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Abstract
Demailly’s conjecture, which is a consequence of the Green–Griffiths–Lang conjecture on
varieties of general type, states that an algebraically hyperbolic complex projective variety is
Kobayashi hyperbolic. Our aim is to provide evidence for Demailly’s conjecture by verifying
several predictions it makes. We first define what an algebraically hyperbolic projective
variety is, extending Demailly’s definition to (not necessarily smooth) projective varieties
over an arbitrary algebraically closed field of characteristic zero, and we prove that this
property is stable under extensions of algebraically closed fields. Furthermore, we show that
the set of (not necessarily surjective) morphisms from a projective variety Y to a projective
algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed
subvariety of X is finite. As an application, we obtain that Aut(X) is finite and that every
surjective endomorphism of X is an automorphism. Finally, we explore “weaker” notions of
hyperbolicity related to boundedness ofmoduli spaces ofmaps, and verify similar predictions
made by the Green–Griffiths–Lang conjecture on hyperbolic projective varieties.

Keywords Hyperbolicity · Moduli of maps · Boundedness · Hom-schemes
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1 Introduction

The aim of this paper is to provide evidence for Demailly’s conjecture which says that a
projective algebraically hyperbolic variety over C is Kobayashi hyperbolic.

We first define the notion of an algebraically hyperbolic projective scheme over an alge-
braically closed field k of characteristic zero which is not assumed to be C, and could be Q,
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for example. Then we provide indirect evidence for Demailly’s conjecture by showing that
algebraically hyperbolic schemes share many common features with Kobayashi hyperbolic
complex manifolds. Furthermore, we also investigate “weaker” variants of algebraic hyper-
bolicity, and prove similar properties. Applications of our work are given in [3,21,28] (see
[22] for a survey).

Definition 1.1 A projective scheme X over k is algebraically hyperbolic over k if there is an
ample line bundle L, a positive real number α, and a positive real number β such that, for
every smooth projective connected curve C over k and every k-morphism f : C → X we
have that

degC f ∗L ≤ α · (2 genus(C) − 2) + β = −α · χ(C) + β.

In [9] Demailly defines this notion for smooth projective schemes over C (and more
generally, for compact complex manifolds and for projective directed manifolds). Note that
the above definition makes sense for (not necessarily smooth) projective schemes over k, and
therefore extends Demailly’s notion of algebraic hyperbolicity to singular varieties.

If f : C → X is a non-constant morphism and X is algebraically hyperbolic over k, then
the genus of C is greater than or equal to two, so that −α ·χ(C)+β ≤ (−α −β) ·χ(C). We
mention that X is algebraically hyperbolic over k if and only if there is an integer g0 ≥ 2 and
a positive real number α such that, for every smooth projective connected curve C over k of
genus at least g0 and every morphism f : C → X , the inequality degC f ∗L ≤ α · genus(C)

holds. Indeed, every curve C of genus at least two has a finite étale covering C ′ → C with
C ′ a curve of genus at least g0, and the degree of a morphism C → X is equal to the degree
of the composition C ′ → C → X divided by the degree of C ′ → C .

Examples of algebraically hyperbolic projective varieties are given in [4,5,8,10,11,35,38,
39]. Also, a logarithmic analogue of algebraic hyperbolicity (for quasi-projective varieties)
was introduced and studied in [6].

A finite type scheme X over C is Kobayashi hyperbolic if Kobayashi’s pseudometric on
the reduced complex analytic space X an

red is a metric; see [29]. The relation between algebraic
hyperbolicity andKobayashi hyperbolicity is provided by the following theorem ofDemailly.

Theorem 1.2 (Demailly) If X is a Kobayashi hyperbolic projective scheme over C, then X
is algebraically hyperbolic over C.

In [9, Theorem2.1]Demailly shows that aKobayashi hyperbolic smooth projective variety
over C is algebraically hyperbolic (see also [2, Theorem 2.13]). The smoothness assumption
is however not used in Demailly’s proof.

Recall that a variety X over C is Brody hyperbolic if every holomorphic map C → X an

is constant, where X an is the complex analytic space associated to X [16, Exposé XII]. Since
Brody hyperbolic projective varieties are Kobayashi hyperbolic [29], we see that Brody
hyperbolic projective varieties over C are algebraically hyperbolic over C. Similarly, as
Borel hyperbolic projective varieties over C (as defined in [23]) are Brody hyperbolic, it
follows that they are also algebraically hyperbolic over C. In particular, roughly speaking,
every “complex-analytically” hyperbolic variety is algebraically hyperbolic.

One can show that a projective Kobayashi hyperbolic variety X over C is groupless
(Definition 2.1), i.e., for every connected complex algebraic group G, every morphism of
varietiesG → X is constant. In [33, page 160]Lang conjectured the converse, i.e., a groupless
projective variety X over C is Kobayashi hyperbolic.

Lang’s aforementioned conjecture is a variant of a similar conjecture of Green–Griffiths
[14]. Indeed, Green and Griffiths conjectured that, if X is a projective variety of general type
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over C, then there are no entire curves C → X an with Zariski dense image. Consequently,
combining the conjectures ofLang andGreen–Griffiths,we are led to the following conjecture
(which we will refer to as the Green–Griffiths–Lang conjecture).

Conjecture 1.3 (Green–Griffiths–Lang) Let X be a projective variety over C. Then the fol-
lowing are equivalent.

(1) The projective variety X is groupless over C.
(2) The complex analytic space X an is Kobayashi hyperbolic.
(3) Every closed subvariety of X is of general type.

