-point-compactification
to a finitely-many-points-compactification.

Unfortunately, it does not seem possible to generalise the above approach to the general
case by way of induction. The argument breaks down at the second stage as one moves to a
non-maximal parabolic subgroup. This is in some sense because of Lemma 2.7. We proceed
to the case G = SL3, in part to explain this problem more explicitly.

8 The case of SL3

Unable to go beyond the rank 1 case in full generality, we consider the specific case of
G = SLj. Already in this case, one can appreciate the complexity of the general problem,
and the obstructions to performing an inductive argument.

Theorem 8.1 Conjecture 3.1 holds when G = SL3, K = SO(3), and I' = SL3(Z).

Proof Let A := {ug, as} be the set of simple Q-roots of G with respect to the maximal
diagonal torus A, where « is defined by

diag(x, y, (xy)~") > xy ™,
and a is defined by
diag(x, y, (xy)*l) = y(xy) = xyz'

By [3, Section 1.10], it suffices in this case to take F := {1}.
Suppose that

liminf 8x A r(H,, g») > 0. ©9)
n—0o0

Then, by Theorem 4.6, the set of measures corresponding to our sequence is sequentially
compact in P(I"\G) and our claim follows with P = G from Theorem 2.9.

Therefore, suppose that (9) does not hold. By Lemma 4.2, we can and do extract a subse-
quence such that, for some o € A, and for every n € N, there exists y,, € I" such that H,, is
contained in y, P, yn’l and, if we write

y,[lg,, = hpank, € HyAx K,
then

a(a,) — o0, asn — o0.
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Therefore, we replace H,, with y,len ¥, and g, with yn’lgn and relabel them H,, and g,,,
respectively. That is, H,, is contained in H, and

gn = hpank, € HyAyK.
By the symmetry of our arguments, we can and do assume that « = ;. That is,
az(a,) — 00, asn — oo.

The elements of M, = SL, have the form

* x 0
* % 0
001
and the restriction of 8 := «) to M, yields a set of Q-simple roots with respect to the

maximal torus A% of M. We let K, := M, N K = SO(2) and, again, we can and do choose
F, = {1}. If

liminf 8k, (5.5, (Hy. hy) > 0, (10)
n—oo

then, by Theorem 4.6, the conditions of Theorem 5.1 are satisfied with P = P, and the result
follows.

Therefore, suppose that (10) does not hold. We can and do extract a subsequence such
that, for every n € N, there exists ¥, € My (Z) such that H, is contained in the parabolic
subgroup Ny v, P yn’l of Hy, where P denotes the standard minimal parabolic subgroup of
M, whose elements are of the form

S ¥
S ¥ ¥
- o O

and, if we write
Vo 'hn = subuly € NoHY - A% - Kq,
where H%‘ = Hp%t, then
B(by) — 00, asn — oo.

Therefore, we replace H,, with )/n_lH,, ¥ and g, with )/n_1 gn and relabel them H,, and g,,
respectively. That is, H,, is contained in Ny = NO,H%‘ and

&n = Sn - bpay - lyky € Hy - Ay - K,
where
B(b,) — oo and a(a,) — oo, asn — oo.
However (and herein lies the problem), whereas
B(bpa,) — 00, asn — 00
(because B(a,) = 1, for all n € N), the behaviour of a(b,,a;) is not clear, because

a(by) = B(by)"V? > 0, asn — .
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Recall that, by Lemma 2.7, the exponent here is necessarily non-positive. Of course, if
a(bpa,) — 00, asn — 00,

then the result follows from Theorem 5.1, with P = Py, where we use the fact that, since Ny
is unipotent, the space Ny (Z)\ Ny is compact. Therefore, we can and do suppose that

a(bya,) — ¢ € 10,00), asn — oo.

