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Abstract
In this note we study the limiting behaviour of real valued functions on hyperbolic groups
as we travel along typical geodesic rays in the Gromov boundary of the group. Our results
apply to group homomorphisms, certain quasimorphisms and to the displacement functions
associated to convex cocompact group actions on CAT(−1) metric spaces.

1 Introduction

LetG by a non-elementary hyperbolic group and suppose thatG acts cocompactly (or convex
cocompactly) by isometries on a complete hyperbolic geodesic metric space (X , d). Fix a
finite generating set S for G and an origin o for X . Let C(G) denote the Cayley graph of G
with respect to S and write ∂G for the Gromov boundary of G. By the S̆varc-Milnor Lemma,
there exists constants C1,C2 > 0 such that, for any infinite geodesic ray γ based at the
identity in C(G),

C1n ≤ d(o, γno) ≤ C2n

for all n ≥ 1. Here γn denotes the end point of γ after n steps. This inequality describes the
coarse behaviour of the displacement function g �→ d(o, go) along geodesic rays. It is then
natural to ask whether we can describe more precisely how the displacement grows along
typical geodesic rays in ∂G? The Patterson–Sullivan measure provides us with a natural way
of quantifying typicality in this setting. We say that a property exhibited by elements of ∂G
is typical if it holds on a full Patterson–Sullivan measure set.

Gekhtman, Taylor and Tiozzo asked the above question in a more general setting. They
prove the following theorem in [11]. Let ν denote the Patterson–Sullivan measure obtained
as the weak star limit

lim
n→∞

∑
|g|≤n λ−|g|δg

∑
|g|≤n λ−|g| ,

where δg denotes the Dirac measure based at g ∈ G and |g| denotes the word length of g.
We write [γ ] ∈ ∂G for the element in ∂G that contains γ .
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712 S. Cantrell

Proposition 1.1 (Theorem 1.3 [11]) Suppose a hyperbolic group G has a non-elementary
action by isometries on a separable, hyperbolic geodesic metric space X. Then, there is
L > 0 such that for every x ∈ X and ν almost every [γ̃ ] ∈ ∂G,

lim
n→∞

dX (x, γnx)

n
= L,

where γ is any geodesic ray in [γ̃ ].
To prove this, Gekhtman, Taylor and Tiozzo exploit the stronglyMarkov structure ofG. That
is, they use the fact that there exists a finite directed graph G that in some sense encodes the
key properties of G. They obtain the above theorem by studying random walks on the loop
graph associated to G.

This is one way to exploit the structure provided by G. It is however possible to make use
of the strongly Markov property in a different way. The graph G gives rise to a dynamical
system (�, σ : � → �) known as a subshift of finite type. We can embed G into � via
a function i : G → � and use this to translate questions about the displacement function
on G to questions about � and a suitable function f : � → R. The connection between
G and � is exploited by Pollicott and Sharp in [20]. They prove an almost sure invariance
principle, as well as other limit laws, for the displacement function associated to the action of
surface groups and convex cocompact free groups on the hyperbolic plane. In [7] similar ideas
are used to derive limit laws for real-valued functions satisfying two conditions named, in
that paper, by Condition (1) and Condition (2). Real valued group homomorphisms, certain
quasimorphisms as well as the displacement function associated to convex cocompact group
actions on CAT(−1) metric spaces satisfy these conditions.

This leads us to ask whether Proposition 1.1 remains true if we replace the displacement
function with a different real valued function. Furthermore, can we formulate a more precise
statement describing how these functions behave along geodesic rays?These are the questions
thatwe consider in this paper.Ourmain theorems are the following.Wewill define and discuss
Condition (1) and Condition (2) in Sect. 3. Let ν denote the Patterson–Sullivan measure as
defined above.

Theorem 1.2 Let G be a non-elementary hyperbolic group equipped with a finite generating
set S. Suppose that ϕ : G → R satisfies Condition (1) and Condition (2). Then there exists

 ∈ R such that for ν almost every [γ̃ ] ∈ ∂G,

lim
n→∞

ϕ(γn)

n
= 
,

for any γ belonging to [γ̃ ].
Remark 1.3 When ϕ is the displacement function associated to a convex cocompact group
action on a CAT(−1)metric space, we recover a special case of Proposition 1.1. We note that
the non-elementary actions to which Proposition 1.1 applies are more general than convex
cocompact.

This shows that, along typical elements of ∂G, a function ϕ satisfying the hypotheses of
Theorem 1.2 grows asymptotically like 
n. We can then ask if it is possible to describe
more precisely how ϕ grows along elements of ∂G. To achieve this, we need to impose an
additional assumption on ϕ to ensure that ϕ(·) − | · |
 grows along typical geodesic rays.
Specifically, we need that the set

{[γ ] ∈ ∂G : {ϕ(γn) − n
 : n ∈ Z≥0} is unbounded
}
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Typical behaviour along geodesic rays in hyperbolic groups 713

is non-empty. The fact that this set is well-defined will follow from Condition (2). Surpris-
ingly, this is the only additional hypothesis we need in order to obtain the following, more
precise description of how ϕ grows.

