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Abstract
In this work we study the determinant of the Laplace–Beltrami operator on rectangular tori of
unit area. We will see that the square torus gives the extremal determinant within this class of
tori. The result is established by studying properties of the Dedekind eta function for special
arguments. Refined logarithmic convexity and concavity results of the classical Jacobi theta
functions of one real variable are deeply involved.

Keywords Convexity · Dedekind eta function · Jacobi theta function · Laplace–Beltrami
operator · Logarithmic derivative · Rectangular torus
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1 Introduction

The search for extremal geometries is a popular topic in many branches of mathematics and
mathematical physics. In this work, we pick up a result by Osgood et al. [26] on extremals of
determinants of Laplace–Beltrami operators on tori and restrict the assumptions, excluding
their solution of the following problem.

Among all 2-dimensional tori of area 1, which torus maximizes the determinant of the
Laplace–Beltrami operator?

The answer in [26] is that the torus identified with the plane modulo a hexagonal (some-
times called triangular or equilateral) lattice gives the unique solution. However, if we only
consider rectangular lattices, this solution is not possible and the natural assumption is that
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the square lattice will lead to the optimal solution. We will prove that this is indeed the case.
Both problems, the one for general and the one for rectangular lattices, are closely related
to the study of extremal values of the heat kernel on the torus [3,5], finding extremal bounds
of Gaussian Gabor frames of given density [17–19], as well as the study of certain theta
functions [25].

It is worth noting that in all cases the extremal solutions are the same as for the classical
sphere packing and covering problem in the plane. This immediately raises the question about
extremal solutions for the above problems in higher dimensions. An interesting aspect is that
in higher dimensions the optimal arrangements for the sphere packing and covering problem
differ from each other. Hence, in order to guess what the right solution could be, one first
has to decide whether one deals with a packing or a covering problem. However, we will not
discuss higher dimensions in this work.

Another common theme is that we deal with theta functions in one way or another, which
take a prominent role in several branches of mathematics. They appear in the studies on
energy minimization [6], the study of Riemann’s zeta and xi function [9,12] or the theory of
sphere packing and covering [11], including the recent breakthrough for sphere packings in
dimension 8 by Viazovska [31] and in dimension 24 [10]. They also appear in the field of
time–frequency analysis and the study of Gaussian Gabor frames [18,19,21] or the study of
the heat kernel [30] to name just a few.

An open question concerns how the above problems can be linked to old, unsolved prob-
lems in geometric function theory, namely finding the exact values of Bloch’s constant [7]
and Landau’s constant [24]. The correct solutions are conjectured to be given in the work of
Ahlfors and Grunsky [1] and in the work of1Rademacher [27], respectively.

Baernstein repeatedly suggested that a better understanding of the behavior of extremal
values of the heat kernel on the torus might lead to new insights for the mentioned constants
[2,3,5] and, after some research, the author shares this opinion. In fact, this work is a result
of the author’s study on a conjecture of Baernstein et al. [4] related to Landau’s constant,
which Eremenko posed again as an open problem in an unpublished preprint in 2011 [13].
However, besides the fact that in both cases varying metrics on rectangular tori are involved,
it is not clear to the author how deep the connection between this work and the mentioned
conjecture in [4,13] truly is.

Let us return to the question posed at the beginning. In [26] we find the following result,
which is2Corollary 1.3(b) in that work. For a lattice �, let �� be the Laplace–Beltrami
operator for the torus T� = C/� of unit area, then

det′�� ≤
√
3
2 |η( 1+i

√
3

2 )|4 ≈ 0.35575 . . .

with equality if and only if � is hexagonal. The result was established by first showing that
the hexagonal lattice gives a local maximum by exploiting general facts aboutmodular forms.
Then, a numerical check gave the result that this local maximum is indeed global.

In another work, Sarnak [29] mentions that3Karnaukh has shown that the square lattice
gives the only other critical point and that it is a saddle point. In particular, this implies that
there exists a one-parameter family of lattices, within which the square lattice yields a local

1 In an unpublished work, Robinson came up with the same solution as Rademacher in 1937.
2 In [26] there is a typo concerning the spanning vectors of the extremal lattice, it should read � =√

2√
3

〈
1, 1+i

√
3

2

〉
Z
.

3 Peter Sarnak does not mention any reference for this claim. Anton Karnaukh was his PhD student around
that time, but the author also could not find any result in that direction in Karnaukh’s thesis [23].
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Extremal determinants of Laplace–Beltrami operators for rectangular tori 177

maximum of the determinant. Actually, we will see that among all rectangular tori, the square
torus gives the global maximum. Our main result is as follows.

Theorem 1.1 (Main result) For α ∈ R+, we denote the rectangular torus of unit area by
Tα = C/(α−1/2

Z × i α1/2
Z) and the Laplace–Beltrami operator by �α . Then

det′�α = α |η(αi)|4 ≤ |η(i)|4 ≈ 0.34830 . . .

with equality if and only if α = 1.

Our proof of Theorem 1.1 will at first be parallel to the proof in [26], in particular, we will
show that the problem about the determinant can be transferred to a problem of finding the
maximum of the Dedekind eta function on a ray in the upper half plane. After that point,
the proof will differ greatly from the methods in [26]. Not only will we show that the square
lattice yields the global maximum, we will also give a precise behavior of the determinant
as the lattice parameter varies. The key in our proof is to exploit the fact that the eta function
can be decomposed into a product of Jacobi’s theta functions. The result will follow from
certain logarithmic convexity and concavity results, partially established already in [19].

This work is structured as follows;

• In Sect. 2 we recall the definitions of Laplace–Beltrami operators on tori and their deter-
minants as well as the results from the work of Osgood et al. [26]. Also, we will see how
the determinant connects with the Dedekind eta function.

• In Sect. 3 we define Jacobi’s classical theta functions of one real variable and show how
they can be used to express the Dedekind eta function. The proof of the main result will
follow from refined logarithmic convexity and concavity statements related to Jacobi’s
theta functions as described by Faulhuber and Steinerberger [19].

2 The Laplace–Beltrami operator on the torus

In this sectionwe recall the results established in [26] and how the problemof finding extremal
surfaces for determinants ofLaplace–Beltrami operators connectswith theDedekind eta func-
tion. Osgood, Phillips and Sarnak studied the determinant of the Laplace–Beltrami operator
on a surface with varying metric as a function of the metric. In the case of the torus with flat
metric, the varying of the metric can be interpreted as varying the lattice associated to the
torus (and keeping the standard metric). Furthermore, we will introduce the heat kernel of a
Laplace–Beltrami operator and its determinant.