It is sufficient, as we do, to restrict to the following cases.
Case 1: Suppose that, for all n € N, Hj, is not contained in Ng.
‘We know that H,, is contained in

Hp = NgMg,
for all n € N, and so, by assumption, the projection of H, to Mg is N(f = Nps, where Pg
[}
denotes the standard minimal parabolic of Mg, whose elements are of the form
100
0 % =%
0 0 %

The Bruhat decomposition of Mg (see [3, 11.4 (ii)]) yields the decomposition
Mg (Q) = P} (Q) UP,(@Q1P} (Q),
where the union is disjoint and
10 0
n:=10 0 —1
01 0

represents the non-trivial element of the Weyl group. Therefore, since, by Corollary 2.2, the
normaliser of Ng in Mg is Pg and, by Lemma 2.1, the normaliser of Pg is Pg itself, we
deduce that the projection of H,, to Mg is only contained in one parabolic subgroup of Mg

(namely, Pg ).
We can write

buan = Buay € AP Ag.
In particular,
a(Bn) = a(Buan) = a(bpa,) — ¢, asn — oo,

where we use the fact that o, € Ag. Therefore, if we put Kg := Mg N K and Fg = {1},
then, by the previous discussion,
liminf Sk, (o), £ (Ha, $nBn) = nli)néoa(ﬂn)_l =c'>0.

n—o0o

Hence, by Theorem 4.6, the set of probability measures on Hg(Z)\ Hg associated with the
H,, and s, 8, is sequentially compact. Furthermore, we claim that

B(a,) — 00, asn — oo.
To see this, write

b, = diag(y,, y, ', 1) and a, = diag(x,, x,. x;, >),
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so that
yp — o0 and x,, — 00, asn — o0.
Therefore, if
By = diag(1l, wy, w;l) and o, = diag(z;Z, Zns Zn),
we have z;; 2 = y,x,, which yields
Blan) = 2,° = (Yuxn)*/* — 00, asn — <. (11)

Therefore, after possibly extracting a subsequence, the result follows in this case from The-
orem 5.1, with P = Pg.

Case 2: Suppose that, for all n € N, H,, is contained in Ng.
Case 2.1: Suppose that ¢ € (0, 00).

After possibly extracting a subsequence, the sequence of measures on Hg(Z)\ Hg associ-
ated with the H, and s, 8, converges and the result follows in this case, with P = Pg, from
Theorem 5.1, and the fact demonstrated above that

B(oy) — 00, asn — oo.

Case 2.2: Suppose that ¢ = 0.
Case 2.2.1: Suppose that, foralln € N, 5, € Ng.

Foralln e N,
nH,n~' S Ng C Ny = Hy
and
nsnrfl € Ng C Ny = Hy.
Furthermore,

a(nﬂnannil) = a(nﬂnnil)a(an) = a(ﬂn)il — 00, asn — o0,

and

B1Bnaan™ ") = 1(B) (Buctn) = (B + ) (Buttn) = yux,, — 00, asn — co.
S
max
&n 1s equal to the homogeneous probability measure on I'\ X . associated with nH,n~
and ng,,n‘l. Therefore, the result follows in this case, with P = Py, from Theorem 5.1.

associated with H,, and
1

Since n € I' N K, the homogeneous probability measure on I\ X

Case 2.2.2: Suppose that, foralln € N, 5, ¢ Ng.
By assumption,

1 % x
Sp = 01 I s
00 1
where f, € R\ {0}, and so
1 *
Snﬂn =10 w, t wn_l
0 0 w;!
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Therefore, by [3, Section 1.10], there exist y, € Mg(Z) and m, € Kg such that

1 % % 1 % %
VaSnBumn = | 0 1 uy, 0 v, O ,
00 1 0 0 vt

where u, € [0, 1] and v, >t :=2/+/3.

Case 2.2.2.1: Suppose that v,, remains bounded, as n — oo.
In this case, we can rewrite

F'Hygn =T - VanV,;] “VaSnButn - aty 'mrtllnkn

and the result follows, with P = Pg, from Theorem 5.1 since the set of measures on
Hg(Z)\ Hg associated with the y,,H,, yn_] and y,, s, Bnmy is sequentially compact and

B(oy) — 00, asn — oo.

Case 2.2.2.2: Suppose that v, — 00, as n — 00.
If we denote

1 0 0
¢, =10 v, O ,
0 0 vl

then

a(cpay) = ale,) — 00, asn — 00
and we can write

I'H, g, =TH, v, -crop -m;llnkn,
where v, € Ny and so the result depends on the behaviour of B(c, o).
Case 2.2.2.2.1: Suppose that

B(cha,) — 00, asn — 00.
In this case, the result follows, with P = Py, from Theorem 5.1.

Case 2.2.2.2.2: Suppose that B(c,o;,) converges to a limit d € (0, 00).
We can write

cnlty = dye, € Ay A%,
and so
B(en) = B(dnen) = B(cnotn) — d, asn — oo.

