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Abstract
We determine the spectrum of the sub-Laplacian on pseudo H -type nilmanifolds and present
pairs of isospectral but non-homeomorphic nilmanifolds with respect to the sub-Laplacian.
We observe that these pairs are also isospectral with respect to the Laplacian. More generally,
our method allows us to construct an arbitrary number of isospectral but mutually non-
homeomorphic nilmanifolds. Finally, we present two nilmanifolds of different dimensions
such that the short time heat trace expansions of the corresponding sub-Laplace operators
coincide up to a term which vanishes to infinite order as time tends to zero.

Keywords Sub-Laplacian · Subriemannian manifold · Isospectral · Heat kernel · Pseudo
H -type group

Mathematics Subject Classification 58J53 · 58J50

The first and the last named author have been supported by the priority program SPP 2026 geometry at
infinity of Deutsche Forschungsgemeinschaft (project number BA 3793/6-1), the second named author was
supported by the Grant-in-aid for Scientific Research (C) No. 17K05284, JSPS; the third named author was
supported by the Grant-in-aid for Scientific Research (C) No. 24540189, JSPS.

B Wolfram Bauer
bauer@math.uni-hannover.de

Kenro Furutani
furutani_kenro@ma.noda.tus.ac.jp

Chisato Iwasaki
iwasaki@sci.u-hyogo.ac.jp

Abdellah Laaroussi
abdellah.laaroussi@math.uni-hannover.de

1 Institut für Analysis, Welfengarten 1, 30167 Hannover, Germany

2 Advanced Mathematical Institute, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka City 558-8585, Japan

3 Department of Mathematics, School of Science, University of Hyogo, 2167 Shosha Himeji, Hyogo
671-2201, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-020-02525-5&domain=pdf


558 W. Bauer et al.

1 Introduction

In 1966 Mark Kac’s famous paper [22] asked the question “Can one hear the shape of a
drum?”. This work can be regarded as the beginning of a central topic of spectral geometry
although the problem itself traces back to HermannWeyl’ s work at the beginning of the 20th
century. Especially in themulti-dimensional situation, a negative answer to the above question
was expected early on. Therefore, an important task was to construct isospectral but non-
isometric or non-diffeomorphic or even non-homeomorphic manifolds. Such examples allow
to determine geometric properties that are not determined by the spectrum. In high dimensions
the first example of such manifolds was given by Milnor even earlier in 1964. In [32] a pair
of 16-dimensional flat tori have been constructed which are isospectral but non-isometric.
Nowadays, a general construction method by Sunada [37] and a wide range of examples are
known, cf. [16,17,19,20,27]. In particular, they include lens spaces, spherical space forms
or Heisenberg manifolds. Generalizing the last example the isospectrality problem may be
considered for quotients �\G of nilpotent Lie groups G of step k ≥ 2 by a lattice �. In the
followingwewill call suchmanifolds k-step nilmanifolds. Via an adaptation of representation
theoretical methods due to C.S. Gordon and N.E. Wilson, pairs of isospectral nilmanifolds
(�1\G, �2\G) of step k ≥ 3 were constructed in [17]. Different from the known examples
based on Sunada’s theorem these manifolds need not to be isospectral for the Laplacian on
1-forms.

In the realm of Riemannian geometry it remains an interesting problem to construct
isospectral but non-homeomorphic manifolds in a systematic way. Moreover, by restricting
M.Kac’s question to specific sub-classes of smoothmanifolds (e.g. spheres or certain nilmani-
folds) or by considering the spectrum of geometric operators different from the Laplacian
one is led to new classification problems.

In the present paper we consider Kac’s question for a class of subriemannian manifolds
M carrying a geometrically defined second order sub-elliptic differential operator, called
sub-Laplacian. More precisely, in our setup M is assumed to be a nilmanifold of step 2
whose covering simply connected nilpotent Lie group is of pseudo H-type. Such groups are
generalizations of the well known Heisenberg type groups introduced by A. Kaplan in [23].
Their Lie algebras are called of pseudo H-type as well and were first considered in [10].
Pseudo H -type Lie algebras are constructed from Clifford algebras C�r ,s of signature (r , s)
and their (admissible) modules, cf. Sect. 4 or [10,13–15] for a definition and more details. We
also recall that the existence of lattices � in pseudo H -type Lie groups G has been proven in
[13].With respect to a standard (integral) lattice we can therefore consider compact left-coset
spaces �\G.

Based on an explicit heat trace formula for the sub-Laplacian combined with the recent
classification of pseudo H -type algebras in [14,15] we can give the negative answer to Kac’s
question in this non-standard setting and present a list of new examples. The subriemannian
structure we deal with naturally extends to a Riemannian structure and we may as well
consider the corresponding Laplacian� on M . As it turns out in our examples the difference
D := � − �sub is a “sum-of-squares-operator”, i.e. it can be expressed in the form

D = −1

2

∑

k

Zk
2

with globally defined vector fields Zk on M . Moreover, the operators D and �sub commute
and therefore � and �sub commute as well. As a consequence we have obtained new exam-
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Spectral theory of a class of nilmanifolds... 559

ples of isospectral, non-homeomorphic manifolds in the usual sense, i.e. with respect to the
Riemannian structure.

Different from previously studied isospectral, non-isometric quotients (�1\G, �2\G) for
which the covering simply connected Lie group G is fixed and the lattice � varies we note
that in our construction also the group G is varying in the definition of both manifolds.
Furthermore, by choosing the space dimension suitably high our method not only allows us
to select pairs but any given number of isospectral, non-homeomorphic nilmanifolds. To our
best knowledge these are the first examples of this kind.

Before stating the results more in detail we review some definitions. By a subriemannian
manifold we understand a triple (M,H, 〈·, ·〉)where M is a smooth manifold (orientable and
without boundary),H is a bracket generating subbundle in the tangent bundle T M and 〈·, ·〉
denotes a family of inner products on H which smoothly vary with the base point. Recall
that H is called bracket generating if vector fields taking values in H together with a finite
number of their iterated brackets span the tangent space at any point of M .

Based on the bracket generating condition one can assign to each point q ∈ M a flag

Hq = H1
q ⊂ H2

q ⊂ · · · ⊂ Hk(q)
q = TqM

of vector spaceswhich exhausts the full tangent space (see [1] for details). The subriemannian
structure is called equi-regular, if k(q) and the dimensions dimH j

q for j = 1, . . . , k(q) are
independent of q ∈ M . Under this assumption and based on the Popp measure construction
one intrinsically can define a sub-elliptic operator�sub on M which generalizes the Laplace-
Beltrami operator in Riemannian geometry (cf. [1]). We call this operator sub-Laplacian
whereas it is called intrinsic hypoelliptic Laplacian in [1]. In case of a left-invariant sub-
riemannian structure on a unimodular Lie group, which includes the case of a nilpotent Lie
group, this operator is known to be a sum-of-squares of vector fields, [1, Proposition 12]. The
same remains true if we descend�sub to the quotient of G by a cocompact discrete subgroup
(lattice) � and consider the (intrinsic) sub-Laplacian on the left-coset space M = �\G.

The manifolds M in this paper are equipped with a bracket generating subbundleHwhich
is trivial as a vector bundle and ametric onHwhich naturally extends to a Riemannianmetric
on M . More precisely, there is a globally defined frame {Xi } of H which is orthonormal at
any point and skew-symmetric with respect to a naturally chosen volume form such that1:

�sub = −1

2

∑

i

Xi
2.

As is well-known the bracket generating property (also calledHörmander condition) implies
that �sub is a sub-elliptic operator (i.e. it satisfies an “a priori estimate with a loss of deriva-
tive”, cf. [18]). Clearly, this property does not depend on the chosen Riemannian metric. As
a consequence it can be shown that the sub-Laplacian on a closed manifold M has a compact
resolvent and spectrum only consisting of eigenvalues with finite multiplicities (see [18]).
Hence we can define the notion of isospectrality of two given subriemannian manifolds by
replacing the spectrum of the Laplacian with the spectrum of the sub-Laplacian.

The asymptotic distribution of eigenvalues for classes of self-adjoint operatorswith double
characteristics acting on compact manifolds or an asymptotic expansion of the heat kernel
for “sum-of-squares operators” with first order term satisfying Hörmander’s condition have
been obtained in [7,8,21,29–31,36], respectively.

1 In oder to simplify the heat kernel expression we have chosen the factor 1
2 in front of the sum.
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560 W. Bauer et al.

In the special case where M is a 2-step nilmanifold it was shown in [3] that the heat trace
of the sub-Laplacian admits an asymptotic expansion similar to the heat trace expansion of
the Laplacian on a torus.

In order to detect isospectral (subriemannian) nilmanifolds we first need to determine the
spectrum of the sub-Laplacian�

�\G
sub on a 2-step nilmanifoldM = �\G. Based on an explicit

expression of the heat kernel for �sub on the covering group G in [6,9,12] a formula for the
heat trace of �

�\G
sub descended from G to M = �\G was obtained in [4]. In case of a pseudo

H -type groupG this trace formula simplifies further and in principle can be used to explicitly
calculate the spectrum of �sub on M . However, we need not to perform the full calculation.
In order to identify isospectral manifolds it is sufficient to compare the corresponding trace
formulas.

In a second step we need to classify non-homeomorphic nilmanifolds �1\G1 and �2\G2

of the same dimension. First, we reduce this task to a classification of pseudo H -type Lie
algebras up to isomorphisms (cf. Corollary 7.2). Then we apply the very recent classification
results in [14,15].

The paper is organized as follows: in Sect. 2 we introduce the sub-Laplacian on a general
2-step nilpotent Lie group G and we recall an explicit integral expression of its heat kernel
known as Beals–Gaveau–Greiner formula, cf. [5,6,9].