We now explain the relation of algebraically hyperbolic varieties to the Green–Griffiths–
Lang conjecture. In fact, we follow (and simplify) a strategy of Demailly to show that
projective algebraically hyperbolic varieties are groupless (Corollary 4.5). Therefore, as
Demailly notes [9, p. 14], the converse of the statement of Theorem 1.2 is in fact a con-
sequence of the Green–Griffiths–Lang conjecture. In other words, the following conjecture
is a consequence of theGreen–Griffiths–Lang conjecture (andwewill refer to it asDemailly’s
conjecture throughout this paper).

Conjecture 1.4 (Demailly, consequence of Green–Griffiths–Lang conjecture) If X is an alge-
braically hyperbolic projective variety over C, then X is Kobayashi hyperbolic.

In the next section we present our main results. We emphasize that all of our results are
in accordance with Conjecture 1.4 in the sense that they allow one to verify some of the
predictions one can make assuming Demailly’s conjecture (Conjecture 1.4) holds.

1.1 Properties of algebraically hyperbolic varieties

Our first result illustrates that algebraic hyperbolicity is a geometric property. The proof is
contained in Theorem 7.1.

Theorem 1.5 Let k ⊂ L be an extension of algebraically closed fields of characteristic zero.
Let X be a projective algebraically hyperbolic scheme over k. Then the projective scheme
XL is algebraically hyperbolic over L.

The Green–Griffiths–Lang conjecture says that a projective variety over k is algebraically
hyperbolic over k if (and only if) it is groupless over k (Definition 2.1). Now, it is not hard
to see that for k ⊂ L an extension of algebraically closed fields of characteristic zero, a
variety X over k is groupless over k if and only if XL is groupless over L (see Lemma 2.3).
In particular, Theorem 1.5 is in accordance with Green–Griffiths–Lang’s aforementioned
conjecture.

The fact that the moduli of maps from any given curve to an algebraically hyperbolic
variety X is bounded (by definition) has consequences for the moduli of maps from any
given variety to X , and also for the endomorphisms of X . The precise result we obtain reads
as follows.

Theorem 1.6 Let X be a projective algebraically hyperbolic variety over k. The following
statements hold.

(1) If Y is a projective reduced scheme over k, then the set of surjective morphisms Y → X
is finite.
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(2) Assume that X is reduced. Then, the group Aut(X) is finite, every surjective endo-
morphism X → X of X is an automorphism, and X has only finitely many surjective
endomorphisms.

The analogue of the first statement of Theorem 1.6 for Kobayashi hyperbolic varieties was
obtained by Noguchi; see [37] or [29, Theorem 6.6.2]. This latter statement (for Kobayashi
hyperbolic varieties) was (also) conjectured by Lang and has a long history; see [29, §6.6]
for a discussion. For instance, earlier results were obtained by Horst [18]. An analogue
of the statement about automorphisms for Kobayashi hyperbolic varieties is contained in
[29, Theorem 5.4.4], and an analogue of the statements about endomorphisms for Kobayashi
hyperbolic varieties is an application of [29, Theorem 6.6.20] and [29, Theorem 5.4.4]. Thus,
needless to emphasize, we see that Theorem 1.6 is in accordance with Demailly’s conjecture
(Conjecture 1.4).

Remark 1.7 In [2, Theorem 3.5], the finiteness of Aut(X) is proven when X is a smooth pro-
jective algebraically hyperbolic variety overC. We stress that we do not impose smoothness.
Moreover, we allow for the base field to be any algebraically closed field of characteristic
zero. Our proof of Theorem 1.6 is different than the proof in loc. cit. and allows for a more
general result (see Theorem 1.12).

The finiteness results in Theorem 1.6 for surjective morphisms from a projective scheme
to an algebraically hyperbolic projective scheme can in fact be subsumed into the following
statement (which we prove using Theorem 1.6).

Theorem 1.8 Let X be an algebraically hyperbolic projective scheme over k. Then, for every
projective scheme Y over k, every non-empty reduced closed subscheme B ⊂ Y , and every
reduced closed subscheme A ⊂ X, the set of morphisms f : Y → X with f (B) = A is
finite.

The analogue of Theorem 1.8 for Kobayashi hyperbolic varieties when dim B = dim A =
0 is Urata’s theorem (see [29, Theorem 5.3.10] or the original paper [41]). Also, the analogue
of the statement of Theorem 1.8 for Kobayashi hyperbolic varieties is contained in [29,
Corollary 6.6.8]. Thus, needless to stress, Theorem 1.8 is also in accordance with Demailly’s
conjecture (Conjecture 1.4).

To state our following result, for X andY projective schemes over k, we letHomk(X , Y ) be
the associated Hom-scheme (see Sect. 2). Moreover, we let Homnc

k (X , Y ) be the subscheme
parametrizing non-constant morphisms X → Y .

Roughly speaking, our next result verifies that moduli spaces of maps to a projective
algebraically hyperbolic variety are (also) projective and algebraically hyperbolic.

Theorem 1.9 Let X be a projective algebraically hyperbolic variety over k. If Y is a projective
scheme over k, then the schemeHomk(Y , X) is a projective algebraically hyperbolic scheme
over k. Moreover, we have that dimHomnc

k (Y , X) < dim X.

The analogue of Theorem 1.9 for Kobayashi hyperbolic projective varieties over C is
provided by [29, Theorem 5.3.9] and [29, Theorem 6.4.1]. Thus, like the two results above,
Theorem 1.9 is also in accordance with Demailly’s conjecture (Conjecture 1.4).