We denote the Laplace–Beltrami operator on the 2-dimensional torus T� = C/� by
��. The torus is identified with the fundamental domain of the lattice � which is a discrete
subgroup of C. A lattice � is generated by integer linear combinations of two nonzero
complex numbers z1 and z2 with the property that z1

z2
/∈ R;

� = 〈z1, z2〉Z = {mz1 + nz2 | m, n ∈ Z, z1, z2 ∈ C, z1
z2

/∈ R}.
The area of the torus is then defined to be the area of a fundamental domain, i.e.,

area(�) = |I m(z1z2)| = |x1y2 − x2y1|, zk = xk + i yk, k = 1, 2.

In this work we solely deal with rectangular lattices, i.e., we can choose a basis of the lattice
〈z1, z2〉Z with the property that the ratio of z1 and z2 is purely imaginary;

� rectangular ⇐⇒ ∃z1, z2 ∈ C : � = 〈z1, z2〉Z ∧ i
z1
z2

∈ R.
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178 M. Faulhuber

We note that any rectangular lattice can be identified with αZ × i βZ where α, β ∈ R+. In
this work, it will be no restriction to assume that the lattice has unit area, i.e., αβ = 1.

2.1 The Laplace–Beltrami operator onmanifolds and its heat kernel

We will now introduce Laplace–Beltrami operators on connected Riemannian manifolds as
well as the associated heat kernel and the determinant. For further reading on heat kernels we
refer to [22]. Also, the procedure of introducing determinants of Laplace–Beltrami operators
is described in [5,26] or [28], and we will follow these references.

Just for the moment, let us change to a more general notation. Let M be a connected
Riemannian manifold and�M the corresponding Laplace–Beltrami operator. The heat semi-
group is defined as

Pt = {et�M | t ∈ R+}.
The action of the group Pt on a function f ∈ L2(M) is (by abuse of notation) given by the
integral operator

Pt f (x) =
∫

M
pt (x, y) f (y) dμ(y),

where μ(y) is the4Lebesgue measure on M . The integral kernel pt is called the heat kernel
of the Laplace–Beltrami operator. For any y ∈ M , the heat kernel fulfills the heat equation

�M u − ∂t u = 0

and for any y ∈ M
pt ( . , y) → δy, t → 0.

If the spectrum of �M is discrete and consists of eigenvalues {λk}∞k=1 with {φk}∞k=1 being
the sequence of corresponding eigenfunctions, constituting an orthonormal basis for L2(M),
then the heat kernel can be expanded as

pt (x, y) =
∞∑

k=1

e−λk tφk(x)φk(y).

Also, in this case the trace of the heat kernel is given by

tr(et�M ) =
∫

M
pt (x, x) dμ(x) =

∞∑
k=1

e−λk t .

The left-hand side of the above equation defines the trace of the heat kernel in general. To
the Laplace–Beltrami operator one associates a zeta function in the following way

Z M (s) =
∞∑

k=1

λ−s
k , Re(s) > 1.

This function can be continued analytically in C\{1}. Formally, the determinant of �M is
given by

det�M =
∏
λk �=0

λk .

4 (M, μ) can also be a weighted manifold withμ being anymeasure with smooth positive density with respect
to the Riemannian measure.
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Extremal determinants of Laplace–Beltrami operators for rectangular tori 179

This product is not necessarily meaningful and the proper definition of the determinant is to
use the zeta regularization

det′�M = e− d
ds Z M

∣∣
s=0 .

A closely related function is the height function of a Riemannian manifold [28],

hM = − log det′�M = d

ds
Z M

∣∣
s=0.

This function is an isospectral invariant and it is clear that problems about det′�M can be
transferred to problems about hM and vice versa.

2.2 The determinant on the torus

We return to the case of the torus C/� where � is a lattice of unit area. As we will see, it is
no restriction to assume that � = c 〈1, z〉Z, where c is chosen such that the area of the lattice
is 1, i.e., c = I m(z)−1/2. In other words, the problem under consideration is invariant under
rotation and scaling, just like the classical sphere packing and covering problems.

In this case, the eigenvalues of the Laplace–Beltrami operator �� are (2π |zλ|)2, where
zλ ∈ �. At this point, we mention that the eigenvalues are actually given by (2π |z⊥

λ |)2,
z⊥
λ ∈ �⊥, the dual lattice. However, for 2-dimensional lattices, the relation between a lattice
and its dual lattice is simply given by

�⊥ = area(�)−1 i �.

Thismeans that the dual lattice is a 90◦ rotated, scaled version of the original lattice. However,
as mentioned we deal with lattices of unit area, hence the scaling factor is irrelevant, as is the
rotation. Thus, in our concrete situation, there is no need to distinguish between the lattice
� and its dual �⊥ (this only results in a re-labeling of the eigenvalues). The zeta function is,
consequently, given by

Z�(s) =
∑
zλ∈�

′
(2π |zλ|)−2s,

where the prime indicates that the sum does not include the origin. Using the definition of
the lattice � = 〈z1, z2〉Z, we re-write the zeta function as

Z�(s) = (2π)−2s
∑

k,l∈Z

′ 1

|kz1 + lz2|2s
= (2π)−2s

∑
k,l∈Z

′ ys

|k + lz|2s
.

For the last equality we set z = z2
z1

and y = I m(z) > 0, where the second condition is
imposed by the fact that the lattice has unit area. Osgood et al. [26] now use the fact that the
last series is a multiple of the Eistenstein series

E�(z, s) =
∑

k,l∈Z

′ ys

|k + lz|2s
,

hence,
Z�(s) = (2π)−2s E�(z, s).

The final step in order to compute det′�� is now to differentiate Z� with respect to s and
evaluate at 0. We compute that

d

ds
Z�(s) = (2π)−2s

(
−2 log(2π) E�(z, s) + ∂

∂s
E�(z, s)

)
.
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180 M. Faulhuber

Now, the following result is a consequence of Kronecker’s limit formula.

E�(z, 0) = −1,

∂

∂s
E�

∣∣
s=0 = −2 log

(
2π y1/2|η(z)|2) .