Assuming the existence of a lattice � in G we decompose the sub-Laplacian �sub on
the compact nilmanifold M = �\G into an infinite sum of elliptic operators acting on line
bundles in Sect. 3. Via this method we obtain a decomposition of the heat trace of �

�\G
sub into

the heat traces of its component elliptic operators, cf. [4], and we present a trace formula for
the sub-Laplacian on M .

In Sect. 4 we recall the notion of pseudo H -type Lie algebras and groups following
[10,13,14]. We discuss the existence and some basic properties of integral lattices for such
groups. These will play a role in our construction in Sect. 7.

In Sect. 5we study the eigenvalues of amatrix-valued functionwhich encodes the structure
constants of the pseudo H -type Lie algebra. These data are essential in the calculation of the
heat kernel of the sub-Laplacian in Sect. 2 and the trace formula in Sect. 3. Based on the trace
formula we give a criterion for isospectrality of two pseudo H -type nilmanifolds in Sect. 6
(Theorem 6.3).

The last sections contain our main results. We use the classification of pseudo H -type
Lie algebras in [14,15] to construct finite families of isospectral, non-homeomorphic pseudo
H -type nilmanifolds. Finally, we present two nilmanifolds of different dimensions such that
the short time heat trace expansions of the corresponding sub-Laplace operators coincide up
to a term vanishing to infinite order as time tends to zero.

2 Heat kernel on two step nilpotent Lie groups

We recall the integral form of the heat kernel for a sub-Laplacian on simply connected two
step nilpotent Lie groups given in [5,6], see also [9,12].

2.1 Sub-Laplacian on two step nilpotent groups

Let G be a simply connected two step nilpotent Lie group with Lie algebra N . We assume
that [N ,N ] = center of N (2.1)
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Spectral theory of a class of nilmanifolds... 561

and we fix a basis {Xi , Zk | i = 1, . . . , N , k = 1, . . . , d} of N such that {Zk}dk=1 and
{Xi }Ni=1 span the center [N ,N ] and its complement, respectively. Moreover, we assume that
N is equipped with an inner product with respect to which {Xi , Zk} becomes an orthonormal
basis. Hence the Lie algebra N is decomposed into an orthogonal sum

N = span
{
X1, . . . , XN

} ⊕⊥
[N ,N ] ∼= R

N ⊕⊥ R
d .

The expansion of Lie brackets

[Xi , X j ] =
d∑

k=1

cki j Zk, (2.2)

defines the structure constants cki j = −ckj i . Given z = ∑d
k=1 zk Zk ∈ [N ,N ] we denote by

�(z) the skew-symmetric matrix

�(z) =
d∑

k=1

zk
(
cki j

) ∈ R(N ) =: algebra of N × N real matrices. (2.3)

Remark 2.1 Throughout the paper we identify the group G with R
N × R

d via the above
coordinates, i.e.

G 
 g =
N∑

i=1

xi Xi +
d∑

k=1

zk Zk ←→ (x1, . . . , xN , z1, . . . , zd) ∈ R
N × R

d ∼= N .

Then the exponential map exp : N ∼=→ G is the identity. Via the Baker–Campbell Hausdorff
formula and this identification we can express the group product ∗ on G ∼= N in the form

g ∗ h = g + h + 1

2

[
g, h

]
.

More explicitly and with respect to the above coordinates one has:

g ∗ h = (x1, . . . , xN , z1, . . . , zd) ∗ (x ′
1, . . . , x

′
N , z′1, . . . , z′d)

=
(
x1 + x ′

1, . . . , xN + x ′
N , z1 + z′1 + 1

2

∑

i, j

c1i j xi x
′
j , . . . , zd + z′d + 1

2

∑

i, j

cdi j xi x
′
j

)
.

Let X̃i denote the left-invariant vector field on G corresponding to Xi ∈ N and consider the
sub-Laplacian

�G

sub = −1

2

N∑

i=1

X̃ 2
i . (2.4)

Based on (2.1) the operator �G

sub is known to be sub-elliptic [18] and essentially selfadjoint
in L2(G) with respect to the Haar measure and considered on compactly supported smooth
functions C∞

0 (G), cf. [34,35].

2.2 Beals–Gaveau–Greiner formula

Next we recall the integral expression of the kernel function K (t, g, h) ∈ C∞(R+ ×G×G)

of the heat operator

e−t �G
sub , (2.5)
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562 W. Bauer et al.

where G is a general 2-step nilpotent Lie group as above. The existence of a smooth kernel
has been shown in [34,35] and since the sub-Laplacian �G

sub is a left-invariant operator it
follows that K is a convolution kernel, i.e.

KG(t, g, h) = kG(t, g−1 ∗ h)

with a smooth function kG ∈ C∞(R+ × G).
In [5,6,9,12] an integral expression of kG is given explicitly. Below we will calculate the

spectrum of the sub-Laplacian on a class of nilmanifolds by using this expression. Recall that
in the integrand of kG two functions (action and volume function) appear. The integration is
taken over a space which can be interpreted as the characteristic variety of the sub-Laplacian.
Here we will neither present the details of this structure nor a proof of the next theorem.

Theorem 2.2 (Beals–Gaveau–Greiner formula, [5,9])The integral kernel of the heat operator
(2.5) has the form:

KG(t, g, h) = kG(t, g−1 ∗ h) = 1

(2π t)N/2+d

∫

Rd
e− f (τ, g−1 ∗ h)

t W (τ ) dτ,

where the functions f = f (τ, g) ∈ C∞(Rd ×G) and W (τ ) ∈ C∞(Rd) are given as follows:
put g = (x, z) ∈ R

N × R
d , then

f (τ, g) = f (τ, x, z) = √−1〈τ, z〉 + 1

2

〈
�(

√−1τ) coth
(
�(

√−1τ)
) · x, x

〉
,

W (τ ) =
{
det

�(
√−1τ)

sinh�(
√−1τ)

}1/2

,

where 〈z, z′〉 = ∑d
k=1 zk z

′
k denotes the Euclidean inner product on R

d .

Remark 2.3 Later on we will use the notation 〈•, •〉r ,s for a non-degenerate indefinite scalar
product with the signature (r , s) such that 〈•, •〉 = 〈•, •〉d,0.

We call f = f (τ, x, z) and W (τ )dτ the complex action function and the volume form,
respectively. Recall that f is constructed by the complex Hamilton–Jacobi method, and the
volume function W (τ ) is sometimes referred to as van Vleck determinant. It is the Jacobian
of the correspondence between the space of initial conditions and boundary conditions when
we solve the Hamilton equation associated to the symbol of the sub-Laplacian. The solution
can be interpreted as the bi-characteristic flow in the subriemannian setting. We recall that
the volume function satisfies a transport equation.

3 Lattices and decomposition of a sub-Laplacian

Based on Theorem 2.2 we describe the heat kernel of the sub-Laplacian descended to the
quotient space �\G (left coset space) by a lattice �. Such a space is called a (compact)
2-step nilmanifold. In the following we assume that there exists a lattice (cocompact discrete
subgroup) in G. We recall Malćev’s Theorem:

Theorem 3.1 (Malćev, [26,33]) A nilpotent Lie group G possesses a lattice �, i.e. �\G is
compact, if and only if there exists a basis {Yi } in its Lie algebra g such that the structure
constants {αk

i j } defined by
[Yi , Y j ] =

∑

k

αk
i j Yk
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Spectral theory of a class of nilmanifolds... 563

are all rational numbers.

3.1 Torus bundle and a family of elliptic operators

We recall a heat trace formula which previously has been obtained in [4, Theorem 4.2]. Our
analysis is essential based on this formula and in order to keep the paper self-contained we
now repeat the main steps of the calculation.

Let � be a lattice in a simply connected 2-step nilpotent Lie group G ∼= R
N × R

d . The
quotient space �\G can be equipped with a subriemannian structure naturally inherited from
that of G. Its sub-Laplacian, which we now denote by �

�\G
sub , is the operator descended from

the sub-Laplacian �G

sub on G.
For an element g ∈ Gwewill denote by [g] ∈ �\G the corresponding class in the quotient

space. Then, the heat kernel

K�\G(t, [g], [h]) ∈ C∞(
R+ × �\G × �\G

)

of the sub-Laplacian �
�\G
sub on the nilmanifold �\G is given by

K�\G(t, [g], [h]) =
∑

γ∈�

KG
(
t, γ ∗ g, h

)

=
∑

γ∈�

kG
(
t, g−1 ∗ γ ∗ h

) ∈ C∞(
R+ × �\G × �\G

)
. (3.1)

Assuming the existence of a lattice � in G we can decompose the sub-Laplacian into a
family of differential operators acting on invariant subspaces according to a torus bundle
structure of �\G. Next, we present some details and give the heat kernel expression for each
component elliptic operator.

Let A ∼= R
d be the center of the group G where as before the identification is done

with respect to the fixed orthonormal basis {Zk} of A. We obtain a principal bundle with the
structure group A/(� ∩ A) ∼= T

dimA = T
d

�\G −→ (�/� ∩ A)\(G/A) ∼= (� ∗ A)\G.

Note that the base space (�/� ∩ A)\(G/A) ∼= (� ∗ A)\G is also a torus of dimension
dimG − dimA = N + d − d = N . Since A is abelian, the subgroup � ∗ A coincides with
� + A, i.e. with the sum in the Lie algebra.

Let n be an element in the “dual lattice” [� ∩A]∗ of � ∩A, that is, n is a linear functional
on A with the property that

n(γ ) ∈ Z f or all γ ∈ � ∩ A.

