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Abstract
Let X be a proper algebraic variety over a non-archimedean, non-trivially valued field. We
show that the non-archimedean Monge–Ampère measure of a metric arising from a convex
function on an open face of some skeleton of X an is equal to the realMonge–Ampèremeasure
of that function up to multiplication by a constant. As a consequence we obtain a regularity
result for solutions of the non-archimedean Monge–Ampère problem on curves.
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1 Introduction

The non-archimedean analogue of the Calabi conjecture is still an open problem in
non-archimedean geometry. In the complex case it states that for a complex compact n-
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634 C. Vilsmeier

dimensional manifold M with a Kähler form ω and f ∈ C∞(M), f > 0 such that∫
M f ωn = ∫

M ωn there exists a unique up to constant ϕ ∈ C∞(M) such that ω + ddcϕ > 0
and (ω + ddcϕ)n = f ωn . This was solved by Calabi (uniqueness, [14]) and Yau (existence,
[45]). A strategy to attack the non-archimedean Monge–Ampère equation was proposed by
Kontsevich and Tschinkel in unpublished though influential notes dated around 2001. In
the non-archimedean setting, we fix a non-archimedean, non-trivially valued field K and a
smooth projective variety X over K of dimension n with a line bundle L on X and consider
the corresponding K -analytic space X an with the line bundle Lan in the sense of Berkovich.
To any continuous semipositive metric ‖ · ‖ on Lan one can associate a positive Radon mea-
sure c1(L, ‖ · ‖)n on X an, called the Monge–Ampère measure, which was introduced by
Chambert-Loir in [16]. In a non-archimedean analogue of the Calabi conjecture one asks for
a solution of c1(L, ‖ · ‖)n = μ for a positive Radon measure μ on X an of mass Ln when
L is ample. The uniqueness up to addition of a constant of such a solution was proved by
Yuan and Zhang in [46]. The existence was proved by Liu in [36] for the case of a totally
degenerate abelian variety X under some regularity assumptions on the measure by reducing
to the complex case. The best known existence result is due to Boucksom, Favre and Jonsson
[5, Theorem A]. They prove existence of a solution to the non-archimedean Monge–Ampère
equation if K is discretely valued of residue characteristic zero andμ is supported on the dual
complex of some SNC model of X . Note that they assumed also an algebraicity condition
which was later removed by Burgos et al. [7, Theorem D]. As such a dual complex consists
of faces which look like simplices in R

n it would be tempting to observe a connection of the
non-archimedean Monge–Ampère operator with the real one. This is the aim of the paper at
hand. In particular we will prove the following result (a precise definition of the occurring
measures is given in Sect. 4.):

Theorem 1.1 Let X be an n-dimensional proper algebraic variety over K , L = (L, ‖ · ‖)
a formally metrized line bundle on X an and τ an open face of dimension n of a skeleton
corresponding to a strictly semistable formal model X of X an on which L has a formal model
L. Let ϕ be a continuous function on Xan such that ‖ · ‖e−ϕ is a semipositive metric. Suppose
that ϕ factorizes through the retraction pX onto the skeleton. Then

c1(L, ‖ · ‖e−ϕ)n = [K̃ (S) : K̃ ] · n! · MA
(
ϕ

∣
∣
∣
τ

)

on p−1
X (τ ) where MA denotes the real Monge–Ampère operator on τ which is considered

to be a measure on p−1
X (τ ) by pushforward via the inclusion and S denotes the point in the

special fibre of X which is the image of τ under the reduction map.

The paper is organized as follows: In Sect. 2 we give an overview over basic concepts in
formal geometry. We recall the definition of a strongly nondegenerate strictly polystable
formal scheme and its associated skeleton introduced in [3] and explain the stratum face
correspondence developed in [32]. At the end of the section we construct a Cartier divisor
from a piecewise affine linear function on the skeleton and prove an important lemma dealing
with the degree with respect to this divisor in the case of an affine linear function.

In Section 3we collect basic definitions and facts onmetrized line bundles. Following [25]
we introduce piecewise linear, algebraic and formal metrics and the notion of semipositivity
for them. We also recall some useful properties and the situations in which the definitions
coincide.

In Sect. 4 we recall the definitions of the real and non-archimedean Monge–Ampère
measure but we define the latter on strictly K -analytic Hausdorff spaces which locally admit
open immersions into analytifications of schemes of finite type over the field K . In order
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A comparison of the real and non-archimedean Monge–Ampère operator 635

to do so, we prove a convergence result for these spaces. This will allow us to formulate
Theorem 1.1 in a more general setting where everything is defined locally, see Corollary 5.7.

Section 5 is subject to the proof of Theorem 1.1. In fact in Corollary 5.7, we prove a
local generalization of this result. It will follow from Lemma 4.8 and Corollary B.4 that
Corollary 5.7 implies Theorem 1.1. We will also generalize the local result in Corollary 5.10
to strongly nondegenerate polystable formal models of X an i.e. we will prove:

Theorem 1.2 Let X be an n-dimensional proper algebraic variety over K and X a strongly
nondegenerate polystable formal model of X an over K ◦ with associated skeleton �. Let τ be
an n-dimensional open face of � with associated point S in the special fibre of X. Let h be a

convex function on τ and denote by Oh◦pX the trivial line bundle on the strictly K -analytic
space p−1

X (τ ) endowed with the metric given by ‖1‖ = e−h◦pX . Then

c1
(
Oh◦pX

)n = [K̃ (S) : K̃ ] · n! · MA(h)

on p−1
X (τ ).

The proof is inspired by the proof of [32, Theorem 5.18]. In order to reduce to the toric
situation, a key ingredient will be Lemma 2.13, showing that affine linear functions on a
closed face of a skeleton induce numerically trivial vertical Cartier divisors on a suitable part
of the corresponding formal model.

Finally, in Sect. 6, we apply Theorem 1.1 to obtain two regularity results for solutions to
the non-archimedean Calabi–Yau problem. For example we will prove in Proposition 6.4:

Proposition 1.3 Let X be a smooth projective curve, μ a positive Borel meausre on X an and
ϕ a solution to the Monge–Ampère equation c1(L, ‖ · ‖e−ϕ) = μ. Let τ be an open face of
a skeleton associated to a strictly semistable formal model of X an on which (L, ‖ · ‖) has
a formal model. Suppose that μ is supported on that skeleton and is given on τ by f · dx
where dx denotes the Lebesgue measure on τ . If f ∈ Ck(τ ) then we have ϕ

∣
∣
∣
τ

∈ Ck+2(τ ).

HereCk(τ ) is the space of k times continuously differentiable functions on τ . Proposition 1.3
follows from Theorem 1.1 and regularity of the real Monge–Ampère equation.
Terminology In the following, K denotes a complete, non-archimedean, non-trivially valued
field and K ◦ its corresponding valuation ring with maximal ideal K ◦◦. All schemes are
assumed to be locally of finite type.

2 Skeletons, formal models and divisors

In this section we first define formal schemes and their generic and special fibres. For details
we refer to [12, II.7, II.8.3]. Then we recall the concept of skeletons associated to strongly
nondegenerate strictly polystable formal schemes introduced by Berkovich [3]. To a subdi-
vision of the skeleton, one can associate a formal analytic structure as in [32, Proposition
5.5]. We generalize the subsequent results of [32, Sect. 5] concerning the stratum face cor-
respondence by dropping the condition of algebraically closedness of the base field. Finally
we explain how a piecewise affine linear function on the skeleton induces a Cartier divisor
on the formal scheme corresponding to a suitable subdivision of the skeleton.

Definition 2.1 Let Y be a reduced scheme of locally finite type over a field κ . Set Y (0) :=
Y and let Y (i+1) be the complement of the set of normal points in Y (i). The irreducible
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636 C. Vilsmeier

components of Y (i)\Y (i+1) are called strata of Y . There is a partial ordering on the set of
strata given by R1 ≤ R2 if and only if R1 ⊆ R2. A cycle Z ∈ Z(Y ) is called a strata cycle
if there are strata S1, . . . , Sn of Y such that Z = ∑

mi Si with mi ∈ R.

Definition 2.2 A topological ring A is called adic if there is an ideal a ⊆ A such that the
ideals (an)n∈N form a neighbourhood basis for 0. We call a a defining ideal. Let A be an adic,
complete, separated ring with finitely generated defining ideal a. The affine formal scheme of
A is the locally topologically ringed space Spf(A) = (X,OX) where X and OX are defined
as follows: X is the set of all open prime ideals of A. As a prime ideal is open if and only
if it contains a, we may identify X with Spec(A/a) ⊆ Spec(A) and we endow X with the
topology induced by the Zariski topology on Spec(A). Moreover we define

OX := lim← OSpec(A/an).

A formal scheme is a locally topologically ringed space (X,OX) such that for each x ∈ X

there is an open neighbourhood U of x with
(
U,OX

∣
∣
∣
U

)
isomorphic to an affine formal

scheme.
Now let a be a defining ideal of K ◦. A topological K ◦-algebra A is called admissible,

if
{

a ∈ A
∣
∣
∣ an · a = 0 for some n ∈ N

}
= {0} i.e. A does not have K ◦-torsion and if A is

isomorphic to a K ◦-algebra of the form K ◦〈ζ1, ..., ζn〉/(a1, ..., am) endowed with the a-adic
topology. A formal K ◦-scheme X is called admissible if there is a locally finite open cover
(Ui )i∈I of X with Ui = Spf(Ai ) for admissible K ◦-algebras Ai .

Let X = Spf(A) be an admissible formal affine K ◦-scheme. The analytic generic fibre
of X is defined as Xan := M(A ⊗K ◦ K ), where M(·) denotes the Berkovich spectrum (cf.
[1, 1.2]). The special fibre of X is given by X̃ := Spec(A ⊗K ◦ k), where k := K ◦/K ◦◦
is the residue field of K . For an admissible formal K ◦-scheme X one obtains the generic
and the special fibre by a gluing process. There is a canonical surjective reduction map
red : Xan → X̃, see [28, Sect. 2.13].

Definition 2.3 For n ∈ N>0 and a ∈ K ◦◦ we define

X(n, a) := Spf(K ◦〈x0, ..., xn〉/(x0...xn − a)).

For tuples n = (n0, ..., n p) ∈ N
p+1
>0 and a = (a0, ..., ap) ∈ (K ◦◦)p+1 we define X(n, a) :=

X(n0, a0)×K ◦ ...×K ◦X(n p, ap) and form ∈ Nwe setX(m) := X(m, 1). A strictly polystable
formal scheme over K ◦ is an admissible formal scheme X over K ◦ which can be covered by
formal open sets U with étale morphisms

ψ : U → X(n, a, m) := X(n, a) ×K ◦ X(m)

wheren, a andm maydependonU.We say thatX is strongly nondegenerate strictly polystable
if all ai can be chosen nonzero.

To a strongly nondegenerate strictly polystable formal scheme X over K ◦ Berkovich
introduced in [3] a canonical polytopal subset S(X) of Xan called the skeleton. It is
a closed subset of Xan which is locally given by canonical polysimplices and can be
described as follows. Let ψ : U → X(n, a, m) be an étale morphism as above.
The generic fibre of the right hand side is given as X(n, a, m)an = M (A) where
A = (K 〈T ±

0 , ..., T ±
m 〉)〈T00, ..., Tp,n p 〉/(T00...T0,n0 −a0, ..., Tp0...Tp,n p −ap). The elements

of A can be expressed as
∑

μ aμT μ with aμ ∈ K 〈T ±
0 , ..., T ±

m 〉 and aμ = 0 if there is an
i ∈ {0, ..., p} such that μi,k ≥ 1 for all k ∈ {0, ..., ni }. Now to an element t in the polysim-

plex
{
t ∈ R

n+1
≥0

∣
∣
∣ ti0 + ... + tini = − log(|ai |), 0 ≤ i ≤ p

}
we associate a seminorm on A
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by sending a power series as above to maxμ{|aμ| exp(−t · μ)}. This gives an embedding of
the polysimplex intoM (A) whose image is denoted by �. The skeleton S(U) of U is defined
to be (ψan)−1(�). One can show that ψan induces a homeomorphism from (ψan)−1(�) to
� if U has a unique minimal stratum which maps to the minimal stratum of X(n, a, m). The
skeleton S(X) of X is the union of all S(U) and is independent of all choices.

To a stratum S of X one can associate a canonical polysimplex �S in the skeleton such
that the interiors of the �T form a disjoint cover of S(X) where T ranges over all strata of X̃.
In order to do so, we choose a refinement of the cover of X as described in the Proposition
below and choose U such that S is its distinguished stratum. We then define �S := S(U).

An admissible formal schemeX is called strongly nondegenerate polystable if there exists
a strongly nondegenerate strictly polystable formal schemeX′ and a surjective étalemorphism
X′ → X. The skeleton of X is defined to be the image of the skeleton of X′ under the map
X′an → Xan.

One can endow the skeleton with a piecewise linear structure, see [4, Sect. 6]. We will
define piecewise affine linear functions on the skeleton of a strongly nondegenerate strictly
polystable formal scheme in Definition 2.10. There is a canonical continuous retraction map
pX : Xan → S(X) which restricts to the identity on S(X). For details see [3, Sect. 4], [4,
Sect. 4] or [32, 5.3].

We have the following stratum face correspondence due to Berkovich:

Proposition 2.4 Let X be a strongly nondegenerate polystable formal scheme with skeleton
�. There is a bijective correspondence between the open faces of � and the strata of X̃ given
by

R = red(p−1
X (τ )), τ = pX(red−1(R)).

Proof [3, Theorem 5.2 (iv), Theorem 5.4]. ��
Proposition 2.5 Let X be a strongly nondegenerate strictly polystable formal scheme over
K ◦. Any formal open covering of X admits a refinement {U′} by formal open subsets U′ as in
Definition 2.3 such that

(i) Every U′ is a formal affine open subscheme of X,
(ii) there is a distinguished stratum S of X̃ associated to U′ such that for any stratum T of

X̃, we have S ⊆ T if and only if Ũ′ ∩ T �= ∅,
(iii) ψ̃−1({0̃} × X̃(m)) is the stratum of Ũ′ which is equal to Ũ′ ∩ S for the distinguished

stratum S associated to U′,
(iv) every stratum of X̃ is the distinguished stratum of a suitable U′.