The Dedekind eta function η(τ) is defined in the upper half plane H by the infinite product

η(τ) = eπ iτ/12
∞∏

k=1

(1 − e2π ikτ ). (2.1)

Hence,
d

ds
Z�

∣∣
s=0 = −2 log

(
y1/2|η(z)|2) .

It follows that the (zeta regularized) determinant of the Laplace–Beltrami operator ��, with
� = y−1/2〈1, z〉Z, z = x + iy, y > 0, is given by

det′�� = y|η(z)|4.

2.3 Rectangular tori

We have seen that maximizing the determinant det′��, where the lattice is given by
� = y−1/2〈1, z〉Z, corresponds to maximizing y|η(z)|4. In the case of a rectangular torus
C/(y−1/2

Z × i y1/2Z), the problem in focus is

maximize y|η(iy)|4, y ∈ R+.

We could end this work now with the fact, already observed by Baernstein and Vinson [5],
that maximizing det′�� is implied by minimizing tr(et��). Montgomery showed that the
unique minimizer of tr(et��) is the hexagonal lattice [25]. In a recent work on Gaussian
Gabor frames, the results of Faulhuber and Steinerberger [19] imply that the square lattice is
the unique minimizer of tr(et��)within the class of rectangluar lattices. Hence, Theorem 1.1
is implied by the results in [19]. However, we will come up with a proof independent from the
results in [19,25], but, however, the techniques are similar. The rest of this work is meant to
give a deeper insight into the mentioned problems and maybe these insights can be valuable
for some of the related problems mentioned in the introduction.

3 Jacobi’s theta functions

In this section we study properties of Jacobi’s theta functions which will lead to a deeper
understanding of Theorem 1.1. We start by defining the theta function in accordance with
the textbook of Stein and Shakarchi [30].

Definition 3.1 For z ∈ C and τ ∈ H (the upper half plane) we define the theta function as


(z, τ ) =
∑
k∈Z

eπ ik2τ e2kπ i z . (3.1)

This function is an entire function with respect to z and holomorphic with respect to τ . As
stated in [30], the function arises in many different fields of mathematics, such as the theory
of elliptic functions, the theory of modular functions, as a fundamental solution of the heat
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Extremal determinants of Laplace–Beltrami operators for rectangular tori 181

equation on the torus as well as in the study of Riemann’s zeta function. Also, it is used to
prove results in combinatorics and number theory.

The function can also be expressed as an infinite product.

Proposition 3.2 (Jacobi triple product) For z ∈ C and τ ∈ H we have


(z, τ ) =
∏
k≥1

(
1 − e2kπ iτ

) (
1 + e(2k−1)π iτ e2π i z

) (
1 + e(2k−1)π iτ e−2π i z

)
.

It also fulfills the following identity.

Theorem 3.3 For z ∈ C and τ ∈ H we have



(
z,− 1

τ

) = (−iτ)1/2eπ i z2τ
(τ z, τ ).

For a proof of Theorem 3.3 and more details on theta functions of two complex variables
as well as the product representation we refer to the textbook of Stein and Shakarchi [30].

Whereas derivatives of 
 with respect to z are often studied, it seems that studies of its
derivatives with respect to τ are less common. The following Lemma contains a symmetry
result for the logarithmic derivative of 
 with respect to τ .

Lemma 3.4 For z ∈ C and τ ∈ H we have

π i z2τ + τ
z ∂z
(τ z, τ ) + ∂τ
(τ z, τ )


(τ z, τ )
− 1

τ

∂τ

(
z,− 1

τ

)



(
z,− 1

τ

) = −1

2
.

In particular, for z = 0 we get

τ
∂τ
(0, τ )


(0, τ )
− 1

τ

∂τ

(
0,− 1

τ

)



(
0,− 1

τ

) = −1

2
.

Proof We start by taking the logarithm on both sides of the identity in Theorem 3.3

log
(



(
z,− 1

τ

)) = 1

2
log(−iτ) + π i z2τ + log (
(τ z, τ )) .

Differentiating with respect to τ on both sides and a multiplication by τ yields, after rear-
ranging the terms, the desired result. ��
As a next step, we define Jacobi’s theta functions of two variables which we will then restrict
to certain domains. For z ∈ C and τ ∈ H we define

ϑ1(z, τ ) = −i
∑
k∈Z

(−1)keπ i(k+1/2)2τ e(2k+1)π i z

= 2
∑
k∈N

(−1)keπ i(k+1/2)2τ sin((2k + 1)π z)

ϑ2(z, τ ) =
∑
k∈Z

eπ i(k−1/2)2τ e(2k+1)π i z

= 2
∑
k∈N

eπ i(k−1/2)2τ cos((2k + 1)π z)

ϑ3(z, τ ) =
∑
k∈Z

eπ ik2τ e2kπ i z
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182 M. Faulhuber

= 1 + 2
∑
k∈N

eπ ik2τ cos(2kπ z)

ϑ4(z, τ ) =
∑
k∈Z

(−1)keπ ik2τ e2kπ i z

= 1 + 2
∑
k∈N

(−1)keπ ik2τ cos(2kπ z).

We note that ϑ3(z, τ ) = 
(z, τ ) and that any ϑ j can be expressed via 
 from equation
(3.1). The functions which we will study in the rest of this work are restrictions of the above
functions with (z, τ ) = (0, i x), x ∈ R+. In particular, all these functions are real-valued.

Definition 3.5 For x ∈ R+ we define the real-valued theta functions in the following way.

θ2(x) = ϑ2(0, i x) =
∑
k∈Z

e−π(k−1/2)2x = 2
∑
k∈N

e−π(k−1/2)2x , (3.2)

θ3(x) = ϑ3(0, i x) =
∑
k∈Z

e−πk2x = 1 + 2
∑
k∈N

e−πk2x , (3.3)

θ4(x) = ϑ4(0, i x) =
∑
k∈Z

(−1)ke−πk2x = 1 + 2
∑
k∈N

(−1)ke−πk2x . (3.4)

It does not make much sense to study properties of θ1(x) if defined as above, because
ϑ1(0, i x) = 0 for all x ∈ R+. However, we will see that θ1 is involved in the proof of our
main result in some sense.

All of the above functions can also be expressed by infinite products.