We may express n in the form n = ∑d
k=1 nk Zk with integer coefficients nk ∈ Z such that

n(γ ) = 〈n, γ 〉 =
∑

nk〈Zk, γ 〉 ∈ Z f or all γ ∈ � ∩ A.

Then, the function space C∞(�\G) is decomposed via a Fourier series expansion:

C∞(�\G) 
 ∀ f ; f (g) =
∑

n∈[�∩A]∗

∫

Td
f (g ∗ λ)χn(λ)dλ,

123



564 W. Bauer et al.

where χn : T
d ∼= A/(� ∩ A) → U (1) with χn(λ) = e2π

√−1〈n,λ〉 is a unitary character
corresponding to a dual element n ∈ [� ∩ A]∗. So, we decompose

C∞(�\G) =
∑

n∈[�∩A]∗
F (n),

where

F (n) =
{∫

Td
f (g ∗ λ) χn(λ)dλ | f ∈ C∞(�\G)

}
.

The subspace F (n) can be seen as a space of smooth sections of a line bundle E (n)

on the base space (� + A)\G ∼= (�/� ∩ A)\(G/A) associated to the character χn. The
sub-Laplacian leaves invariant each subspace F (n) and therefore it can be interpreted as a
differential operatorD(n) acting on the line bundle E (n). Since the subbundle spanned by the
(left)-invariant vector fields {X̃i | i = 1, . . . , N } defines a connection, i.e., its linear span is
equivariant and transversal to the structure group action by A/(� ∩ A), each operator D(n)

is elliptic. Hence the sub-Laplacian �
�\G
sub can be seen as an infinite sum of elliptic operators

on the torus � ∗ A\G.
As a consequence we obtain a decomposition of the operator trace:

tr
(
e−�

�\G
sub

)
=

∑

n∈[�∩A]∗
tr

(
e−tD(n)

)
. (3.2)

Recall that {Zk | k = 1, . . . , d} denotes an orthonormal basis of the center [N ,N ] of N .
As before we write Z̃k, k = 1, . . . , d for the corresponding left-invariant vector fields on the
group G. We equip G with a left-invariant Riemannian metric defined by assuming that the
frame [X̃1, . . . , X̃ N , Z̃1, . . . , Z̃d ] is orthonormal at any point of G. Then the corresponding
Laplacian has the form

�G = �G
sub − 1

2

d∑

k=1

Z̃2
k . (3.3)

The action of the difference �G − �G

sub on the subspace F (n) for each dual element n ∈
[� ∩ A]∗ is given as follows:

Proposition 3.2 Let f ∈ F (n), then

(�G − �G
sub) f = −1

2

d∑

k=1

Z̃2
k ( f ) = 2π2

d∑

k=1

nk
2 · f .

3.2 Heat trace of the component operators

Next we give an expression of the heat trace of each operatorD(n). Recall that the heat kernel
K�\G of �

�\G
sub is given by (3.1). Let F� and F�∩A be a fundamental domain for the lattice

� in G and � ∩ A in the Euclidean space A, respectively. Then the integral

kD(n)

(
t, [g], [h]) =

∫

F�∩A
K�\G(t, [g], [h] ∗ λ

)
χn(λ) dλ
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Spectral theory of a class of nilmanifolds... 565

is the kernel function for the heat operator e−tD(n)
, that is it satisfies

kD(n) (t, [g] ∗ θ, [h]) = kD(n) (t, [g ∗ θ ], [h]) = χn(θ)kD(n) (t, [g], [h]),
kD(n) (t, [g], [h] ∗ θ) = kD(n) (t, [g], [h ∗ θ ]) = χn(θ)kD(n) (t, [g], [h]),

where θ ∈ A. LetM = {μi } be a set of complete representatives of the coset space�/(�∩A),

then the trace of the heat operator e−tD(n)

is given as follows:

Proposition 3.3 (see [4]) For each n in the dual lattice [� ∩ A]∗ and with the heat kernel
KG of the sub-Laplacian on G:

Vol
(
A/(� ∩ A)

) · tr
(
e−tD(n)

)

=
∫

F�

⎛

⎝
∑

γ∈�

∫

F�∩A
KG(t, g, γ ∗ g ∗ λ)χn(λ)dλ

⎞

⎠ dg

=
∫

F�

⎛

⎝
∑

μ∈M

∑

ν∈�∩A

∫

F�∩A
kG

(
t, g−1 ∗ μ ∗ g ∗ ν ∗ λ

)
χn(λ)dλ

⎞

⎠ dg

=
∫

F�

⎛

⎝
∑

μ∈M

∫

Rd
kG

(
t, g−1 ∗ μ ∗ g ∗ λ

)
χn(λ)dλ

⎞

⎠ dg

=
∑

μ∈M

∫

F�

∫

Rd
kG

(
t, g−1 ∗ μ ∗ g ∗ λ

)
χn(λ)dλ dg.

Here denotes the set of representatives of the quotient group �
⋂

A �. Applying Theo-
rem 2.2 we can give a more concrete expression of the formula in Proposition 3.3. For this
purpose and for the sake of simplicity, we assume that the structure constants cki j in (2.2) are
of the form

cki j = 2qki j
p0

with a common positive integer p0 ≥ 1 and integers qki j . Then we fix a lattice �

� :=
⎧
⎨

⎩
∑

1≤i≤N

mi Xi +
∑

1≤k≤d

�k

p0
Zk

∣∣∣ mi , �k ∈ Z

⎫
⎬

⎭ ,

and we choose the set M ={
μ = ∑

1≤i≤N
mi Xi | mi ∈ Z

}
of complete representatives of the

quotient group (� ∩ A)\� = �/(� ∩ A). For each fixed

n = p0

d∑

k=1

nk Zk ∈ [� ∩ A]∗,

where nk ∈ Z we have

Vol
(
A/(� ∩ A)

) · tr
(
e−tD(n)

)

= 1

(2π t)N/2+d

∫

F�

∑

μ∈M

∫

A

∫

Rd
e−√−1 〈[μ,x]+λ,τ 〉

t · ϕt (τ, μ)dτ χn(λ) dλ dx dz = (∗),
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where the function ϕt (τ, μ) in the integrand is given by:

ϕt (τ, μ) = exp
{

− 1

2t

〈
�(

√−1τ) coth�(
√−1τ) · μ,μ

〉}
W (τ ).

In the following we write ϕ̂t (τ, μ) for the Fourier transform of ϕt with respect to the τ -
variable. Then

(∗) = 1

t N/2+d · (2π)(N+d)/2

∫

F�

∑

μ∈M

∫

A

ϕ̂t

( [μ, x] + λ

t
, μ

)
· e−2π

√−1〈n,λ〉 dλ dx dz

= 1

t N/2+d · (2π)(N+d)/2

∫

F�

∑

μ∈M

∫

A

ϕ̂t (u, μ) · e−2π
√−1〈n, tu+[x, μ]〉td du dx dz,

= 1

(2π t)N/2 · p0d ·
∑

μ∈M
ϕt (−2π tn, μ) ·

∫

[0, 1] × · · · × [0, 1]︸ ︷︷ ︸
N times

e−2π
√−1〈n, [x, μ]〉 dx .

With a suitable set of linear independent vectors a1(n), . . . , ab(n)(n) in � the solution space
M(n) = {μ ∈ M | �(n)(μ) = 0 } can be written as

M(n) =
{

μ =
b(n)∑

i=1

mi ai (n),

∣∣∣ mi ∈ Z

}
.

Here b(n) ≤ N and b(n) = N if and only if n = 0. Hence

Theorem 3.4 For each n in the dual lattice [� ∩ A]∗ and with the above notation:

tr
(
e−t D(n)

)
= 1

(2π t)N/2

∑

μ∈M(n)

e−
〈
�(2π t

√−1n) coth�(2π
√−1tn)μ, μ

〉
2t

√

det
�(2π

√−1tn)

sinh�(2π
√−1tn)

= 1

(2π t)N/2

∑

μ∈M(n)

e− <μ,μ>
2t

√

det
�(2π

√−1tn)

sinh�(2π
√−1tn)

. (3.4)

In particular, it holds:

tr
(
e−�

�\G
sub

)
= 1

(2π t)N/2

∑

n∈[�∩A]∗

∑

μ∈M(n)

e− <μ,μ>
2t

√

det
�(2π

√−1tn)

sinh�(2π
√−1tn)

.

Proof It suffices to show the second equation in (3.4). Note that the defining equation
�(n)(μ) = 0 for μ ∈ M(n) implies:

〈
�(2π t

√−1n) coth�(2π
√−1tn)(μ), μ

〉 = 〈
μ, μ

〉 =
∑

mim j
〈
ai (n), a j (n)

〉
.

The last statement follows from (3.2) and (3.4).

Corollary 3.5 For n,−n ∈ [� ∩ A]∗ the traces tr
(
e−t D(n))

and tr
(
e−t D(−n))

coincide.

4 Pseudo H-type algebras and groups

For the rest of the paper we consider a specific subclass of all 2-step nilpotent Lie groups,
the so called pseudo H-type groups. These are generalizations of Heisenberg type groups
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Spectral theory of a class of nilmanifolds... 567

in [23,24] and have been first introduced in [10]. An extensive analysis of the structure and
classification of pseudo H -type groups and their algebras can be found in the recent papers
[13–15]. For completeness we recall the relevant definitions:

We write R
r ,s for the Euclidean space R

r+s equipped with the non-degenerate scalar
product

〈x, y〉r ,s :=
r∑

i=1

xi yi −
s∑

j=1

xr+ j yr+ j .