Proof The very same arguments as in [32, Proposition 5.2] apply to our situation. ��
From now on let X be a strongly nondegenerate strictly polystable formal scheme over K ◦
and denote by 	 the value group of K . For the basic notions of convex geometry we refer
to [33, Appendix A]. We will work with 	-rational polytopal subdivisions D of S(X), i.e.
D is a family of 	-rational polytopes contained in a canonical polysimplex such that for

every stratum S of X̃ the set
{
� ∈ D

∣
∣
∣ � ⊆ �S

}
is a polytopal decomposition of �S . Here

a polytopal decomposition means a finite family of polytopes covering �S which is closed
under taking faces and such that the intersection of two polytopes in the family is a face of
both and a 	-rational polytope means a polytope which is defined by inequalities of the form
mx + c ≥ 0 with m ∈ Z

r , c ∈ 	.
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638 C. Vilsmeier

Construction 2.6 LetD be such a subdivision. We will construct a canonical formal scheme
X′′ over K ◦ associated toD together with a morphism ι : X′′ → Xwhich induces the identity
on the generic fibre such that there is a one to one correspondence between the open faces
ofD and the strata of X̃′′. First of all we choose a covering of X as in Proposition 2.5. Let U
be a member of this covering with an étale morphism ψ : U → X(n, a, m) and let S be the
distinguished stratum of U. For � ∈ D ∩ �S we set

A′ :=
{

∑

μ

aμT μ ∈ K ((T00, ..., Tp,n p ))

∣
∣
∣ ∀u∈� : lim v(aμ) + u · μ = ∞

}

and A := A′/(T00...T0,n0 − a0, ..., Tp0...Tp,n p − ap) and define

A� :=
{

∑

μ

aμT μ ∈ A
∣
∣
∣ ∀u∈�,μ∈Zn+1 : v(aμ) + μ · u ≥ 0

}

and U� := Spf A�. If �1,�2 ∈ D∩ �S then �1 ∩ �2 is a face of both and by transferring
the arguments in [33, Proposition 6.12] to the analytic situation, we obtain that the canonical
morphisms U�1∩�2 → U�i are open immersions. Hence we can glue the U� along this
data to obtain a formal scheme which we denote by X(n, a)′ together with a morphism
ι′ : X(n, a)′ → X(n, a). Let ψ ′ : U′′ → X(n, a)′ × X(m) be the base change of ψ

with respect to ι′ × Id. The construction of U′′ does not depend on the choice of ψ up to
isomorphism: Let ρ : U → X(n, a, m) be another étale morphism. Then up to reordering
the coordinates, ρ∗xi = uiψ

∗xi for some ui ∈ O(U)×. Then we have canonical K ◦-algebra
isomorphisms:

O(U)⊗̂ψ∗ A� → O(U)⊗̂ρ∗ A�,

a ⊗ xi �→ ui a ⊗ xi ,

which yield an isomorphism of the U′′ constructed with ψ respectively ρ.
We glue the U′′ to obtain our formal scheme X′′. Although X′′ might not be admissible, we
can define its generic fibre and reduction map in the usual way as the algebras A� ⊗K ◦ K
are strictly K -affinoid (see [33, Proposition 6.17]). Then ι induces the identity on the generic
fibres and we set pX′′ := pX. Note that X′′ is admissible if the vertices of the polytopes in
D are 	-rational, in particular the base change of X′′ to the valuation ring of the completion
of an algebraic closure of K is admissible, see [33, Proposition 6.7].

Remark 2.7 If D is trivial i.e. � ∈ D only if � = �S for some stratum S of X̃ then it is an
immediate consequence from the construction that X′′ = X.

Wewill frequently use the following generalization of [32, Proposition 5.7]which is a stratum
face correspondence for the X′′ constructed above.

Proposition 2.8 Let X be a strongly nondegenerate strictly polystable formal scheme with
skeleton � and D a subdivision of � with associated formal structure X′′. Then there is a
bijective correspondence between the open faces of D and the strata of X̃′′ given by

R = red(p−1
X′′(τ )), τ = pX′′(red−1(R)).

Furthermore, in the second equality, R can be replaced by any nonempty subset of R.

Proof We follow the proof of [32, Proposition 5.7] but in order to establish the result for
an arbitrary non-archimedean field K (not necessarily algebraically closed), we use [33,
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Proposition 6.22] instead of [31, Proposition 4.4]. Let τ be an open face of D. We prove
first that R := red(p−1

X′′(τ )) is a stratum of X̃′′. There is a unique stratum S of X̃ such that
τ is contained in the interior of �S . Let U be a formal open subset of X such that S is the
distinguished stratum of U (Proposition 2.5). As strata are compatible with localization we
may assume X = U. Let ψ ′

1 : X′′ → X(n, a)′ be the base change of the composition of
the étale map ψ : X → X(n, a, m) with the projection on the first factor X(n, a). By [33,
Proposition 6.22] the first part of the proposition holds for X(n, a)′. Let T be the stratum of
X(n, a)′ corresponding to τ , i.e.

τ = pX(n,a)′(red
−1(T )) (2.1)

and

T = red(p−1
X(n,a)′(τ )) (2.2)

where pX(n,a)′ : X(n, a)′an → �S is the retraction map. We prove R = ψ̃ ′−1
1 (T ). First we

observe that

red((ψ ′an
1 )−1(p−1

X(n,a)′(τ ))) = ψ̃ ′−1
1 (red(p−1

X(n,a)′(τ ))).

The inclusion ⊆ is clear because red ◦ψ ′an
1 = ψ̃ ′

1 ◦ red. The other inclusion follows from
this fact and an application of [33, Proposition 6.22]. For details we refer to the proof of [32,
Proposition 5.7]. We conclude

R = red(p−1
X′′(τ )) = red((ψ ′an

1 )−1(p−1
X(n,a)′(τ ))) = ψ̃ ′−1

1 (red(p−1
X(n,a)′(τ )))

(2.2)= ψ̃ ′−1
1 (T ).

By [3, Lemma 2.2] R is a strata subset. To see that R is indeed a stratum it is enough to show
that R is irreducible. But this follows from

ψ̃ ′−1
1 (T ) = (T × X̃(m)) ×X̃(n,a,m)′ X̃

′′

∼= (T × X̃(m)) ×{0̃}×X̃(m)
ψ̃−1({0̃} × X̃(m)) ∼= T × S,

where the latter is irreducible by [27, Corollaire 4.5.8 (i)]. As the open faces of D cover �,
every stratum of X̃′′ is obtained this way. It remains to prove that we can recover τ from R.
First note that

pX′′((ψ ′an
1 )−1(red−1(T ))) = pX(n,a)′(red

−1(T )).

The inclusion ⊆ is clear because pX′′ = pX(n,a)′ ◦ ψ ′an
1 . For the other inclusion, let x ∈

pX(n,a)′(red−1(T )) = τ . As the sets red−1(T ′) with T ′ varying over the strata of X̃(n, a)′
cover X(n, a)′an and using [33, Proposition 6.22] and the fact the pX(n,a)′ restricts to the
identity on � we deduce x ∈ red−1(T ). Hence x is an element of the left hand side which
proves the equality claimed in the display. Now the rest is an easy calculation:

pX′′(red−1(R)) = pX′′(red−1(ψ̃ ′−1
1 (T )))

= pX′′((ψ ′an
1 )−1(red−1(T )))

= pX(n,a)′(red
−1(T ))

(2.1)= τ.

Finally we want to show that R may be replaced by a nonempty subset Y of R. Clearly,
the arguments in [32, Proposition 5.7] generalize to the polystable situation, so we presume
the claim for K algebraically closed and show how to drop this assumption. Let CK be the
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640 C. Vilsmeier

completion of an algebraic closure of K . We denote by π : X′′
CK

→ X′′ the base change

of X′′ to C
◦
K . Let R′ be the union of the strata of X̃′′

CK
lying over R. Then π induces a

surjection pX′′
CK

(red−1(R′)) � pX′′(red−1(R)) as the strata in R′ correspond to open faces
lying over τ . Let Y ′ be a lift of Y in R′. By [32, Proposition 5.7] we have pX′′

CK
(red−1(Y ′)) =

pX′′
CK

(red−1(R′)). Clearly pX′′(red−1(Y )) ⊆ pX′′(red−1(R)) and hence it is enough to show

that the restriction of π to pX′′
CK

(red−1(Y ′)) factors through pX′′(red−1(Y )). We have the

following commutative diagram:

S(X′′
CK

)

π

pX′′
CK

(red−1(Y ′)) red−1(Y ′)
pX′′

CK

π

red
Y ′

π

S(X′′) red−1(Y )
pX′′ red

Y

Let x ∈ pX′′
CK

(red−1(Y ′)) and y ∈ red−1(Y ′) with pX′′
CK

(y) = x then π(x) =
π(pX′′

CK
(y)) = pX′′(π(y)) ∈ pX′′(red−1(Y )). This proves the claim. ��

Corollary 2.9 Let R be a stratum of X̃′′ corresponding to the open face τ of D.

(a) dim(τ ) = codim(R, X̃′′).
(b) S := ι̃(R) is a stratum of X̃.

(c) R
ι̃→ S is a fibre bundle with fibre T where T is the dim(R)− dim(S) dimensional torus

orbit from the proof of Proposition 2.8.
(d) Every stratum of X̃′′ is smooth.
(e) The closure R̄ is the union of all strata of X̃′′ corresponding to open faces σ of D with

τ ⊆ σ̄ .
(f) For an irreducible component Y of X̃′′, let ζY be the unique point of Xan with reduction

equal to the generic point of Y . Then Y �→ ζY is a bijection between the irreducible
components of X̃′′ and the vertices of D.

Proof The statements can be proven the sameway as in [32, Corollary 5.9]. In order to bypass
the algebraically closedness of the base field one can use [33, Proposition 6.22] instead of
[31, Proposition 4.4] for (a), [33, Proposition 6.22] instead of [31, Remark 4.8] for (e) and
[33, Proposition 6.14] instead of [31, Proposition 4.7] for (f). ��
Definition 2.10 Let� be a skeleton associated to a strongly nondegenerate strictly polystable
formal scheme X′ over K ◦. A continuous function h : � → R is called piecewise affine
linear if there exists a 	-rational polytopal subdivision D of � such that for any canonical
polysimplex�S of�, any formal open subsetψ : U → X(n, a, m) ofX′ whose distinguished
stratum is S and any �′ ∈ D with �′ ⊆ �S , there exist m ∈ Z

n+1 and α ∈ K × such that

h
∣
∣
∣
�′ = (m · x + v(α)) ◦ ψan

∣
∣
∣
�′ (see Definition 2.3 for the notation and setting).

Proposition 2.11 Let X′ be a strongly nondegenerate strictly polystable formal scheme over
K ◦ with associated skeleton S(X′) and h a piecewise affine linear function on S(X′). Let
D be a 	-rational polytopal subdivision of S(X′) suitable for h as in Definition 2.10 and
ι : X′′ → X′ be the canonical formal scheme over X′ associated to D (see Construction 2.6).
Then h induces a canonical Cartier divisor D on X′′ which is trivial on the generic fibre. If
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X′′ is admissible, then D has the property that ‖1‖O(D) = e−h◦pX′ where ‖ · ‖O(D) is the
formal metric on OX′an given by the formal model O(D) of OX′an (see Definition 3.1).

Proof As in Construction 2.6, we cover X′ by étale maps ψ : U → X(n, a, m) = X(n, a) ×
X(m) and for each U and � ∈ D with � ⊆ Uan we obtain the affine formal scheme U�. We
write ψ ′ : U′′

� → U� for the base change with respect to ψ and obtain a cover of X′′. On
� ∈ D, h is given by mx + v(α) with m ∈ Z

n+1, α ∈ K ×. We define D locally on U′′
�′ by

ψ ′∗(α · xm). Then D is indeed a Cartier Divisor on X′′ as for U1,U2,�1,�2 as above and
U := U1 ∩U2 we have α1 · xm1/α2 · xm2 ∈ O(U�1∩�2)

× sincem1x+v(α1) = m2x+v(α2)

on �1 ∩ �2. Hence

ψ ′∗
1 (α1 · xm1)/ψ ′∗

2 (α2 · xm2)

∣
∣
∣
U′′

�1∩�2

= ψ ′∗(α1 · xm1/α2 · xm2) ∈ O(U′′
�1∩�2

)×

and therefore ψ ′∗
1 (α1xm1)/ψ ′∗

2 (α2xm2) ∈ O(U′′
1,�1

∩ U′′
2,�2

)×. Furthermore D is trivial on
the generic fibre, as α · xm ∈ O(X(n, a)an)×. ��
Remark 2.12 Note that we can ensure that X′′ is admissible and hence a formal model by
performing base change to the completion of an algebraic closure of K (see Construction 2.6)
which will be enough for our purposes.

Lemma 2.13 In the situation of Proposition 2.11 let τ be an open face of the skeleton � of
dimension equal to the dimension of X′an and assume that h is affine linear on τ̄ . Let D be
the induced Cartier divisor on X′′ and Y a proper curve in X̃′′ with Y ⊆ redX′′(p−1

X′′(τ )) e.g.

if Y lies inside an irreducible component of X̃′′ corresponding to a vertex u ∈ τ of D. Then
deg(D.Y ) = 0.

Proof Note that we do not assume τ̄ ∈ D. But by passing to the formal open subscheme
of X′ consisting of the formal open subsets U with S(U) = τ̄ , we may assume � = τ̄ and
then the polytopal subdivision D′ consisting the polytope τ̄ and its faces is suitable for h.
The corresponding formal scheme is X′. Let D′ be the Cartier divisor on X′ induced by h
as in Proposition 2.11. Notice that by construction we have D = ι∗ D′. Now ι is proper by
[41, Corollary 4.4] (the result requires X′′ to be admissible but by [27, Proposition 2.7.1] it
is enough to check properness after base change to the completion of an algebraic closure of
K , after whichX′′ is always admissible, see Construction 2.6). Hence the projection formula
yields deg(D.Y ) = deg(D′.ι∗Y ). Now

ι(Y ) ⊆ ι(redX′′(p−1
X′′(τ ))) = redX′(p−1

X′ (τ )),

where the latter is the stratum in X̃′ corresponding to τ and hence a point. Therefore D′.ι∗Y =
0. ��

3 Metrics

In this section we introduce metrics on line bundles on strictly K -analytic spaces. This
includes piecewise linear, algebraic and formal metrics. We will see that under certain con-
ditions they are all the same. The main reference is [25].