In the hope of understanding what properties of a projective scheme are sufficient for the
conclusions of Theorems 1.5, 1.6, 1.8, and 1.9 to hold, we also investigate “weaker” notions
of hyperbolicity.
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1.2 Weaker notions of boundedness

The results in the previous section weremotivated byDemailly’s conjecture (Conjecture 1.4).
With a view towards Green–Griffiths–Lang’s more general conjecture, we seek for analogues
of the results in Sect. 1.1 for “weaker” notions of (algebraic) hyperbolicity.

Definition 1.10 A projective scheme X over k is 1-bounded over k if for every smooth
projective connected curve C over k, the scheme Homk(C, X) is of finite type over k.

Note that, ifL is an ample line bundle on a projective scheme X over k, then X is 1-bounded
over k if and only if, for every smooth projective connected curve C over k, there is a real
number αC (which depends only on X and C) such that, for every morphism f : C → X
the inequality degC f ∗L ≤ αC holds.

Clearly, an algebraically hyperbolic projective scheme over k is 1-bounded over k. The
“difference” between algebraic hyperbolicity and 1-boundedness is in the uniformity of the
bound we demand on the degree of a morphism f : C → X . For X to be algebraically
hyperbolic, we demand degC f ∗L to be bounded linearly in the genus of C . For X to be
1-bounded, we ask the latter to be bounded by a real number depending only on C .

Despite the clear difference in the definitions, it seems reasonable to suspect that a 1-
bounded projective variety is algebraically hyperbolic over k. As we explain in Sect. 10, the
Green–Griffiths–Lang conjecture in fact predicts that 1-bounded projective schemes over k
are algebraically hyperbolic over k. The results in this section are motivated by this latter
observation.

We first show that 1-boundedness is also a “geometric” property, i.e., it persists over any
algebraically closed field extension of k.

Theorem 1.11 Let k ⊂ L be an extension of algebraically closed fields of characteristic zero.
Let X be a projective 1-bounded scheme over k. Then the projective scheme XL is 1-bounded
over L.

Note that Theorems 1.6 and 1.8 follow from the following more general result.

Theorem 1.12 Let X be a 1-bounded projective scheme over k. Then, for every projective
scheme Y over k, every non-empty reduced closed subscheme B ⊂ Y , and every reduced
closed subscheme A ⊂ X, the set of morphisms f : Y → X with f (B) = A is finite.

Furthermore, analogous to Theorem 1.9, we prove the following statement.

Theorem 1.13 Let X be a projective 1-bounded scheme over k. If Y is a projective scheme
over k, then the schemeHomk(Y , X) is a projective 1-bounded scheme over k. Moreover, we
have that dimHomnc

k (Y , X) < dim X.

1.3 From boundedness to uniform boundedness

It X is an algebraically hyperbolic projective variety, then it follows from the definitions that X
is 1-bounded. Conjecturally, a 1-bounded projective variety should actually be algebraically
hyperbolic. The a priori difference is, as explained above, the nature of the boundwe demand
for the degree of amap in the definitions. Our final result provides a first step towards showing
that a bounded projective scheme is algebraically hyperbolic.
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Theorem 1.14 (Towards algebraic hyperbolicity) Let X be a 1-bounded projective scheme
over k. Then, for every ample line bundle L and every integer g ≥ 0, there is an integer
α(X ,L, g) such that, for every smooth projective connected curve C of genus g over k and
every morphism f : C → X, the inequality

degC f ∗L ≤ α(X ,L, g)

holds.

Thus, the existence of a bound on the degreewhich is uniform in the genus is a consequence
of the existence of a bound which could depend on the curve itself. To prove Theorem 1.14
we use Theorem 1.13, and apply it to the universal stable curve of some fixed genus.

1.4 Applications and further results

In [3] we obtain further results on bounded and algebraically hyperbolic varieties. For exam-
ple, we show that these notions are stable under generization. A survey of the results obtained
here and in [3] is presented in [22].

As a further application of the results of this paper, we mention that Theorem 1.5 is used
to prove that an “arithmetically hyperbolic” projective variety over k which is algebraically
hyperbolic over k remains arithmetically hyperbolic over any field extension of k; see [21,
Theorem 4.2] for a precise statement. Related results are also obtained in [24,25]. Moreover,
one can also prove “arithmetic” analogues of some of our results. For instance, the arithmetic
analogues of the results in Sect. 5 are obtained in [26, §4].Also, in [21, Theorem1.2],we prove
that arithmetically hyperbolic projective varieties have only finitely many automorphisms,
and thereby obtain the arithmetic analogue of Theorem 1.6 (2). We push these arithmetic
results further in [28], and also investigate “pseudo” versions of the results of this paper in
loc. cit.

1.5 Outline of paper

In Sects. 2 and 3 we gather some well-known results. For instance, we introduce the notion
of groupless varieties, and note that a proper groupless variety has a countable discrete group
of automorphisms. We combine this with a theorem of Hwang–Kebekus–Peternell to prove
that the scheme Sur(Y , X) parametrizing surjective morphisms from a projective variety Y to
a projective groupless variety X over k is a countable union of zero-dimensional projective
schemes over k; see Theorem 2.9. Furthermore, in Sect. 3 we explore basic properties of
projective varieties with no rational curves. We show that finite type components of certain
Hom-schemes of such varieties are proper, and that the “evaluation maps” defined on these
Hom-schemes are finite morphisms; see Corollary 3.11.

In Sect. 4 we study various (new) notions of boundedness and we explore some relations
between boundedness and grouplessness. Then, in Sect. 5 we show that algebraic hyperbol-
icity, Kobayashi hyperbolicity, and all the various notions of boundedness introduced in Sect.
4 behave similarly along finite maps. Finally, the finiteness of the set of dominant rational
maps, surjective endomorphisms and automorphisms of a bounded scheme are proven in
Sect. 6.