Consider the quadratic form qr ,s(x) = 〈x, x〉r ,s and let C�r ,s denote the Clifford algebra
generated by (Rr ,s, qr ,s) [25]. We call a C�r ,s-module V admissible, if there is a non-
degenerate bilinear form (= scalar product) 〈•, •〉V on V satisfying the following conditions:

(a) There is a Clifford module action J : C�r ,s × V → V : (z, X) �→ Jz X , i.e.

Jz Jz′ + Jz′ Jz = −2〈z, z′〉r ,s I f or all z, z′ ∈ R
r ,s . (4.1)

(b) For all z ∈ R
r ,s the map Jz is skew-symmetric on V with respect to 〈•, •〉V , i.e.

〈
Jz X , Y

〉
V + 〈

X , JzY
〉
V = 0 f or all X , Y ∈ V . (4.2)

Moreover, from (a) and (b) one concludes:
〈
Jz X , JzY

〉
V = 〈z, z〉r ,s〈X , Y 〉V where X , Y ∈ V , z ∈ R

r ,s . (4.3)

We write {J , V , 〈•, •〉V } for an admissible module of the Clifford algebra C�r ,s with
the module action J = Jz and the scalar product 〈•, •〉V .
Remark 4.1 The existence of an admissible C�r ,s-module V has been shown in [10]. If
s �= 0 then an admissible module V needs not to be irreducible. More precisely, five cases
are possible which all are present in the classification. If C�r ,s has, up to equivalence, only
one irreducible representation (J , V ), then either V or the sum V ⊕ V is admissible. In the
case whereC�r ,s has two non-equivalent irreducible representations (J (i), Vi ), i = 1, 2, then
either Vi for i = 1, 2 both are admissible, or only V1 ⊕ V2 is admissible, or V1 ⊕ V1 and
V2 ⊕ V2 simultaneously are admissible. These cases are complementary to each other (cf.
[10,13–15]).

In the case s = 0 the situation is simpler. Every irreducible module V is admissible with
respect to an inner product (i.e. 〈•, •〉V is positive definite). Originally such cases have been
defined and studied by Kaplan in [23].

In the following, we call a vector X ∈ V positive (resp. negative) if the scalar product
〈X , X〉V is positive (resp. negative) and null vector if 〈X , X〉V = 0. A similar notation
is used for vectors Z ∈ R

r ,s . If s > 0, then an admissible module V with scalar product
〈•, •〉V has positive and negative subspaces of the same dimension N with respect to the
above scalar product 〈•, •〉V , cf. [10]. In particular, dim V = 2N is even.

Moreover, V decomposes into the orthogonal sum of minimal dimensional admissible
modules. In fact, since the scalar product restricted to such an invariant subspace is non-
degenerate the orthogonal complement is also an admissible module.

Definition 4.2 Let {J , V , 〈•, •〉V } be an admissible C�r ,s-module.

(1) The 2-step nilpotent Lie algebra V ⊕⊥ R
r ,s with center R

r ,s and Lie brackets defined
via the relation

〈
Jz(X), Y

〉
V = 〈

z, [X , Y ]〉r ,s, z ∈ R
r ,s, and X , Y ∈ V , (4.4)
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will be denoted byNr ,s(V ). We write Gr ,s(V ) for the corresponding simply connected
Lie group and call it a pseudo H-type group, cf. [10,13].

(2) If V is of minimal dimension among all admissible modules, then we call V minimal
admissible and we shortly write Nr ,s := Nr ,s(V ) and Gr ,s := Gr ,s(V ).

Remark 4.3 Note that minimal admissible modules are cyclic and the nilpotent Lie algebra
Nr ,s is unique up to isomorphisms, even if the Clifford algebra C�r ,s admits two non-
equivalent irreducible representations (cf. [13]).

We fix an orthonormal basis {Zk}r+s
k=1 in R

r ,s , i.e. we assume that:

〈Zi , Zi 〉r ,s = 1 (i = 1, . . . , r), 〈Zr+ j , Zr+ j 〉r ,s = −1 ( j = 1, . . . , s), and

〈Zi , Z j 〉r ,s = 0 (i �= j).

Let {J , V , 〈•, •〉V } be an admissible C�r ,s-module.

Theorem 4.4 (cf. [11,13])Assume that s > 0. Then there exists an orthonormal basis {Xi }2Ni=1
of V such that

(1) 〈Xi , Xi 〉V = 1 (i = 1 . . . , N ), 〈Xi , Xi 〉V = −1 (i = N + 1, . . . , 2N ) and

〈Xi , X j 〉V = 0 for i �= j,

(2) For each k, the operator JZk maps Xi to some X j or − X j with j �= i .

Definition 4.5 We call a basis {Xi , Z j } satisfying the properties in Theorem 4.4 an integral
basis of the algebra Nr ,s(V ).

Remark 4.6 An interesting problem, which we will postpone to a future work, consists in a
classification of integral bases up to isomorphisms. Consider an orthonormal basis {Zk}r+s

k=1
of R

r ,s in the above sense. If V is a minimal admissible C�r ,s-module, then we can define a
finite subgroupG inGL(V ) generated by {JZk : k = 1, . . . , r+s}. Consider the commutative
subgroup:

S := {
A ∈ G : A2 = Id, A = JZi1 . . . JZir > 0, A �= −Id

} ⊂ G.

By “A > 0” we mean that A maps positive (resp. negative) vectors in V to positive (resp.
negative) vectors. Such groups are partially ordered with respect to the inclusion and we
assume that S is a maximal element. Further, we assume that v ∈ V is a common eigenvector
of elements in S. Necessarily, v is not a null vector, i.e. 〈v, v〉V �= 0. Consider

{ ± Xi } = {
Av : A ∈ G

}
.

We conjecture that a suitable choice of the common eigenvector v leads to an integral basis
{Xi , Z�} of the pseudo H -type Lie algebra Nr ,s(V ).

Conversely, let {Xi , Z j } be an integral basis and put ±B := {±X� : � = 1, . . . ,m =
dim V }. Then each JZi defines a bijective map

JZi : ±B → ±B
and elements in the group G act on ±B. We obtain a subgroup S as above from this basis by
defining {

A ∈ G : A(X1) = X1
} =: S ⊂ G.

We conjecture that every maximal subgroup S defines an integral basis. A classification
of integral bases up to isomorphisms is left as an interesting problem, which we postpone to
a future study.
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From now on we assume that {Xi , Zk} is an integral basis of Nr ,s(V ).

Corollary 4.7 If there exists i ∈ {1, . . . , 2N } such that JZk (Xi ) = ±JZ�
(Xi ), then k = �.

Hence any basis vector Xi is mapped to some X j or −X j by at most one operator JZk .

Proof If k ≤ r then JZk maps positive to positive and negative to negative elements. Similarly,
if k > r , then JZk maps positive to negative and negative to positive elements. Therefore,
under the above assumption only the cases k, � ≤ r or k, � > r are possible.

Let us assume k �= � such that ±Xi = JZk JZ�
(Xi ). By the previous remark we have

JZk JZ�
◦ JZk JZ�

= −JZk ◦ J 2Z�
◦ JZk = −〈

Zk, Zk
〉
r ,s

〈
Z�, Z�

〉
r ,s = −I .

This equation contradicts the existence of the eigenvalue 1 or −1 of JZk JZ�
. ��

Corollary 4.8 If we put [Xi , X j ] = ∑
cki j Zk , then cki j can be non-zero for at most one k. If

cki j is non-zero then it equals ±1.

Proof The statement follows from Corollary 4.7 and

〈
JZ�

Xi , X j
〉
V = 〈

Z�, [Xi , X j ]
〉
r ,s =

{
c�
i j if � ≤ r

−c�
i j if � > r .

��
Definition 4.9 From an integral basis {Xi , Zk} of Nr ,s(V ) we define a lattice in the pseudo
H -type group Gr ,s(V ) by

�r ,s(V ) :=
⎧
⎨

⎩
∑

mi∈Z
mi Xi + 1

2

∑

k j∈Z
k j Z j

⎫
⎬

⎭ .

In the following we call �r ,s(V ) a standard integral lattice inNr ,s(V ). IfNr ,s is constructed
from a minimal admissible module V (cf. Definition 4.2), then we write �r ,s := �r ,s(V ).

Remark 4.10 A standard integral lattice is not unique. A complete classification will be
subject of another work. For particular cases the construction of �r ,s is found in [13].

In the following two sections we consider the sub-Laplacian

�
Gr,s (V )

sub = −1

2

2N∑

i=1

X̃2
i (4.5)

on Gr ,s(V ), where {Xi : i = 1, . . . , 2N } is the basis of the module V in the definition of
the standard integral lattice �r ,s(V ). We determine the heat trace of the sub-Laplacian

�
�r,s (V )\Gr,s (V )

sub (4.6)

descended from (4.5) to the nilmanifold �r ,s(V )\Gr ,s(V ). Based on the sub-ellipticity of
(4.6) it is known that the spectrum of the sub-Laplacian only consists of eigenvalues with
finite multiplicities. In principle our trace formula in Theorem 3.4 can be used to obtain the
spectrum of (4.6). However, wewill not calculate the eigenvalues andmultiplicities explicitly
since a comparison of heat traces is sufficient to decide isospectrality.
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5 The structure constants of pseudo H-type groups

In the case of pseudo H -type groups we calculate the characteristic polynomial of the matrix
�(z) in (2.3) in the case where s > 0 in Definition 4.2 of the pseudo H -type group Gr ,s(V ).
Recall that this matrix is an essential ingredient for the integral expression of the heat kernel
in Theorem 2.2.