θ2(x) = 2e−π
4 x

∏
k∈N

(
1 − e−2kπx

) (
1 + e−2kπx

)2

θ3(x) =
∏
k∈N

(
1 − e−2kπx

) (
1 + e−(2k−1)πx

)2

θ4(x) =
∏
k∈N

(
1 − e−2kπx

) (
1 − e−(2k−1)πx

)2

These representations can be quite useful when studying the logarithmic derivatives of these
functions. We note that for z ∈ R and purely imaginary τ = i x , x ∈ R+ the theta function

(z, i x) is maximal for z ∈ Z and minimal for z ∈ Z + 1

2 . These special cases correspond
to Jacobi’s θ3 and θ4 function

θ3(x) = 
(0, i x) ,

θ4(x) = 

( 1
2 , i x

)
.

For x ∈ R+, the θ2-function can be expressed via 
 in the following way.

θ2(x) = e−π x
4 


( i x
2 , i x

)
.

A recurring theme will be the frequent use of the differential operator x d
dx . We will use

the notation
(
x d

dx

)n
for its iterated repetition, i.e.,

(
x

d

dx

)n

= x
d

dx

(
x

d

dx

)n−1

.
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Extremal determinants of Laplace–Beltrami operators for rectangular tori 183

In particular, we will study properties of the logarithmic derivative of a certain function f :
R+ → R+, on a logarithmic scale. Let us explain how this statement should be interpreted.
By using the variable transformation y = log(x) we extend the domain from R+ to R and
consider the new function log ( f (ey)). Therefore, we get an extra exponential factor each
time we take a (logarithmic) derivative. We have

d

dy
log

(
f
(
ey)) = ey f ′ (ey)

f (ey)
.

By reversing the transformation of variables, we come back to the original scale, but the
factor x stays. Without being explicitly mentioned, these methods were used in [18,19,25] to
establish uniqueness results about extremal theta functions on lattices. We will now provide
a new point of view on as well as new results related to the mentioned articles.

For what follows it is necessary to clarify the notation of the Fourier transform and
Poisson’s summation formula which are given by

f̂ (ω) =
∫

R

f (x)e−2π iωx dx, x, ω ∈ R

and ∑
k∈Z

f (k + x) =
∑
l∈Z

f̂ (l)e2π ilx , x ∈ R.

respectively. Both formulas certainly hold for Schwartz functions and since we will apply
both only on Gaussians we do not have to worry about more general properties for the
formulas to hold.

As a consequence of the Poisson summation formula we find the following, well-known
identities

√
x θ3 (x) = θ3

( 1
x

)
, (3.5)√

x θ2 (x) = θ4
( 1

x

)
and

√
x θ4 (x) = θ2

( 1
x

)
. (3.6)

We note the common theme in the last identities which leads to the following lemma.

Lemma 3.6 Let r ∈ R and suppose that f , g ∈ C1 (R+,R) do not possess zeros. If f and g
satisfy the (generalized Jacobi) identity

xr f (x) = g
( 1

x

)
,

then

x
f ′ (x)

f (x)
+ 1

x

g′ ( 1
x

)

g
( 1

x

) = −r .

Proof Both, f and g are either positive or negative on R+ since they are real-valued, con-
tinuous and do not contain zeros. As they also fulfill the identity xr f (x) = g

( 1
x

)
both of

them possess the same sign. Without loss of generality we may therefore assume that both
functions are positive because otherwise we change the sign which does not affect the results.
Therefore, we have

log
(
xr f (x)

) = log
(
g

( 1
x

))
.

Using the differential operator x d
dx on both sides directly yields
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184 M. Faulhuber

r + x
f ′(x)

f (x)
= − 1

x

g′ ( 1
x

)

g
( 1

x

) .

��
We remark that an alternative proof of Lemma 3.6 is given in [19] for the special case

f = g = θ3 and r = 1
2 (a generalization of the proof in [19] is possible with the arguments

given there). With this proof, the result

x
θ ′
3(x)

θ3(x)
+ 1

x

θ ′
3

( 1
x

)

θ3
( 1

x

) = −1

2
(3.7)

was derived.
However, it seemed to have gone unnoticed that the result can be put into a more general

context. With the previous lemma we also get the results

x
θ ′
2(x)

θ2(x)
+ 1

x

θ ′
4

( 1
x

)

θ4
( 1

x

) = −1

2
and x

θ ′
4(x)

θ4(x)
+ 1

x

θ ′
2

( 1
x

)

θ2
( 1

x

) = −1

2
, (3.8)

which were not given in [19]. Also, the author just learned that the above formulas can
also be found in the monograph of Borwein and Borwein [8, chap. 2.3]. All of the above
results actually contain symmetry statements about logarithmic derivatives of Jacobi’s theta
functions on a logarithmic scale. We note that the identities (3.7) and (3.8) are special cases
of Lemma 3.4 when 
 is restricted to certain rays in C × H.

3.1 Properties of Theta-2 and Theta-4

We start with monotonicity properties of the logarithmic derivatives of Jacobi’s θ2 and θ4
functions on a logarithmic scale. The following result was already given in [19] and the proof
can be established by using the product representation of θ4.

Proposition 3.7 The function x
θ ′
4(x)

θ4(x)
is strictly decreasing on R+.

As a consequence of Proposition 3.7 we derive the following result.

Proposition 3.8 The Jacobi theta function θ4 is strictly logarithmically concave or, equiva-

lently,
θ ′
4(x)

θ4(x)
is strictly decreasing. Also, the expression

θ ′
4(x)

θ4(x)
is positive.

Proof The statement that x
θ ′
4(x)

θ4(x)
is strictly decreasing on R+ was already proved in [19]. We

observe that limx→∞ x
θ ′
4(x)

θ4(x)
= 0, hence, x

θ ′
4(x)

θ4(x)
> 0 and, therefore,

θ ′
4(x)

θ4(x)
> 0. Also,

d

dx

(
x
θ ′
4(x)

θ4(x)

)
= θ ′

4(x)

θ4(x)
+ x

d

dx

(
θ ′
4(x)

θ4(x)

)
< 0,

and it follows that

0 < 1
x

θ ′
4(x)

θ4(x)
< − d

dx

(
θ ′
4(x)

θ4(x)

)
,

which proves that
θ ′
4(x)

θ4(x)
is strictly decreasing, hence, θ4 is logarithmically concave. ��

As a consequence of Proposition 3.7 and Lemma 3.6 we obtain the following property of
θ2, which was already claimed, but not proven, in [19].
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Proposition 3.9 The function x
θ ′
2(x)

θ2(x)
is strictly decreasing on R+.