Definition 3.1 Let X be a strictly K -analytic space and L a line bundle on X , i.e. a locally
free sheaf of rank 1 on the G-topology. A continuous metric ‖ · ‖ on L is a function which
asserts to any admissible open subset U ⊆ X and any section s ∈ 	(U , L) a continuous
(with respect to the Berkovich topology) function ‖s(·)‖ : U → R≥0 such that:
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(i) For an admissible open subset V ⊆ U we have
∥
∥
∥s

∣
∣
∣
V
(·)

∥
∥
∥ = ‖s(·)‖

∣
∣
∣
V
,

(ii) for f ∈ 	(U ,OX ) we have ‖ f s(·)‖ = | f (·)|‖s(·)‖,
(iii) for p ∈ U we have ‖s(p)‖ = 0 if and only if s(p) = 0.

Given a formal model (X,L) of (X , L) one can define an associated so called formal metric
‖ · ‖L on L in the following way: If s is a local frame of L on a formal open subset U ⊆ X

we define ‖ f s(·)‖L = | f (·)| on Uan for any f ∈ 	(Uan,Oan
X ). As this is independent of the

choice of s and Xan is covered by such sets, this gives a well-defined metric on L .

Remark 3.2 Wewillworkwith paracompact (i.e.Hausdorff and every open cover has a locally
finite refinement) strictly K -analytic spaces. As discussed in [25, 2.2] the category of these
spaces is equivalent to the category of quasiseparated rigid analytic varieties over K with
a strictly K -affinoid G-covering of finite type ([2, 1.6]). This allows us to apply Raynaud’s
theorem ([12, Theorem 8.4.3]) which shows that formal K ◦-models of paracompact strictly
K -analytic spaces exist and that the set of isomorphism classes of formal K ◦-models is
directed.

Proposition 3.3 Let X be a paracompact strictly K -analytic space, L a line bundle on X and

W a compact strictly K -analytic domain of X. Then every formal metric on L
∣
∣
∣
W

extends to

a formal metric on L.

Proof [25, Proposition 2.7]. ��
Definition 3.4 Let X be a proper scheme over K and L a line bundle on X . An algebraic
K ◦-model of X is a proper flat schemeX over K ◦ with a fixed isomorphism from the generic
fibreXη to X . An algebraic K ◦-model of (X , L) is a pair (X ,L ) whereX is an algebraic

K ◦-model of X and L is a line bundle on X with a fixed isomorphism from L
∣
∣
∣

X
to L .

An algebraic K ◦-model of (X , L) gives rise to a formal K ◦-model of (X an, Lan) by formal
completion. Hence by the above, an algebraic model of (X , L) induces a formal metric on
Lan. We call such metrics algebraic metrics.

Proposition 3.5 Let X be a proper scheme over K and L a line bundle on X. Then a formal
metric on Lan is the same as an algebraic metric.

Proof [23, Proposition 8.13], see also [25, Remark 2.6]. ��
Definition 3.6 Let X be a strictly K -analytic space and L a line bundle on X . A metric ‖ · ‖
on L is called piecewise linear if there is a G-covering (Vi )i∈I and frames si of L over Vi

for every i ∈ I such that ‖si (·)‖ = 1 on Vi .

Proposition 3.7 Let X be a strictly K -analytic space and L a line bundle on X. Then

(i) the isometry classes of piecewise linear metrics on line bundles on X form an abelian
group with respect to ⊗.

(ii) the pull-back f ∗‖ · ‖ of a piecewise linear metric ‖ · ‖ on L with respect to a morphism
f : Y → X of strictly K -analytic spaces is a piecewise linear metric on f ∗L.

(iii) the minimum and the maximum of two piecewise linear metrics on L are again piecewise
linear metrics on L.

Proof [25, Proposition 2.12] (The proof does not use paracompactness). ��
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Proposition 3.8 Let X be a paracompact strictly K -analytic space and L a line bundle on
X. Then a piecewise linear metric on L is the same as a formal metric.

Proof [25, Proposition 2.10]. ��
Definition 3.9 Let X be a strictly K -analytic space and L a line bundle on X . A piecewise
linear metric on L is called semipositive in x ∈ X if there exists a compact strictly K -
analytic domain W which is a neighbourhood of x such that there is a formal model (W,L)

of
(

W , L
∣
∣
∣
W

)
inducing the metric on W and satisfying degL(C) ≥ 0 for every proper closed

curve C in the special fibre ofW. The metric on L is called semipositive in a subset V ⊆ X
if it is semipositive in every x ∈ V . It is called semipositive if it is semipositive in X .

Proposition 3.10 Let X be a paracompact strictly K -analytic space and L a line bundle on
X. A formal metric ‖ · ‖ on L is semipositive in every x ∈ X if and only if there exists a nef
formal K ◦-model L of L inducing ‖ · ‖. In particular we regain the original global definition
of semipositivity by Zhang [47].

Proof This is proved in [25, Proposition 3.11] under the additional assumption that X is
separable, which was necessary in order to be able to use [15, Lemme 6.5.1]. Replacing this
with Corollary A.4, the same proof applies to the more general case. ��
Proposition 3.11 Let X be a proper scheme over K and L a line bundle on X. Let ‖·‖1, ‖·‖2
be two piecewise linear metrics on Lan which are semipositive in x ∈ X an. Then ‖ · ‖ :=
min(‖ · ‖1, ‖ · ‖2) is semipositive in x.

Proof [25, Proposition 3.12]. ��
Definition 3.12 Let X be a strictly K -analytic space and L a line bundle on X . A metric ‖ · ‖
on L is called piecewise Q-linear if for every x ∈ X there is an open neighbourhood W of

x and a non-zero n ∈ N such that ‖ · ‖⊗n
∣
∣
∣
W

is a piecewise linear metric on L⊗n
∣
∣
∣
W
.

A piecewise Q-linear metric on L is called semipositive in x ∈ X if in the above ‖ · ‖⊗n
∣
∣
∣
W

is semipositive in x .

Proposition 3.13 Let X be a paracompact strictly K -analytic space and L a line bundle on
X. Any continuous metric on L can be uniformly approximated by piecewise Q-linear metrics
on L.

Proof [25, Theorem 2.17]. ��

4 Measures

We recall the real Monge–Ampère operator which associates to a convex function a posi-
tive Borel measure. Then we introduce the Chambert-Loir measure on the generic fibres of
admissible formal schemes and on paracompact strictly K -analytic spaces. Chambert-Loir
introduced these measures in [16] on the analytification X an of a proper variety X over K
under the assumption that K has a countable dense subfield and associates to a family of
semipositive metrized line bundles a positive Radon measure. This was later extended by
Gubler to the case of an algebraically closed base field in [31]. Using the local approach to
metrics from Sect. 3, it is now possible to define Monge–Ampère measures locally. Note
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that there is also a local approach by Chambert-Loir and Ducros in [15] which associates a
measure to a metric which is locally psh-approximable. However it is not known whether
a semipositive metric is locally psh-approximable. In this section we assume that the non-
archimedean complete base field K is algebraically closed which is no restriction as one can
always reduce to this case by base change (see Remark 4.16).

Definition 4.1 Let � ⊆ R
n be bounded, open and convex and denote by λ the standard

Lebesgue measure on R
n and by 〈·, ·〉 the standard scalar product on R

n . Let h be a convex
function on � and x0 ∈ �. We define the gradient image of x0 under h to be

∇h(x0) :=
{

p ∈ R
n

∣
∣
∣ ∀x ∈ � : h(x0) + 〈x − x0, p〉 ≤ h(x)

}

and for E ⊆ �

∇h(E) :=
⋃

x0∈E

∇h(x0).

Note that if E is a Borel set, the same is true for∇h(E). Finallywe define theMonge–Ampère
measure associated to h by

MA(h)(E) := λ(∇h(E))

for all Borel sets E ⊆ �. It is indeed a measure on the Borel σ -algebra, for details see
[39, Sect. 2]. The real Monge–Ampère operator is continuous in the sense that if (un)n∈N

is a sequence of convex functions on � converging pointwise to a convex function u then
(MA(un))n∈N converges weakly toMA(u). If h is two times continuously differentiable then
MA(h) = det D2h · λ.
For convex functions h1, ..., hn on � we define

MA(h1, ..., hn) := 1

n!
n∑

k=1

(−1)n−k ·
∑

1≤i1<···<ik≤n

MA(hi1 + ... + hik )

and call it the mixed Monge–Ampère measure of h1, ..., hn . It is multilinear, symmetric and
satisfies MA(h, ..., h) = MA(h) (for details see [38, Sect. 5]).

Definition 4.2 In [17,Definition 2.2.2]Conrad defined the notion of irreducibility for analytic
spaceswhichwe recall here. Let X be aparacompact strictly K -analytic space and p : X̃ → X
the normalization of X ([17, 2.1]). Then the irreducible components of X are defined to be
the sets Xi := p(X̃i )where X̃i are the connected components of X̃ . The space X is said to be
irreducible if it has a unique irreducible component. By [17, Lemma 2.2.3] X is irreducible
if and only if it can not non trivially be written as a union of two closed strictly K -analytic
subsets.
Let Y be an irreducible component of X and V = M (A ) an affinoid domain with Y ∩
V �= ∅. Then by [17, Corollary 2.2.9] there is an irreducible component Y ′ of V which is
contained in V ∩ Y . Then Y ′ corresponds to a minimal prime ideal p of A and hence to an
irreducible component of Spec(A ). We define the multiplicity of Y to be the multiplicity of
this component.Note that this does not depend on the choice ofV andY ′: IfV ′ = M (B) ⊆ V
and p′ is a minimal prime ideal of B lying over p then B/pB is reduced by [8, Corollary
7.3.2/10] as it induces an affinoid domain inM (A /p)which is reduced.Hence alsoBp′/pBp′
is reduced and since Bp′ is a local ring of dimension 0, this implies p′Bp′ = pBp′ . Hence
by [21, Lemma A.4.1] the multiplicity of the irreducible component corresponding to p is
equal to that of the irreducible component corresponding to p′.
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Letϕ : X → Y be a proper surjectivemorphismof irreducible and reduced strictly K -analytic
spaces. If dim(Y ) < dim(X) we set deg(ϕ) = 0. Otherwise ϕ is a finite morphism outside
a lower dimensional analytic subset W of Y . Let M (A ′) be an affinoid domain in Y\W ,
V an irreducible component of Spec(A ′) and M (A ) := ϕ−1(M (A ′)) then Spec(A ) →
Spec(A ′) is finite and we define deg(ϕ) to be the sum of the degrees of the irreducible
components of Spec(A ) over V . As explained in [29, 2.6] this again does not depend on the
choices.

4.3 Monge–Ampère measure for line bundles on admissible formal schemes
LetX be an admissible formal scheme over K ◦ of dimension n +1 with generic fibre X . Our
goal is to introduce a Monge–Ampère measure on X for formal line bundles L1, ...,Ln onX.
We assume first that X is irreducible and reduced and that the special fibre of X is reduced.
Then the non-archimedean Monge–Ampère measure on X with respect to these metrized
line bundles is defined as

c1(L1) ∧ · · · ∧ c1(Ln) :=
∑

Y∈irr(X̃)
Y proper

degL1,...,Ln
(Y ) · δζY ,

where δζY denotes the Dirac-measure at the unique point ζY which is mapped to the generic
point of the proper irreducible component Y under the reduction map (cf. [1, Proposition
2.4.4]).

If X has irreducible and reduced generic fibre but no longer reduced special fibre, there
is a canonical admissible formal model X′ of X with reduced special fibre together with a
finite morphism ι : X′ → X which restricts to the identity on X which can be constructed as
follows (cf. [29, Definition 3.10]). Choose a cover (Ui = Spf(Ai ))i∈I of X by affine formal
subschemes. Define Ai := A ⊗K ◦ K . If Spf(B) ⊆ Spf(Ai ) is a formal open subscheme
for some i ∈ I then Ai → B induces a morphism A ◦

i → B◦ for B := B ⊗K ◦ K . Hence
by standard arguments we can glue the Spf(A ◦

i ) to obtain X′ and the canonical morphisms
Ai → A ◦

i induce the morphism X′ → X. We then define

c1(L1) ∧ · · · ∧ c1(Ln) := (ιan)∗(c1(ι∗L1) ∧ · · · ∧ c1(ι
∗Ln)).

In the general case, let X = ∑
j m j X j be the decomposition of the generic fibre into prime

cycles. By [29, Proposition 3.3] the closure X j of X j in X is an admissible formal scheme
with irreducible and reduced generic fibre X j . We define

c1(L1) ∧ · · · ∧ c1(Ln) :=
∑

j

m j · c1

(

L1

∣
∣
∣

X j

)

∧ · · · ∧ c1

(

Ln

∣
∣
∣

X j

)

as a measure on X .

Remark 4.4 There is a close connection of theMonge–Ampère measure with the intersection
product on formal schemes as defined in [29]: Assume that X has irreducible, reduced and
boundaryless generic fibre and reduced special fibre. In addition to L1, ...,Ln let L0 be a
formal line bundle onXwhich is trivial on the generic fibre and set f := − log ‖1‖where ‖·‖
is the formal metric induced by L0. Suppose that f has compact support and let D := div(1)
be the Cartier divisor onX induced by 1 as in [29, Remark 3.1]. We examine the Weil divisor
cyc(D) associated to D as defined in [29, Sect. 3]. Since L0 is trivial on the generic fibre,
the horizontal part of cyc(D) is zero while the vertical part is by definition ([29, 3.8]) given
by

∑
Y∈irr(X̃)

f (ζY ) · Y . Now since Xan has no boundary, every irreducible component of X̃
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is proper by Corollary A.4 and together with the definition of the intersection product ([29,
Sect. 4]) we obtain
∫

Xan
f c1(L1) ∧ · · · ∧ c1(Ln) =

∑

Y∈irr(X̃)

f (ζY ) · degL1,...,Ln
(Y ) = degL1,...,Ln

(cyc(D)).

Proposition 4.5 The measure defined above has the following properties:

(i) c1(L1) ∧ · · · ∧ c1(Ln) is a discrete measure (i.e. of the form
∑

x∈S λxδx with S ⊆ X
a closed discrete subset, λx ∈ R and δx the Dirac-measure at x) whose support is
contained in the relative interior of X over K (in the sense of [2, 1.5]).

(ii) c1(L1) ∧ · · · ∧ c1(Ln) is multilinear and symmetric in L1, ...,Ln.
(iii) Let ϕ : X′ → X be a proper morphism of admissible formal schemes over K ◦ with

irreducible and reduced generic fibres of dimension n such that the induced morphism
on the generic fibres is surjective. Then for formal line bundles L1, ...,Ln on X we have

(ϕan)∗
(
c1(ϕ

∗L1) ∧ · · · ∧ c1(ϕ
∗Ln)

) = deg(ϕan)c1(L1) ∧ · · · ∧ c1(Ln).

