Skip to main content
Log in

Global regularity for 2D fractional magneto-micropolar equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The magneto-micropolar equations are important models in fluid mechanics and material sciences. This paper focuses on the global regularity problem on the 2D magneto-micropolar equations with fractional dissipation. We establish the global regularity for three important fractional dissipation cases. Direct energy estimates are not sufficient to obtain the desired global a priori bounds in each case. To overcome the difficulties, we employ various technics including the regularization of generalized heat operators on the Fourier frequency localized functions, logarithmic Sobolev interpolation inequalities and the maximal regularity property of the heat operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, S., Thurner, S.: Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion. Phys. A 356, 403–407 (2005)

    Article  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  4. Berkovski, B., Bashtovoy, V.: Magnetic Fluids and Applications Handbook. Begell House, New York (1996)

    Google Scholar 

  5. Cowin, S.C.: Polar fluids. Phys. Fluids 11, 1919–1927 (1968)

    Article  Google Scholar 

  6. Dong, B., Chen, Z.: Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows. Discrete Contin. Dyn. Syst. 23, 765–784 (2009)

    Article  MathSciNet  Google Scholar 

  7. Dong, B., Zhang, Z.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differ. Equ. 249, 200–213 (2010)

    Article  MathSciNet  Google Scholar 

  8. Dong, B., Li, J., Wu, J.: Global well-posedness and large-time decay for the 2D micropolar equations. J. Differ. Equ. 262, 3488–3523 (2017)

    Article  MathSciNet  Google Scholar 

  9. Erdogan, M.E.: Polar effects in the apparent viscosity of suspension. Rheol. Acta 9, 434–438 (1970)

    Article  Google Scholar 

  10. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  11. Eringen, A.C.: Micropolar fluids with stretch. Int. J. Eng. Eci. 7, 115–127 (1969)

    MATH  Google Scholar 

  12. Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S., Wirth, A., Zhu, J.: Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101, 264502 (2008)

    Article  Google Scholar 

  13. Galdi, G., Rionero, S.: A note on the existence and uniqueness of solutions of micropolar fluid equations. Int. J. Eng. Sci. 14, 105–108 (1977)

    Article  MathSciNet  Google Scholar 

  14. Hatzikonstantinou, P., Vafeas, P.: A general theoretical model for the magnetohydrodynamic flow of micropolar magnetic fluids. Applications to Stokes flow. Math. Methods Appl. Sci. 33, 233–246 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Jara, M.: Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math. 62, 198–214 (2009)

    Article  MathSciNet  Google Scholar 

  17. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. 46, 3426–3454 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kato, T., Ponce, G.: Commutator estimates and the Euler and the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  Google Scholar 

  20. Lemarie-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics Series. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  21. Li, J., Titi, E.S.: Global well-posedness of the 2D Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 220, 983–1001 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lukaszewicz, G.: Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  23. Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Rat. Mech. Anal. 199, 493–525 (2011)

    Article  MathSciNet  Google Scholar 

  24. Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics. Science Press, Beijing (2012). (in Chinese)

    Google Scholar 

  25. Popel, S., Regirer, A., Usick, P.: A continuum model of blood flow. Biorheology 11, 427–437 (1974)

    Article  Google Scholar 

  26. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  Google Scholar 

  27. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin (1996)

    Book  Google Scholar 

  28. Stokes, V.K.: Theories of Fluids with Microstructure. Springer, New York (1984)

    Book  Google Scholar 

  29. Triebel, H.: Theory of Function Spaces II. Birkhauser, Boston (1992)

    Book  Google Scholar 

  30. Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011)

    Article  MathSciNet  Google Scholar 

  31. Xiang, Z., Yang, H.: On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative. Bound. Value Probl. 2012, 139 (2012)

    Article  MathSciNet  Google Scholar 

  32. Xue, L.: Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. Math. Methods Appl. Sci. 34, 1760–1777 (2011)

    Article  MathSciNet  Google Scholar 

  33. Yamazaki, K.: Global regularity of logarithmically supercritical MHD system with zero diffusivity. Appl. Math. Lett. 29, 46–51 (2014)