Throughout this section we assume that s > 0 so that we can use the integral basis in
Theorem 4.4. Let us start by decomposing the Clifford module V = V+⊕⊥V− into a positive
and a negative subspace V+ := [Xi : i = 1, . . . , N ] and V− = [XN+ j : j = 1, . . . , N ],
where {Xi : i = 1, . . . , 2N } is part of a standard integral basis {Xi , Z j } of Nr ,s(V ). Then
the Clifford module action

Jz(Xi ) =
∑

j

ci j (z)X j

with

z =
r∑

i=1

μi Zi +
s∑

j=1

ν j Zr+ j ∼= (μ, ν)T ∈ R
r ,s

can be written in form of a matrix with respect to the basis {Xi } of V :

Jz =
(
A B
C D

)
:
V+
⊕⊥
V−

−→
V+
⊕⊥
V−

.

By (4.3) the map Jz leaves V± invariant whenever z is positive in R
r ,s . If z ∈ R

r ,s is
negative then Jz maps V+ to V− and vice versa. It follows that the component matrices
A, B,C, D are of the forms A = A(μ), B = B(ν), C = C(ν) and D = D(μ). Due to the
admissibility condition (4.2) of the Clifford action on the module V we have

AT (μ) = −A(μ), BT (ν) = C(ν) and DT (μ) = −D(μ).

Here AT (μ) denotes the transposed matrix of A(μ) ∈ R(N ). Moreover, the identity
J 2z = −〈z, z〉r ,s yields additional relations between the component matrices A, B,C and D
which are collected in the next lemma.

Lemma 5.1 With the notion ‖μ‖2 := ∑r
i=1 μ2

i and ‖ν‖2 := ∑s
j=1 ν2j we have:

(a) A(μ)2 + B(ν)C(ν) = −〈z, z〉r ,s = −(‖μ‖2 − ‖ν‖2),
(b) A(μ)B(ν) + B(ν)D(μ) = 0 and C(ν)A(μ) + D(μ)C(ν) = 0,
(c) C(ν)B(ν) + D(μ)2 = −〈z, z〉r ,s .
In particular, it follows A(μ)2 = −‖μ‖2 and D(μ)2 = −‖μ‖2.

Let L be a linear map on V ∼= R
2N . The same notation is used for its matrix representation

with respect to the basis {Xi }. Let 〈·, ·〉 denote the Euclidean inner product on R
2N and fix

x, y ∈ V . We calculate the matrix representation of the transpose L∗ of L with respect to the
scalar product 〈·, ·〉V . Consider the matrix

τ :=
(
I 0
0 −I

)
∈ R(2N ) where I = identity ∈ R(N ).

Then we have 〈
Lx, y

〉
V = 〈

Lx, τ y
〉 = 〈

x, LT τ y
〉 = 〈

x, τ LT τ y
〉
V ,
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which implies that L∗ = τ LT τ . A direct calculation shows that the skew-symmetric matrix
�(z) in (2.3) is related to the above matrix representation of Jz as follows:

�(z) = τ J Tz =
( −A(μ) B(ν)

−BT (ν) D(μ)

)
. (5.1)

Remark 5.2 If r = 0, then A(μ) = D(μ) = 0.

In order to determine the eigenvalues of the matrix �(
√−1z) we employ the relation

(−A + λ B
−C D + λ

)

︸ ︷︷ ︸
=�(z)+λ

(
I −(−A + λ)−1B
0 I

)
=
(−A + λ 0

−BT BT (−A + λ)−1B + λ + D

)
.

Hence we have

det
(
�(z) + λ

) = det
( − A + λ

)
det

(
BT (−A + λ)−1B + λ + D

)
.

According to Lemma 5.1 one has BT B = ‖ν‖2 = BBT and BT AB +‖ν‖2D = 0, showing
that BT

( − A + λ
)
B = ‖ν‖2(λ + D). Together with the skew-symmetry of �(z):

det
(
�(z) + λ

) = det
(
�(z) − λ

)

= det
( − A + λ

)
det

(
BT (−A + λ)−1B + 1

‖ν‖2 BT (−A + λ) B
)

= det
( − A + λ

)
det

(
BT

[
(−A + λ)−1 + 1

‖ν‖2 (−A + λ)
]
B

)

= det
(
‖ν‖2 − ‖μ‖2 + λ2 − 2λA

)
.

Therefore:

det
(
�(z) + λ

)2 = det
(
�(z) + λ

)
det

(
�(z) − λ

)

= det
( (‖ν‖2 − ‖μ‖2 + λ2

)2 + 4λ2‖μ‖2
)
.

Proposition 5.3 With s > 0 and z ∈ R
r ,s we have:

det(�(z) + λ)2 =
((

λ2 + ‖μ‖2 + ‖ν‖2)2 − 4‖μ‖2‖ν‖2
)N

=
[(

λ2 + (‖μ‖ + ‖ν‖)2)(λ2 + (‖μ‖ − ‖ν‖)2)
]N

.

By replacing z with
√−1z, μ with

√−1μ and ν with
√−1ν we have:

Corollary 5.4 The eigenvalues λ of the matrix �(
√−1z) are λ = ±(‖μ‖ ± ‖ν‖).

If z �= 0 then the matrix �(z) has the eigenvalue zero only when ‖μ‖ = ‖ν‖. In this case
the matrices B(ν) and D(μ) are non-singular so that the dimension of the solution space
�(z) · x = 0 is N (= half the dimension of V ).

Proposition 5.5 Assume that z �= 0 and ‖μ‖ = ‖ν‖. The kernel of �(z) is given by

Ker�(z) =
{ (

B(ν)x
−D(μ)x

) ∣∣∣∣ x = (x1, . . . , xN )T ∈ R
N
}

.
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Finally we determine the dimension of the eigenspaces corresponding to the above eigen-
values ±(‖μ‖ ± ‖ν‖).
Proposition 5.6 Let z �= 0. Then the dimensions of the eigenspaces Eλ of �(

√−1z) with
respect to the eigenvalue λ = ±(‖μ‖ ± ‖ν‖) are given as follows:
(i) If neither μ nor ν is zero, then dim Eλ = N/2 and therefore dim V

2 = N is even.
(ii) If μ = 0 and ν �= 0, then dim E‖ν‖ = N = dim E−‖ν‖.
(iii) If μ �= 0 and ν = 0, then dim E‖μ‖ = N = dim E−‖μ‖.

Proof (i): Let (x, y)T ∈ R
N × R

N ∼= R
2N be an eigenvector of the matrix �(

√−1z) with
respect to the eigenvalue λ = ‖μ‖ + ‖ν‖, where μ, ν �= 0, then

�(
√−1z)

(
x
y

)
=
(−A(

√−1μ) B(
√−1ν)

−C(
√−1ν) D(

√−1μ)

) (
x
y

)
=(‖μ‖ + ‖ν‖)

(
x
y

)
. (5.2)

Multiplying the first equation by A(
√−1μ) and the second equation by B(

√−1ν) gives

A(
√−1μ)

(
− A(

√−1μ) x + B(
√−1ν) y

)
= (‖μ‖ + ‖ν‖)A(

√−1μ) x

B(
√−1ν)

(
− C(

√−1ν) x + D(
√−1μ) y

)
= (‖μ‖ + ‖ν‖)B(

√−1ν) y.

On the left hand side we use Lemma 5.1 and deduce the following two equations

−‖μ‖2 x + A(
√−1μ)B(

√−1ν) y = (‖μ‖ + ‖ν‖)A(
√−1μ) x

‖ν‖2 x + B(
√−1ν)D(

√−1μ) y = (‖μ‖ + ‖ν‖)B(
√−1ν) y.

Adding these identities and using Lemma 5.1, (ii) gives
(‖ν‖ − ‖μ‖) x = A(

√−1μ) x + B(
√−1ν) y.

Together with the Eq. (5.2) we find that B(
√−1ν)y = ‖ν‖x . This shows that

A(
√−1μ)x = −‖μ‖x .

Since B(ν) is non-singular for ν �= 0 the vector y is uniquely determined by x . Conversely,
the eigenvector x of the matrix A(

√−1μ) with the eigenvalue −‖μ‖ �= 0, determines the

eigenvector of the matrix �(
√−1z) by putting y = ‖ν‖B(

√−1ν)
−1

x .
Since A(μ) is skew-symmetric for any real vector μ and A(μ)2 = −‖μ‖2, the dimension

of the eigenspace of the matrix A(
√−1μ) with respect to the eigenvalue ‖μ‖ is half the size

of the matrix A, i.e. it equals N
2 . The remaining eigenvalues can be treated similarly and

therefore (i) follows.
(ii): Under the assumption of (ii) and by applying the relations in Lemma 5.1 we have
A = D = 0 and B(ν)C(ν) = ‖ν‖2 = C(ν)B(ν). Let (x, y)T ∈ R

N × R
N ∼= R

2N be an
eigenvector of �(

√−1z) with eigenvalue λ = ‖ν‖. Then the equation

�(
√−1z)

(
x
y

)
=
(

0 B(
√−1ν)

‖ν‖2B−1(
√−1ν) 0

)(
x
y

)
= ‖ν‖

(
x
y

)

is equivalent to B(
√−1ν)y = ‖ν‖x , which can be uniquely solved for any given x ∈ R

N .
The case λ = −‖ν‖ is treated in the same way and (ii) follows.
(iii): If μ �= 0 and ν = 0, then C = B = 0 and with λ = ‖μ‖ we have the equation

�(
√−1z)

(
x
y

)
=
(−A(

√−1μ) 0
0 D(

√−1μ)

)(
x
y

)
= ‖μ‖

(
x
y

)
.
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Thematrix�(
√−1z) isHermitian and therefore can be diagonalized. From the expression

of det (�(z) + λ)2, we deduce that the eigenspaces have dimension N . The case λ = −‖μ‖
can be treated similarly. ��

Corollary 5.7 Let s > 0, then the characteristic polynomial of �(
√−1z) is given by:

det
(
�(

√−1z) + λ
)

=(
λ2 − (‖μ‖ + ‖ν‖)2)N/2(

λ2 − (‖μ‖ − ‖ν‖)2)N/2
.