The geometricity of algebraic hyperbolicity (as predicted by the Green–Griffiths–Lang
conjecture) is verified in Sect. 7. In fact, we also prove that every notion of boundedness
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introduced in this paper is “geometric” (i.e., persists over any algebraically closed field
extension of the base field).

In Sect. 8 we use a Bertini-type argument to show that finiteness of pointed Hom-sets
from curves implies finiteness of pointed Hom-sets from varieties; see Theorem 8.4 for a
precise statement. Similarly, in Sect. 9 we prove that boundedness of Hom-schemes from
curves implies boundedness of Hom-schemes from varieties using a specialization argument
(Theorem 9.3). As an application of this result, we deduce that projective algebraically
hyperbolic schemes are bounded (Theorem 9.3). This latter result implies, in particular, that
all the properties proven for bounded schemes in Sects. 4, 5 and 6 hold for algebraically
hyperbolic schemes.

We prove all the results stated in the introduction in Sect. 10. In Sect. 11 we conclude the
paper with several conjectures related toDemailly’s andGreen–Griffiths–Lang’s conjectures.
These conjectures relate the various notions of boundedness introduced in this paper.

Conventions Throughout this paper, we let k be an algebraically closed field of characteristic
zero. A variety over k is a finite type separated reduced k-scheme.

2 Grouplessness

A variety is “groupless” if it does not admit any non-trivial map from an algebraic group.
The precise definition reads as follows.

Definition 2.1 A finite type scheme X over k is groupless (over k) if, for every finite type
connected group scheme G over k, every morphism of k-schemes G → X is constant.

Note that Kovács [30] and Kobayashi [29, Remark 3.2.24] refer to groupless varieties
as being “algebraically hyperbolic”, and Hu–Meng–Zhang refers to groupless varieties as
being “algebraically Lang hyperbolic” [19]. We avoid this unfortunate mix of terminology,
and only use the term “algebraically hyperbolic” in the sense of Demailly (Definition 1.1).

The main result of this section is that the moduli space of surjective maps from a given
projective variety to a given groupless projective variety is zero-dimensional; see Theorem
2.9 for a precise statement. We also take the opportunity to prove certain basic properties of
groupless varieties.

Lemma 2.2 Let S be an integral variety over k with function field K . Let K (S) ⊂ L be an
algebraically closed field extension. Let X → S be a morphism of varieties over k. Suppose
that the set of s in S(k) such that Xs is groupless over k is Zariski-dense in S. Then XL is
groupless over L.

Proof Suppose that XL is not groupless. Then, wemay choose a K -finitely generated subfield
K (S) ⊂ K ⊂ L , a finite type connected group scheme G over K , and a non-constant
morphism G → XK . Let U be an integral variety with K (U ) = K and let U → S be a
smooth dominant morphism of varieties over k extending the inclusion K (S) ⊂ K . Let G
be a finite type geometrically connected group scheme over U , and let G → X ×S U be a
morphism of U -schemes which extends the morphism G → XK on the generic fibre. Our
assumption that the set of s in S(k)with Xs groupless is Zariski dense in S implies that the set
of s inU (k) such that Xs is groupless is Zariski-dense inU . In particular, for a dense set of s
in U (k), the morphism Gs → (X ×S U )s = Xs is constant. This implies that the morphism
G → XK is constant, contradicting our assumption. We conclude that XL is groupless over
L . �	
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Lemma 2.3 (Grouplessness is a geometric property) Let k ⊂ L be an extension of alge-
braically closed fields of characteristic zero and X a finite type scheme over k. If X is
groupless over k, then XL is groupless over L.

Proof This follows from Lemma 2.2 with S = Spec k. �	
Remark 2.4 A more general “generizing” property for grouplessness can be proven using
non-archimedean methods; see [27, Theorem 1.3];

Lemma 2.5 Let X be a finite type scheme over k. The following statements are equivalent.

(1) The finite type scheme X is groupless over k.
(2) Every morphism to X from either Gm,k or an abelian variety over k is constant.

Proof That (1) implies (2) is clear. The other implication is a consequence of the structure
theory of connected finite type (smooth quasi-projective geometrically connected) group
schemes over k [7]. Indeed, assume (2) holds. Let G be a connected finite type group scheme
over k. Let H be the unique normal connected affine (closed) subgroup of G such that G/H
is an abelian variety. Since any morphism G/H → X is constant, it suffices to show that any
morphism H → X is constant. Let U ⊂ H be the unipotent radical. Since any morphism
Gm,k → X is constant, we see that every morphism Ga,k → X is constant. Therefore, any
morphismU → X is constant. Thus, we may replace by H by H/U , so that H is reductive.
However, since H is the union of its Borel subgroups, we may and do assume that H is a
solvable group in which case it is clear that H → X is constant by (2). �	
Remark 2.6 The proof of Lemma 2.5 shows that a complex analytic space X is Brody hyper-
bolic if and only if, for every finite type connected group schemeG overC, every holomorphic
map Gan → X is constant. (Similar statements are true in a non-archimedean setting; see
[27].) In particular, one could refer to Brody hyperbolicity as “C-analytic grouplessness”.
Similarly, one could also refer to groupless varieties as “algebraically-Brody hyperbolic
varieties”.

Lemma 2.7 Let X be a proper variety over k. Then X is groupless over k if and only if, for
every abelian variety A over k, every morphism A → X is constant.