Theorem 1.4 Let G be a non-elementary hyperbolic group equipped with a finite generating
set S. Fix a bounded subset H of the Cayley graph of G. Suppose ϕ : G → R satisfies
Condition (1) and Condition (2) and that 
 is the quantity defined in Theorem 1.2. Then, if
the set

{[γ ] ∈ ∂G : {ϕ(γn) − n
 : n ∈ Z≥0} is unbounded
}

is non-empty, there exists σ 2 > 0 such that for x ∈ R,

ν(An(x)) = 1√
2πσ

∫ x

−∞
e−t2/2σ 2

dt + O(n−1/4),

as n → ∞, where

An(x) =
{

[γ̃ ] ∈ ∂G : for all γ ∈ [γ̃ ] with γ0 ∈ H ,
ϕ(γn) − n
√

n
≤ x

}

.

The implied constant is uniform in x ∈ R.

Remark 1.5 The reason that we ask for γ0 ∈ H is due to the following fact. For ν almost
every [γ̃ ] ∈ ∂G and every n ≥ 1, we can find γ ∈ [γ̃ ] for which ϕ(γn) − n
 is arbitrarily
large. Therefore without this assumption, An would have zero ν measure for all n ∈ Z≥0.

The following result from [7] then shows that real-valued group homomorphisms satisfy the
hypotheses of Theorem 1.4.

Proposition 1.6 ([7] Lemma 7.11, Corollary 7.12) Let G be a non-elementary hyperbolic
group equipped with a finite generating set S. Suppose ϕ : G → R is a non-trivial group
homomorphism. Then the constant 
 obtained from Theorem 1.2 is zero and the set

{[γ ] ∈ ∂G : {ϕ(γn) : n ∈ Z≥0} is unbounded},
is non-empty and in fact has full ν measure.

To conclude the introduction, we briefly outline the contents of this paper. In the second
section we cover preliminary material concerning hyperbolic groups, their strongly Markov
structure and the Patterson–Sullivan measure. In the third section we discuss the regularity
conditions, Condition (1) and Condition (2). We then, in Sect. 4, study the properties of the
Patterson–Sullivan measure. We prove Theorems 1.2 and 1.4 in the remaining section.

Notation: Throughout the paper, we use the following notation to describe the asymptotic
behaviour of sequences. Suppose fn, gn, hn are real valued sequences.Wewrite fn = O(gn)
if there exists C > 0 such that eventually | fn | ≤ C |gn |. If | fn/gn | → 0 as n → ∞ we write
fn = o(gn). We write fn = O(gn, hn) if fn = O(max{|gn |, |hn |}).

2 Hyperbolic groups and symbolic codings

In this section we cover preliminary material related to hyperbolic groups and symbolic
dynamics.
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714 S. Cantrell

Definition 2.1 Let G be a finitely generated group with finite generating set S. We define the
left and right word metrics on G by

dL(g, h) = |g−1h| and dR(g, h) = |gh−1|
for g, h ∈ G. Here | · | denotes the word metric, i.e. |g| is the length of the shortest word(s)
representing g with letters in S ∪ S−1. We say that G is hyperbolic if there exists δ ≥ 0 such
that any geodesic triangle in the dL metric is δ-thin (i.e. any point on the side of a geodesic
triangle is within distance δ of one of the other two sides).

We say that a hyperbolic group is non-elementary if it is not virtually cyclic, i.e. it does
not contain a finite index cyclic subgroup. Suppose that G is a non-elementary hyperbolic
group equipped with a finite generating set and let W (n) = #{g ∈ G : |g| = n} denote
the word length counting function. Coornaert proved that the growth rate of W (n) is purely
exponential [9], i.e. there exists λ > 1 and C0,C1 > 0 such that

C0λ
n ≤ W (n) ≤ C1λ

n .

This fact will be key to our analysis.
Let C(G) denote the Cayley graph of G with respect to S. The Gromov boundary ∂G of

G consists of equivalence classes of infinite geodesic rays in C(G). Two geodesic rays γ and
γ ′ are said to be equivalent if dL(γn, γ

′
n) is bounded uniformly for n ∈ Z≥0. Here, γn, γ

′
n

denote the end points of γ , γ ′ after n steps. Given an infinite geodesic ray γ we use [γ ] to
denote the element of ∂G containing γ . There is a natural compact topology for G ∪ ∂G that
extends the topology on G given by the word metric. The action of G extends continuously
to G ∪ ∂G by sending [γ ] ∈ ∂G to [gγ ] ∈ ∂G.

The Patterson–Sullivan measure ν is a measure on ∂G obtained as the weak star limit, as
n → ∞, of the following sequence of measures

∑
|g|≤n λ−|g|δg

∑
|g|≤n λ−|g|

onG∪∂G. Here δg denotes the Dirac measure based at g ∈ G. Themeasure ν is ergodic with
respect to the action of G on ∂G. See [9] and [14] for a comprehensive account of the above
material concerning the Patterson–Sullivan measure. We will now discuss the combinatorial
properties of hyperbolic groups.

As mentioned in the introduction, hyperbolic groups have nice combinatorial properties
that arise due to their strongly Markov structure.

Definition 2.2 A finitely generated group G is strongly Markov if given any finite generating
set S there exists a finite directed graph G with vertex set V , edge set E and a labeling map
ρ : E → S such that:

1. there exists an initial vertex ∗ ∈ V such that no directed edge ends at ∗;
2. the map taking finite paths in G starting at ∗ to G that sends a path with concurrent edges

(∗, x1), . . . , (xn−1, xn) to ρ(∗, x1)ρ(x1, x2) . . . ρ(xn−1, xn), is a bijection;
3. the word length of ρ(∗, x1) . . . ρ(xn−1, xn) is n.