Therefore, after possibly extracting a subsequence, the result follows, with P = P, from
Theorem 5.1, since

I'Hygn =TH, -vyey, - dy -m;llnk,,

and the the set of measures on Hy, (Z)\ Hy associated with the H,, and v, e, is sequentially
compact, whereas, since d, is a bounded distance from c,,,,

a(d,) — oo, asn — o0.
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Case 2.2.2.2.3: Suppose that
B(chay) — 0, asn — oo.
Case 2.2.2.2.3.1: Suppose that, for all n € N, H,, is not contained in the unipotent group

whose elements are of the form

10
01
00

—_ O %

That is, as before, the projection of the H, to My is contained in only one parabolic
subgroup of M, namely, Pg, the standard minimal parabolic, whose elements are of the
form

* 0
0 0
001
Therefore, precisely as in Case 1, we deduce that the set of measures on H,, (Z)\ Hy, associated
with the H,, and v, e, is sequentially compact, and the result follows, with P = P, from

Theorem 5.1 since
a(d,) — oo, asn — o0.
Case 2.2.2.2.3.2: Suppose that, for all n € N, every element of H,, is of the form

1 0 %
010
001

In particular, H := H,, is fixed, and we write Hy for the fundamnetal domain of H whose

elements are of the form

10
01 , where u € [0, 1].
00

— O T

Since H is contained in the centre of Ny, we have
FHgn = 1_‘Ii()gn = Fvn(cnan) . (Cnan)_lHO(Cnan) : m;llnkrr
Also, after possibly extracting a subsequence, we can and do assume that the sequence of

points I'v,c, o, K converges to a point

S
max’

Fpxp e 'p\Xp CT\X
where P is a parabolic subgroup of G. We claim, then, that the sequence of measures on

= . . . . .
'\ X ,ax associated with H and the g,, converges to the Dirac measure associated with I'px p.

To see this, note that, by [2, Theorem III1.11.9], there exist y,, € I' such that
VnVnCnOy = (TTn, Pn, On, Unkn) € Np X Ap X exp a# X MpK

(where we are using the horospherical decomposition of G withrespectto P asin [2,111.11.2]),
where u,Kp — xp € Xp, and

a(p,) = 00, asn — oo, foralla € ®(P, Ap).
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On the other hand, since, by (11),
(B 4 a)(chtty) = V52, — 00, asn — 00,

every sequence (6,),eN, With 6, € (c,a,) “LHy(cpon) converges to the identity. In particular,
the sequence (x,6, Kn_1 )neN also converges to the identity so, if we write

-1
KnOnkey = (T, P> Oy 1),
then the individual components must each converge to the identity. Therefore,
-1
Vn VnCn@pth K = 15 pnon//vnKnenlcn K = ”zanOnMnﬂy/,P,/lO;lM;, K,

which we can write as

4

(T, Pnpys 0n0ys tnitn K),

where p, 1, K — xp € Xp, and
a(pnp,) — 00, asn — oo, foralla € ®(P, Ap).

In particular, by [2, [II.11.2], any sequence (I'x;),en, With x,, € Hg, K, convergesto I'pxp,
from which the claim follows. m]

9 A product of modular curves

Next, we digress to prove a far simpler case, but one for which there is a Baily-Borel com-
pactification.
First, we prove a simple lemma.

Lemma 9.1 Let H denote a connected algebraic subgroup of SLy of type H. Then H is either
trivial, SL; itself, or yNy ™!, for some y € SLy(Z), where N denotes the unipotent radical
of the Borel subgroup B of SL) consisting of upper triangular matrices.

Proof If H is semisimple, then H = SL,. If N is non-trivial and not semisimple, then Ng is
non-trivial. Furthermore, since Nj is unipotent, it is contained in some parabolic subgroup
of SL,. Hence, Ny is the unipotent radical of a Borel subgroup. Since every Borel subgroup
of SL; is of the form yBy’l, for some y € SL;(Z), we deduce that Ng = yNy’l, for
some y € SL,(Z). Furthermore, by definition, H is contained in the normaliser of Ny, which
is yBy~!. That is, H is contained in yBy ! = NgyDy !, where D denotes the diagonal
torus. Since H is of type H, we conclude that H = Ny = yNy . O

Theorem 9.2 Let r € N. Conjecture 3.1 holds when G = SL, K = SOQ2)", and ' =
SL>(Z)".