Proof Suppose that, for every abelian variety A over k, every morphism A → X is constant.
To show that X is groupless, it suffices to show that every morphism Gm,k → X is constant
(Lemma 2.5). However, any such map extends to a morphism P

1
k → X . Let E be an elliptic

curve over k and let E → P
1
k be a surjective morphism. Then the composed morphism

E → P
1
k → X is constant (by assumption), so that the morphism P

1
k → X is constant. This

proves the lemma. �	
If X and Y are projective schemes over k, then the functor Homk(X , Y ) parametrizing

morphisms X → Y is representable by a countable disjoint union of quasi-projective schemes
over k ([15, Section 4.c, pp. 221-19–221-20]). If X is a projective scheme over a field k, then
the functor AutX/k parametrizing automorphisms of X over k is representable by a locally
finite type separated group scheme over k (which we also denote by AutX/k). If X is a
projective groupless scheme over k, then AutX/k is a zero-dimensional scheme, as we show
now.

Lemma 2.8 Let X be a proper variety over k. If X is groupless, then Aut0X/k is trivial. In
particular, the group Aut(X) is a countable discrete group.
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Proof Let G = Aut0X/k . This is a finitely presented connected group algebraic space over
k; see [1, Theorem 6.1]. Thus, it is a finite type connected group scheme over k (see [40,
Tag 06E9]). Since X is groupless and G is a finite type connected group scheme over k, for
x in X , the morphism G → X defined by g 
→ gx is constant. In other words, since every g
in G acts trivially, we see that G is the trivial group. �	

Wecan combineLemma2.8with a theoremofHwang–Kebekus–Peternell to get a stronger
conclusion. To state it, for Y is a projective scheme over k, recall that the functor Sur(Y , X)

parametrizing surjective morphisms from Y to X is representable by a locally finite type
separated scheme over k. Indeed, it is an open subscheme of Homk(Y , X).

Theorem 2.9 (Hwang–Kebekus–Peternell) Let X be a projective groupless variety over k.
Let Y be a normal projective variety over k. Then Sur(Y , X) is a countable union of zero-
dimensional projective schemes over k.

Proof Let f : Y → X be a surjective morphism. Let Hom f (Y , X) be the connected com-
ponent of Hom(Y , X) containing f . By [20, Theorem 1.2], as X does not have any rational
curves, there exists a factorization Y → Z → X with Z → X a finite morphism, and a
surjective morphism Aut0Z/k → Hom f (Y , X). Now, since X is groupless, it follows that Z

is groupless, and thus Aut0Z/k is trivial. This implies that Hom f (Y , X) is a point. Therefore,
since Homk(Y , X) is a countable union of finite type schemes over k, this concludes the
proof. �	
Remark 2.10 The “converse” of the theorem of Hwang–Kebekus–Peternell is not true. Let
C be a smooth projective curve of genus two, and let X be the blow-up of C ×k C in a point.
Then X is a smooth projective surface of general type. Note that X is not groupless (as it
contains a rational curve). However, for any projective variety Y over k, the set of surjective
morphism Y → X is finite.

3 Projective varieties with no rational curves

It turns out that, if Y is a projective scheme over k and X is a projective scheme over k with
no rational curves, then the scheme Homk(Y , X) is a countable union of projective schemes;
this is a well-known ingredient in Mori’s “bend-and-break”. In this section we collect some
related well-known results.

Definition 3.1 A variety X over k is pure (over k) if, for every smooth variety T over k and
every dense open U ⊂ T with codim(T \U ) ≥ 2, we have that every morphism U → X
extends (uniquely) to a morphism T → X .

The notion of pure variety is also used (and extended) in [3] and [22, Section 7.2]. Note
that a complete Kobayashi hyperbolic variety overC is pure overC; see [29, Corollary 6.2.4].

Lemma 3.2 Let X be a proper pure variety over k. Let Y be a smooth variety over k. Then
every rational dominant map from Y to X extends to a morphism Y → X.

Proof Since X is proper, every rational dominant map from Y to X can be defined on an
open U ⊂ Y with codim(Y\U ) ≥ 2. Therefore, the lemma follows from the definition of a
pure variety (Definition 3.1). �	
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Remark 3.3 Let X be a variety over k. Let k ⊂ L be a field extension with L algebraically
closed. Then X is pure over k if and only if XL is pure over L . This follows from a standard
spreading out and specialization argument (similar to the argument in the proof of Lemma
2.2).

Lemma 3.4 Let X → Y be an affine morphism of varieties over k. If Y is pure over k, then
X is pure over k.

Proof This is a consequence of Hartog’s lemma.

Lemma 3.5 A proper variety X over k is pure if and only if it has no rational curves, i.e.,
every morphism P

1
k → X is constant.

Proof Let 0 = (0 : 0 : 1) ∈ P
2(k). Since the projection P

2
k\{0} → P

1 does not extend to
a morphism P

2 → P
1, we see that P1 is not pure. Therefore, as a non-constant morphism

P
1
k → X is finite (hence affine), a proper variety with a rational curve is not pure by Lemma

3.4. Conversely, it follows from [13, Proposition 6.2] that a proper variety with no rational
curves is pure. �	
Example 3.6 If X is an affine variety over k, then X is pure. Abelian varieties over k are pure.
An algebraic K3 surface over k is not pure (as it contains a rational curve).

The relation between groupless varieties and pure varieties is provided by the following
proposition.

Proposition 3.7 If X is a proper groupless variety over k, then X is pure over k.

Proof Since proper groupless varieties have no rational curves, the proposition follows from
Lemma 3.5. �	

Note that a smooth proper genus one curve over k is pure, but not groupless. Thus, there
are pure smooth projective varieties over k which are not groupless.

We show now that the rigidity lemma implies that “evaluation maps” restricted to closed
subschemes of certain pieces of Hom-schemes are finite.