Cannon introduced this property and proved that cocompact Kleinian groups are strongly
Markov [6]. Ghys and de la Harpe showed that Cannon’s method worked for arbitrary hyper-
bolic groups.

Proposition 2.3 ([12] Theorem 13) Any hyperbolic group is strongly Markov.
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Typical behaviour along geodesic rays in hyperbolic groups 715

Throughout the rest of this paper wewill assume thatG is a non-elementary hyperbolic group
equipped with a finite generating set S. Let G be a graph associated to a G via the strongly
Markov property. We augment G by adding an extra vertex 0 ∈ V and edges (v, 0) for all
v ∈ V ∪ {0}\{∗}. We define ρ(v, 0) = e for v ∈ V ∪ {0}\{∗} , where e ∈ G is the identity
element. We will assume that any graph G associated to G has been augmented in this way.

As mentioned in the introduction, we can use this strongly Markov structure to construct
a dynamical system that encodes the properties of G. Suppose that G = (E, V ) is a directed
graph associated to G via the strongly Markov property. We define a transition matrix A,
indexed by V × V , by

A(v1, v2) =
{
1 if (v1, v2) ∈ E
0 otherwise.

Using A we define

�A = {(xn)∞n=0 : xn ∈ V and A(xn, xn+1) = 1 for all n ∈ Z≥0}

and σ : �A → �A by σ((xn)∞n=0) = (xn+1)
∞
n=0. The system (�A, σ ) is known as a

subshift of finite type. We embed G into �A via the function i : G → �A that sends
a group element g ∈ G to the unique element (∗, x1, x2, . . . , xn, 0, 0, . . .) for which
ρ(∗, x1) . . . ρ(xn−1, xn) = g and |g| = n. This correspondence will allow us to prove facts
about G by studying the properties of �A. For the rest of this section we recount (following
[16]) the properties of subshifts that we require for our proofs.

Let B be a zero-one matrix. We say that B is irreducible if given i, j , there exists N
such that BN (i, j) > 0. If there exists N such that BN (i, j) > 0 for all pairs i, j then
we say that B is aperiodic. For each 0 < θ < 1 there is a metric dθ on �B defined by
dθ (x, y) = θ s(x,y) where s(x, y) ∈ Z≥0 is the first integer n such that xn �= yn . We write
Fθ (�B) = { f : �B → R : f is Lipschitz in the dθ metric}. Given f ∈ Fθ (�B), we write
f n(x) = f (x) + f (σ (x)) + · · · + f (σ n−1(x)) for x ∈ �B . Throughout the following, we
assume that B is irreducible. When this is the case, the system (�B , σ ) is transitive and
admits a unique measure of maximal entropy μ [15], i.e. there exists unique μ such that

sup
ν

hν(σ ) = hμ(σ ),

where the above supremum is taken over all σ -invariant probability measures. The measure
μ is ergodic with respect to σ . If f ∈ Fθ (�B) for some 0 < θ < 1 and

∫
f dμ = 0, then

there exists σ 2
f ≥ 0 such that for x ∈ R

μ

{

z ∈ �B : f n(z)√
n

≤ x

}

= 1√
2πσ f

∫ x

−∞
e−t2/2σ 2

f dt + O(n−1/2)

as n → ∞ [8]. Furthermore, σ 2
f = 0 if and only if there exist continuous h : �B → C such

that f = h ◦ σ − h. In [8] this result is proved under the assumption that B is aperiodic,
however it is easy to see that this result passes to the irreducible case.

We note that since G has no edges that enter ∗, the matrix A associated to G will never be
irreducible. It is possible however that if we remove, from A, the rows/columns corresponding
to the 0 and ∗ vertices, then the resulting matrix is irreducible (or aperiodic). We say that A
is irreducible (or aperiodic) if this is the case. Although in general it is possible that A is not
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716 S. Cantrell

irreducible, we can, by relabeling the vertex set V , assume A has the form

A =

⎛

⎜
⎜
⎜
⎝

A1,1 0 . . . 0
A2,1 A2,2 . . . 0
...

...
. . .

...

Am,1 Am,2 . . . Am,m

⎞

⎟
⎟
⎟
⎠

,

where Ai,i are irreducible for i = 1, . . . ,m. We call the Ai,i the irreducible components of
A. Let λ > 1 denote the exponential growth rate ofW (n). It is easy to see by Property (2) and
(3) in Definition 2.2 that all of the Ai,i must have spectral radius at most λ. Furthermore there
must be at least one Ai,i with spectral radius exactly λ. We call an irreducible component
maximal if it has spectral radius λ. We label the maximal components Bi for i = 1, . . . ,m.
The following key result follows from Coornaert’s estimates on W (n).

Proposition 2.4 ([5] Lemma 4.10) The maximal components of A are disjoint. There does
not exist a path in G that begins in one maximal component and ends in another.