Remark 5.8 In the case s = 0 we can find an admissible module V with respect to an inner
product (= positive definite scalar product) and so we obtain:

�(z) = Jz and �(z)2 = J 2z = −‖z‖2 I .
Therefore, the statement of Corollary 5.7 remains valid even in this case:

det
(
�(

√−1z) + λ
)

= (
λ2 − ‖z‖2)N .

6 Spectrum of the sub-Laplacian on pseudo H-type nilmanifolds

Let {J , V , 〈•, •〉V } be an admissible module of the Clifford algebra C�r ,s . Based on the
results of the previous sections we derive an explicit expression for the heat trace of the

sub-Laplacian �
�r,s (V )\Gr,s (V )

sub on the nilmanifolds �r ,s(V )\Gr ,s(V ) for r > 0 and s > 0.
In fact, with a view to the decomposition (3.2), it suffices to calculate the heat trace of each
component operator D(n) with respect to the element n in the dual [A ∩ �r ,s(V )]∗ of the
lattice A ∩ �r ,s(V ).

Recall that A ∼= R
r ,s denotes the center of the group Gr ,s(V ). However, our notation will

not indicate the dependence on the parameter (r , s).

6.1 Determination of the spectrum

An element n in the dual lattice
[
�r ,s ∩ A

]∗ can be expressed as

n = 2

⎛

⎝
r∑

i=1

mi Zi +
s∑

j=1

n j Zr+ j

⎞

⎠ where (m, n) ∈ Z
r+s .

We also use the notation n = 2(μ+ ν) with μ+ ν = (m1, . . . ,mr , n1 . . . , ns) ∈ Z
r+s . Now

Theorem 3.4 implies:

(1) If n = 0, then the trace of the operator e−tD(0)
is given by

tr
(
e−tD(0)

)
= 1

(2π t)N
∑

�∈Z2N

e− ‖�‖2
2t . (6.1)

(2) Assume that n ∈[�r ,s ∩ A
]∗ with

r∑

i=1

mi
2 =

s∑

j=1

n j
2,
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and let d0 > 0 be the greatest common divisor of (μ, ν) = (m1, . . . ,mr , n1, . . . , ns).
Define integersm′

i and n
′
i through the equationsmi = mi

′d0 and n j = n j
′d0. According

to Proposition 5.5 the solution space M(n) ={
� ∈ Z

2N | �(n) � = 0
}
is given by:

M(n) =
{ (

B(ν′)�
−D(μ′)�

) ∣∣∣ � = (�1, . . . , �N )T ∈ Z
N
}

,

where (μ′, ν′) = (m1
′, . . . ,mr

′, n1′, . . . , ns ′). Hence

tr
(
e−tD(n)

)
= 1

(π t)N/2

∑

�∈Z2N

e
− ‖μ‖2 ‖�‖2

d0
2 t

(
2‖μ‖

sinh
(
8π t‖μ‖)

)N/2

. (6.2)

(3) For n = 2(μ + ν) with ‖μ‖ �= ‖ν‖ the matrix �(n) is non-singular. In this case the
solution space M(n) = {0} is trivial and

tr
(
e−tD(n)

)
= 2N

( ‖μ‖2 − ‖ν‖2
sinh{4π t(‖μ‖ + ‖ν‖)} sinh{4π t(‖μ‖ − ‖ν‖)}

)N/2.

. (6.3)

Remark 6.1 If s = 0, then the matrix �(n) is always non-singular for n �= 0. In this case we
find:

tr
(
e−tD(n)

)
=
( ‖n‖
sinh 2π t‖n‖

)N

.

Furthermore, from the heat trace formula (3.2) we conclude that the eigenvalues of the sub-
Laplacian on �r ,0(V )\Gr ,0(V ) are given by

• λl = 2π2‖l‖2 for l ∈ Z
2N .

• βn,m = 4π‖n‖(2m+ N ) for n ∈ Z
r\{0} andm ∈ N with multiplicity 4N‖n‖N (m+N−1

N−1

)
.

Since λ2l ∈ π4
Z and β2

n,m ∈ π2
Z, we can distinguish between these different numbers, i.e.

knowing the eigenvalues, we can extract the dimension of the admissible module V . We
conclude that if two manifolds �r ,0(V )\Gr ,0(V ) and �r ′,0(V ′)\Gr ′,0(V ′) are isospectral
with respect to the sub-Laplacian, then they have the same dimension.

Based on the dependence of the above heat traces on the parameters ‖μ‖, ‖ν‖ and N we
conclude:

Corollary 6.2 �r ,s\Gr ,s and �s,r\Gs,r are isospectral with respect to the Laplacian and the
sub-Laplacian, if the dimensions of their admissible modules coincide.

The pseudo H -type algebra Nr ,s does not depend on the chosen minimal admissible
module, cf. [13].Moreover, in the abovedeterminationwedonot explicitly use the assumption
that the admissible module is minimal. This implies:

Theorem 6.3 If V is a sum of k minimal admissible modules, then the heat trace in each of
the cases, (6.1), (6.2) and (6.3) above is the k-th power of the corresponding heat trace for
the manifold �r ,s\Gr ,s . Let U be an admissible module of C�s,r with dim V = dimU, then
the two nilmanifolds �r ,s(V )\Gr ,s(V ) and �s,r (U )\Gs,r (U ) are isospectral.
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7 Isospectral, but non-homeomorphic nilmanifolds

By applying Theorem 6.3 and the classification of pseudo H -type Lie algebras in [14,15]
we detect finite families of isospectral but mutually non-homeomorphic pseudo H -type nil-
manifolds. If the module V in the construction of the pseudo H -type Lie algebra is minimal
admissible, then pairs of non-isomorphic pseudo H -type Lie algebras Nr ,s � Ns,r of the
same dimension dimNr ,s = dimNs,r are known (see [14,15] or Table 7.1). By choosing
integral lattices �r ,s and �s,r in the corresponding Lie groups Gr ,s and Gs,r , respectively,
we first detect pairs

M1 := �r ,s\Gr ,s and M2 := �s,r\Gs,r (7.1)

of isospectral, non-homeomorphic manifolds. The minimal dimension of such examples
arise for (r , s) = (1, 3) in which case dim M1 = dim M2 = 12. By dropping the minimality
condition on themodule we can producemanymore examples.More generally, for any k ∈ N

we can find a family M1, . . . , Mk of nilmanifolds such that for i, j ∈ {1, . . . , k}:
Mi ∼isosp Mj and Mi �homeo Mj . (7.2)

Here ∼isosp means isospectral with respect to the sub-Laplacian and �homeo indicates that
two manifolds are non-homeomorphic. First, we explain the method of detecting non-
homeomorphic nilmanifolds.

If there is a homeomorphism between the nilmanifolds Nr ,s := �r ,s(V )\Gr ,s(V ) and
Ns,r = �s,r (U )\Gs,r (U ), then their fundamental groups

π1
(
�r ,s(V )\Gr ,s(V )

) ∼= �r ,s(V ) and π1
(
�s,r (U )\Gs,r (U )

) ∼= �s,r (U )

are isomorphic. We can apply the following general fact from [33]:

Proposition 7.1 Any isomorphism between lattices in simply connected nilpotent Lie groups
can be extended to an isomorphism between the whole groups.

From these observations we conclude:

Corollary 7.2 If the nilmanifolds Nr ,s and Ns,r are homeomorphic, thenNr ,s(V )andNs,r (U )

have to be isomorphic as Lie algebras.

7.1 Pairs of non-homeomorphic, isospectral nilmanifolds via minimal admissible
modules

To obtain pairs (M1 = Nr ,s, M2 = Ns,r ) of nilmanifolds with (7.2) we determine pairs (r , s)
such that dim Nr ,s = dim Ns,r , but Nr ,s � Ns,r , i.e. both Lie algebras are not isomorphic.
The classification of pseudo H -type algebras in Table 1 constructed fromminimal admissible
modules was obtained in [14,15]. This table gives us only information about the cases 0 ≤
r , s ≤ 8. For the remaining cases we use the following periodicity (see also [2]):

Lemma 7.3 For (μ, ν) ∈ {(8, 0), (0, 8)} mod 8 and (μ, ν) = (4, 4) mod 4 we have

Nr ,s ∼= Ns,r iff Nr+μ,s+ν
∼= Ns+ν,r+μ.

From Corollary 7.2 and Table 1 we see that for (r , s) ∈ {(3, 1), (3, 2), (3, 7)} both nil-
manifolds Nr ,s, Ns,r have the same dimension but they are non-homeomorphic.

Hence we obtain the following result:
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Table 1 Classification of pseudo
H -type Lie algebras defined via
minimal admissible modules

8 ∼= ∼= ∼= h

7 d d d �

6 d ∼= ∼= h ∼=
5 d ∼= ∼= h ∼=
4 ∼= h h h ∼= ∼=
3 d � � d d d � d

2 ∼= h � d ∼= ∼= h ∼=
1 ∼= d � d ∼= ∼= h ∼=
0 ∼= ∼= h ∼= h h h ∼=
s/r 0 1 2 3 4 5 6 7 8

Notation: If Vr ,s
min denotes a minimal admissible C�r ,s -module, then the

letter ‘d’ = double (or ‘h’=half, respectively) at the position (r , s)means
that dim Vr ,s

min = 2 dim V s,r
min (or dim Vr ,s

min = 1/2 dim V s,r
min, respec-

tively). The symbol ‘∼=’ indicates that the Lie algebras Nr ,s and Ns,r
are isomorphic while ‘�’ means that they are non-isomorphic

Corollary 7.4 The following pairs of nilmanifolds are isospectral and non-homeomorphic:

(a)
(
Nr ,s, Ns,r

)
for r ≡ 3 mod 8 and s ≡ 1, 2, 7 mod 8.