Proof Proposition 3.7 tells us that x
θ ′
4(x)

θ4(x)
is strictly decreasing on R+. By using Lemma 3.6

or the first identity in (3.8) we obtain

d

dx

(
x
θ ′
2(x)

θ2(x)

)
= d

dx

(
− 1

x

θ ′
4

( 1
x

)

θ4
( 1

x

) − 1

2

)
< 0.

��
In fact, Propositions 3.7 and 3.9 are equivalent by Lemma 3.6. In [19, Lemma 6.2] Propo-

sition 3.9 was proved for x > 1 by directly estimating x
θ ′
2(x)

θ2(x)
, which is a hard task for small

x . The use of Lemma 3.6 allows us to argue directly that x
θ ′
2(x)

θ2(x)
and x

θ ′
4(x)

θ4(x)
must possess the

same monotonicity properties.

Proposition 3.10 The Jacobi theta function θ2 is strictly logarithmically convex or, equiva-

lently,
θ ′
2(x)

θ2(x)
is strictly increasing. Also, the expression

θ ′
2(x)

θ2(x)
is negative.

Proof The fact that
θ ′
2(x)

θ2(x)
< 0 is easily checked by using (3.2). From the definition we see

that θ2 > 0 and due to its unconditional convergence, the derivatives can be computed by
differentiating each term. We find out that θ ′

2(x) < 0 and the negativity is proven.
The logarithmic convexity statement basically follows from theCauchy–Schwarz inequal-

ity for the Hilbert-space �2(N). We compute

d2

dx2

(
log

(
θ2(x)

)) = θ ′′
2 (x)θ2(x) − θ ′

2(x)2

θ2(x)2
.

Strict logarithmic convexity of θ2 is now equivalent to

θ ′′
2 (x)θ2(x) − θ ′

2(x)2 > 0,

which can be re-written as
⎛
⎝∑

k≥1

π2 (
k − 1

2

)4
e
−π

(
k− 1

2

)2
x

⎞
⎠

⎛
⎝∑

k≥1

e
−π

(
k− 1

2

)2
x

⎞
⎠ >

⎛
⎝∑

k≥1

π
(
k − 1

2

)2
e
−π

(
k− 1

2

)2
x

⎞
⎠

2

.

(3.9)
We set

(
ak

)∞
k=1 =

(
π

(
k − 1

2

)2
e
−π

(
k− 1

2

)2
x/2

)∞

k=1

and
(
bk

)∞
k=1 =

(
e
−π

(
k− 1

2

)2
x/2

)∞

k=1

.

For x > 0 fixed, (ak), (bk) ∈ �2(N). Inequality (3.9) is now equivalent to
∥∥(ak)

∥∥2
�2(N)

∥∥(bk)
∥∥2

�2(N)
>

〈
(ak), (bk)

〉2
�2(N)

,

where strict inequality follows since (ak) and (bk) are linearly independent in �2(N). ��

Also, in [19] it was claimed that x2
θ ′
4(x)

θ4(x)
is monotonically decreasing and convex. Both

properties were recently proved by Ernvall–Hytönen and Vesalainen [15]. We have a similar
statement for θ2.
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Proposition 3.11 The functions x2
θ ′
2(x)

θ2(x)
and x2

θ ′
4(x)

θ4(x)
are strictly decreasing on R+.

Proof The result involving θ4 was proved by Ernvall–Hytönen and Vesalainen [15].
Weproceedwith proving the result involving θ2.Wealreadyknow that θ4 is logarithmically

concave, which is equivalent to the fact that
θ ′
4(x)

θ4(x)
is monotonically decreasing. By using

identity (3.8) we get

x2
θ ′
2(x)

θ2(x)
= − x

2
− θ ′

4(
1
x )

θ4(
1
x )

.

Therefore, we have

d

dx

(
x2

θ ′
2(x)

θ2(x)

)
= −1

2
− d

dx

(
θ ′
4(

1
x )

θ4(
1
x )

)

︸ ︷︷ ︸
>0

< 0.

��
We note that a similar simple argument as used for the expression involving θ2 does not

work for θ4. Due to identity (3.8) it also seems plausible to assume that for amonomial weight
xr , the second power, i.e. x2, is the limit for the monotonicity properties of the logarithmic
derivative of θ2 and θ4 as stated in Proposition 3.11 and numerical investigations point in that
direction.

Using the fact that x2
θ ′
4(x)

θ4(x)
is strictly decreasing and Proposition 3.10 we conclude that

0 < x2
d2

dx2
log(θ2(x)) = x2

d

dx

(
θ ′
2(x)

θ2(x)

)
<

1

2

Moreover, it seems to be true that x2 d2

dx2
log(θ2(x)) is strictly decreasing, which would in

return imply that x2
θ ′
4(x)

θ4(x)
is strictly decreasing.

However, we leave this problem open and close this section with symmetry properties
involving θ2, θ4 and repeated applications of x d

dx .

Proposition 3.12 For x ∈ R+ and 2 ≤ n ∈ N the following holds.
(

x
d

dx

)n

log (θ2(x)) = (−1)n
(

x
d

dx

)n

log
(
θ4

( 1
x

))
.

Proof The statement is an obvious consequence of identity (3.8) and follows by induction. ��

3.2 Properties of theta-3

We will now study properties of the logarithm of θ3 on a logarithmic scale.

Proposition 3.13 The function x
θ ′
3(x)

θ3(x)
is strictly increasing on R+.

This result was proved in [19]. As a consequence of Lemma 3.6 we get the following
results which were already proved in the author’s doctoral thesis [17].

Proposition 3.14 For x ∈ R+ and 2 ≤ n ∈ N the following holds.
(

x
d

dx

)n

log (θ3(x)) = (−1)n
(

x
d

dx

)n

log
(
θ3

( 1
x

))
.
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Proof The statement is an obvious consequence of identity (3.7) and follows by induction. ��
The following statement and its proof were also already given in [17]. The techniques

are similar to the techniques used by Montgomery in [25]. The computer algebra system
Mathematica [32] was used at some points in the proof in order to compute explicit values or
closed expressions for geometric series, but in principle all computations can also be checked
by hand. The proof was adjusted to a level which should be quite accessible with no or only
little help of computer algebra software.