3 Regularity conditions

In this section we discuss Condition (1) and Condition (2). This will be a brief survey of the
functions satisfying these conditions, see Sect. 4 of [7] for a more comprehensive account.
Condition (1) and Condition (2) are defined as follows.
Condition (1) There exists a graph G associated to G, S via the strongly Markov property
with transition matrix A and a function f ∈ Fθ (�A) (for some 0 < θ < 1) such that
ϕ(g) = f |g|(x) for g ∈ G and x = i(g) ∈ �A.

Condition (2) ϕ is Lipschitz in the left and right word metrics on G.
Although Condition (1) relies on the properties of �A, there is a natural assumption we

can place on ϕ : G → R to guarantee the existence of appropriate �A and f : �A → R.
Given g, h ∈ G, let (g, h) denote their Gromov product

(g, h) = 1

2

(|g| + |h| − |gh−1|) .

Definition 3.1 We say that ϕ : G → R is Hölder if for any fixed finite generating set S and
a ∈ G, there exists C > 0 and 0 < θ < 1 such that

|�aϕ(g) − �aϕ(h)| ≤ Cθ(g,h),

for any g, h ∈ G. Here, �aϕ(g) = ϕ(ag) − ϕ(g) for a, g ∈ G.

Pollicott and Sharp prove that Hölder functions satisfy Condition (1) in [18]. In [5] and [7],
combable and edge combable functions are defined. We refer the reader to these papers for
the definitions. Both these classes of functions satisfy Condition (1), see Lemma 4.5 in [7].
It is clear that homomorphism to R are edge combable and so satisfy Condition (1). The
homomorphism property implies that real valued homomorphism also satisfy Condition (2).
In fact, the more general class of quasimorphism satisfy Condition (2).

Definition 3.2 A function ϕ : G → R is a quasimorphism if there exists a constant A > 0
such that

|ϕ(gh) − ϕ(g) − ϕ(h)| ≤ A
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Typical behaviour along geodesic rays in hyperbolic groups 717

for all g, h ∈ G.

It is easy to check that quasimorphisms satisfy Condition (2). In [5], Calegari and Fujiwara
show that Brooks counting quasimorphisms (see [3] for a definition) satisfy Condition (1) and
so by the above discussion, our theorems apply to these functions. The following example,
due to Barge and Ghys [1], is a quasimorphism that satisfies the Hölder condition.

Example: Suppose G acts cocompactly by isometries on a simply connected Riemannian
manifold X with all sectional curvatures bounded above by −1. Write M = X/G. Given a
smooth 1-form ω on M , we can lift ω to a G-invariant smooth 1-form ω̃ on X . Fix an origin
o ∈ X and define ϕ : G → R by

ϕ(g) =
∫ go

o
ω̃.

Note that

ϕ(gh) − ϕ(g) − ϕ(h) =
∫

∂T (g,h)

ω̃ =
∫

T (g,h)

dω̃

where T (g, h) denotes the triangle in H with vertices o, go and gho. By compactness and
hyperbolicity, the right hand side of the above is bounded uniformly in g, h. This proves that
ϕ is a quasimorphism. In [17] Picaud proved that these quasimorphisms satisfy Condition
(1).

Another example of a function satisfying Condition (1) and Condition (2)was mentioned
in the introduction. SupposeG acts properly discontinuously, convex cocompactly by isome-
tries on a complete CAT(−1) geodesic metric space (X , d). Fix a finite generating set for
G and an origin o for X . A result of Pollicott and Sharp (Proposition 3 from [19]) proves
that the displacement function satisfies Condition (1). Furthermore, it is easy to see that this
function satisfies Condition (2). See Lemma 4.6 of [7] for a more detailed discussion.

This concludes our brief survey of functions satisfying Condition (1) and Condition (2).
See [1,10] and [12] for further examples aswell asChapter 3 of [13] for amore comprehensive
account of these functions.

4 Properties of the Patterson–Sullivanmeasure

The results presented in [7] and [11] as well as this paper rely on the work of Calegari and
Fujiwara [5] that compares the Patterson–Sullivan measure ν to a natural measure μ on �A.
In this section we construct this measure and compare it to ν. To deduce our results we need
to extend the work in [5] to obtain a deeper understanding of how the measures μ and ν

compare.
Suppose G has associated subshift �A which is obtained from the directed graph G. Let

V denote the vertex set of G. For v ∈ R
V , define the function p : RV → R

V by

p(v) = lim
n→∞

1

n

n∑

k=0

Akv

λk
.

This function projects v to the eigenspace of A corresponding to the eigenvalue λ. Similarly,
the function r : RV → R

V defined by

r(v) = lim
n→∞

1

n

n∑

k=0

(
AT

)k
v

λk
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718 S. Cantrell

projects v to the eigenspace of AT corresponding to the eigenvalue λ. To obtain the error
term in Theorem 1.4 we need to know the rate of convergence associated to the limit defining
p.

Lemma 4.1 For v ∈ R
V we have that

p(v) = 1

n

n∑

k=0

Akv

λk
+ O

(
1

n

)

where the implied constant depends only on v.

Proof Given v ∈ R
V we can write v as a linear combination of elements in a Jordan basis

for A. Since maximal components are disjoint, if an eigenvalue x of A has absolute value λ,
then there does not exist a Jordan chain of length strictly greater than one associated to x . A
simple calculation then shows that if ṽ belongs to the generalised eigenspace associated to
the eigenvalue x �= λ, then

p(̃v) = O

(
1

n

)

.