Proof Foreachi € I :={1,...,r},letw; : G — SL; denote the projection of G on to its
i factor. After possibly extracting a subsequence, we obtain a partition I° U I* U I' of I
into three disjoint subsets, where

e i € I’ if and only if, for all » € N, ; (H,) = SL;,
e i € ["ifand only if, foralln € N, 7; (H,) = yi,,,Nyifnl, for some y; , € SL2(Z), and
e i € I'ifand only if, forall n € N, 7; (H,,) = {1}.
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Foreachn € N, welet y;,, € SL2(Z)" be the element whose ith entry is equal to y; , ifi € I
and is trivial otherwise. We replace H,, with yn_lHn ¥n and g, with yn_l gn and relabel them
H,, and g,, respectively. That is, the assertions above on the 7; (H,) now hold with y; , = 1
foralli € I* and alln € N.

Let D denote the diagonal torus of SL,. Then A := D" is a maximal split torus of G
such that A is invariant under the Cartan involution of G associated with K. Furthermore,
Py := B’ is a minimal parabolic subgroup of G (indeed, it is a Borel subgroup) that contains
A.

We let A := APy, A), which can naturally be indexed by /. In particular, for eachi € I,
we obtain a maximal standard parabolic P; of G by replacing the i factor of G with a copy
of B. This exhausts the maximal standard parabolic subgroups.

For each i € I, we obtain a function d; := dp, g on G. As before, F := {1} is a I'-set
for G. Note that the maximal parabolic subgroups of G that contain the H,, are those P; for
i € I' and those yP;y~! fori € I' and any y € I'.

After possibly extracting a subsequence, we can define a partition 7} U I” of /" into two
disjoint subsets, where

e i €[ if and only if
inf{d; (g, 'y) : ¥ € SLa(Z)"} — 0, asn — oo, and
e i € I' if and only if
inf{d; (g, 'y) : v € SLa(Z)"} — ¢; € (0,00), asn — 0.
Similarly, we can define a partition /% U I of I* into two disjoint subsets, where

e i €' ifandonlyifd;(g,') — 0, asn — 0o, and
e i e I"ifand only if d;(g; ') — ¢; € (0, ], asn — oo.

In particular, by Lemma 4.2, after possibly replacing H,, with )/n‘l H, y, and g, with y, e,
for some y, € I" (with trivial entries outside of the factors in / jr), and relabelling them H,,
and g,, respectively, we can write g, = (gi,n)!_;, Where g; , € SLo(R), such that

8in = Mi,nai,nki,n € N-D-S0(2)
and
¢(a; ) — 00, asn — 00,

foralli € I ﬂr U I, where we denote by ¢ the single element of A(B, D). We can also,
without loss of generality, assume that k; , = 1, forall i € I and for alln € N.
We define h, = (h; »);_, € G and 6, = (6;,,)]_, € A, where

o hiy=ginandb;, =1, foralli e I*UI*UI", and
® hin=uj,andb;, =a;,, foralli e Il UIY.

That is, foralli € I and all n € N, we have g, = h,0,.
Let J := I* U I" U I" and consider the standard parabolic subgroup P := P; of G. By
definition,

,
P=[]Ps.
i=1
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where P; ; = Bif i ¢ J and P;; = SL, otherwise. The rational Langlands decomposition
with respect to K is P = NjAjMj, where

r r r
Ny=]]Nsi. Ay =]]Asi. and My =[] M.

i=1 i=1 i=1
where

e fori ¢ J,wehave N;j; = N,A;; = Dand M;,; = {1}, and,
e fori € J,wehave Nj; = {1}, A;; = {1} and M;; = SL».

Let H := Hp. Then H,, is contained in H and &, € H foralln € N. Let 'y := T N H.
Then, by Theorem 4.6, the set of homogeneous probability measures on I'7\ H associated
with the H,, and 4, is sequentially compact in P(I"\ H). Furthermore, g, = h,0,, and

a(8,) — oo, asn — oo, foralla € (P, Ap).

Therefore, the result follows from Theorem 5.1. O

10 Translates of the Levi of a maximal parabolic subgroup

We now move on to proving cases of Conjecture 3.1 in which we impose conditions on the
H,, and g, instead of the group G.

The title of this section is slightly inaccurate; a Levi subgroup cannot be of type H. Recall
that, for any reductive algebraic group M, we can write M as the almost direct product
RpmMY" | where M9 is the derived subgroup of M. Then MY is a semisimple group and,
as such, is equal to the almost direct product of its almost Q-simple factors. We write M
(respectively, M) for the product of those factors whose underlying real Lie groups are
non-compact (respectively, compact). In particular, M" is of type H.