    Article  MathSciNet  Google Scholar 

  34. Yamazaki, K.: Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete Contin. Dyn. Syst. 35, 2193–2207 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yuan, B.: Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. 30B, 1469–1480 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors for the excellent handling of our manuscript and thank the anonymous referee for the constructive and insightful comments that have helped improved the manuscript. H. Shang was partially supported by NSFC (No. 11201124), Foundation for University Key Teacher by the Henan Province (No. 2015GGJS-070), and Outstanding Youth Foundation of Henan Polytechnic University (No. J2014-03). J. Wu was partially supported by NSF grant DMS 1614246, by the AT&T Foundation at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An alternative approach to the global \(H^1\)-bound for (1.2)

Appendix A: An alternative approach to the global \(H^1\)-bound for (1.2)

A crucial component in the proof of the global bounds for Theorem 1.1 is the global (in time) \(H^1\)-bound and the global integrability of \(\Vert \Lambda ^{\frac{2}{q}} \omega (\tau )\Vert _{L^q}\). Sect. 2 provided one way to get these bounds. The purpose of this appendix is to provide an alternative approach to these bounds. More precisely, we prove the following result.

Proposition A.1

Assume that \((u, \Omega , b)\) solves (1.2). Assume \(\alpha \) and \(\beta \) satisfy

$$\begin{aligned} 1<\alpha<2, \quad 0<\beta <1, \quad \alpha + \beta \ge 2. \end{aligned}$$

Then, for any \(1<q<\infty \) and for any \(t>0\),

$$\begin{aligned} \sup _{l\ge -1} \,2^{(2\alpha -2)\, l}\, \int _0^t \Vert \Delta _l \omega (\tau )\Vert _{L^{q}} \,d\tau \le C(t, u_0, \Omega _0, b_0) < \infty . \end{aligned}$$
(A.1)

As a special consequence, for any \(1<q<\infty \) and \(\rho < 2\alpha -2\),

$$\begin{aligned} \int _0^t \Vert \omega (\tau )\Vert _{B^{\rho }_{q,1}}\,d\tau < \infty . \end{aligned}$$
(A.2)

Especially, for \(\rho < 2\alpha -2\) and \(q=\frac{2}{\rho }\),

$$\begin{aligned} \int _0^t \left( \Vert \omega (\tau )\Vert _{L^q} + \Vert \Lambda ^{\frac{2}{q}} \omega \Vert _{L^q}\right) \, d\tau <\infty . \end{aligned}$$
(A.3)

Proof of Proposition A.1

We start with the following fact about \(\Omega \), for any \(r\in [1,\infty ]\),

$$\begin{aligned} \Vert \Omega (t)\Vert _{L^r} \le \Vert \Omega _0\Vert _{L^r} + 2 \kappa \int _0^t \Vert \omega (\tau )\Vert _{L^r}\,d\tau , \end{aligned}$$
(A.4)

which can be obtained by performing the standard Lebesgue norm estimate on the equation of \(\Omega \). Next, we write the equation of \(\omega \) given by (1.5) in the integral form

$$\begin{aligned} \omega (t)= & {} e^{-(\nu +\kappa )(-\Delta )^\alpha t} \omega _0 + \int _0^t e^{-(\nu +\kappa )(-\Delta )^\alpha (t-\tau )} (-\Delta \Omega (\tau ))\,d\tau \\&+ \int _0^t e^{-(\nu +\kappa )(-\Delta )^\alpha (t-\tau )}\nabla \times \nabla \cdot \left( (u\otimes u)(\tau ) + \nabla \times \nabla \cdot (b\otimes b)(\tau )\right) \,d\tau . \end{aligned}$$