The result follows. ��
Let 1 ∈ R

V denote the vector consisting of 1 in each coordinate and let v∗ denote the vector
consisting of a 1 in the coordinate corresponding to the ∗ vertex and zeros elsewhere. Using
p and r , we define a measure μ on �A via a stochastic matrix N : RV → R

V and vertex
distribution ρ : V → R. For a vector v ∈ R

V , let v j denote the coordinate of v corresponding
to the vertex j ∈ V . The matrix N is defined as follows. If p(1)i �= 0 then set

Ni, j = Ai, j p(1) j
λp(1)i

and if p(1)i = 0 let Ni,i = 1 or Ni, j = 0 when i �= j . The vertex distribution ρ is defined
by

ρ( j) = p(1) j r(v∗) j .

As for the usual construction of Markov measures, this defines a σ -invariant measure on�A.
We normalise this measure to obtain the probability measure μ. There is a nice description
of μ in terms of thermodynamic formalism.

Proposition 4.2 There exists 0 < αi < 1 for i = 1, . . . ,m with
∑m

i=1 αi = 1 such that

μ =
m∑

i=1

αiμi , (4.1)

where each μi is the measure of maximal entropy for the system (�Bi , σ ).

Proof Choose amaximal component Bi . One can check that the vector obtained from restrict-
ing p(1) or r(v∗) to the vertices in Bi is a right or left eigenvector respectively for Bi (with
eigenvalue λ). Then by comparing the construction of μ to Parry’s construction of the mea-
sure of maximal entropy for a subshift of finite type [15], we see that the restriction of μ to
the maximal component �Bi is up to scaling, the measure of maximal entropy μi on this
component. Furthermore, from the definitions of p and r and the fact that μ is σ -invariant, it
is clear thatμ assigns zero mass to the complement of the union of the maximal components.
The result follows. ��
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Typical behaviour along geodesic rays in hyperbolic groups 719

Let A′ denote the matrix A with the row/column corresponding to the 0 vertex removed.

Definition 4.3 Define sets Y , Y1, . . . , Ym ⊂ �A′ by

Y = {x ∈ �A′ : x0 = ∗},
Yi = {x ∈ Y : x eventual enters Bi and never leaves}.

Let h : Y → ∂G be the natural map associated to the bijection defined in Definition 2.2.
Given y ∈ Y , we use h(y)n to denote the nth step in the geodesic ray determined by y.

There is a unique measure ν̂ on Y that pushes forward under h to the Patterson–Sullivan
measure on ∂G. We denote the pushforward map by h∗ so that h∗ν̂ = ν. The measure ν̂

can be constructed as in Section 4 of [5]. We will not provide the construction here but will
instead present the properties of ν̂ that we require for our proofs. One of these properties
is the following. We can explicitly calculate the ν̂ measure of certain subsets of �A′ called
cylinder sets. Given a finite path in G let [y] to denote the elements in �A′ that have y as an
initial segment.

Lemma 4.4 Let y be a finite path in G starting at ∗. We have that

ν̂([y]) = p(1)vy
p(1)∗

λ−|y|,

where |y| is the length of y and vy denotes the last vertex in y.

Proof This is a simple calculation that can be found in Section 4 of [5]. Note that in this
work, we are using a slightly different scaling for ν̂. This introduces the p(1)∗ term, which
is not present in [5]. ��
For k ∈ Z≥0, let σ k∗ ν̂ denote the pushforward of ν̂ under σ k . The following lemma compares
these pushforward measures to the measure μ.

Lemma 4.5 For each v ∈ V with μ[v] > 0 and k ∈ Z≥0 there exists αk
v ≥ 0 such that

σ k∗ ν̂|[v] = αk
vμ|[v].

There exists a length k path from ∗ to v if and only if αk
v > 0. If μ[v] = 0 we define

αk
v = ν̂(σ−k[v]) for all k ∈ Z≥0. Furthermore,

1

n

n∑

k=0

αk
v =

{
1 + O(n−1) if μ[v] > 0

O(n−1) if μ[v] = 0.

The implied constants can be taken to be independent of v and n.

Proof This is a consequence of Lemma 4.1, the construction of ν̂ and the proof of Lemma
4.22 in [5]. A simple calculation using the definition of ν̂ shows the existence of αk

v satisfying
the first condition of the lemma. The convergence associated to the final statement is proved in
Lemma 4.22 of [5]. By inspecting the proof of this lemma, we see that Lemma 4.1 quantifies
the convergence as O(n−1). ��
It follows that

1

n

n∑

k=0

σ k∗ ν̂

converges in the weak star topology to the measure μ. There is a much stronger relationship
between ν̂ and μ however. Given two measures, λ1 and λ2 on �A, recall that their total
variation ‖λ1 − λ2‖T V is given by supE⊂�A

|λ1(E) − λ2(E)|.
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720 S. Cantrell

Proposition 4.6 We have that,
∥
∥
∥
∥
∥
∥

1

n

n∑

j=0

σ
j∗ ν̂ − μ

∥
∥
∥
∥
∥
∥
T V

= O(n−1)

as n → ∞.