Proposition 3.15 For x ∈ R+, the function
(

x
d

dx

)3

log (θ3(x)) (3.10)

is positive for x ∈ (0, 1) and negative for x > 1. Also, the function is anti-symmetric in the
following sense (

x
d

dx

)3

log (θ3(x)) = −
(

x
d

dx

)3

log
(
θ3

( 1
x

))
.

Proof To simplify notation we set

ψ(x) = (log ◦ θ3)
′(x) = θ ′

3(x)

θ3(x)
.

Proposition 3.14 settles the part concerning the anti-symmetry of expression (3.10). There-
fore, it is also clear that we only need to prove the statement about the negativity for x > 1,
the result for x ∈ (0, 1) then follows immediately. We start with the following calculation;

(
x

d

dx

)3

log (θ3(x)) =
(

x
d

dx

)2

(x ψ(x))

= x ψ(x) + 3x2 ψ ′(x) + x3 ψ ′′(x).

(3.11)

In particular, Proposition 3.14 implies that ψ(1) + 3ψ ′(1) + ψ ′′(1) = 0. We proceed in two
steps:

(i) We will show that
(
x d

dx

)3
log (θ3(x)) is negative for x > 1.1.

(ii) We will show that
(
x d

dx

)3
log (θ3(x)) is decreasing on an interval containing (1, 1.1).

First step: We will use a combination of the asymptotic and the local behavior to establish
the result claimed in (i).

Since ψ is the logarithmic derivative of θ3, we use Jacobi’s triple product formula for θ3
to obtain a series representation for ψ . In order to control the expression in Eq. (3.11) we
compute the derivatives of ψ up to order 2.

ψ(x) =
∑
k≥1

(
2kπe−2kπx

1 − e−2kπx
− 2

(2k − 1)πe−(2k−1)πx

1 + e−(2k−1)πx

)
= θ ′

3(x)

θ3(x)

ψ ′(x) =
∑
k≥1

(
− (2kπ)2e−2kπx

(
1 − e−2kπx

)2 + 2
((2k − 1)π)2e−(2k−1)πx

(
1 + e−(2k−1)πx

)2
)

ψ ′′(x) =
∑
k≥1

(
(2kπ)3e−2kπx

(
1 + e−2kπx

)
(
1 − e−2kπx

)3 − 2
((2k − 1)π)3e−(2k−1)πx

(
1 − e−(2k−1)πx

)
(
1 + e−(2k−1)πx

)3
)
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It is easy to verify that ψ(n)(x) = O(e−πx ), n = 0, 1, 2 (this actually holds for any
n ∈ N). However, due to the monomial term in k, which is of the order of the derivative plus
1, we will also consider the contributions of terms involving e−2πx to gain more control on
the local behavior close to 1.

The techniques are standard and the proof is inspired by the proofs inMontgomery’s article
[25]. In particular, we will estimate parts of the series by the leading term(s), by appropriate
geometric series or by their values at x = 1 (or use combinations of the mentioned methods).
We will try to indicate which kind of estimates are used at which point in the proof.

We start with an estimate for ψ for x > 1. We will first estimate the denominators and
after that estimate the positive part by a geometric series and the negative part by the leading
term. This will also be the common theme throughout the proof.

ψ(x) =
∑
k≥1

⎛
⎜⎜⎜⎜⎜⎝
2kπe−2kπx

1 − e−2kπx
︸ ︷︷ ︸

1
1.002<

− 2
(2k − 1)πe−(2k−1)πx

1 + e−(2k−1)πx
︸ ︷︷ ︸

<
1

0.958

⎞
⎟⎟⎟⎟⎟⎠

< 1.002 · 2π
∑
k≥1

(
k e−2kπx

)
− 0.958 · 2π e−πx

= 1.002 · 2π (
1 − e−2πx)−2

︸ ︷︷ ︸
<1.004

e−2πx − 0.958 · 2π e−πx

< 6.35 e−2πx − 6 e−πx

We proceed with an upper bound for ψ ′ for x > 1.

ψ ′(x) =
∑
k≥1

⎛
⎜⎜⎜⎜⎜⎜⎝

− (2kπ)2e−2kπx

(
1 − e−2kπx

)2
︸ ︷︷ ︸

<1

+ 2
((2k − 1)π)2e−(2k−1)πx

(
1 + e−(2k−1)πx

)2
︸ ︷︷ ︸

1<

⎞
⎟⎟⎟⎟⎟⎟⎠

< −4π2e−2πx + 2π2
∑
k≥1

(
(2k − 1)2e−(2k−1)πx

)

= −4π2e−2πx + 2π2 (
1 + 6e−2πx + e−4πx) (

1 − e−2πx)−3

︸ ︷︷ ︸
<1.017

e−πx

< −39.4 e−2πx + 20.1 e−πx .

In the second to last line we used the fact that (for |q| < 1)
∑
k≥1

(2k − 1)2q2k−1 =
∑
k≥1

k2qk −
∑
k≥1

(2k)2q2k

= q
1 + q

(1 − q)3
− 4q2 1 + q2

(1 − q2)3

= q
1 + 6q2 + q4

(1 − q2)3
.
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The closed expressions for the according geometric series are obtained by taking derivatives
of the classical geometric series and for the series involving only even term, q is substituted
by q2.

With the same techniques we bound ψ ′′ from above for x > 1.

ψ ′′(x) =
∑
k≥1

(
(2kπ)3e−2kπx

(
1 + e−2kπx

)
(
1 − e−2kπx

)3

− 2 ((2k − 1)π)3e−(2k−1)πx

(
1 − e−(2k−1)πx

)
(
1 + e−(2k−1)πx

)3
)

<
∑
k≥1

⎛
⎜⎝(2kπ)3 e−2kπx (

1 + e−2π )
︸ ︷︷ ︸

<1.002

(
1 − e−2π )−3

︸ ︷︷ ︸
<1.006

⎞
⎟⎠

− 2π3e−πx

⎛
⎜⎝

(
1 − e−πx ) (

1 + e−πx )−3 + 27 e−2πx (
1 − e−3πx ) (

1 + e−3πx )−3

︸ ︷︷ ︸
>0.89

⎞
⎟⎠

< 8.07π3 e−2πx (
e−4πx + 4e−2πx + 1

) (
1 − e−2πx )−4

︸ ︷︷ ︸
<1.02

−1.78π3e−πx

< 255.5 e−2πx − 55.1 e−πx .