Theorem 10.1 Let Py be a minimal parabolic subgroup of G and let A be a maximal split
subtorus of G contained in Py. Then Conjecture 3.1 holds when, for alln € N, H, = ML,
for some a € A := APy, A).

Proof After possibly replacing K, we can and do assume that A is invariant under the Cartan
involution of G associated with K.
Let F denote a I'-set for G. If
liminf 8g.a,r(Hy. gn) > 0, (12)

n— oo

then, by Theorem 4.6, after possibly extracting a subsequence, the sequence of homogeneous
probability measures on I'\G associated with the H,, and the g, is convergent in P(I'\G),
in which case the proof concludes as in the proof of Theorem 6.1.

Therefore, suppose that (12) does not hold. By Lemma 4.2, we can and do extract a
subsequence such that, for some § € A, and for every n € N, there exists A, € [' F such that
H,, is contained in A, PgA,; I and, if we write

2 gn = hnayky, € HgAgK,
then

B(a,) — oo, asn — o0.
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Furthermore, after possibly extracting a subsequence, we can and do assume that A, = yj,c,
where y, € T, and ¢ € F is fixed. Therefore, we can and do replace H,, with A, 'H, 2, and
gn With A, lg, and relabel them H,, and g,, respectively. That is, H,, is contained in Hg and

8n = hnankn € HﬁAﬁK.

Now, if the Q-rank of G is r, then the Q-rank of H,, is r — 1. On the other hand, if H,, were
contained in a parabolic subgroup of Hg, it would ncessarily be contained in a semisimple
subgroup of Q-rank  —2, which is a contradiction. Therefore, H,, is contained in no parabolic
subgoup of Hg, and we conclude from Theorem 4.6, after possibly extracting a subsequence,
the sequence of homogeneous probability measures on I' g, \ Hg associated with the H,, and
the A, is convergent in P(I" Hﬂ\ng). Therefore, the result follows from Theorem 5.1 with
P= Pﬂ. ]

11 Translates of the unipotent radical of a minimal parabolic

We will prove the following case of Conjecture 3.1.

Theorem 11.1 Conjecture 3.1 holds when, for each n € N, H, is equal to the unipotent
radical of a minimal parabolic subgroup of G.

Proof After possibly extracting a subsequence and conjugating, we can and do assume that,
for all n € N, H,, = Np for a fixed minimal parabolic subgroup P of G. Let A denote a
maximal split subtorus of G contained in P. We can and do assume that A is invariant under
the Cartan involution of G associated with K. Writing

gn = Vnmpayk, € NpMpApK,
.- 9 . . .
we see that the homogeneous probability measure on I'\ X . associated with Np and g, is
equal to the homogeneous probability measure associated with Np and m,ay,.

Let A := A(P,A) and, for any subset I/ C A, let P; denote the standard parabolic
subgroup of G associated with /. Then A = A;A! and we write

a, = a,,y;a,i, where a, ; € A; and a,{ c Al

For each @ € A, letd, := dp, x and let x, := xp,. Let F be a I'-set for G. Note that,
forany I C A, and any 1, € T'F NP, (Q),

do (@)™ my ) = X (@)™t (my ) xa ().

Furthermore, by Lemma 4.3, x4 (%) = dy(A) > c1, for some ¢; > 0 depending only on G
and F, and Xa(m,jl) = 1 because m,, € Mp C M, Therefore,

do (@)~ my " h) = e1 - xa (@) ™).
Choose I € A maximal such that there exists ¢ > 0 satisfying
Xa((@)™) > 2

forevery n € Nand « € A. That is, I is a maximal subset such that, for the corresponding
decomposition of a,, all of the characters x, are bounded below on (ai)_l. Note that such
a set exists because, when / is empty, M; = Mp is anisotropic and so ai =1.
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By Lemma 2.3, Np is contained in a parabolic subgroup Q of G if and only if Q = P; for
some subset / € A. Therefore, Theorem 4.6 implies that the set of homogeneous probability

measures on "7\ H; associated with Np and the mna,{ is sequentially compact. We are using

here the fact that, by Lemma 2.1, for any « € A, Py is its own nomalizer in G. Hence, for
any A € I'F, we have AP,A~! =P, if and only if . € TF NP, (Q).
Therefore, Theorem 11.1 follows from Theorem 5.1, if we can show that

a(an,;) — 00, asn — oo, foralla € A\ 1.