Proof For any E ⊂ �A,
∣
∣
∣
∣
∣
∣

1

n

n∑

j=0

σ
j∗ ν̂(E) − μ(E)

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

1

n

n∑

j=0

∑

v∈V

(
σ

j∗ ν̂|[v](E) − μ|[v](E)
)
∣
∣
∣
∣
∣
∣

≤
∑

v∈V
μ[v]>0

∣
∣
∣
∣
∣
∣

1

n

n∑

j=0

α j
v − 1

∣
∣
∣
∣
∣
∣
+

∑

v∈V
μ[v]=0

∣
∣
∣
∣
∣
∣

1

n

n∑

j=0

α j
v

∣
∣
∣
∣
∣
∣
,

where α
j
v are as defined in the previous lemma. Applying the previous lemma concludes the

proof. ��
We will need the following definition and lemma later.

Definition 4.7 For each j ∈ Z≥0 let

A j =
⎛

⎝σ− j

(
⋃

i

�Bi

)

\
j−1⋃

k=0

σ−k

(
⋃

i

�Bi

)⎞

⎠ ∩ Y .

Then, for each n ∈ Z≥0, define a measure ν̂n on �A′ by

ν̂n(E) = ν̂

⎛

⎝E ∩
n⋃

j=0

A j

⎞

⎠

for E ⊂ �A′ .

Intuitively, each A j consists of elements in �A′ that correspond to a path in G that starts at ∗,
enters a maximal component on exactly its j th step and then never leaves this component.

Lemma 4.8 There exists 0 < θ < 1 such that ‖̂νn − ν̂‖T V = O(θn), as n → ∞. The
implied constant is independent of n.

Proof We claim that

ν̂

⎛

⎝
⋃

j>n

A j

⎞

⎠ → 0

exponentially quickly as n → ∞. To see this, note that the number of length n paths in G
that start at ∗ and do not enter a maximal component is O((λ − δ)n) for some 0 < δ < λ.
Combining this observation with Lemma 4.4 implies that there exists C > 0 independent of
j, n such that

ν̂

⎛

⎝
⋃

j>n

A j

⎞

⎠ ≤ C
∑

j>n

(
λ − δ

λ

) j

.
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This proves the claim. Along with Lemma 4.4, this shows that Y\ ∪m
i=1 Yi can be written as

a countable union of zero ν̂ measure sets. Hence ν̂
(
Y\ ∪m

i=1 Yi
) = 0 and for any E ⊂ Y ,

ν̂(E) − ν̂n(E) = ν̂

⎛

⎝E ∩
⋃

j>n

A j

⎞

⎠ ≤ ν̂

⎛

⎝
⋃

j>n

A j

⎞

⎠ .

Applying the claim a further time concludes the proof. ��

We end this section by observing that, for any E ⊂ ∪i�Bi ,

σ
j∗ ν̂(E) = σ

j∗ ν̂ j (E). (4.2)

We are now ready to prove our results.

5 Proofs of results

Throughout the rest of the paper, suppose that ϕ : G → R satisfies Condition (1) and
Condition (2) and let f : �A → R be the function related to ϕ. Fix a bounded subset
H ⊂ C(G) (i.e. supg∈H {|g|} < ∞).

We begin by noting that Theorem 1.2 is equivalent to the fact that there exists 
 ∈ R for
which the set

U
 =
{

[γ̃ ] ∈ ∂G : lim
n→∞

ϕ(γ̃n)

n
= 


}

,

is well-defined and has full ν measure.

Lemma 5.1 For any 
 ∈ R the set U
 is well-defined and G-invariant.

Proof Since ϕ is Lipschitz in the right word metric, if [γ ] ∈ ∂G and g ∈ G, then there exists
C > 0 for which

|ϕ(γn) − ϕ(gγn)| ≤ C |g|
uniformly for n ∈ Z≥0. Hence

lim
n→∞

ϕ(γn)

n
= 
 if and only if lim

n→∞
ϕ(gγn)

n
= 
.

This proves G-invariance assuming that U
 is well-defined. To prove that U
 is well-defined
we can follow the same argument as above, this time using that ϕ is Lipschitz in the left word
metric. ��

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since the action of G on ∂G is ergodic with respect to ν, it suffices, by
Lemma 5.1, to prove that there exists 
 for which U
 has positive ν measure. Consider a
maximal component Bi . By the ergodic theorem, μ(E
) > 0, where

E
 =
{

y ∈ �Bi : f n(y)

n
→ 
 as n → ∞

}
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722 S. Cantrell

and
 = ∫
�Bi

f dμi . Hence by Proposition 4.6 there exists k ∈ Z≥0 forwhich σ k∗ ν̂(E
) > 0.

We now note that if y ∈ E
 and x ∈ ⋃
n≥0 σ−n({y}) then

lim
n→∞

f n(x)

n
→ 


as n → ∞. Hence,

ν̂

{

y ∈ Y : f n(y)

n
→ 
 as n → ∞

}

≥ σ k∗ ν̂(E
) > 0.

By Condition (1), for y ∈ Y , f n(yn) = ϕ(h(y)n) + O(1) where the implied constant
is independent of both n and y. Combining this with the fact that h∗ν̂ = ν implies that
ν (U
) > 0 and thus concludes the proof. ��
We now move on to the proof of Theorem 1.4. By replacing ϕ(·) with ϕ(·) − 
| · | and f (·)
with f (·) − 
, it suffices to prove Theorem 1.4 under the assumption that 
 = 0. We will
assume this from now on.