Lemma 3.8 Let X be a proper variety over k and let Y be a projective variety over k. Let
Z be a locally closed subscheme of Homk(Y , X). Assume that Z is proper over k. Then, for
any y in Y (k), the evaluation morphism

Z → X , f 
→ f (y)

is finite.

Proof This is an application of the rigidity lemma [36, Chapter II] (cf. the argument of
the proof of [29, Corollary 5.3.4]). To be more precise, let y be a point in Y (k) and x a
point in X(k). Note that the fibre over x of the evaluation map evaly : Z → X defined
by evaly( f ) = f (y) is the set Homk((Y , y), (X , x)) ∩ Z(k) of morphisms f : Y → X
in Z(k) with f (y) = x . To show that Homk((Y , y), (X , x)) ∩ Z(k) is finite, consider the
closed subscheme Homk((Y , y), (X , x)) ⊂ Homk(Y , X) parametrizing maps f : Y → X
with f (y) = x . Let H be a connected component of Z ∩ Homk((Y , y), (X , x)). Since Z is
proper, the scheme H is proper over k. It suffices to show that H(k) is a singleton.

The morphism eval : Y × H → X given by (y′, f ) 
→ f (y′) has the property that
(y, f ) = x for all f ∈ H , i.e., it contracts {y} × H to a point. Thus, since H is proper, the
rigidity lemma implies that the morphism eval : Y × H → X factors over some morphism
g : Y → X , i.e., eval = g ◦ prY . In other words, for any f in in H and any y in Y , we have
that f (y) = g(y). Thus, H(k) = {g}. This concludes the proof. �	
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To apply Lemma 3.8 we now show that finite type (separated) subschemes of Hom-
schemes of pure varieties are proper.

Proposition 3.9 Let X be a projective variety over k which is pure over k. Then, for every
smooth projective variety Y over k, the locally finite type scheme Homk(Y , X) satisfies
the valuative criterion of properness over k. In particular, for any P ∈ Q[t], the scheme
HomP

k (Y , X) is projective and pure over k.

Proof Let S be a smooth affine curve over k and let K = K (S) be its function. Note that
XS := X ×k S is pure over k (as X and S are pure over k). We claim that the injective map
of sets

HomS(YS, XS) → HomK (YK , XK )

is surjective. To do this, let f : YK → XK be a morphism over K . Since X is proper over k,
the scheme XS is proper over S. In particular, by the valuative criterion of properness, there
is an open U ⊂ YS with UK ∼= YK and a morphism U → XS extending YK → XK with
codim(YS\U ) ≥ 2. Since YS = Y ×k S is a smooth variety over k, the purity of X ×k S
implies that the morphism U → XS extends to a morphism YS → XS . This shows that
Homk(Y , X) satisfies the valuative criterion of properness over k. In particular, for any P
in Q[t], the quasi-projective scheme HomP

k (Y , X) over k is projective over k. Now, since
Z := HomP

k (Y , X) is proper over k, by Lemma 3.8, for y in Y (k), the evaluation morphism
evaly : Z → X is finite. Thus, as X is pure and Z → X is finite (hence affine), we conclude
that Z = HomP

k (Y , X) is pure (Lemma 3.4). This concludes the proof. �	
The arguments used in the proof of Proposition 3.9 can be used to prove the properness

of other Hom-schemes (and Hom-stacks) as we show now. Concerning algebraic stacks, we
follow the conventions of the stacks project [40, Tag 026N].

Lemma 3.10 Let X be a projective pure variety over k, and let U → M be a smooth proper
representable morphism of smooth finite type separated Deligne–Mumford algebraic stacks
over k. Let L be a M-relative ample line bundle on U. Then, the natural (representable)
morphism HomM (U , X × M) → M of algebraic stacks satisfies the valuative criterion of
properness over k. Therefore, for any polynomial P ∈ Q[t], the morphism HomP

M (U , X ×
M) → M is proper.

Proof Since HomP
M (U , X × M) → M is a finite type separated morphism of finite type

separated algebraic stacks over k, it suffices to prove the first statement. Let S be a smooth
affine curve over k, let S → M be amorphism, and suppose that themorphism Spec K (S) →
S → M lifts to a morphism Spec K (S) → HomM (U , X ×M). Thus, we are given a smooth
finite type morphism US → S of schemes and a morphism UK (S) → XK (S). By properness
of (the morphism of noetherian schemes) X ×k S → S, there is a dense open V ⊂ US

with codim(US\V ) ≥ 2 and a morphism V → X ×k S which extends the morphism
UK (S) → XK (S) over K (S) to a morphism over S. Since S is affine, the curve S is pure over
k (Lemma 3.4). Therefore, as X and S are pure over k, the variety X×k S is pure over k. Since
US is a smooth finite type separated Deligne–Mumford algebraic stack over k and X ×k S
is a pure variety over k, the morphism V → X ×k S extends to a morphism US → X ×k S.
This concludes the proof of the lemma. �	

We now combine Lemma 3.8 and Proposition 3.9 to show that “evaluation maps” on finite
type closed subschemes of Hom-schemes of pure varieties are finite.
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Corollary 3.11 Let X be a proper pure variety over k and let Y be a smooth projective variety
over k. If Z is an irreducible component of Homk(Y , X), then Z is projective and, for any y
in Y (k), the evaluation morphism

Z → X , f 
→ f (y)

is finite.