(b)
(
Nr+4k,s+4k, Ns+4k,r+4k

)
for (r , s) ∈ {(3, 1), (3, 2), (3, 7)} and k ∈ N0.

7.2 Finite families of non-homeomorphic, isospectral nilmanifolds

In case themodule V in the construction of the Lie algebraNr ,s(V ) is not minimal admissible
we can use the classification result in [15, Theorem 4.1.2 and Theorem 4.1.3] to determine
families {M1, . . . , Mk} of a given length k ∈ N of isospectral, mutually non-homeomorphic
nilmanifolds, i.e. (7.2) holds. First, we fix the pair (r , s) and study the Lie algebra Nr ,s(U ),
constructed from different admissible modules. In the general case the classification of iso-
morphic pseudo H -typeLie algebras ismore subtle and to state the result we need to introduce
some notation from [15]. Note that for any given minimal admissible module {J , V , 〈•, •〉V }
also the module {J , V ,−〈•, •〉V } is minimal admissible. The upper index in the notation
V r ,s;±
min;± indicate that the scalar product of the two minimal admissible modules V r ,s;+

min;± and

V r ,s;−
min;± differ by a sign.

Theorem 7.5 (Furutani, Markina, [15]) Let r ≡ 3 mod 4, s ≡ 1, 2, 3 mod 4 and U , Ũ be
admissible modules decomposed into the direct sums:

U =
⎛

⎝
p+⊕

Vr ,s;+
min

⎞

⎠
⊕

⎛

⎝
p−⊕

V r ,s;−
min

⎞

⎠ ,

Ũ =
⎛

⎝
p̃+⊕

Vr ,s;+
min

⎞

⎠
⊕

⎛

⎝
p̃−⊕

V r ,s;−
min

⎞

⎠ .

Then the Lie algebras Nr ,s(U ),Nr ,s(Ũ ) are isomorphic, if and only if:
[
p+ = p̃+ and p− = p̃−] or

[
p+ = p̃− and p− = p̃+].
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Let R ∈ N be fixed. If we consider admissible modules of the form

U (p, q) :=
( p⊕

Vr ,s;+
min

)
⊕

( q⊕
V r ,s;−
min

)
, p + q = R,

then we obtain non-isomorphic Lie algebras Nr ,s(U (p1, q1)) and Nr ,s(U (p2, q2)) of the
same dimension R · dim V r ,s;+

min if simultaneously (p1, q1) �= (p2, q2) and (p1, q1) �=
(q2, p2).

We fix an integer k and determine all pairs of integers (pi , qi ) with the properties:

(a) pi ≤ qi for all i .
(b) pi + qi = k for all i .
(c) (pi , qi ) �= (p j , q j ) and (pi , qi ) �= (q j , p j ) for i �= j .

With such pairs we define:

Ui :=
( pi⊕

Vr ,s;+
min

)
⊕

( qi⊕
V r ,s;−
min

)
.

From Theorem 7.5 and the above remark we conclude that the Lie algebras Nr ,s(Ui )

and Nr ,s(Uj ) are mutually non-isomorphic for r ≡ 3mod 4, s ≡ 1, 2, 3mod 4. In order to
present a concrete family of nilmanifolds with the required properties we choose r = 3 and
s = 1 such that dim V 3,1

min = 8. Let k be even and choose m ∈ N such that k = 2m. The pairs
(pi , qi ) with (a)–(c) are of the form {(i, k − i) | 0 ≤ i ≤ m} and we conclude:
Corollary 7.6 The following m + 1 nilmanifolds

(
�3,1\G3,1(Ui )

)
0≤i≤m

are isospectral, but mutually non-homeomorphic with respect to the (sub)-Laplacian.

Remark 7.7 For any given integer m ∈ N and by using the above method, we can construct
m + 1 nilmanifolds of the common dimension 4 + 16m which are isospectral but mutually
non-homeomorphic. In particular, one obtains a pair of such manifolds of the (minimal)
dimension 4 + 16 × 1 = 20. Note that via the first method (i.e. Corollary 7.4) we can find a
pair of such nilmanifolds of dimension 12.

To minimize the dimension of the constructed family of nilmanifolds we should use a
third method which is based on [15, Theorem 4.2], which treat the case r ≡ 3 mod 4 and
s ≡ 0 mod 4. In this situation there are two non-equivalent irreducible representations andwe
use the lower index ± in the notation below to distinguish the minimal admissible modules
corresponding to each irreduciblemodules (or to each sumof irreduciblemodules, cf. Remark
4.1).

Theorem 7.8 (Furutani, Markina, [15]) For r ≡ 3 mod 4 and s ≡ 0 mod 4, let U , Ũ be
admissible modules decomposed into the direct sums:

U =
⎛

⎝
p++⊕

V r ,s;+
min,+

⎞

⎠
⊕

⎛

⎝
p−+⊕

Vr ,s;−
min,+

⎞

⎠
⊕

⎛

⎝
p+−⊕

V r ,s;+
min,−

⎞

⎠
⊕

⎛

⎝
p−−⊕

V r ,s;−
min,−

⎞

⎠ ,

Ũ =
⎛

⎝
p̃++⊕

V r ,s;+
min,+

⎞

⎠
⊕

⎛

⎝
p̃−+⊕

Vr ,s;−
min,+

⎞

⎠
⊕

⎛

⎝
p̃+−⊕

V r ,s;+
min,−

⎞

⎠
⊕

⎛

⎝
p̃−−⊕

V r ,s;−
min,−

⎞

⎠ .
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Then the Lie algebrasNr ,s(U ) andNr ,s(Ũ ) are isomorphic, if and only if one of the following
conditions are fulfilled:

[
p++ + p−− = p̃++ + p̃−− and p−+ + p+− = p̃−+ + p̃+−

]
,

or
[
p++ + p−− = p̃−+ + p̃+− and p−+ + p+− = p̃++ + p̃−−

]
.

To simplify the construction we choose p+− = p−− = 0, p̃+− = p̃−− = 0. The condition in
Theorem 7.8 take the form:

[
p++ = p̃++ and p−+ = p̃−+

]
or

[
p++ = p̃−+ and p−+ = p̃++

]
.

Next, we choose r = 3, s = 0 and fix m ∈ N. Then we consider the following family of
m + 1 admissible modules:

Vi :=
(

i⊕
V 3,0;+
min;+

)
⊕

(
2m−i⊕

V 3,0;−
min;+

)
, (0 ≤ i ≤ m).

We obtain a family of m + 1 mutually non-homeomorphic, isospectral nilmanifolds of com-
mon dimension 3 + 8m.

Corollary 7.9 For 0 ≤ i ≤ m, the m + 1 nilmanifolds
(
�3,0\G3,0(Vi )

)
0≤i≤m

are isospectral but mutually non-homeomorphic.

Remark 7.10 By choosing m = 1 we obtain a pair of nilmanifolds both having dimension
3 + 8 = 11. This dimension is minimal among the previous examples.

8 Subriemannian structure and heat trace expansion

To every pseudo H -type nilmanifold M = �r ,s\Gr ,s with r + s > 1 and based on [3,
Theorem3.3]we construct aHeisenbergmanifold H = �\H2n+1 such that the short timeheat
trace asymptotic expansions corresponding to the sub-Laplacians on M and H , respectively,
coincide up to a term vanishing to infinite order. Moreover, in our construction the manifolds
M and Hα have different dimensions. Recall that in the case of a Riemannian structure on
M the heat trace expansion corresponding to the Laplacian encodes the dimension of M and
therefore such examples do not exist in the framework of Riemannian geometry.

Let d = r + s > 1, and with our previous notation consider the nilmanifold

M = �r ,s\Gr ,s with dim M = 2N + d.

WewriteH2n+1 = G1,0(R
2n) for the (2n+1)-dimensional Heisenberg group andwith α > 0

we define a lattice �α ⊂ H2n+1 of the form:

�α =
{√

α
∑

mi Xi + α

2
kZ : mi , k ∈ Z

}
.

Here {Xi , Z | i = 1, . . . , 2n} denotes a basis of the Lie algebra of H2n+1 with the non-trivial
bracket relations [

Xi , Xn+ j
] = δi j Z , (i, j = 1, . . . , n).
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The corresponding one-parameter family of Heisenberg manifolds will be denoted by:

Hα = �α\H2n+1 where α > 0.

We recall the form of the short time heat trace asymptotic expansion of the sub-Laplacian on
a general compact 2-step nilmanifold �\G in [3, Theorem 3.3]:

Theorem 8.1 (Bauer, Furutani, Iwasaki [3]) Let M = �\G be a 2-step compact nilmanifold
of dimension 2N + d. Then

tr
(
e−t�M

sub

)
= cM

t N+d
+ O(t∞) as t → 0.

The constant cM > 0 explicitly is given by

cM = Vol(M)

(2π)N+d

∫

Rd
W (τ )dτ. (8.1)

If we apply the above theorem to Hα , we obtain:

cHα = Vol(Hα)

(2π)n+1

∫

R

W (τ )dτ.