The intuition behind our proof of Theorem 1.4 is the following. By Proposition 4.6, μ is
obtained from averaging the pushforwards of ν̂. If we could therefore, in some sense, reverse
this averaging and express ν̂ in terms of μ, then we could use our knowledge of μ to learn
about ν̂. The relationship between these measures is particularly nice and allows us carry out
such a procedure.

Recall that we want to study the convergence of the following distributions.

Definition 5.2 Define, for n ∈ Z≥0 and x ∈ R,

Rn(x) = ν

{

[γ̃ ] ∈ ∂G : for all γ ∈ [γ̃ ] with γ0 ∈ H ,
ϕ(γn)√

n
≤ x

}

and

N (x, σ ) = 1√
2πσ

∫ x

−∞
e−t2/2σ dt .

We want to prove that there exists σ 2 ≥ 0 for which

‖Rn(x) − N (x, σ )‖∞ = O(n−1/4)

as n → ∞. To simplify notation we will express this as Rn = N (σ ) + O(n−1/4). We will
use the following fact multiple times.

Lemma 5.3 Let Fn, Hn : R → R be sequences of distributions and suppose that kn, ln are
sequences of integers with kn → ∞ and ln → ∞ as n → ∞. Suppose further that there
exists a constant C > 0 independent of n and x such that

Hn(x − Cl−1
n ) ≤ Fn(x) ≤ Hn(x + Cl−1

n ),

for all n, x. Then, if Hn = N (σ ) + O(k−1
n ), we have that Fn = N (σ ) + O(k−1

n , l−1
n ).

Proof This is a simple consequence of the fact that the derivative of N (σ ) is uniformly
bounded. ��
Our aim is to construct a sequence of distributions on Y with respect to ν̂ from which we can
gain an understanding of the Rn . The following two lemmas are the first step in achieving
this. The first lemma is an easy consequence of the hyperbolicity of G and so we exclude the
proof.
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Typical behaviour along geodesic rays in hyperbolic groups 723

Lemma 5.4 There exists C > 0 such that

sup
γ,γ ′∈[γ̃ ]
γ0,γ

′
0∈H

sup
n∈Z≥0

{dL(γn, γ
′
n)} < C

uniformly for [γ̃ ] ∈ ∂G.

Using this lemma we obtain.

Lemma 5.5 Define, for n ∈ Z≥0 and x ∈ R,

R̃n(x) = ν

{

[γ̃ ] ∈ ∂G : for some γ ∈ [γ̃ ] with γ0 ∈ H ,
ϕ(γn)√

n
≤ x

}

.

Then, if R̃n = N (σ ) + O(n−1/4), we have that Rn = N (σ ) + O(n−1/4).

Proof Clearly Rn(x) ≤ R̃n(x) for all x ∈ R and n ∈ Z≥0. Also, by the previous lemma and
the fact that ϕ is Lipschitz in the dL metric, there exists C > 0 independent of x and n such
that

R̃n(x − Cn−1/2) ≤ Rn(x),

for all x, n. Combining these two bounds and applying Lemma 5.3 concludes the proof. ��
The previous two lemmas show that, without loss of generality, we may assume that the
identity element of G belongs to H . We will assume this from now on. We can now construct
distributions on Y fromwhich we can deduce the convergence of Rn . Recall that given y ∈ Y ,
h(y)n for n ∈ Z≥0 denotes the nth group element in the geodesic ray determined by y.

Definition 5.6 Define distributions

Hn(x) = ν̂

{

y ∈
⋃

i

Yi : ϕ(h(y)n)√
n

≤ x

}

for n ∈ Z≥0 and x ∈ R.

The following lemma shows that to prove Theorem 1.4, it suffices to prove the analogous
statement for the distributions Hn .

Lemma 5.7 If Hn = N (σ ) + O(n−1/4) then Rn = N (σ ) + O(n−1/4).

Proof It is proven in [4] that h is surjective, see Lemma 3.5.1. Hence there exists K > 0
independent of n, x such that

Hn(x) ≤ ν̂

(

h−1
{

[γ̃ ] ∈ ∂G : for some γ ∈ [γ̃ ] with γ0 ∈ H ,
ϕ(γn)√

n
≤ x

})

≤ Hn(x + Kn−1/2),

for all n ∈ Z≥0 and x ∈ R. Since h∗ν̂ = ν,

ν̂

(

h−1
{

[γ̃ ] ∈ ∂G : for some γ ∈ [γ̃ ] with γ0 ∈ H ,
ϕ(γn)√

n
≤ x

})

= R̃n(x)

and applying Lemmas 5.3 and 5.4 completes the proof. ��
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724 S. Cantrell

The next step is to study the Hn . We do this by constructing distributions on ∪i�Bi with
respect to μ and then, by relating μ to ν̂, use these to understand the Hn distributions. To
simplify notation, we define, for x ∈ R and n ∈ Z≥0,

En(x) =
{

y ∈
⋃

i

Yi : f n(y)√
n

≤ x

}

⊂ Y .

The following lemma along with Proposition 4.6 will allow us to compare the ν̂ and μ

measures.

Lemma 5.8 For any sequence of integers kn such that kn → ∞ as n → ∞,

1

kn

kn∑

j=0

ν̂ j (En(x)) = ν̂(En(x)) + O(k−1
n ),

where the implied constant is independent of n, x.