Proof Note that Z is closed in Homk(Y , X). Then, by Proposition 3.9, the quasi-projective
k-scheme Z is proper over k (hence projective). The result now follows from Lemma 3.8. �	

Let m ≥ 1 be an integer. Let Y and X be proper schemes over k. Let y1, . . . , ym be
elements of Y (k), and let x1, . . . , xm be elements of X(k). The functor

Homk((Y , y1, . . . , ym), (X , x1, . . . , xm))

parametrizing morphisms f : Y → X with f (y1) = x1, . . . , f (ym) = xm is representable
by a (possibly empty) closed subscheme of Homk(Y , X) which we (also) denote by

Homk((Y , y1, . . . , ym), (X , x1, . . . , xm)).

We conclude this section with the following proposition which says that algebraic sets of
pointed maps to a pure variety are zero-dimensional.

Proposition 3.12 Let X be a projective pure variety over k. Let m ≥ 1 be an integer, let Y
be a smooth projective variety over k, let y1, . . . , ym be pairwise distinct points in Y (k), and
let x1, . . . , xm ∈ X(k). Then the locally finite type scheme

Homk((Y , y1, . . . , ym), (X , x1, . . . , xm))

parametrizing morphisms f : Y → X with f (y1) = x1, . . . , f (ym) = xm is zero-
dimensional.

Proof We show that, for y in Y (k) and x in X(k), the scheme Homk((Y , y), (X , x)) is
zero-dimensional. (This is clearly enough.) To do so, let Z be an irreducible component of
Homk(Y , X). Note that, as X is pure over k, it follows from Corollary 3.11 that, for every y
in Y (k), the evaluation morphism Z → X of k-schemes given by f 
→ f (y) is finite. This
implies that the scheme Homk((Y , y), (X , x)) is zero-dimensional, as required. �	

4 Bounded varieties: definitions and grouplessness

By Definition 1.1, a projective algebraically hyperbolic variety satisfies a “strong” form
of boundedness with respect to maps from curves. As we explained in the introduction, a
lot of properties of algebraically hyperbolic varieties we prove in this paper also hold for
varieties satisfying (a priori) “weaker” properties of boundedness with respect to maps from
curves. To state and prove our results, we start by defining what we mean by “bounded” and
“(n,m)-bounded” projective schemes.

Definition 4.1 Let n be a non-negative integer. A projective scheme X over k is n-bounded
over k if, for all normal projective integral schemes Y of dimension at most n over k, the
scheme Homk(Y , X) is of finite type over k. A projective scheme X over k is bounded if, for
all integers n ≥ 1, the scheme X is n-bounded.
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Definition 4.2 Let n and m be non-negative integers. A projective scheme X over k is (n,m)-
bounded (over k) if, for all normal projective integral schemes Y of dimension at most n over
k, all pairwise distinct points y1, . . . , ym ∈ Y (k), and all x1, . . . , xm ∈ X(k), the scheme

Homk((Y , y1, . . . , ym), (X , x1, . . . , xm))

is of finite type.

Remark 4.3 Note that a projective variety over k is n-bounded over k if and only if it is (n, 0)-
bounded over k (by definition). Obviously, if X is n-bounded, then X is (n − 1)-bounded.
Moreover, if X is (n,m)-bounded over k, then X is (n,m + 1)-bounded.

Proposition 4.4 Let n ≥ 1 andm ≥ 0 be integers. If X is a projective (n,m)-bounded scheme
over k, then X is groupless and pure over k.

Proof Since a projective (a, b)-bounded scheme is (a, b+1)-bounded (Remark 4.3), wemay
and do assume that the integer m is greater than 1. Suppose that X is not groupless over k.
Let A be an abelian variety and let f : A → X be a non-constant morphism. Let a1, . . . , am
be pairwise distinct points in A[m]. Let C ⊂ A be a smooth projective curve containing
a1, . . . , am . Let � > 1 be an integer such that � = 1 mod m. Then, for every 1 ≤ i ≤ m, as
ai is m-torsion, we see that �ai = ai in A. The morphism f ◦ [�] : A → X sends a1, . . . , am
to f (a1), . . . , f (am), respectively. In particular, as the morphisms f ◦ [�] correspond to k-
points of different components of Homk((A, a1, . . . , am), (X , f (a1), . . . , f (am))), we see
that X is not (1,m)-bounded. It follows that X is not (n,m)-bounded. We conclude that a
projective (n,m)-bounded scheme is groupless. Finally, since projective groupless varieties
are pure (Proposition 3.7), this concludes the proof. �	
Corollary 4.5 A projective algebraically hyperbolic variety over k is groupless and pure over
k.

Proof Note that algebraically hyperbolic projective varieties are 1-bounded. Therefore, the
result follows from Proposition 4.4. �	

Assuming m ≥ 1 is a positive integer, we now show that an (n,m)-bounded projective
variety admits only finitely many pointed maps (Y , y1, . . . , ym) → (X , x1, . . . , xm). The
precise statement reads as follows.

Lemma 4.6 Let X be a projective variety over k. Let n ≥ 1 and m ≥ 1 be integers. The
following are equivalent.

(1) The projective variety X is (n,m)-bounded over k.
(2) For all projective integral schemes Y of dimension at most n over k, all pairwise distinct

points y1, . . . , ym ∈ Y (k), and all x1, . . . , xm ∈ X(k), the set

Homk((Y , y1, . . . , ym), (X , x1, . . . , xm))

is finite.