Proof ii) follows from symmetry and multilinearity of the intersection product ([21, Propo-
sition 2.5]). For iii) we reduce first to the case where X′ and X have reduced special fibre.
Let Y′ respectively Y be the canonical formal models with reduced special fibre as in 4.3.
This construction is functorial and we obtain a commutative diagram

Y′

ι′

ϕ′
Y

ι

X′
ϕ

X

Assuming that we know the claim for reduced special fibres we obtain

deg(ϕan)c1(L1) ∧ · · · ∧ c1(Ln) = deg(ϕ′an)(ιan)∗(c1(ι∗L1) ∧ · · · ∧ c1(ι
∗Ln))

= (ιan)∗(ϕ′an)∗(c1(ϕ′∗ι∗L1) ∧ · · · ∧ c1(ϕ
′∗ι∗Ln))

= (ϕan)∗(ι′an)∗(c1(ι′∗ϕ∗L1) ∧ · · · ∧ c1(ι
′∗ϕ∗Ln))

= (ϕan)∗(c1(ϕ∗L1) ∧ · · · ∧ c1(ϕ
∗Ln)).

So from now on assume that X′ and X have reduced special fibre. Let Y be an irreducible
component of X̃ with corresponding Shilov point ζY . Let ζ1, ..., ζr be the preimages of ζY

under ϕan with corresponding irreducible components Y1, ..., Yr of X̃′. If Y is proper then
clearly all the Yi are proper. If on the other hand one of the Yi is proper then Y is proper by
[34, Proposition 12.59]. In this case we can use the projection formula to calculate:

(ϕan)∗
(
c1(ϕ

∗L1) ∧ · · · ∧ c1(ϕ
∗Ln)

)
(ζY ) =

r∑

i=1

c1(ϕ
∗L1) ∧ · · · ∧ c1(ϕ

∗Ln)(ζi )

=
r∑

i=1

degL1,...,Ln
(ϕ̃∗Yi )

=
r∑

i=1

degL1,...,Ln
(Y ) · [K̃ (Yi ) : K̃ (Y )]
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As already mentioned in Definition 4.2, ϕan is finite outside a lower dimensional analytic
subset. Hence we may apply equation (3) in the proof of [29, Proposition 4.5] to see that the
last term in the display equals deg(ϕan) · c1(L1) ∧ · · · ∧ c1(Ln)(ζY ).
On the other hand, if Y is an irreducible component of X̃′ whose image is not an irreducible
component of X̃ then its degree with respect to the line bundles ϕ∗L1, ..., ϕ

∗Ln is 0 by the
projection formula, as the image is of lower dimension. This proves iii).
For i) let Xan = ∑

j m j X j be the decomposition into prime cycles. It is then enough to
prove the claim for each X j and by definition of the measure we may hence assume that X
has irreducible and reduced generic fibre and reduced special fibre. Let S be the set of all ζY

where Y is a proper irreducible component of X̃ with degL1,...,Ln
(Y ) �= 0. Then S is discrete

as red−1(Y ) is an open neighbourhood of ζY which does not contain any other points of S.
Furthermore X is the union of all red−1(Y ) where Y runs over all irreducible components
of X̃ and as all of these sets contain at most one point of S and by paracompactness of X ,
every x /∈ S has an open neighbourhood which does not intersect S and hence S is closed.
By definition c1(L1) ∧ · · · ∧ c1(Ln) is of the desired form and its support is contained in the
relative interior of X over K by Corollary A.4. ��
Lemma 4.6 Let X be an admissible formal scheme over K ◦ of dimension n + 1 with bound-
aryless generic fibre Xan and L0, ..., Ln line bundles on Xan endowed with formal metrics
corresponding to the modelsL0, ...,Ln onX. Suppose that L0 = L1 = OXan , denote by ‖·‖0
and ‖ · ‖1 the metrics on L0 respectively L1 and set f0 := − log ‖1‖0, f1 := − log ‖1‖1.
Suppose that f0 and f1 have compact support. Then

∫

Xan
f0 c1(L1) ∧ · · · ∧ c1(Ln) =

∫

Xan
f1 c1(L0) ∧ c1(L2) ∧ · · · ∧ c1(Ln).

Proof Let Xan = ∑
j m j X j be the decomposition into prime cycles. It is enough to prove

the claim for the closures X j of X j in X. We may hence assume that Xan is irreducible and
reduced. Furthermore by passing to a dominating model as in 4.3, we may assume that the
special fibre X̃ of X is reduced. As Xan has no boundary, every irreducible component of X̃
is proper by Corollary A.4 and hence using commutativity of the intersection product ([29,
Theorem 5.9]) we obtain

∫

Xan
f0 c1(L1) ∧ · · · ∧ c1(Ln) =

∑

Y∈irr(X̃)

f0(ζY ) · degL1,...,Ln
(Y )

= degL1,...,Ln

(
cyc(divL0(1))

)

= degL0,L2,...,Ln

(
cyc(divL1(1))

)

=
∑

Y∈irr(X̃)

f1(ζY ) · degL0,L2,...,Ln
(Y )

=
∫

Xan
f1 c1(L0) ∧ c1(L2) ∧ · · · ∧ c1(Ln).

��
Definition 4.7 Let X be an n-dimensional paracompact strictly K -analytic space and
L1, ..., Ln formally metrized line bundles on X . LetX be a formal model of X on which there
exist formal models L1, ...,Ln of L1, ..., Ln . The existence of such a formal model follows
from Remark 3.2. We then define

c1(L1) ∧ · · · ∧ c1(Ln) := c1(L1) ∧ · · · ∧ c1(Ln).
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648 C. Vilsmeier

Note that this definition is independent of the choice of X and L1, ...,Ln by the projection
formula. If the metrics on L1, ..., Ln are semipositive then c1(L1)∧· · ·∧c1(Ln) is a positive
measure.

Lemma 4.8 Let W2 be a paracompact strictly K -analytic space of dimension n and W1 ⊆ W2

a paracompact strictly K -analytic subdomain of W2. Then for formally metrized line bundles

L1, ..., Ln on W2, we have c1(L1) ∧ · · · ∧ c1(Ln) = c1

(

L1

∣
∣
∣
W1

)

∧ · · · ∧ c1

(

Ln

∣
∣
∣
W1

)

in the

topological interior
◦

W1 of W1 in W2.

Proof Let W2 = ∑
j m j X j be the decomposition of W2 into prime cycles and for each j let

(Xi j )i∈I j be the irreducible components of W1 with Xi j ⊆ X j ∩W1. Then W1 = ∑
j,i m j Xi j

is the decomposition of W1 into prime cycles. Furthermore, the intersection of any two
irreducible components of W1 does not contain a Shilov point as it is of lower dimension and
hence does not meet the support of the measures of interest. By linearity in the irreducible
components we may therefore assume that W1 and W2 are irreducible and reduced. Let X2

be a formal model of W2 with reduced special fibre on which there exist formal models
of L1, ..., Ln . Let X1 be a formal model of W1 which exists by paracompactness of W1,
see Remark 3.2. After possibly blowing up, the inclusion W1 ↪→ W2 induces a morphism

ι : X1 → X2 ([12, Theorem 8.4.3]). Let x ∈ ◦
W1. As both measures are discrete it is enough

to show that they have the same mass at x . Let Int(Wi ) denote the relative interior of Wi over
K in the sense of [2, 1.5]. If x ∈ Int(W2) then x ∈ Int(W1) by [2, Proposition 1.5.5 (ii)].
Conversely if x ∈ Int(W1) then there exists an affinoid neighbourhood V of x in W1 such
that x is in the relative interior of V over K . But V is also a neighbourhood of x in W2 as

x ∈ ◦
W1 and therefore x ∈ Int(W2). Hence x ∈ Int(W1) if and only if x ∈ Int(W2). If this is

not the case then by definition of the measures and Corollary A.4, both of them are zero at
x . So assume that x ∈ Int(W1). Choose a locally finite cover (Ui )i∈I of X1 by open affine
formal subschemes and let U be the union of all Ui which contain red(x). Then U is an open
and quasi-compact formal subscheme of X1. Analogously choose a cover (Vi )i∈J of X2 by
open affine formal subschemes. As ι(U) is quasi-compact, there is a finite subcover of it. Let
V be the union of the sets in this subcover and add allVi with red(x) ∈ Vi . Then alsoV is
an open and quasi-compact formal subscheme of X2 and ι induces a morphism U → V. By
[10, Corollary 5.4] there is an admissible formal blowing upV′ → V such that the induced
morphism U′ → V′ is an open immersion.

Let Y be an irreducible component of X̃2 with corresponding divisorial point ζY = x .
Then Y ⊆ Ṽ by definition and hence wemay calculate the mass of c1(L1)∧· · ·∧c1(Ln) at x
usingV. By Proposition 4.5 iii) we may also useV′. So let Y ′ be the irreducible component
of Ṽ′ corresponding to x . Since red(x) ∈ Ũ′ we see that Y ∩ Ũ′ is an irreducible component
of Ũ′. Additionally, by Corollary A.4, Y ′ and Y ′ ∩ Ũ′ are proper and hence Y ′ = Y ′ ∩ Ũ′
and it is an irreducible component of Ũ′. It’s image in Ũ is a proper irreducible component
of Ũ and hence also an irreducible component of X̃1. By the same argumentation as above

we may use U′ instead of X1 to calculate the mass of c1

(

L1

∣
∣
∣
W1

)

∧ · · · ∧ c1

(

Ln

∣
∣
∣
W1

)

at x .

This shows that the mass of the two measures is equal at x in this case.
Conversely, if Y is an irreducible component of X̃1 with corresponding divisorial point
ζY = x then Y ⊆ Ũ by definition. Again we may use U′ to calculate the mass at x and we
denote the corresponding irreducible component by Y ′. Then the closure Y

′
of Y ′ in Ṽ′ is

an irreducible component of Ṽ′ with corresponding divisorial point ζY
′ = x and hence by
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the above Y
′ = Y ′. Therefore c1(L1) ∧ · · · ∧ c1(Ln) and c1

(

L1

∣
∣
∣
W1

)

∧ · · · ∧ c1

(

Ln

∣
∣
∣
W1

)

coincide at x . ��
Definition 4.9 Let X be a Hausdorff topological space. A measure μ on the σ -algebra of
Borel sets of X is called a positive Radon measure if

(i) for every x ∈ X there exists an open neighbourhood U of x with μ(U ) < ∞,

(ii) for every open set U ⊆ X we have μ(U ) = sup
{
μ(K )

∣
∣
∣ K ⊆ U , K compact

}
,

(iii) for every Borel set B of X we have μ(B) = inf
{
μ(U )

∣
∣
∣ B ⊆ U , U open

}
.

Remark 4.10 It follows from Proposition 4.5 i) that for nef formal line bundles the measure
defined in 4.3 is a positive Radon measure.

Definition 4.11 Let V be a strictly K -analytic Hausdorff space of dimension n and L1, ..., Ln

semipositive piecewise Q-linear metrized line bundles on V . The assignment

Cc(V ) → R≥0,

f �→ 1

e1 · · · · · en

∫

W
f c1

(
L

e1
1

∣
∣
∣
W

)
∧ · · · ∧ c1

(
L

en
n

∣
∣
∣
W

)

where W is a compact strictly K -analytic domain with supp( f ) ⊆ ◦
W and e1, ..., en ∈ N are

non-zero integers such that L
ei
i

∣
∣
∣
W

is a formally metrized line bundle, yields a positive linear

functional on the space Cc(V ) of continuous functions with compact support in V and hence
by the Riesz Representation Theorem (see [40, Theorem 2.14]) a positive Radon measure
on V which we again denote by c1(L1) ∧ · · · ∧ c1(Ln). Note that the integral does neither
depend on the choice of W by Lemma 4.8 nor on the choice of the ei by Proposition 4.5 and
that we can always find such a W together with the ei by choosing for every point in supp( f )

a compact strictly K -analytic neighbourhood where some powers of the Li are formally
metrized and using compactness of supp( f ).

Remark 4.12 It is easy to see that Proposition 4.5, Lemma 4.6 and Lemma 4.8 remain true if
we replace formal metrics by piecewise Q-linear metrics.

The next result deals with convergence of the measures just defined. For several technical
reasons we will need that the strictly K -analytic space on which the measures are given can
be covered by open subsets which are embeddable into analytifications of schemes of finite
type over K . Note that this assumption is satisfied for smooth K -analytic spaces asmentioned
for example in the proof of [3, Theorem 9.1]. Most importantly it will allow us to write any
formal metric as a quotient of two semipositive formal metrics. Since we can approximate
every continuous function by piecewise Q-linear metrics this ensures that we can basically
work with semipositive formal metrics as test functions. Also the assumptions of Lemma 4.6
are satisfied automatically.

Proposition 4.13 Let V be a strictly K -analytic Hausdorff space of dimension n with line
bundles L1, ..., Ln on V and ‖·‖i a continuous metric on Li for each i . Denote by L1, ..., Ln

the line bundles L1, ..., Ln, endowed with these metrics. For i ∈ {1, ..., n} let (‖ · ‖i,k)k∈N be
piecewise Q-linear metrics on Li converging uniformly to the continuous metric ‖ · ‖i on Li .
Suppose that all ‖ · ‖i,k are semipositive in V . Denote by Li,k the line bundle Li endowed
with the metric ‖·‖i,k . Suppose that each point of V possesses an open neighbourhood which
has an open immersion into the analytification of some scheme of finite type over K . Then
the measures c1

(
L1,k

) ∧ ... ∧ c1
(
Ln,k

)
converge weakly to a positive Radon measure on V .
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Proof Since it is enough to prove the convergence locally we may assume that V is an
open subset of Xan for a separated scheme X of finite type over K (e.g. take X affine)
and that the line bundles L1, ..., Ln are defined globally. By Vojta’s version of Nagata’s
compactification theorem ([44, Theorem 5.7]) we may assume that X is proper. We show by
reverse induction over m ∈ {0, ..., n} that the claim holds when for some choice of pairwise

different i1, ..., in ∈ {1, ..., n} the sequences
(
‖ · ‖i1,k

)

k∈N

, ...,
(
‖ · ‖im ,k

)

k∈N

are constant

with respect to k. The case m = n is clear. So let 0 ≤ m < n and assume that the claim holds
for m + 1. For j ∈ {m + 1, ..., n} we can write ‖ · ‖i j ,k = ‖ · ‖i j ,1 ⊗‖ · ‖′

j,k for a sequence of

piecewise Q-linear metrics
(
‖ · ‖′

j,k

)

k∈N

on OXan

∣
∣
∣
V
converging uniformly to a continuous

metric ‖ · ‖′
j on OXan

∣
∣
∣
V
. Denote by O j,k the line bundle OXan

∣
∣
∣
V
endowed with the metric

‖ · ‖′
j,k . We show that

(
μm,k := c1(Li1,1) ∧ · · · ∧ c1(Lim ,1) ∧ c1(Lim+1,k) ∧ · · · ∧ c1(Lin ,k)

)
k∈N

is a Cauchy sequence with respect to the weak topology on the space of Borel-measures on
V . Thus we have to show that for all continuous functions f on X with compact support in
V :

∣
∣
∣
∣

∫

V
f μm,k −

∫

V
f μm,k′

∣
∣
∣
∣ −→

k,k′→∞
0.