Proof By Lemma 4.8 there exists 0 < θ < 1 such that for each j ∈ Z≥0,

ν̂ j (En(x)) = ν̂(En(x)) + O(θ j ),

where the implied constant is independent of j , n and x . Taking the average of
ν̂1(En(x)), . . . , ν̂kn (En(x)) and letting n → ∞ gives the result. ��

Wenow, usingwork from [7], describe how f distributes over�A with respect to themeasure
μ. Along with the previous lemma, this will allow us to deduce the convergence of the Hn

distributions.

Proposition 5.9 There exists σ 2 ≥ 0 such that for each x ∈ R,

μ

{

y ∈
⋃

i

�Bi : f n(y)√
n

≤ x

}

= N (x, σ ) + O(n−1/2)

as n → ∞ and the above error term is uniform in x ∈ R. Furthermore, σ 2 > 0 if and only
if

{[γ ] ∈ ∂G : {ϕ(γn) : n ∈ Z≥0} is unbounded
}

is non-empty.

Proof By Proposition 4.2, the measure μ is a weighted sum of the measures of maximal
entropy μi on each maximal component Bi . We obtain a central limit theorem, with mean

i and variance σi , for μi and f on each �Bi . Proposition 6.2 from [7] uses an argument
of Calegari and Fujiwara to show that 
i and σi do not depend on the maximal component
Bi (and by assumption 
i = 0 for each i = 1, . . . ,m). From this and the Berry–Esseen
Theorem for subshifts of finite type [8] we obtain the desired central limit theorem, with error
term, forμ and f . The criteria for positive variance follows from Lemma 7.2 and Proposition
7.7 of [7]. ��

We are now ready to prove Theorem 1.4.
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Proof of Theorem 1.4 By Lemma 5.7 it suffices to prove that for x ∈ R

Hn(x) = N (x, σ ) + O(n−1/4)

as n → ∞.
We begin by applying Propositions 4.6 and 5.9 to deduce that for any integer valued

sequence kn , with kn → ∞ as n → ∞,

1

kn

kn∑

j=0

σ
j∗ ν̂

{

y ∈
⋃

i

�Bi : f n(y)√
n

≤ x

}

= N (x, σ ) + O(k−1
n , n−1/2), (5.1)

as n → ∞, uniformly for x ∈ R. We then define, for n ∈ Z≥0 and x ∈ R,

C±
n (x) =

{

y ∈
⋃

i

�Bi : f n(y)√
n

≤ x ± 2kn | f |∞√
n

}

.

If we suppose further that kn = o(
√
n), then expression (5.1) implies that

1

kn

kn∑

j=0

σ
j∗ ν̂(C±

n (x)) = N (x, σ ) + O(knn
−1/2, k−1

n ). (5.2)

We now note that, by containment,

σ
j∗ ν̂ j (C

−
n (x)) ≤ ν̂ j (En(x)) ≤ σ

j∗ ν̂ j (C
+
n (x)) (5.3)

for all n, j ≤ kn and x . Recall that, by (4.2), σ
j∗ ν̂(C±

n (x)) = σ
j∗ ν̂ j (C±

n (x)) for all n, x .
Hence, if we choose kn = �n1/4�, then (5.2) along with inequality (5.3) imply that

1

kn

kn∑

j=0

ν̂ j (En(x)) = N (x, σ ) + O(n−1/4)

and so by Lemma 5.8,

ν̂(En(x)) = N (x, σ ) + O(n−1/4).

Lastly, using Lemma 5.3 and the fact that, for y ∈ Y , f n(yn) = ϕ(h(y)n) + O(1), it is easy
to see that

Hn(x) = ν̂(En(x)) + O(n−1/2) = N (x, σ ) + O(n−1/4),

concluding the proof. ��
Remark 5.10 The O(n−1/4) error term arises due to the fact that ν is supported on Y whereas
μ is supported∪i�Bi . To pass the central limit theorem in Proposition 5.9 to one for ν and Y ,
we need to compare the values f takes on Y to the values f takes on∪i�Bi . This comparison
introduces an error term that can be seen explicitly as the 2kn | f |∞n−1/2 terms in the sets
C±
n (x). In the case that A is aperiodic (or irreducible) this term is no longer needed since for

any y ∈ Y , σ(y) belongs to the only (necessarily maximal) component.

In [2] (see also [21]), Bowen and Series provide a geometrical condition for Fuchsian groups
and their generating sets that guarantees the existence of a coding �A described by an
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726 S. Cantrell

aperiodicmatrix. This condition is satisfied by the fundamental groups of compact hyperbolic
surfaces (i.e. surface groups) with presentation

〈

a1, . . . , ag, b1, . . . , bg

∣
∣
∣
∣

g∏

j=1

[a j , b j ]
〉

where g ≥ 2 is the genus of the surface. Free groups equippedwith their canonical generating
set also satisfy this condition. The above remark then implies the following.

Corollary 5.11 If G and ϕ : G → R satisfy the hypotheses of Theorem 1.4 and G is a free
group or surface group equipped with the generating set described above, then the error term
in Theorem 1.4 can be improved to O(n−1/2).

Remark 5.12 It seems plausible that the optimal error term in Theorem 1.4 is O(n−1/2). The
author has not pursued this however.
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