To thatend, let « € A\ I and let I, := I U {or}. Recall that /, restricts to a set of simple
Q-roots of M;, with respect to Al Asin [2, 1I1.1.16], we obtain a maximal proper standard

. 1 . ..
parabolic P, of M, and a rational Langlands decomposition
Iy _ alaggla g la
P =N "M A,
such that
Py =Ny N . ple. pleg
1= ItV 1 I Io
. . .. . 1
is the rational Langlands decomposition of P;. In particular, A; = A*A, and so
Ia IO( Iot
an,1 = An, 1,4, where a,, ;, € A, and a,’ € Ar.
Therefore,
I I
alan,1) = a(an,laan?j) = oz(an’f[).
We also have the decomposition
a, = an,laa,’,“, where a,, 1, € Aj, and a,ﬁ“ € A"",

and, from the maximality of /, we know that, after possibly extracting a subsequence, we
can and do assume that, for some 8 € A,

Xﬂ((a,{‘*)_l) — 0, asn — oo.
We note that 8 € I, since, otherwise, xg would be trivial on Ale The decompositions
A=AlA, =ATA; = ATAlA,

1

naé" ; and, since x 5((a,€)‘1) > ¢3, for every n € N, we conclude that

yield a,[l“ =a
X,g((ai‘fl)_l) — Qasn — oo.

Now since X *(A;") is a one dimensional Z-module and the restriction of « to Af" is

non-trivial,
Kgiale = Cp(@) - &)zle
for some cg(a) € Q, and we claim that cg(e) > 0. To see this, recall from Lemma 4.1 that
xp belongs to a set of quasi-fundamental weights in X*(A)q. Therefore, by Lemma 2.6, its
restriction to A/« belongs to a set of quasi-fundamental weights in X* (A ). It follows from
Lemma 2.5, then, that the restriction of xg to Aleisa non-negative linear combination of the
elements of I,. Since x BIAl is non-zero, the claim follows. We conclude that
1

alan,) = a(ai“l) — ooasn — 00,
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as required. O

12 Digression on Levi spheres

Before proving a final case of Conjecture 3.1, we recall some facts pertaining to buildings
and so-called Levi spheres. We refer the reader to [4,17,20] for more details on buildings.

Let G be areductive algebraic group, containing a non-trivial split torus, and let B := B(G)
be its associated (Tits) building. That is, B is a simplicial complex whose simplices are in one-
to-one correspondence with the (rational) parabolic subgroups of G. If s € B is a simplex, we
denote by P; the corresponding parabolic subgroup of G, and if P is a parabolic subgroup of
G, we denote by sp € B the corresponding simplex. Then s € Bis aface of t € B if and only
if P; is contained in Py. In particular, the vertices of B are in one-to-one correspondence with
the maximal proper parabolic subgroups of G, and the empty simplex corresponds to G itself.
The set of types of vertices of 5 is in bijection with the set of vertices of the (rational) Dynkin
diagram of G. The apartments of 3 are in one-to-one correspondence with the maximal split
tori of G.

Let Pg be a minimal parabolic subgroup of G and let A be a maximal split subtorus of G
contained in Py. The set A := A(Py, A) is a set of simple Q-roots of G with respect to A.
LetV := X.(A) ® Rand let V* := X*(A) ® R. There is a canonical perfect pairing

() :VxV*—>R,

and we identify V* with the dual of V. We choose a basis {4 }oca of V* such that (4, @) =
8pa, forall B, a € A.

Let W denote the Weyl group of A (which acts linearly on V and V*). We equip V with a
W-invariant scalar product (-, -), which allows us to identify V with its dual and, therefore,
with V*. Since (-, -) and (-, -) are W-invariant, this identification is W-equivariant.

The exponential map

Lie(A) — A :a — exp(a)
is an isomorphism of real Lie groups, and the map
A—V:ar (loga(a))gea

is also an isomorphism. Therefore, we have obtained identifications Lie(A) = A = V, which
are all W-equivariant.
For each o € V*, we define a hyperplane

Hy ={xeV:(x,a)=0},
a half-space

Oy :={xeV:{x,a) >0},
and its closure

Oy :={x eV :(x,a) > 0).

Note that, for any w € W, wH, = Hyy and w®y = O .