Let W be a compact strictly K -analytic domain with supp( f ) ⊆ ◦
W and W ⊆ V . By [25,

Proposition 2.7] we may extend the metrics from W to X an and hence assume that they
are defined on the whole space. Hence by Chow’s lemma and the projection formula we
may assume that X is projective. Then by [30, Proposition 10.5] any formal model of X is
dominated by a projectivemodel. Any formal line bundle on thismodel becomes semipositive
after tensoring withO(n) for n big enough by using Serre’s theorem ([35, Theorem II.5.17])
on the special fibre. As a consequence one can write any formal metric on any line bundle
on X as a quotient of two semipositive formal metrics (on possibly different line bundles).
We will see below, that μm,k(Z) is bounded with respect to k for every compact subset
Z ⊆ V . Hence, as the set of piecewise Q-linear metrics is dense in the space of continuous
metrics on OXan with respect to uniform convergence (Proposition 3.13), we may assume
that f = − log ‖1‖ for a formal metric ‖ · ‖ onOXan . Then we can write ‖ · ‖ = ‖ · ‖+/‖ · ‖−
for two semipositive formal metrics ‖ · ‖+, ‖ · ‖− on some line bundles L+ respectively L−
on X an. In fact L+ = L− but we will use the notation L+ and L− to distinguish between

the two metrics. Write O f
X for the line bundle OXan

∣
∣
∣
V
endowed with the metric ‖1‖ = e− f

and to shorten notation μm := c1(Li1,1) ∧ · · · ∧ c1(Lim ,1) which is a purely formal notation.
Furthermore without loss of generality assume i1 = 1, ..., im = m. We have

∣
∣
∣

∫

V
f μm,k −

∫

V
f μm,k′

∣
∣
∣

=
∣
∣
∣

n−m∑

i=1

∫

V
f μm ∧ c1

(
Lm+1,k

) ∧ · · · ∧ c1
(
Lm+i,k

) ∧ c1
(
Lm+i+1,k′

) ∧ · · · ∧ c1
(
Ln,k′

)

−
∫

V
f μm ∧ c1

(
Lm+1,k

) ∧ · · · ∧ c1
(
Lm+i−1,k

) ∧ c1
(
Lm+i,k′

) ∧ · · · ∧ c1
(
Ln,k′

) ∣
∣
∣
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=
∣
∣
∣

n−m∑

i=1

∫

V
f μm ∧ · · · ∧ c1

(
Lm+i−1,k

) ∧ c1
(
Lm+i,1 ⊗ Om+i,k

) ∧ c1
(
Lm+i+1,k′

) ∧ ...

−
∫

V
f μm ∧ · · · ∧ c1

(
Lm+i−1,k

) ∧ c1
(
Lm+i,1 ⊗ Om+i,k′

) ∧ c1
(
Lm+i+1,k′

) ∧ ...

∣
∣
∣

=
∣
∣
∣

n−m∑

i=1

∫

V
f μm ∧ · · · ∧ c1

(
Lm+i−1,k

) ∧ c1
(Om+i,k

) ∧ c1
(
Lm+i+1,k′

) ∧ ...

−
∫

V
f μm ∧ · · · ∧ c1

(
Lm+i−1,k

) ∧ c1
(Om+i,k′

) ∧ c1
(
Lm+i+1,k′

) ∧ ...

∣
∣
∣

Since the support of f is contained in V and by Lemma 4.8 these last integrals depend only
on the restrictions of the metrics to V . Hence we may instead consider them as integrals over
X an which allows us to use Lemma 4.6 as X an has no boundary ([1, Theorem 3.4.1]). In
combination with an index shift, the last term amounts to

∣
∣
∣

n∑

i=m+1

∫

Xan
− log ‖1‖′

i,k μm ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ...

−
∫

Xan
− log ‖1‖′

i,k′ μm ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ...

∣
∣
∣

As any point in X an\ supp( f ) has a strictly K -analytic neighbourhood on which f vanishes,

the support of μm ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ... is contained in supp( f )

by Lemma 4.8. So the last display equals

∣
∣
∣

n∑

i=m+1

∫

supp( f )

− log ‖1‖′
i,k μm ∧ · · · ∧ c1

(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ...

−
∫

supp( f )

− log ‖1‖′
i,k′ μm ∧ · · · ∧ c1

(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ...

∣
∣
∣

=
∣
∣
∣

n∑

i=m+1

∫

supp( f )

log
(
‖1‖′

i,k′/‖1‖′
i,k

)
... ∧ c1

(
Li−1,k

) ∧ c1
(
O f

X

)
∧ c1

(
Li+1,k′

) ∧ ...

∣
∣
∣

≤ 2 ·
n∑

i=m+1

sup
x∈supp( f )

∣
∣
∣log

(
‖1‖′

i,k(x)/‖1‖′
i,k′(x)

)∣
∣
∣

· max
s∈{+,−} μm ∧ · · · ∧ c1

(
Li−1,k

) ∧ c1
(
Ls

) ∧ c1
(
Li+1,k′

) ∧ · · · (supp( f )) −→
k,k′→∞

0.

Here the last term converges to zero as supx∈supp( f )

∣
∣
∣log

(
‖1‖′

i,k(x)/‖1‖′
i,k′(x)

)∣
∣
∣ tends

to zero by uniform convergence of ‖ · ‖′
i,k and compactness of supp( f ) and

μm ∧ c1
(
Lm+1,k

) ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
Ls

) ∧ c1
(
Li+1,k′

) ∧ · · · ∧ c1
(
Ln,k′

)
are posi-

tive measures on V which converge by the induction hypothesis weakly to a positive Radon
measure which implies that their mass of supp( f ) is bounded with respect to k, k′. To go into
more detail, let g be a continuous non-negative function on V with compact support such
that g(x) > 1 for all x ∈ supp( f ). The existence of such a function follows for example
from a partition of unity argument ([19, 1.5.1]) applied to the open cover {V \ supp( f ), V }
of the closure V of V (note that V is compact as X is proper over K ). Then

μm ∧ c1
(
Lm+1,k

) ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
Ls

) ∧ c1
(
Li+1,k′

) ∧ · · · ∧ c1
(
Ln,k′

)
(supp( f ))
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≤
∫

g μm ∧ c1
(
Lm+1,k

) ∧ · · · ∧ c1
(
Li−1,k

) ∧ c1
(
Ls

) ∧ c1
(
Li+1,k′

) ∧ · · · ∧ c1
(
Ln,k′

)

where the last term converges for k, k′ → ∞ and is hence bounded with respect to k, k′.
We now define a positive linear functional on the space of continuous functions with compact
support in V by

Cc(V ) → R≥0,

f �→ lim
k→∞

∫

V
f μm,k .

By the Riesz Representation Theorem ([40, Theorem 2.14]) this corresponds to a positive
Radon measure μ on V and we have μm,k → μ weakly for k → ∞.
It remains to show that μm,k(Z) is bounded with respect to k for every compact subset
Z ⊆ V . So let Z ⊆ V be compact and f a continuous non-negative function on V with
compact support such that f (x) > 1 for all x ∈ Z . As above the existence of such a function
follows from a partition of unity argument ([19, 1.5.1]) applied to the open cover {V \Z , V }
of the closure V of V . Again we may assume that f is a model function, i.e. of the from
− log ‖ · ‖ for a piecewise Q-linear metric ‖ · ‖ on OXan (we can even assume that ‖ · ‖ is a
formal metric) and we use the same notation as above. To be more precise, let ε > 0 such that
f (x) > 1+ ε for all x ∈ Z . First extend f to X an by zero and then define a new function f̃
by f̃ (x) = f (x) − ε/2. By Proposition 3.13 we may approximate f̃ by a model function φ

such that |φ(x)− f̃ (x)| < ε/2 for all x ∈ X an. Then by [25, Proposition 2.12 (d)], max{0, φ}
is a model function on X an with compact support in V which is greater than one at Z . We
have

sup
k∈N

μm,k(Z) ≤ sup
k∈N

∫

V
f μm,k

= sup
k∈N

∫

supp( f )

f μm ∧ c1(Lm+1,k) ∧ · · · ∧ c1(Ln,k)

= sup
k∈N

∫

supp( f )

f μm ∧ c1(Lm+1,1 ⊗ Om+1,k) ∧ c1(Lm+2,k) ∧ · · · ∧ c1(Ln,k)

= sup
k∈N

∫

supp( f )

f μm ∧ c1(Lm+1,1) ∧ c1(Lm+2,k) ∧ · · · ∧ c1(Ln,k)

+
∫

supp( f )

f μm ∧ c1(Om+1,k) ∧ c1(Lm+2,k) ∧ · · · ∧ c1(Ln,k)

Again using Lemma 4.6 and the same argumentation as above for the second summand this
amounts to

sup
k∈N

∫

supp( f )

f μm ∧ c1(Lm+1,1) ∧ c1(Lm+2,k) ∧ · · · ∧ c1(Ln,k)

+
∫

supp( f )

− log ‖1‖′
m+1,k μm ∧ c1(O f

X ) ∧ c1(Lm+2,k) ∧ ... ∧ c1(Ln,k)

≤ sup
k∈N

sup
x∈V

f (x) · μm ∧ c1(Lm+1,1) ∧ c1(Lm+2,k) ∧ · · · ∧ c1(Ln,k)(supp( f ))

+ sup
k∈N

sup
x∈supp( f )

∣
∣
∣log

(
‖1‖′

m+1,k(x)
)∣
∣
∣

· 2 · max
s∈{+,−} μm ∧ c1(Ls) ∧ c1(Lm+2,k) ∧ ... ∧ c1(Ln,k)(supp( f ))
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By the induction hypothesis all measures appearing in this last term converge for k → ∞.
Hence the measure of supp( f ) is bounded with respect to k. Furthermore supx∈V f (x) < ∞
as f has compact support in V and supx∈supp( f )

∣
∣
∣log

(
‖1‖′

m+1,k(x)
)∣
∣
∣ is bounded with respect

to k by uniform convergence of
(
‖ · ‖′

m+1,k

)

k∈N

and compactness of supp( f ). We conclude

that the last term is bounded with respect to k. This proves the induction step. The claim is
then the case m = 0. ��
Remark 4.14 In the situation of Proposition 4.13, the limit depends only on the metrics ‖ · ‖i

but not on the sequences (‖ ·‖i,k)k∈N. Namely, if (‖ ·‖′
i,k)k∈N are other sequences converging

uniformly to ‖ · ‖i then the sequences (‖ · ‖′′
i,k)k∈N defined by

‖ · ‖′′
i,k :=

⎧
⎨

⎩

‖ · ‖i, k
2
, k even

‖ · ‖′
i, k−1

2
, k odd

converge uniformly to ‖ · ‖i . As (‖ · ‖i,k)k∈N and (‖ · ‖′
i,k)k∈N are subsequences of ‖ · ‖′′

i,k
the limit of the measures is the same. We denote the measure corresponding to the metrics
‖ · ‖i by c1(L1) ∧ · · · ∧ c1(Ln).

Corollary 4.15 Let V be a strictly K -analytic Hausdorff space of dimension n such that every
point of V possesses an open neighbourhood which has an open immersion into some scheme
of finite type over K . Let M1, ..., Mn be line bundles on V and for i ∈ {1, ..., n} let (‖·‖i,k)k∈N

be piecewise Q-linear metrics on M1, ..., Mn converging uniformly to a continuous metric
‖ · ‖i on Mi . Suppose that all ‖ · ‖i,k are semipositive in V . Write Mi,k := (

Mi , ‖ · ‖i,k
)

and let L1, ..., Ln be line bundles on V endowed with piecewise Q-linear metrics. Then the
measures c1

(
L1 ⊗ M1,k

) ∧ ... ∧ c1
(
Ln ⊗ Mn,k

)
converge weakly to a Radon measure on

V denoted by c1(L1 ⊗ (M1, ‖ · ‖1)) ∧ · · · ∧ c1(Ln ⊗ (Mn, ‖ · ‖n)) (as above this measure
does not depend on the choice of the ‖ · ‖i,k).

Proof As in the proof of Proposition 4.13, we may assume that V is an open subset of Xan

for a projective scheme X and write the metrics of the Li as a quotient of two semipositive
metrics. Using multilinearity, this is now a direct consequence of Proposition 4.13. ��
Remark 4.16 To extend the theory to the case where K is not algebraically closed, choose an
algebraic closure of K and denote its completion byCK . Then we define theMonge–Ampère
measure as the push-forward of the previously defined Monge–Ampère measure on the base
change to CK . We explain it here in the situation of Definition 4.11. Let V be a strictly
K -analytic Hausdorff space of dimension n, L1, ..., Ln potentially semipositive piecewise
linearmetrized line bundles on V (i.e. metrized line bundles on V which become semipositive
piecewise linear metrized line bundles after base change to CK ) and π : VCK → V the base
change. We can then define a measure on VCK with respect to the pull-backs of the line
bundles L1, ..., Ln by Definition 4.11 and push the resulting measure forward to V via π . To
make this well defined we show that π is a proper map of topological spaces. So let C ⊆ V
be compact. Then we can cover C by finitely many affinoid subdomains U1, ..., Ur . Then
π−1(C) = π−1

(⋃
C ∩ Ui

) = ⋃
π−1(C ∩ Ui ) and it is enough to show that π−1(C ∩ Ui )

is compact for any i so we may assume that V is affinoid. But then π is a continuous map
between compact Hausdorff spaces and hence proper which yields the claim. We denote this
measure again by c1(L1) ∧ · · · ∧ c1(Ln). One can check that all the results of this section
remain true in this more general situation.
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Definition 4.17 Let K be a complete, non-archimedean, non-trivially valued field, V a strictly
K -analytic space and L a line bundle on V . A continuous metric ‖ · ‖ on L is called locally

semipositive if for any x ∈ V there is an open neighbourhood U of x such that ‖ · ‖
∣
∣
∣
U

is a uniform limit of semipositive piecewise Q-linear metrics on L
∣
∣
∣
U
. It is called locally

potentially semipositive if its base change to the completion of an algebraic closure of K
is locally semipositive. If V is an open subset of X an for a separated scheme X of finite
type over K then using the Remarks 4.14 and 4.16 we define the Monge–Ampère measure
c1(L1) ∧ · · · ∧ c1(Ln) for locally potentially semipositive metrized line bundles L1, ..., Ln

on V .