Here W (τ )dτ is simply the volume form in Theorem 2.2 and associated to the Heisenberg
group with the above structure constants. Note that

Vol(Hα) = αn+1Vol(H1).

If we choose n ∈ N with n + 1 = N + d and α > 0 such that cHα = cM , then we obtain a
pair of compact, subriemannian manifolds with the properties:

(a) tr
(
e−t�M

sub

)
− tr

(
e−t�Hα

sub

)
= O(t∞) as t → 0

(b) 2N + d = dim M �= dim Hα = 2N + 2d − 1 (since d > 1).

Remark 8.2 From the heat trace expansion for small times we can read the Hausdorff dimen-
sion 2(N + d) of the nilmanifold M = �\G in Theorem 8.1 considered as a metric space
with respect to the Carnot–Carathéodory distance. However, the last example indicates that
we cannot read the Euclidean dimension of M from the coefficient (8.1) of the heat trace
expansion. However, in Remark 3.2 we have pointed out that in some cases this dimension
can be obtained from the full spectrum of the sub-Laplacian. In the case of the nilmanifolds
M in this paper and which are constructed from a standard lattice we have vol(M) = 1 and
therefore, with the notation in Theorem 8.1:

cM = CM (N , d) := 1

(2π)N+d

∫

Rd
W (τ )dτ. (8.2)

We list a few problems concerning the geometric information contained in the spectrum
of the sub-Laplacian on a nilmanifold:
Problems:

(a) Let Gr ,s(V ) be a pseudo H -type group with standard lattice �r ,s as explained in
Section 4. Can we determine the numbers 2N = dim V and d = dimGr ,s(V ) − 2N
from the coefficient (8.2)?
Consider the case s = 0. Then integration with respect to polar coordinates shows:

∫

Rd
W (τ )dτ =

∫

Rd

|τ |N
(sinh |τ |)N dτ = 2Vd

∫ ∞

0

r N+d−1e−Nr

(1 − e−2r )N
dr = (∗),
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where Vd = 2π
d
2 /�( d2 ) denotes the volume of the (d − 1)-dimensional unit sphere.

Now we use the following power series expansion for |x | < 1:

1

(1 − x)N
=

∑

α∈NN
0

x |α|.

A change of variables in the integral is applied to obtain:

(∗) = 2Vd
∑

α∈NN
0

∫ ∞

0
r N+d−1e−(N+2|α|)r dr

= 2Vd
∑

α∈NN
0

1

(N + 2|α|)N+d

∫ ∞

0
r N+d−1e−r dr

= Vd�(N + d)

2N+d−1

∑

α∈NN
0

1
( N
2 + |α|)N+d

= Vd�(N + d)

2N+d−1 ζN
(
N + d,

N

2

)
.

The infinite sum is called multiple Hurwitz zeta function and previously has been
studied in the literature:

ζN
(
N + d,

N

2

) :=
∑

α∈NN
0

1
( N
2 + |α|)N+d

.

Hence:

cM (N , d)(2π)N+d 2N+d−2

�(N + d)
= π

d
2

�
( d
2

)ζN
(
N + d,

N

2

)
.

The left hand side can be calculated from the spectral data (more precisely, from the
heat trace expansion in Theorem 8.1). Hence the problem reduces to the question,
whether for each k ∈ N the assignment:

Nk :=
{
(N , d) ∈ N

2 : N + d = k
}


 (N , d) �→ π
d
2

�
( d
2

)ζN
(
k,

N

2

)

is injective.
(b) Consider two isospectral compact nilmanifoldsMj = � j\G j where j = 1, 2.Assume

that both are equipped with a left-invariant subriemannian structure as described in
this paper. Is it true that dimG1 = dimG2 (see Remark 6.1)?

(c) The distribution of eigenvalues for classes of hypoelliptic operators with double char-
acteristics on compact manifolds and under additional conditions is well-studied (e.g.
see the work by Menikoff and Sjöstrand [29–31]), and Melrose [28]. Moreover, in the
case of “sum-of-squares operators” satisfyingHörmander’s bracket generating condi-
tion the asymptotic of the heat kernel at small times was found by Ben Arous, Léandre
(see [7,8]) in a formwhich encodes geometric data of an induced subriemannian struc-
ture (such as the Carnot Carathéodory metric). However, not much seems to be known
on the precise growth order or coefficient of the second term in the expansion of the
eigenvalue counting function for the sub-Laplacian on compact nilmanifolds. Based
on a classification of lattices and the explicit spectral data such question in the case
of Heisenberg manifolds has been discussed in [36]. In generalizing R. Strichartz’s
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result one may study the following problem:
Let M := �\G denote a compact nilmanifold (e.g. modelled over a pseudo H -type
Lie group). Determine the growth order or even the coefficient of the second term in
the eigenvalue counting function for the corresponding sub-Laplacian.
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9 Appendix

In the appendix we present the dimensions of minimal admissible modules for some basic
cases in Table 2. These data are taken from [14,15] which we refer to for more details
and notations. The remaining cases can be obtained by (4, 4), (8, 0) and (0, 8)-periodicities
with respect to the signature (r , s), respectively. In particular, the table indicates the cases
in which two non-equivalent minimal admissible modules exist. However, it is known that
pseudo H -type algebras constructed from two non-equivalent minimal admissible modules
are isomorphic.

Table 2 Dimensions of minimal
admissible modules 8 16±

7 16N 32N 64N 64±

6 16N 16N×2 32N 32±

5 16N 16N 16N 16±

4 8± 8± 8± 8±
×2 16±

3 8N 8N 8N 8± 16N 32N 64N 64±

2 4N 4N×2 8N 8± 16N 16N×2 32N 32±

1 2N 4N 8N 8± 16N 16N 16N 16±

0 1± 2± 4± 4±
×2 8± 8± 8± 8±

×2 16±

s/r 0 1 2 3 4 5 6 7 8

black = irreducible, bold = double of irreducible,
∗×2 = two non-equivalent minimal dimensional admissible modules

References

1. Agrachev, A., Boscain, U., Gauthier, J.-P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat
kernel on unimodular Lie groups. J. Funct. Anal. 256, 2621–2655 (2009)

2. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(Suppl. I), 3–38 (1964)

123

http://creativecommons.org/licenses/by/4.0/


582 W. Bauer et al.

3. Bauer,W., Furutani, K., Iwasaki, C.: Spectral zeta function of the sub-Laplacian on two step nilmanifolds.
J. Math. Pures Appl. (9) 97(3), 242–261 (2012)

4. Bauer, W., Furutani, K., Iwasaki, C.: Spectral zeta function on pseudo H -type nilmanifolds. Indian J.
Pure Appl. Math. 46(4), 539–582 (2015)

5. Beals, R., Gaveau, B., Greiner, P.: The Green function of model step two hypoelliptic operators and the
analysis of certain tangential Cauchy Riemannian complexes. Adv. Math. 121, 288–345 (1996)

6. Beals, R., Gaveau, B., Greiner, P.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J.
Math. Pures Appl. 79(7), 633–689 (2000)

7. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale
(French). Ann. Inst. Fourier (Grenoble) 39(1), 73–99 (1989)

8. Ben Arous, G., Léandre, R.: Décraissance exponentielle du noyau de la chaleur sur la diagonale I + II
(French). Probab. Theory Relat. Fields 90(2), 175–202 (1991). (no. 3, 377–402)

9. Calin, O., Chang, D.-C., Furutani, K., Iwasaki, C.: Heat Kernels for Elliptic and Sub-elliptic Operators
Methods and Techniques. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York
(2011)

10. Ciatti, P.: Scalar products on Clifford modules and pseudo-H-type Lie algebras. Ann. Mat. Pura Appl. (4)
178, 1–31 (2000)

11. Crandall, G., Dodziuk, J.: Integral structures on H-type Lie algebras. J. Lie Theory 12(1), 69–79 (2002)
12. Furutani, K.: Heat kernels of the sub-Laplacian andLaplacian on nilpotent Lie groups. In:Wojciechowsky,

P. (ed.) Analysis, Geometry and Topology of Elliptic Operators, Papers in Honor of Krzysztof, pp. 185–
226. World Scientific, London (2006)

13. Furutani, K., Markina, I.: Existence of lattices on general H -type groups. J. Lie Theory 24, 979–1011
(2014)

14. Furutani, K., Markina, I.: Complete classification of pseudo H-type algebras: I. Geom. Dedicata 190,
23–51 (2017)

15. Furutani, K., Markina, I.: Complete classification of pseudo H-type algebras: II. Geom. Dedicata 202,
233–264 (2019)

16. Gordon, C., Webb, D., Welpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds.
Invent. Math. 110(1), 1–22 (1992)

17. Gorneth, R.: A new construction of isospectral Riemannian nilmanifolds with examples. Mich. Math. J.
43, 159–188 (1996)

18. Hörmander, L.: Hypo-elliptic second order differential equations. Acta Math. 119, 147–171 (1967)
19. Ikeda, A.: On lens spaces which are isospectral but not isometric. Ann. Sci. École Norm Sup. (4) 13(3),

303–315 (1980)
20. Ikeda, A.: On spherical space formswhich are isospectral but not isometric. J.Math. Soc. Jpn. 35, 437–444

(1983)
21. Iwasaki, C., Iwasaki, N.: Parametrix for a degenerate parabolic equation and its application to the asymp-

totic behavior of spectral functions for stationary problems. Publ. Res. Inst. Math. Sci. 17(2), 577–655
(1981)

22. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4 part II), 1–23 (1966)
23. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic

forms. Trans. Am. Math. Soc. 258, 147–153 (1980)
24. Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15(1), 35–42 (1983)
25. Lawson, H.B., Michelson, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)
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