This time we truncated the negative series over the odd integers after 2 terms, as the
monomial already has degree 3 and, therefore, the second term contributes some weight to
the series evaluated near x = 1.

Now, for x > 1 we have the following estimate;
(

x
d

dx

)3

log (θ3(x)) = x ψ(x) + 3x2 ψ ′(x) + x3 ψ ′′(x)

<
(
6.35 x − 118.2 x2 + 255.5 x3

)
e−2πx + (−6 x + 60.3 x2 − 55.1 x3

)
e−πx .

It is obvious that the last expression asymptotically tends to zero from below, hence, there
exists some x0 > 1 such that

(
x

d

dx

)3

log(θ3(x)) < 0, ∀x > x0.

Wewill now determine x0. By the above estimates, it is enough to show that the following
inequality holds for x > x0 > 1;

(
6.35 − 118.2 x + 255.5 x2

)
e−πx + (−6 + 60.3 x − 55.1 x2

)
< 0 (3.12)

It is not hard to check that −6 + 60.3 x − 55.1 x2 is strictly decreasing for x > 1. Also, we
note that expressions of the form

(
a + b x + c x2

)
e−πx are strictly decreasing for

x >
2c − πb + √

π2b2 − 4π2ac + 4c2

2πc
.

For a = 6.35, b = −118.2 and c = 255.5, we find out that for x > 1 the expression is
indeed strictly decreasing. Therefore, it suffices to find a value x0 such that (3.12) is true, as
it then holds for all x > x0. For x = 1.1 the left-hand side of (3.12) is smaller than −0.4 and
we found the desired value x0 = 1.1.
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Second step:Wewill now show that
(
x d

dx

)3
log (θ3(x)) is strictly decreasing on an interval

containing (1, x0). To do so, we apply the differential operator x d
dx on (3.10), i.e.,

(
x

d

dx

)4

log (θ3(x)) = x
d

dx

(
x ψ(x) + 3x2 ψ ′(x) + x3 ψ ′′(x)

)

= x ψ(x) + 7x2 ψ ′(x) + 6x3 ψ ′′(x) + x4 ψ ′′′(x).

(3.13)

In order to control the last expression for x ∈ (1, x0), we need good estimates on ψ ′′′ on
this interval. We start in the same manner as for the lower order derivatives.

ψ ′′′(x) =
∑
k≥1

(
−(2kπ)4e−2kπx

(
e−4kπx + 4e−2πkx + 1

)
(
1 − e−2kπx

)4

+2 ((2k − 1)π)4 e−(2k−1)πx

(
e−2(2k−1)πx − 4e−(2k−1)πx + 1

)
(
1 + e−(2k−1)πx

)4
)

< −16π4e−2πx (e−4πx + 4e−2πx + 1)
(
1 − e−2πx)−4

︸ ︷︷ ︸
>1

+ 2π4
∑
k≥1

(
(2k − 1)4 e−(2k−1)πx

(
1 − e−(2k−1)πx

)2 (
1 + e−(2k−1)πx

)−4
)

.

Now, we make use of the fact that we only need to establish that the expression in (3.13)
is negative on the interval (1, x0). Due to the continuity of the function, this estimate then
also holds on a slightly larger interval, which we do not have to specify. We estimate that, on
(1, x0),
(
1 − e−(2k−1)πx

)2 (
1 + e−(2k−1)πx

)−4
<

(
1 − e−1.1·π )2 (

1 + e−1.1·π )−4
< 0.83, k = 1.

As k → ∞, the value of the left-hand side of the above inequality tends to 1 from below,
which gives the uniform estimate

(
1 − e−(2k−1)πx

)2 (
1 + e−(2k−1)πx

)−4
< 1, ∀k ≥ 2.

Therefore, on the interval (1, x0) we get the estimate

ψ ′′′(x) < −16π4 e−2πx + 1.66π4 e−πx + 2π4
∑
k≥2

(2k − 1)4 e−(2k−1)πx .

We now use the closed expression for the following geometric series, established in the same
manner as in the estimates for ψ ′′;

∑
k≥2

(2k − 1)4q2k−1 = q
81q2 + 220q4 + 86q6 − 4q8 + q10

(
1 − q2

)5 , |q| < 1.

For q = e−πx and x ∈ (1, x0) we have that

81q2 + 220q4 + 86q6 − 4q8 + q10

(
1 − q2

)5 <
81q2 + 220q4 + 86q6 + q10

(
1 − q2

)5
∣∣
q=e−π < 0.16.

Therefore, we get that, on the interval (1, x0),

123



Extremal determinants of Laplace–Beltrami operators for rectangular tori 191

ψ ′′′(x) < −16π4 e−2πx + 1.98π4e−πx

< −1558 e−2πx + 193 e−πx .

In total, it follows that for x ∈ (1, x0) the following inequality holds;
(

x
d

dx

)4

log (θ3(x)) = x ψ(x) + 7x2 ψ ′(x) + 6x3 ψ ′′(x) + x4ψ ′′′(x)

<
(
6.35 x − 275.8 x2 + 1533 x3 − 1558 x4

)
e−2πx

+ (−6 x + 140.7 x2 − 330.6 x3 + 193 x4
)

e−πx .

We need to verify that
(
6.35 x − 275.8 x2 + 1533 x3 − 1558 x4

)
e−2πx

+ (−6 x + 140.7 x2 − 330.6 x3 + 193 x4
)

e−πx < 0

for x ∈ (1, x0). This is equivalent to showing that
(
6.35 − 275.8 x + 1533 x2 − 1558x3

)
e−πx + (−6 + 140.7 x − 330.6x2 + 193x3

)
< 0

In order to establish this result, we note that
(
6.35 − 275.8 x + 1533 x2 − 1558x3

)
< 0, x > 1.