Remark 4.18 The measures defined in this section are invariant under base change. In the
spirit of Remark 4.16 this allows to define them in the trivially valued case for line bundles
which become semipositive after base change to a non-trivially valued field. Such metrics
and their measures are important for example in [9].

5 Comparison of the real and non-archimedeanMonge–Ampère
operator

In this section we want to compare the two measures introduced in the last section. In order
to make sense of this, we start with a convex function h on a closed face of some skeleton.
Then one can associate to it a metric on the trivial line bundle which will turn out to be
semipositive in the interior of the closed face. Thus we can associate to h two measures,
namely the real Monge–Ampère measure and the Chambert-Loir measure, sometimes also
called the non-archimedean Monge–Ampère measure. In Corollary 5.7 we will see that they
are equal up to scaling. In the following K denotes a non-archimedean non-trivially valued
field.

Remark 5.1 Let X be a strongly nondegenerate strictly polystable formal scheme over K ◦ of
dimension n + 1 with associated skeleton �. Consider an n-dimensional closed face τ̄ of �

with interior τ and the formal open subscheme X′ of X consisting of all formal open subsets
U with S(U) = τ̄ . Let h be a piecewise affine linear convex function (see Definition 2.10) on

τ̄ andD a subdivision of τ̄ such that h
∣
∣
∣
�′ is affine linear for all �

′ ∈ D. Let ι : X′′ → X′ be
the corresponding formal scheme (cf. Construction 2.6). We have seen in Proposition 2.11
that h induces a Cartier divisor D onX′′. We setO(h ◦ pX′) := O(D)where pX′ : X′an → τ

is the restriction of the contraction pX : Xan → �. For a line bundle L on a formal scheme,
we will denote by c1(L) the first Chern class of the special fibre of L.

Lemma 5.2 In the situation of Remark 5.1 let u ∈ τ be a vertex of D with corresponding
irreducible component Y ⊆ X̃′′ as in Corollary 2.9 (f). Let S be the closed point in the special
fibre of X corresponding to τ . Then

deg
(
c1 (O(h ◦ pX′))n .Y

) = deg(S) · n! · MA(h)(u).

Proof Note that S is a closed point of X̃′ and hence proper over K̃ . Therefore also Y is proper
over K̃ since it is a closed subset of ι̃−1(S) and ι is proper by [41, Corollary 4.4]. Let D be the
Cartier divisor on X′′ induced by h as in Proposition 2.11 such that c1 (O(h ◦ pX′))n .Y =
Dn .Y . We show by induction that for all 0 ≤ l ≤ n there is a strata cycle Yl of dimension n−l
whose components are contained in Y such that deg(Dn .Y ) = deg(Dn−l .Yl). The case l = 0
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is clear by taking Y0 := Y . Now let l < n and Yl be as claimed. Let Y ′ be a stratum of Yl ,
such that Y ′ is associated to an l-dimensional open face τ ′ of D, i.e. Y ′ = redX′′(p−1

X′′(τ ′))
with u ∈ τ ′ by the stratum face correspondence (Proposition 2.8). Using τ ′ ⊆ τ ⊆ R

n ,

there is an affine linear function a : R
n → R such that h

∣
∣
∣
τ ′ = a

∣
∣
∣
τ ′ . Then h − a

∣
∣
∣
τ
defines a

Cartier divisor DY ′ on X′′ by Proposition 2.11 which is numerically equivalent to D on Y by

Lemma 2.13 and which is trivial on Y ′ because h − a
∣
∣
∣
τ ′ = 0. Hence, as Y ′ is a strata subset,

DY ′ .Y ′ is a strata cycle. Write Yl = ∑
Y ′ mY ′Y ′ where the sum ranges over a finite number

of n − l-dimensional strata of X̃′′ contained in Y . Then we can calculate:

deg(Dn .Y ) = deg
(

Dn−l .Yl

)

= deg

(

Dn−l .
∑

Y ′
mY ′Y ′

)

= deg

(
∑

Y ′
mY ′ Dn−l .Y ′

)

= deg

(
∑

Y ′
mY ′ Dn−l−1.(DY ′ .Y ′)

)

= deg

(

Dn−l−1.
∑

Y ′
mY ′ DY ′ .Y ′

)

and Yl+1 := ∑
Y ′ mY ′ DY ′ .Y ′ is a strata cycle as claimed. We use this for l = n to see that

deg(Dn .Y ) = deg(Yn) for a strata cycle Yn of dimension 0 contained in Y . Its components
are strata points Si of X′′ which are mapped by ι to the point S corresponding to τ . Now let
U′ ⊆ X′ be a formal open subset with an étale morphismψ : U′ → X(n, a) such that S is the
distinguished stratum of U′ (cf. Proposition 2.5) and define U′′ := ι−1(U′). Note that there is
no factorX(m) because τ is of maximal dimension. As the strata occurring in the intersection
process correspond to open faces ofD with vertex u, their intersection with U′′ is nonempty.
Hence we may calculate the multiplicities of Yn locally on U′′. The stratification of Ũ′′ is
obtained by the preimages of the strata of X̃(n, a)′ (see proof of Proposition 2.8) with respect
to the base change ψ ′ : U′′ → X(n, a)′ of ψ (cf. Construction 2.6). Let Yu = ψ̃ ′(Ũ′′ ∩ Y )

be the irreducible component in X̃(n, a)′ corresponding to u and Du the Cartier divisor on
X(n, a)′ whose pullback gives the Cartier divisor D associated to h on U′′ (cf. proof of
Proposition 2.11). By applying the modifications of D in the induction step also to Du we
obtain a strata cycle Y t

n = ∑
m j Pj of X̃(n, a)′ whose pullback is Yn (as the intersection

product is compatible with flat pullback by [21, Proposition 2.3(d)]) and which has the same
degree as Dn

u .Yu using Lemma 2.13. Now let

val : (Gn
m)anK → R

n,

q �→ (− log q(x01), ...,− log q(x0n0), ...,− log q(x p1), ...,− log q(x pn p ))

and � :=
{
w ∈ R

n≥0

∣
∣
∣ wi1 + · · · + wini ≤ v(ai ), 0 ≤ i ≤ p

}
. As we have an isomorphism

X(n, a)an→̃ val−1(�)

and using [33, Corollary 6.15], we find that Yu is a toric variety with fan given by the cones
generated by �′ − u for �′ ∈ D with vertex u (in fact we identify τ with � by forgetting
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about the coordinate with index 0 for each i). Du

∣
∣
∣
Yu

is given up tomultiplication by a constant

by the divisor D′
u on Yu associated to the linear function h′ := h(· + u) − h(u). By [20,

3.4,5.3] we have

λ(PD′
u
) = deg(D′n

u .Yu)

n! ,

where

PD′
u

=
{

y ∈ R
n

∣
∣
∣ 〈z, y〉 ≤ ψD′

u
(z) = h′(z) ∀z ∈ R

n
}

= ∇h′(0)

and λ denotes the standard Lebesgue measure. For the last term we get

∇h′(0) =
{

p ∈ R
n

∣
∣
∣ ∀x ∈ τ − u : h′(0) + 〈x, p〉 ≤ h′(x)

}

=
{

p ∈ R
n

∣
∣
∣ ∀x ∈ τ − u : 〈x, p〉 ≤ h(x + u) − h(u)

}

=
{

p ∈ R
n

∣
∣
∣ ∀x ∈ τ : h(u) + 〈x − u, p〉 ≤ h(x)

}

= ∇h(u).

Hence

1

n! deg(Y
t
n) = deg(D′n

u .Yu)

n! = λ(PD′
u
) = λ(∇h(u)) = MA(h)({u}).

With ι′ denoting the morphism X(n, a)′ → X(n, a) we conclude

deg(Dn .Y ) = deg (Yn) = deg
(
ψ ′∗Y t

n

) = deg
(
ι∗ψ ′∗ ∑

m j Pj

)
.

Using [21, Proposition 1.7] this equals

deg
(
ψ∗ι′∗

∑
m j Pj

)
= deg

(
ψ∗ ∑

m j [Pj : {0̃}] · {0̃}
)

.

As ψ−1({0̃}) = S is reduced since ψ is smooth, this amounts to

deg
(∑

m j deg(Pj )S
)

= deg(S) · deg(Y t
n) = deg(S) · n! · MA(h)({u}).

This yields the equality we wanted to prove. ��
Theorem 5.3 In the situation of Remark 5.1 let h1, ..., hn be piecewise affine linear convex

functions on τ̄ such that hi

∣
∣
∣
�′ is affine linear for all �′ ∈ D and i = 1, ..., n. Then

deg

(
n∧

i=1

c1 (O(hi ◦ pX′)) .Y

)

= deg(S) · n! · MA(h1, ..., hn)(u).

Proof Let M be the set of piecewise affine linear functions on τ̄ whose restriction to any
�′ ∈ D is affine linear. By multilinearity the map

ϕ : Mn → R,

(g1, ..., gn) �→ deg

(
n∧

i=1

c1 (O(gi ◦ pX′)) .Y

)
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extends to the subspace V of the Q-vector space C0(τ̄ ) generated by M . For h ∈ V we write
ϕ̃(h) := ϕ(h, ..., h). Then by polarization of multilinear symmetric forms we have

deg

(
n∧

i=1

c1 (O(hi ◦ pX′)) .Y

)

= ϕ(h1, ..., hn)

=
n∑

k=1

(−1)n−k

n!
∑

1≤i1<···<ik≤n

ϕ̃(hi1 + · · · + hik ).

By Lemma 5.2 this equals

n∑

k=1

(−1)n−k
∑

1≤i1<···<ik≤n

deg(S) · MA(hi1 + · · · + hik )(u)

= deg(S) · n! · MA(h1, ..., hn)(u).

��
Remark 5.4 In the situation of Lemma 5.2 we denote by Oh◦pX′ the trivial line bundle on
X′an together with the metric which is given by ‖1‖ = e−h◦pX′ . After base change to the
completion of an algebraic closure CK of K this becomes a formally metrized line bundle
by Proposition 2.11. So similarly as in Remark 4.16 we can define its non-archimedean
Monge–Ampère measure by base change to CK .

Corollary 5.5 We have

c1
(
Oh◦pX′

)n = deg(S) · n! · MA(h)

on p−1
X′ (τ ), where MA(h) is understood to be a measure on X′an by pushforward with the

inclusion τ ↪→ X′an.

Proof We already know by Lemma 5.2 that the equation holds on the set of vertices. Fur-

thermore it is clear from the definition, that c1
(
Oh◦pX′

)n
is supported on the vertices ofD.

What remains to show is that this also holds for MA(h).

Let U := τ\
{

u ∈ τ

∣
∣
∣ u is a vertex of D

}
. We want to show MA(h)(U ) = 0. Let

�1, ...,�r be the open faces of D of dimension at least one. For every j ∈ {1, ..., r} there
is a v j ∈ R

n\{0} such that for all y ∈ � j there exists ε ∈ R+ such that y ± εv j ∈ � j .

Furthermore h j := h
∣
∣
∣
� j

= m j x + v(α j ) for some m j ∈ Z
n and α j ∈ K × and we define

hlin
j := m j x. Now let y ∈ U . Then there is an i such that y ∈ �i . For p ∈ ∇h(y) and ε as

above it follows

ε〈vi , p〉 = hi (y) + 〈y + εvi − y, p〉 − hi (y)

≤ hi (y + εvi ) − hi (y)

= hlin
i (εvi )

= εhlin
i (vi ),

hence

〈vi , p〉 ≤ hlin
i (vi ).
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A similar argument shows

−ε〈vi , p〉 ≤ −εhlin
i (vi )

and hence

〈vi , p〉 ≥ hlin
i (vi ).

We conclude 〈vi , p〉 = hlin
i (vi ) and p lies in a hypersurface which depends on i but not on

y. Hence
⋃

y∈U ∇h(y) is contained in the union of r hypersurfaces. Therefore

MA(h)(U ) = λ

⎛

⎝
⋃

y∈U

∇h(y)

⎞

⎠ = 0,

��
In the following we consider a proper algebraic variety X over K of dimension n.

Proposition 5.6 Let X be a strongly nondegenerate strictly polystable formal model of X an

over K ◦ with associated skeleton �, τ an n-dimensional open face of � and h a rational

piecewise affine linear convex function on τ . Then the metric on OXan

∣
∣
∣

p−1
X (τ )

given by ‖1‖ =
e−h◦pX is a semipositive piecewise Q-linear metric.

Proof Let y ∈ p−1
X (τ ) and x := pX(y) ∈ τ . There is an open neighbourhoodU of x in τ such

that we can write h
∣
∣
∣
U

= maxi=1,...,s hi

∣
∣
∣
U
for suitable rational affine linear functions hi on τ .

After passing to some multiple, each hi induces a formal metric on X′an by Proposition 2.11
where X′ is defined as in Remark 5.1. Therefore the hi induce piecewise Q-linear metrics

on OXan

∣
∣
∣

p−1
X (τ )

since p−1
X (τ ) ⊆ X′an . Hence in the neighbourhood p−1

X (U ) of y, the metric

induced by h is given as the minimum of the metrics corresponding to the hi , which are
semipositive at y by Lemma 2.13. Indeed let (X′′

i ,Li ) be a formal model of the trivial bundle
associated to hi as obtained by Proposition 2.11. Then by [24, Proposition 6.5] (the proof of
the implication we need does neither use that K is algebraically closed nor that the generic
fibre is algebraic) it is enough to show that degLi

(Y ) ≥ 0 for any closed curve Y in X̃′′
i with

Y ⊆ red(p−1
X′′

i
(τ )) but by Lemma 2.13 we even have equality. Now we extend the metrics

induced by the hi from a compact strictly K -analytic neighbourhood of y to X an by [25,
Proposition 2.7] and then it follows from Proposition 3.11 that || · || is semipositive at y. ��
Corollary 5.7 Let X be a strongly nondegenerate strictly polystable formal model of X an over
K ◦ with associated skeleton �. Let τ be an n-dimensional open face of � and h a convex

function on τ . Denote by Oh◦pX the trivial bundle on p−1
X (τ ) endowed with the metric given

by ‖1‖ = e−h◦pX . Then the latter is locally a semipositive metric (Definition 4.17) and

c1
(
Oh◦pX

)n = deg(S) · n! · MA(h)

on p−1
X (τ ) where S is the point in the special fibre of X corresponding to τ .