We further localize it by applying \(\Delta _l\) with \(l\in \mathbb {Z}\) and \(l\ge -1\),

$$\begin{aligned} \Delta _l\omega (t)= & {} \Delta _l e^{-(\nu +\kappa ) (-\Delta )^\alpha t} \omega _0 + \int _0^t \Delta _l e^{-(\nu +\kappa )(-\Delta )^\alpha (t-\tau )} (-\Delta \Omega (\tau ))\,d\tau \\&+ \int _0^t \Delta _le^{-(\nu +\kappa ) (-\Delta )^\alpha (t-\tau )} \nabla \times \nabla \cdot \left( (u\otimes u)(\tau ) + (b\otimes b)(\tau )\right) \,d\tau . \end{aligned}$$

For \(q\in (1,\infty )\), taking the \(L^q\)-norm and applying Lemma 2.3 and Bernstein’s inequality, we have

$$\begin{aligned}&\Vert \Delta _l \omega (t)\Vert _{L^q} \le C\, e^{-c_0 (\nu +\kappa ) t\, 2^{2\alpha l}}\, \Vert \Delta _l \omega _0\Vert _{L^q}+ C \, \int _0^t 2^{2l} e^{-c_0 (\nu +\kappa ) (t-\tau )\, 2^{2\alpha l}} \Vert \Delta _l \Omega \Vert _{L^q}\,d\tau \nonumber \\&\quad + \,C\, \int _0^t 2^{2l} e^{-c_0 (\nu +\kappa ) (t-\tau )\, 2^{2\alpha l}} \left( \Vert \Delta _l(u\otimes u)(\tau )\Vert _{L^q} +\Vert \Delta _l(b\otimes b)(\tau )\Vert _{L^q}\right) \,d\tau . \end{aligned}$$
(A.5)

To further improve the estimates, we invoke (A.4) to obtain

$$\begin{aligned} \Vert \Delta _l \Omega (t)\Vert _{L^q} \le \Vert \Omega (t)\Vert _{L^q} \le \Vert \Omega _0\Vert _{L^q} + \int _0^t \Vert \omega (\tau )\Vert _{L^q}\,d\tau . \end{aligned}$$

To bound \(\Vert \Delta _l(b\otimes b)(\tau )\Vert _{L^q}\), noticing \(\alpha +\beta =2\), we choose \(\sigma \) satisfying

$$\begin{aligned} 0<\sigma <\alpha -1, \quad \sigma + \beta =1-\frac{1}{q}. \end{aligned}$$

By Sobolev’s inequality,

$$\begin{aligned} \Vert \Delta _l(b\otimes b)(\tau )\Vert _{L^q} \le \Vert b\otimes b(\tau )\Vert _{L^q} \le \Vert b\Vert ^2_{L^{2q}} \le C \Vert \Lambda ^{\sigma + \beta } b\Vert _{L^2}^2. \end{aligned}$$

Similarly, we can also estimate \(\Vert \Delta _l(u\otimes u)(\tau )\Vert _{L^q}\) ,

$$\begin{aligned} \Vert \Delta _l(u\otimes u)(\tau )\Vert _{L^q} \le C \left( \Vert u\Vert _{L^2}^2 + \Vert \Lambda ^\alpha u\Vert _{L^2}^2\right) = C\, \Vert u\Vert _{H^\alpha }^2. \end{aligned}$$

Integrating (A.5) in time and applying Young’s inequality for the time convolution, we obtain

$$\begin{aligned} \int _0^t \Vert \Delta _l \omega (\tau )\Vert _{L^{q}} \,d\tau\le & {} C\, 2^{-2\alpha l}\, \Vert \Delta _l \omega _0\Vert _{L^q}\\&+ \,C\, 2^{(2-2\alpha ) l}\, \int _0^t \left( \Vert \Omega _0\Vert _{L^q} + \int _0^\tau \Vert \omega \Vert _{L^q} ds \right) \,d\tau \\&+ \,C\, 2^{(2-2\alpha ) l}\, \int _0^t \left( \Vert u\Vert _{H^\alpha }^2 + \Vert \Lambda ^{\sigma +\beta } b\Vert _{L^2}^2\right) \, d\tau , \end{aligned}$$