For I C A, we define
C; = ﬂHamﬂ(H)on
ael a¢l
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and so

U)CI = ﬂ Hwa N m ®wav

ael a¢l

forany w € W.The wCy yield a partition of V and so, if we denote by [wC/] the intersection
of wCj with the unit sphere S(V) in V, we obtain a partition of $(V') and, in fact, the simplices
of a simplicial complex S := S(W, A), for which the simplex [w;Cy, ] is a face of [w2Cy, ]
if and only if, as subsets of S(V), [w1Cy,] is contained in the closure of [w>Cy,]. One may
verify that the map

S—> A:[wC/]— Sy,

is a W-equivariant isomorphism of simplicial complexes.
A Levi sphere of S, as defined in [18, Section 2.1.6], is a simplicial subcomplex of S
given by the intersection of S with a subvector space of V. Let I be a subset of A and let

Ag = (Nger ker @)®,
as usual. Under the above identification,
Lie(Ar) = Naer He

and Sy := Lie(A;) N S is a (standard) Levi sphere. The simplices of S; parametrize the
parabolic subgroups associated with .4 containing the Levi subgroup A;M; of P;. The
simplices of S; of maximal dimension parametrize the parabolic subgroups associated with
A such that A;My is a Levi subgroup of those parabolic subgroups.

13 Translates of subgroups of M, by elements of A,

Finally, we prove the following case of Conjecture 3.1.

Theorem 13.1 Let Po be a minimal parabolic subgroup of G and let A be a maximal split
subtorus of G contained in Py such that A is invariant under the Cartan involution of G
associated with K. Then Conjecture 3.1 holds when, for some I C A := APy, A), and for
eachn € N, Hy, is a subgroup of My and g, € Aj.

Proof Since g, € Ay, we relabel it a,. Since a, € A, there exists, by Sect. 12, w, € W
and J, C A such that a, € w,Cy,. Since W and A are finite, after possibly extracting a
subsequence, we can and do assume that w := w, and J := J, are fixed.

Lemma 13.2 We have wA w=! C A;.

Proof Let B € I. Since wA is a set of simple Q-roots for G with respect to A, we can write
B =2 yen Gewa for some a, € Q. Since a, € wCy N Ay, we have

1= Blay) = [ | walan)™ = [ | watan)®™,
aeA ag¢J
for every n € N. Since B is either positive or negative with respect to the ordering given by
wA, either a, > 0 forall € A, ora, < 0forall @ € A. Therefore, since wa(a,) > 1 for
all o ¢ J, we conclude that a, = O for all @ ¢ J. That is, B is contained in the Q-span of
the set wJ, which proves the claim. O
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Since wa(a,) > 1, foralln € N and all @ ¢ J, after possibly extracting a subsequence,
we can and do assume that

wa(a,) = ¢y € [1,00], asn — oo.

Therefore, we can write A \ J as the disjoint union of two subsets R, and R defined such
that o € A\ J is a member of Ry if and only if ¢, € [1, 00) (and @ € A\ J is a member of
R if and only if ¢, = 00).

Let A := Ajur, and Ag := Ajur,- Then A; = A A and we can write a, €
wAyw ! as A, 0oln,0, Where a, o € wAsw™! and an,0 € wAow~!. In particular, for
every o € Ry

wa(an,00) = wala,) — 00, asn — 00,
and, for every @ € Ry,
wa(ay,0) = wa(a,) = cq € [1,00), asn — oo.

As in the proof of [3, Proposition 12.6], we can represent w by an element in K (which we
also denote by w) (where we use the fact that the Weyl group of A is naturally a subgroup of
the Weyl group of ARr). Therefore, if welet P := wP jug,w™ ! then Ap is equaltowAsow™ L

Note that Ay is contained in A, which we may write as the direct product A/YR0A ;g .

Therefore, we my write
ano="b,-cp € wA IR0y~ wAjUROU)_l.

From the above, the a, o are contained in a compact subset of wAw™!. Therefore, the b,
and ¢, are contained in compact subsets of wATYRoyw=1 and wA juRow_l, respectively.
We conclude that, after possibly extracting a subsequence, we can and do assume that the
sequence of homogeneous probability measures on I' i, \ Hp associated with the H,, and b,
converges. On the other hand, we have

wa(Cpay,00) —> 00, aS N — 00

for every o € R, and so the result follows from Theorem 5.1. O
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