Proof We can cover τ by polytopes (�m)m∈N such that �m−1 ⊆ �m . By [13, Proposition
2.5.24] for each m there is a family of rational piecewise affine linear convex functions

(hm
i )i∈N on �m converging uniformly to h

∣
∣
∣
�m

(note that after normalization we can assume
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that Z is contained in the value group of K ). We extend these functions to rational piecewise
affine linear convex functions on τ . Then by Proposition 5.6 the metrics induced by the hm

i

are semipositive piecewiseQ-linear metrics on p−1
X (τ )which implies that the metric induced

by h
∣
∣
∣
�m

is semipositive. By Corollary 5.5 we have

c1
(
Ohm

i ◦pX
)n = deg(S) · n! · MA(hm

i )

for every m, i ∈ N. Denoting the interior of �m by �◦
m and using Proposition 4.13 we find

that for fixedm the left hand side converges to c1
(
Oh◦pX

)n
on p−1

X (�◦
m). The right hand side

converges to deg(S) · n! · MA(h) on �◦
m by continuity of the real Monge–Ampère operator.

As this holds for any m and the �m cover τ this proves the corollary. ��
Definition 5.8 Let X be a strongly nondegenerate polystable formal scheme with associated
skeleton � and τ an open face of �. A function h : τ → R is called convex if there exists
a surjective étale morphism ϕ : X′ → X with a strongly nondegenerate strictly polystable
formal scheme X′ and an open face τ ′ of the skeleton associated to X′ with ϕan(τ ′) = τ

such that h ◦ ϕan : τ ′ → R is convex. For such a convex function h on τ we define

MA(h) :=
(

ϕan
∣
∣
∣

p−1
X′ (τ ′)

)

∗
MA

(
h ◦ ϕan

∣
∣
∣
τ ′

)
. It will follow from Corollary 5.10 that this is

independent of the choices.

Proposition 5.9 Let K be algebraically closed,X a strongly nondegenerate polystable formal
model of X an over K ◦ with associated skeleton �, τ an n-dimensional open face of � and

h a rational piecewise affine linear convex function on τ . Then the metric on OXan

∣
∣
∣

p−1
X (τ )

which is given by ‖1‖ = e−h◦pX is a semipositive piecewise Q-linear metric.

Proof Let X′ be a strongly nondegenerate strictly polystable formal scheme such that there
is a surjective étale morphism ϕ : X′ → X. Let q ∈ X̃ be the closed point corresponding
to τ . By Proposition 2.4 we have red−1

X (q) = p−1
X (τ ). Choose q ′ ∈ X̃′ with ϕ(q ′) = q . By

[31, Proposition 2.9] we have that ϕ induces an isomorphism red−1
X′ (q ′)→̃p−1

X (τ ). Hence the

pullback of

(

OXan

∣
∣
∣

p−1
X (τ )

, ‖ · ‖
)

is the trivial bundle on red−1
X′ (q ′) endowed with the metric

‖1‖′ = e−h◦pX◦ϕ . Since pX ◦ ϕ = ϕ ◦ pX′ it follows that ‖ · ‖′ is the metric associated to
the function h ◦ ϕ on τ ′ := pX′(red−1

X′ (q ′)) which is again rational piecewise affine linear

by [4, Theorem 6.1.1] and we may assume it is convex by definition. Let y ∈ p−1
X (τ ). In a

neighbourhood of pX′(y′) where y′ ∈ p−1
X′ (τ ′) with ϕan(y′) = y we can write h ◦ ϕan =

maxi=1,...,s h′
i for suitable affine linear functions h′

i on τ ′. Now asϕan : p−1
X′ (τ ′) → p−1

X (τ ) is
an isomorphismwe have h = maxi=1,...,s hi where hi are the piecewise affine linear functions
on τ satisfying h′

i = hi ◦ ϕan. Now the metrics associated to the h′
i are piecewise Q-linear

and semipositive in y′ by the same argument as in the proof of Proposition 5.6. Hence the
piecewise Q-linear metrics associated to the hi extend from a compact strictly K -analytic
neighbourhood of y to global metrics by [25, Proposition 2.7] which are semipositive in y.
Now as ‖·‖ is locally around y given as the minimum of these metrics, also ‖·‖ is a piecewise
Q-linear metric which is semipositive in y by Proposition 3.11. ��
Corollary 5.10 Let X be a strongly nondegenerate polystable formal model of X an over K ◦
with associated skeleton �. Let τ be an n-dimensional open face of � with corresponding
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point S in the special fibre of X and h a convex function on τ . Denote by Oh◦pX the trivial
bundle on p−1

X (τ ) endowed with the metric given by ‖1‖ = e−h◦pX . Then ‖ · ‖ is locally a
potentially semipositive metric and

c1
(
Oh◦pX

)n = deg(S) · n! · MA(h)

on p−1
X (τ ).

Proof Let CK be the completion of an algebraic closure of K . Then there are exactly deg(S)

points in the special fibre of XCK mapping to S, hence there are precisely deg(S) open faces
in the skeleton associated to XCK lying over τ . As the base change induces an isomorphism
of each of these faces with τ , we have ι∗ MA(ι∗h) = deg(S)MA(h). Using this and the
invariance of the non-archimedean Monge–Ampère measure under base change we may
assume K = CK . As in the proof of Proposition 5.9 we choose a strongly nondegenerate
strictly polystable formal scheme X′ and a surjective étale morphism ϕ : X′ → X. Let τ ′
be an open face of the skeleton associated to X′ lying over τ . As we have seen, ϕ induces
an isomorphism p−1

X′ (τ ′)→̃p−1
X (τ ). As in the proof of Corollary 5.7 there is a sequence of

rational piecewise affine linear convex functions (h′
i )i∈N on τ ′ converging locally uniformly

to h ◦ ϕan. Let hi be the piecewise affine linear functions on τ such that hi ◦ ϕan = h′
i . By

Proposition 5.9 the metrics induced by the hi are semipositive piecewise Q-linear metrics on
p−1
X (τ ) which implies that the metric induced by h is locally semipositive. As the restriction

of ϕ to p−1
X′ (τ ′) is an isomorphism onto p−1

X (τ ) we have

c1
(
Ohi ◦pX

)n =
(

ϕ

∣
∣
∣

p−1
X′ (τ ′)

)

∗
c1

((

ϕ

∣
∣
∣

p−1
X′ (τ ′)

)∗
Ohi ◦pX

)n

By Corollary 5.5 we have

c1

((

ϕ

∣
∣
∣

p−1
X′ (τ ′)

)∗
Ohi ◦pX

)n

= c1
(
Ohi ◦ϕan◦pX′

)n = n! · MA
(

hi ◦ ϕan
∣
∣
∣
τ ′

)
.

Hence

c1
(
Ohi ◦pX

)n =
(

ϕ

∣
∣
∣

p−1
X′ (τ ′)

)

∗

(
n! · MA

(
hi ◦ ϕan

∣
∣
∣
τ ′

))
= n! · MA(hi ).

It is easily seen that in Proposition 4.13 we can replace uniform convergence by locally
uniform convergence. The claim follows from this fact and continuity of the real Monge–
Ampère operator. ��

6 Applications to regularity

In this section we use the connection of the non-archimedeanMonge–Ampère operator to the
real one to transfer two known regularity results for the solutions of the real Monge–Ampère
equation to the non-archimedean case. Again K denotes a non-archimedean non-trivially
valued field.

Definition 6.1 Let � ⊆ R
n be an open subset and k ∈ N. We write Ck(�) for the space

of real valued, k times continuously differentiable functions on �. Furthermore we denote
by L1

loc(�) the space of locally integrable functions on � i.e., functions f : � → R such
that the restriction of f to any compact subset of � is integrable. Let f , g ∈ L1

loc(�) and
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β ∈ N
n . We say that g is the βth weak derivative of f if for any test function ϕ ∈ C∞(�)

with compact support we have
∫

�

f Dβϕ dx = (−1)|β|
∫

�

gϕ dx

where dx denotes the Lebesgue measure on R
n . We denote by W k,1

loc (�) the space of locally
integrable functions on � whose weak derivatives exist up to order k.

Proposition 6.2 Let X be an n-dimensional proper variety over K and L a line bundle with
a fixed formal metric. Let μ be a positive Borel measure on X an and ϕ a continuous function
on X an such that the metric on L ⊗ Oϕ

is semipositive and solving the equation

c1(L ⊗ Oϕ
)n = μ.

Let τ be an n-dimensional open face of some skeleton � associated to a strongly nondegen-
erate strictly polystable formal model X of X an. Suppose that X is algebraic, L has a model
on X and λ · dx ≤ μ ≤ � · dx on τ for some λ,� > 0 where dx denotes the Lebesgue
measure on τ . Assume that ϕ = ϕ ◦ pX. Then ϕ ∈ W 2,1

loc (τ ).

Proof By Corollary B.4 ϕ is convex on every closed face of �. Note that the metric on L is
trivial on p−1

X (τ ). Hence we can apply Corollary 5.7 to get

μ = c1(L ⊗ Oϕ
)n = deg(S) · n! · MA(ϕ)

on τ where S is the stratum of X̃ corresponding to τ . Now the claim follows from the
corresponding fact in the real case [37, Theorem 1.2]. ��

Remark 6.3 The condition ϕ = ϕ ◦ pX is not automatic as shown by a counterexample of
Burgos and Sombra, see [22, Appendix A].

The next result is not very surprising and can probably be shown in greater generality for
any Berkovich curve using Thuillier’s potential theory on curves.

Proposition 6.4 Let X be a smooth projective curve over K and L a line bundle with a fixed
formal metric. Let μ be a positive Borel measure on X an and ϕ a continuous function on X an

such that the metric on L ⊗ Oϕ
is semipositive and solving the equation

c1(L ⊗ Oϕ
) = μ.

If τ is an open face of the skeleton � of a strictly semistable algebraic model X of X an on
which L has an algebraic model, μ is supported on � and μ = f · dx on τ for some positive
function f ∈ Ck(τ ) where dx denotes the Lebesgue measure on τ then ϕ ∈ Ck+2(τ ).

Proof By [22, Proposition 1.2] we have ϕ = ϕ ◦ pX. As in the previous result ϕ is convex
on τ and

μ = c1(L ⊗ Oϕ
) = deg(S) · MA(ϕ)

on τ . But a solution to the archimedean Monge–Ampère problem is given by a second
antiderivative of f and the solution is unique up to addition of a linear function. Hence
ϕ ∈ Ck+2(τ ) and deg(S) · ϕ′′ = f . ��
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Appendix A: Reduction of germs

In this appendix we will explain the reduction of germs due to Michael Temkin (see [41]
and [42]). At the end we will use this theory to prove a generalization of [15, Lemme 6.5.1]
proposed by Antoine Ducros which drops a separatedness assumption.

Definition A.1 (i) The category of punctual strictly K -analytic spaces is the following:
The objects are pairs (X , x) where X is a strictly K -analytic space and x ∈ X is a point.
A morphism ϕ : (X , x) → (Y , y) is a morphism ϕ : X → Y of strictly K -analytic
spaces such that ϕ(x) = y.

(ii) The category (K -Germs) of germs of a strictly K -analytic space at a point is defined to
be the localization of the category of punctual strictly K -analytic spaces by the system
of morphisms ϕ : (X , x) → (Y , y) which identify X with an open neighbourhood of y
in Y . The germ induced by the punctual strictly K -analytic space (X , x) is denoted by
Xx .

(iii) A germ Xx is said to be good if x has a strictly K -affinoid neighbourhood in X . A
morphism of germs ϕ : Xx → Yy is said to be separated resp. closed if it is induced
by a separated resp. boundaryless morphism X ′ → Y for an open neighbourhood X ′ of
x in X (recall that a morphism ϕ : X → Y of K -analytic spaces is called boundaryless
if X = Int(X/Y ), where the relative interior Int(X/Y ) is defined to be the set of all
x ∈ X such that for any affinoid domain V ⊆ Y with ϕ(x) ∈ V there is an affinoid
neighbourhood U ⊆ ϕ−1(V ) of x in ϕ−1(V ) such that x ∈ Int(U/V )).

Definition A.2 Let k be a field and let L be a field extension of k.

(i) The Zariski-Riemann space P L/k is the set of valuation rings in L which contain k and
whose quotient field is L endowed with the coarsest topology such that all sets of the

form P L/k{ f } :=
{

R ∈ P L/k

∣
∣
∣ f ∈ R

}
with f ∈ L are open.

(ii) The category (birk) is the following: The objects are triples (X , L, φ) where X is a
connected quasi-compact and quasi-separated topological space, L is a field extension of
k and φ : X → P L/k is a local homeomorphism. A morphism (X , L, φ) → (Y , M, ψ)

is a pair (h, i) where h : X → Y is a continuous map and i : M → L is a morphism
of field extensions of k such that ψ ◦ h = i# ◦ φ where i# : P L/k → PM/k is the
morphism induced by i .
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(iii) Amorphism (h, i) : (X , L, φ) → (Y , M, ψ) is called proper if the map X → Y ×PM/k

P L/k is bijective.

In [41, Sect. 2] Temkin introduced a reduction functor red from (K -Germs) to (birK̃ ) send-
ing a germ Xx to its reduction X̃x . It can be described as follows (see [42, Sect. 4]):
If Xx is a good germ, we can assume X = M (A) for a strictly K -affinoid algebra A.