or

$$\begin{aligned} 2^{(2\alpha -2) l}\, \int _0^t \Vert \Delta _l \omega (\tau )\Vert _{L^{q}} \,d\tau \le A(t) + C\, \int _0^t \int _0^\tau \Vert \omega \Vert _{L^q} ds \,d\tau , \end{aligned}$$
(A.6)

where, due to Lemma 2.7,

$$\begin{aligned} A(t) = C\, 2^{-2l}\, \Vert \Delta _l \omega _0\Vert _{L^q} + C\, \Vert \Omega _0\Vert _{L^q} t + C\, \int _0^t \left( \Vert u\Vert _{H^\alpha }^2 + \Vert \Lambda ^{\sigma +\beta } b\Vert _{L^2}^2\right) \, d\tau <\infty . \end{aligned}$$

Noting that

$$\begin{aligned} \Vert \omega \Vert _{L^q} \le \sum _{m\ge -1} \Vert \Delta _m \omega \Vert _{L^q} \le \sum _{m\ge -1} 2^{(2-2\alpha )m} \, 2^{(2\alpha -2)m}\, \Vert \Delta _m \omega \Vert _{L^q}, \end{aligned}$$

we obtain, due to \(\alpha >1\),

$$\begin{aligned} \int _0^t \int _0^\tau \Vert \omega \Vert _{L^q} ds \,d\tau= & {} \int _0^t \sum _{m\ge -1} 2^{(2-2\alpha )m}\, 2^{(2\alpha -2)m}\,\int _0^\tau \Vert \Delta _m \omega \Vert _{L^q} \,ds\, d\tau \\\le & {} C\, \int _0^t \sup _{m\ge -1} 2^{(2\alpha -2)m}\,\int _0^\tau \Vert \Delta _m \omega \Vert _{L^q} \,ds\, d\tau . \end{aligned}$$

Inserting this bound in (A.6) yields, for \(Y(t) \equiv \sup _{l\ge -1} \,2^{(2\alpha -2) l}\, \int _0^t \Vert \Delta _l \omega (\tau )\Vert _{L^{q}} \,d\tau \),

$$\begin{aligned} Y(t) \le A(t) + C\, \int _0^t Y(\tau )\,d\tau . \end{aligned}$$

Gronwall’s inequality then leads to the global bound in (A.1). It is easy to see that (A.2) is a special consequence of (A.1). In fact, for any \(\rho <2\alpha -2\),

$$\begin{aligned} \int _0^t \Vert \omega (\tau )\Vert _{B^{\rho }_{q,1}}\,d\tau= & {} \int _0^t \sum _{l\ge -1} 2^{\rho l} \Vert \Delta _l \omega \Vert _{L^q}\, d\tau \\\le & {} \int _0^t \sum _{l\ge -1} 2^{(\rho -(2\alpha -2))l}\, 2^{(2\alpha -2) l} \Vert \Delta _l \omega \Vert _{L^q}\, d\tau \\= & {} \sum _{l\ge -1} 2^{(\rho -(2\alpha -2))l}\, 2^{(2\alpha -2) l} \int _0^t \Vert \Delta _l \omega \Vert _{L^q}\, d\tau \\\le & {} \sup _{l\ge -1} 2^{(2\alpha -2) l} \int _0^t \Vert \Delta _l \omega \Vert _{L^q}\, d\tau \, \sum _{l\ge -1} 2^{(\rho -(2\alpha -2))l}\\= & {} C\, \sup _{l\ge -1} 2^{(2\alpha -2) l} \int _0^t \Vert \Delta _l \omega \Vert _{L^q}\, d\tau <\infty , \end{aligned}$$

which is (A.2). Finally (A.3) follows from (A.2) by taking \(q=\frac{2}{\rho }\). This completes the proof of Proposition A.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Wu, J. Global regularity for 2D fractional magneto-micropolar equations. Math. Z. 297, 775–802 (2021). https://doi.org/10.1007/s00209-020-02532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02532-6

Keywords

Mathematics Subject Classification

Navigation