Hence, we get the estimate

(
6.35 − 275.8 x + 1533 x2 − 1558 x3

)
e−πx <

(
6.35 − 275.8 x + 1533 x2 − 1558 x3

)
e−1.1·π

< 0.3 − 8.7 x + 48.6 x2 − 49 x3,

for x ∈ (1, x0). Therefore, by showing the truth of the (stronger) inequality

− 5.7 + 132 x − 282 x2 + 144 x3 < 0, x ∈ (1, x0), (3.14)

we can finish the proof. It is not hard to show that the left-hand side of the above inequality has
critical points at 11

36 /∈ (1, x0) (local maximum) and 1 (local minimum). Finally, by checking
the values on the boundary of the interval (1, x0) we see that (3.14) indeed holds.

By combining the two steps we see that the function
(
x d

dx

)3
log (θ3(x)) is strictly decreas-

ing at least on the interval (1, 1.1) and negative for x > 1.1. As the value at x = 1 is zero,
we can finally conclude that the expression given in Eq. (3.10) is negative for x > 1. Due to
the already mentioned anti-symmetry with respect to the point (1, 0) the function has to be
positive for 0 < x < 1. ��

Vesalainen and Ernvall–Hytönen [14,16] proved Proposition 3.15 independently from this
work. They used the result to prove a conjecture by Hernandez and Sethuraman5 [20] (see
also the references in [16]). The following result by Vesalainen and Ernvall–Hytönen is an
immediate consequence of Proposition 3.15.

Theorem 3.16 (Ernvall–Hytönen, Vesalainen) For α, β ∈ R+ with 1 ≤ α < β and x ∈ R+
we define the function

g(x) = θ3(βx)θ3(
x
β
)

θ3(αx)θ3(
x
α
)
.

5 The author does not claim any credit for solving the conjecture by Hernandez and Sethuraman since the
author was not aware of the conjecture prior to the appearance of [16].
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Then
g(x) = g( 1x )

and g assumes its global maximum only for x = 1. Also, the function is strictly increasing
for x ∈ (0, 1) and strictly decreasing for x ∈ (1,∞).

3.3 A result involving theta-1 and a proof of Theorem 1.1

In contrast to the fact that ϑ1(0, τ ) = 0 for all τ ∈ H, its derivative with respect to z evaluated
at (0, i x), x ∈ R+ is not the zero function, in particular

∂zϑ1(0, i x) =
∑
k∈Z

(−1)k(2k + 1)e−π(k+1/2)2x

= 2 e−π
4 x

∏
k∈N

(
1 − e−2kπx

)3
, x ∈ R+.

(3.15)

The above function is often denoted by θ ′
1(x) (see e.g., [11]), where the prime indicates

differentiation with respect to z. The representation as an infinite product is also well-known
and follows from the Jacobi triple product representation of 
 (Proposition 3.2). Since the
notation θ ′

1 could be misleading in this work, we rather use the notation from [8] and set

θ+
1 (x) = ∂zϑ1(0, i x), x ∈ R+.

Now we have the following identity (see e.g., [8, chap. 3] or [11, Chap. 4])

θ2(x)θ3(x)θ4(x) = θ+
1 (x). (3.16)

From this identity we derive the following result.

Theorem 3.17 For x ∈ R+, we define the function

ψ1(x) = x3/4θ+
1 (x).

This function also has the following representations

ψ1(x) = x3/4
4∏

j=2

θ j (x) = 2 x3/4e−π
4 x

∏
k∈N

(
1 − e−2kπx

)3
.

The function is positive and assumes its global maximum only for x = 1 and x
ψ ′
1(x)

ψ1(x)
is strictly

decreasing. Furthermore,
ψ1(x) = ψ1(

1
x )

and, hence, (
x

d

dx

)n

ψ1(x) = (−1)n
(

x
d

dx

)n

ψ1(
1
x ), n ∈ N.

Proof The different representations of ψ1 follow immediately from (3.15) and (3.16). It
is obvious from the product representation that ψ1 is positive. The symmetry of ψ1 follows
easily from (3.5) and (3.6). The (anti-)symmetry for the repeated application of the differential
operator x d

dx immediately follows by induction. Differentiating log(ψ1) on a logarithmic
scale, i.e., applying the differential operator x d

dx , yields

x
d

dx
log(ψ1(x)) = 3

4
+

4∑
j=2

x
θ ′

j (x)

θ j (x)
.

123



Extremal determinants of Laplace–Beltrami operators for rectangular tori 193

In particular, this means that ψ1 has a critical point at x = 1 since

4∑
j=2

θ ′
j (1)

θ j (1)
= −3

4
,

which follows from (3.7) and (3.8). The fact that ψ1 assumes its global maximum only for

x = 1 will follow from the fact that x
ψ ′
1(x)

ψ1(x)
is strictly decreasing because, since x > 0 and

ψ1(x) > 0 we have that

ψ ′
1(x) < 0 ⇔ x

ψ ′
1(x)

ψ(x)
< 0.

Since
ψ ′
1(1)

ψ1(1)
= 0, the negativity of ψ ′

1 for x > 1 already follows if we can show that x
ψ ′
1(x)

ψ1(x)

is decreasing. We use the infinite product representation to establish this result.

x
d

dx
log(ψ1(x)) = x

d

dx
log

(
2 x3/4e−π

4 x
∏
k∈N

(
1 − e−2kπx

)3)

= x
d

dx

(
log(2) + 3

4 log(x) − π
4 x + 3

∑
k∈N

log
(
1 − e−2kπx

))

= 3
4 − π

4 x + 3
∑
k∈N

2kπx

e2kπx − 1
.

It is quickly verified that, except for the constant term, all terms in this expression are
decreasing and the proof is finished. ��

Figure 1 shows the function ψ1(x) and its derivative with logarithmic scaling on the x-
axis, revealing the symmetry properties. In Fig. 2 we see the logarithmic derivative of ψ1 on
a logarithmic scale, i.e., x d

dx log(ψ1(x)). The behavior of this function is strongly influenced
by the above established properties of Jacobi’s theta functions.

Finally, we observe that, for x ∈ R+,

ψ1(x) = 2x3/4|η(i x)|3,
which follows from Eq. (2.1). Theorem 1.1 now follows immediately from Theorem 3.17.

Fig. 1 The function ψ1(x) and its derivative x d
dx ψ1(x) plotted on a logarithmic scale
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Fig. 2 The logarithmic derivative x d
dx log(ψ1(x)) plotted on a logarithmic scale and split up in its components

φ j (x) = x
θ ′

j (x)

θ j (x)
+ 1

4 , j = 2, 3, 4
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