Then the character χx : A → H (x) induces a morphism χ̃x : Ã → H̃ (x). Then

X̃x = (P
H̃ (x)/K̃

{χ̃x ( Ã)}, H̃ (x), ι) where P
H̃ (x)/K̃

{χ̃x ( Ã)} is the set of all R ∈ P
H̃ (x)/K̃

for which χ̃( Ã) ⊆ R and ι is the canonical embedding. If Xx is separated one covers Xx by
finitely many good germs V i

x . Then the germs V i
x ∩ V j

x are good and one obtains an open

embedding
˜

V i
x ∩ V j

x → Ṽ i
x . In fact this gives a glueing data and X̃x is the space obtained

by glueing the Ṽ i
x along these open embeddings. Lastly if Xx is arbitrary, one covers Xx by

finitely many separated germs V i
x and again gets open embeddings

˜
V i

x ∩ V j
x → Ṽ i

x along

which the Ṽ i
x are glued to X̃x .

Proposition A.3 Let X be an admissible formal scheme and x ∈ X := Xan. Let V be the
closure of {red(x)} in the special fibre X̃. Then V is proper if and only if the morphism
X̃x → P

H̃ (x)/K̃
is bijective.

Proof Let (Yi )i∈I be an open affine cover of V and set V i := red−1(Yi ). Then V i is strictly
K -affinoid by [11, Theorem 3.1] and hence V i

x is a good germ. Note that (V i
x )i∈I is a cover

of Xx . Hence X̃x is obtained by glueing the Ṽ i
x along the canonical maps

˜
V i

x ∩ V j
x → Ṽ i

x .
Let V i = M (Ai ) for a strictly K -affinoid algebra Ai . Then Yi = Spec Ãi and the character

χx : Ai → H (x) induces a morphism χ̃x : Ãi → H̃ (x). Let p ⊆ Ãi be the prime ideal

corresponding to red(x) i.e. p is the kernel of χ̃x . The induced morphism Ãi/p → H̃ (x) is

injective and hence it extends to a morphism K̃ (V ) → H̃ (x) where K̃ (V ) = Quot( Ãi/p)

denotes the function field of V . This induces a morphism π : P
H̃ (x)/K̃

→ P K̃ (V )/K̃ .

First step: We have that Ṽ i
x = P

H̃ (x)/K̃
{χ̃x ( Ãi )} is the preimage under π of the set of

valuation rings in K̃ (V ) which admit a center on Yi ∩ V .
Indeed if R ∈ P

H̃ (x)/K̃
is a valuation ring with χ̃x ( Ãi ) ⊆ R then Ãi/p ⊆ R ∩ K̃ (V ). Let

mR be the maximal ideal of R then p′ := mR ∩ Ãi/p defines a point in Spec( Ãi/p) whose
local ring is ( Ãi/p)p′ and we have ( Ãi/p)p′ ⊆ R. Then R ∩ K̃ (V ) admits the center p′ on
Yi ∩ V as claimed. Conversely if R ∩ K̃ (V ) admits a center on Yi ∩ V then there exists
p′ ∈ Spec( Ãi/p) such that ( Ãi/p)p′ ⊆ R ∩ K̃ (V ) and hence obviously χ̃x ( Ãi ) ⊆ R.

Second step: The map X̃x → P
H̃ (x)/K̃

is surjective if and only if any valuation on K̃ (V )/K̃

admits at least one center on V .
Let X̃x → P

H̃ (x)/K̃
be surjective and v a valuation on K̃ (V )/K̃ . Then v extends to a

valuation ṽ on H̃ (x). Let R be the valuation ring of ṽ. Then R ∈ P
H̃ (x)/K̃

and hence R

has a preimage R′ ∈ X̃x . Then there exists i ∈ I such that R′ ∈ Ṽ i
x hence the image of

R′ in P K̃ (V )/K̃ admits a center on Yi ∩ V by the first step. But this image is R ∩ K̃ (V ) by
construction which is the valuation ring of v. Hence v admits a center on V . Conversely
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suppose that any valuation on K̃ (V )/K̃ admits a center on V and let R ∈ P
H̃ (x)/K̃

then the

image of R in P K̃ (V )/K̃ induces a valuation on K̃ (V )/K̃ which admits a center z on V . Let

i ∈ I such that z ∈ Yi then R ∈ Ṽ i
x and the induced element in X̃x is a preimage of R.

Third step: The map X̃x → P
H̃ (x)/K̃

is injective if and only if every valuation on K̃ (V )/K̃

admits at most one center on V .

To see this we describe
˜

V i
x ∩ V j

x . In order to do so we cover Yi ∩ Y j by open affine subsets

Y k
i, j . Their preimages under red yield a cover of V i

x ∩ V j
x by good germs. As above their

reductions can be described as the preimage of the set of valuation rings in K̃ (V ) which
admit a center on Y k

i, j ∩ V . The reduction of V i
x ∩ V j

x is then obtained by glueing these

spaces. Now suppose that any valuation on K̃ (V )/K̃ admits at most one center and let
R1, R2 ∈ X̃x which map to the same valuation ring R ∈ P

H̃ (x)/K̃
. There exists i, j such

that R1 ∈ Ṽ i
x , R2 ∈ Ṽ j

x . As we have seen in the first step, R1 ∩ K̃ (V ) and R2 ∩ K̃ (V )

admit centers y1 ∈ Spec( Ãi ) ∩ V respectively y2 ∈ Spec( Ã j ) ∩ V . Then both are a center
of R ∩ K̃ (V ). Hence y1 = y2 ∈ Yi ∩ Y j by our assumption. Therefore by the first step

R1 = R2 = R in
˜

V i
x ∩ V j

x . Hence in the glueing process, R1 and R2 are identified with each
other. Conversely suppose that there is a valuation on K̃ (V )/K̃ which admits two centers

y1, y2 ∈ V . Let y1 ∈ Yi and y2 ∈ Y j . Choose an extension of the valuation to H̃ (x) and

let R denote its valuation ring. Then R induces an element R1 ∈ Ṽ i
x as well as an element

R2 ∈ Ṽ j
x . Then R1 and R2 map to the same element R in P

H̃ (x)/K̃
but they are not identified

in the glueing process as Yi ∩ V and Y j ∩ V are separated and hence R1 and R2 admit at most
one center in Spec( Ãi ) ∩ V respectively Spec( Ã j ) ∩ V which means in particular that they
do not admit a center in Yi ∩ Y j ∩ V . Hence X̃x → P

H̃ (x)/K̃
is not injective. This proves

the third step.
Recall that V is proper if and only if every valuation on K̃ (V )/K̃ admits a unique center on
V ([35, Ch. II, Ex. 4.5]). Hence the claim follows from the second and third step. ��
Corollary A.4 In the situation of Proposition A.3, x is an interior point of X if and only if V
is proper.

Proof By Proposition A.3, V is proper if and only if the map X̃x → P
H̃ (x)/K̃

is bijective

which by [42, Theorem 5.2] is equivalent to the map Xx → M (K ) being closed. But this is
equivalent to x being an interior point of X . ��

Appendix B: Convexity of psh-functions

In order to be able to use the results from Sect. 5 we need that semipositive metrics lead to
convex functions on the faces of some skeleton. The proof of this is based on the proof of [6,
Proposition 7.5], where this is done for SNC models and discretely valued K with residue
characteristic zero, and unpublished work of Walter Gubler and Florent Martin.

Lemma B.1 Let X be a strongly nondegenerate strictly polystable formal scheme with asso-

ciated skeleton � and f ∈ O(Xan) such that
{

x ∈ Xan
∣
∣
∣ f (x) = 0

}
is nowhere dense. Then

for any x ∈ � we have | f (x)| �= 0 and the function ϕ : Xan → R ∪ {−∞} given by
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ϕ(x) := log | f (x)| is piecewise affine linear and convex on each face of � and satisfies
ϕ ≤ ϕ ◦ pX.

Proof By [4, Theorem 5.1.1] we know that | f (x)| �= 0 and that ϕ is piecewise affine linear
on �. By [3, Theorem 5.2] we have ϕ ≤ ϕ ◦ pX. Assume there is a face τ of � on which ϕ

is not convex, i.e. there are x, y ∈ τ and t ∈ (0, 1) such that

δ := ϕ(t x + (1 − t)y) − tϕ(x) − (1 − t)ϕ(y) > 0.

By base change we can assume that K is algebraically closed and then by density of the value
group 	 and continuity of ϕ that the coordinates of x and y are in 	. Choose a 	-rational
polytopal subdivision of�which only has x and y as additional vertices. By Construction 2.6
we get an admissible formal model X′′ of Xan dominating X. Choose an affine open U ⊆ X̃′′
which contains red(t x + (1− t)y). By the stratum face correspondence (Proposition 2.8 and
Corollary 2.9) the vertices x and y correspond to irreducible components of X̃′′. By taking out
all other irreducible components we may assume that U intersects only those corresponding
to x and y. Then V := red−1(U ) is a strictly K -affinoid domain by [11, Theorem 3.1]. By
[3, Proposition 1.4] its canonical reduction has two irreducible components, namely those
corresponding to x and y. Hence the Shilov boundary of V is the set {x, y} by [1, Proposition
2.4.4] and we get | f (t x + (1− t)y)| ≤ max {| f (x)|, | f (y)|}. Since x �= y, by restricting to a
building block U, we can find a coordinate function g ∈ O(Uan)× such that |g(x)| �= |g(y)|.
Then we can find N ∈ N>0 and m ∈ Z such that
∣
∣
∣ log | f N gm(x)| − log | f N gm(y)|

∣
∣
∣ =

∣
∣
∣N (ϕ(x) − ϕ(y)) + m(log |g(x)| − log |g(y)|)

∣
∣
∣ < Nδ.

Since log |gm | is affine linear on τ we get

log | f N gm(t x + (1 − t)y)| − t log | f N gm(x)| − (1 − t) log | f N gm(y)| = Nδ.

Hence by replacing f with f N gm and δ by Nδ we can assume

δ := ϕ(t x + (1 − t)y) − tϕ(x) − (1 − t)ϕ(y) > 0.

and

|ϕ(x) − ϕ(y)| < δ.

Then

ϕ(t x + (1 − t)y) = δ + tϕ(x) + (1 − t)ϕ(y) > tϕ(x) + (1 − t)ϕ(y) + |ϕ(x) − ϕ(y)|.
Now on the one hand we have

tϕ(x) + (1 − t)ϕ(y) + |ϕ(x) − ϕ(y)| ≥ tϕ(x) + (1 − t)ϕ(y) + t(ϕ(y) − ϕ(x)) = ϕ(y)

while on the other hand

tϕ(x) + (1 − t)ϕ(y) + |ϕ(x) − ϕ(y)| ≥ ϕ(x) + t(ϕ(x) − ϕ(y)).

Together we get

ϕ(t x + (1 − t)y) > max {ϕ(x), ϕ(y)} .

But this violates our previous observation that | f (t x + (1 − t)y)| ≤ max {| f (x)|, | f (y)|}.
This finishes the proof. ��
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Definition B.2 Let X be an algebraic scheme over K ◦, a a vertical coherent fractional
ideal sheaf on X (i.e. a is a coherent subsheaf of the sheaf of total quotient rings KX

such that after multiplying with some element of K ◦\{0} it becomes a vertical ideal sheaf)
and red : X an → X̃ the reduction map. We define the function log |a| : X an → R

by log |a|(x) := sup
{
log | f (x)|

∣
∣
∣ f ∈ ared(x)

}
. The supremum is actually a maximum

as for a set of generators f1, ..., fr of ared(x) we have sup
{
log | f (x)|

∣
∣
∣ f ∈ ared(x)

}
=

max
{
log | fi (x)|

∣
∣
∣ 1 ≤ i ≤ r

}
.

Lemma B.3 Let X be a proper scheme over K and L a line bundle on X with an algebraic
metric ‖ · ‖L . Let ‖ · ‖ be a piecewise Q-linear metric on OXan such that ‖ · ‖L ⊗ ‖ · ‖
is a semipositive piecewise Q-linear metric. Let X be an algebraic model of X such that
L has a model L on X and set ϕ := − log ‖1‖. Then there is a sequence (an)n∈N of
vertical coherent fractional ideals on X and a sequence (dn)n∈N of positive integers such
that 1

dn
log |an | converges uniformly to ϕ.

Proof We may assume that ‖ · ‖ is a piecewise linear metric. Let X ′ be an algebraic model
of X on which (OXan , ‖ · ‖) has an algebraic model M . The section 1 of OX extends to a
meromorphic section s ofM and thenM = O(D) for the vertical Cartier divisor D = div(s)
onX ′. By [34, Theorem 13.98] we may assume thatX ′ is a vertical blowup ofX . Denote
by π the canonical map X ′ → X . We show first that D is π-nef, i.e. deg(D · C) ≥ 0 for
any closed curve C ⊆ X̃ ′ which is contracted by π .
So let x ∈ X̃ be a closed point and C ⊆ π−1(x) a curve. Then by the semipositivity
assumption deg((O(D)+π∗L ) ·C) ≥ 0. But since π∗(π∗L ·C) = L ·π∗(C) = 0 we have
deg(π∗L · C) = 0 and hence deg(D · C) ≥ 0.
Now let A be a π-ample vertical Cartier divisor onX ′, e.g. A = −E for the exceptional divi-
sor E of the blowup (this is π -ample by [34, Proposition 13.96]). Then D + A is π-ample by
the relative version of Kleiman’s criterion ([18, Remark 7.41]). Furthermore, sinceOX ′(D)

and OX ′(A) are coherent vertical fractional ideal sheaves, also a := π∗OX ′(m(D + A)) is
a coherent vertical fractional ideal sheaf on X for any m ∈ N>0 by [43, Theorem 5.3].
By the characterization of π -ampleness in [26, Proposition 4.6.8] there exists some m ∈ N>0

such that π∗a → OX ′(m(D + A)) is surjective. This implies

log |a| = log |π∗a| = log |OX ′(m(D + A))| = m · (ϕ − log ‖1‖OX ′ (A))

and hence 1
m log |a| = ϕ − log ‖1‖OX ′ (A). Since we can replace A by ε A for arbitrary small

ε ∈ Q>0 this concludes the proof. ��

Corollary B.4 In the situation of Lemma B.3 suppose that the formal completion X of X is
strongly nondegenerate strictly polystable and denote by � the associated skeleton. Then ϕ

is convex on every face of � and satisfies ϕ ≤ ϕ ◦ pX.

Proof By Lemma B.3 we may approximate ϕ by functions of the form 1
dm

log |am | for some
vertical coherent fractional ideals am on X . On the generic fibre of a building block U, the
function log |am | is given as the maximum of the functions log | f | where f runs through

a finite set of generators of am

∣
∣
∣
U
. Since the properties we are looking for are stable under

taking the maximum, these functions have them by Lemma B.1. But they are also stable
under uniform limits so we are done. ��
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