Proof Clearly, (2) �⇒ (1). Let us show that (1) �⇒ (2). Replacing Y by a densingular-
ization if necessary, wemay and do assume that Y is smooth. Now, to show that (1) �⇒ (2),
note that an (n,m)-bounded projective variety is groupless and pure (Proposition 4.4). There-
fore, since X is a pure projective scheme over k and Y is a smooth projective variety over k,
the schemeHomk((Y , y1, . . . , ym), (X , x1, . . . , xm)) is zero-dimensional (Proposition 3.12).
By our assumption (1), the latter scheme is of finite type. As a finite type zero-dimensional
k-scheme is finite, this concludes the proof. �	
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Remark 4.7 Note that the assumption that m is positive in Lemma 4.6 is necessary. Indeed,
Hom(C, X) contains all constant maps C → X , and is therefore infinite (even if X is
bounded). However, more interestingly, there is a bounded projective surface X overC and a
smooth projective curveC overC such that there are infinitelymany non-constantmorphisms
C → X (of bounded degree). Explicitly: let C be a smooth projective connected curve of
genus at least two over C, and let X := C × C . Then, for every closed point c of C , the
morphism fc : C → X defined by fc(d) = (d, c) is of bounded degree. Since C is bounded,
the surface X is bounded. Moreover, the morphisms fc are pairwise distinct non-constant
morphisms.

Proposition 4.8 Let X be a projective variety over k. The following are equivalent.

(1) The projective variety X is (1, 1)-bounded.
(2) There is an integer m ≥ 1 such that X is (1,m)-bounded.

Proof Letm ≥ 1 be an integer and assume that X is (1,m)-bounded. To prove the proposition,
it suffices to show that X is (1, 1)-bounded. Let C be a smooth projective curve over k, let
c ∈ C(k), and let x ∈ X(k). We now show that set Homk((C, c), (X , x)) is finite.

Let D be a smooth projective connected curve and let f : D → C be a finite surjective
morphism of degree m which is étale over c. Write {d1, . . . , dm} = f −1{c}, and note that
d1, . . . , dm are pairwise distinct points of D. Define x1 = . . . = xm = x . Since D → C is
surjective, the map of sets

Homk((C, c), (X , x)) → Homk((D, d1, . . . , dm), (X , x1, . . . , xm)), g 
→ g ◦ f

is injective. Since X is (1,m)-bounded, the set Homk((D, d1, . . . , dm), (X , x1, . . . , xm)) is
finite (Lemma 4.6). We conclude that Homk((C, c), (X , x)) is finite, so that X is (1, 1)-
bounded, as required. �	

We will later show that a projective variety X over k is (1, 1)-bounded over k if and only
if, for every n ≥ 1 and m ≥ 1, we have that X is (n,m)-bounded; see Theorem 8.4 for a
more precise statement.

5 Hyperbolicity and boundedness along finite maps

In this section we show that the notions of being algebraically hyperbolic, Kobayashi hyper-
bolic, and (n,m)-bounded (for some fixed n and m) behave in a similar manner along finite
maps.

In our proofs below we will use the “slope” of a morphism f : C → X with respect to a
fixed ample line bundle on X .

Definition 5.1 Let L be an ample line bundle on a projective scheme X over k. Let C → X
be a morphism of projective schemes over k with C a smooth projective connected curve
over k. The slope s( f ) of f (with respect to L) is defined as

s( f ) = degC f ∗L
max(1, genus(C))

.

Note that a projective scheme X over k is algebraically hyperbolic over k if and only if there
is a real number α (depending only on X and some fixed ample line bundleL on X ) such that,
for every smooth projective connected curve C over k and every morphism f : C → X , the
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slope (with respect to the aforementioned fixed ample line bundle on X ) satisfies s( f ) ≤ α.
On the other hand, a projective scheme X over k is 1-bounded over k if and only if for every
smooth projective connected curve C over k there is a real number αC (which depends only
on X and C) such that s( f ) ≤ αC . Thus, one could say that algebraic hyperbolicity is a
“uniform” version of 1-boundedness, as a projective variety X is algebraically hyperbolic
if and only if the slope of a morphism from a smooth projective curve to X is uniformly
bounded.

Proposition 5.2 Let f : X → Y be a finite morphism of projective varieties over k. Then the
following statements hold.

(1) If Y is algebraically hyperbolic over k, then X is algebraically hyperbolic over k.
(2) Let n ≥ 1 and m ≥ 0 be integers. If Y is (n,m)-bounded over k, then X is (n,m)-

bounded over k.
(3) Assume k = C. If Y is Kobayashi hyperbolic over k, then X is Kobayashi hyperbolic

over k.

Proof To prove (1), let L be an ample line bundle on Y . Since f : X → Y is finite, the
line bundle f ∗L is ample on X . Suppose that X is not algebraically hyperbolic over k, so
that there is a smooth projective connected curve C over k, and infinitely many morphisms
fi : C → X such that the slope s( fi ) = deg( fi )/genus(C) (Definition 5.1) tends to infinity
as i tends to infinity, where we compute the degree of fi : C → X with respect to f ∗L. For
every i , let gi := f ◦ fi , and note that the slope of the finite morphism gi : C → Y equals
the slope of fi , and is therefore unbounded. This shows that Y is algebraically hyperbolic,
and proves (1).

To prove (2), suppose that X is not (n,m)-bounded. We now show that Y is not (n,m)-
bounded. Let V be a normal projective variety of dimension 1, let v1, . . . , vm be pairwise
distinct points in V (k), and let x1, . . . , xm ∈ X(k) be such that

Homk((V , v1, . . . , vm), (X , x1, . . . , xm))

is not of finite type over k. Let fi ∈ Hom((V , v1, . . . , vm), (X , x1, . . . , xm)) be elements
with pairwise distinct Hilbert polynomials. For i ∈ {1, . . . ,m}, define yi := f (xi ) and
gi := fi ◦ f . Note that the elements

gi ∈ Hom((V , v1, . . . , vm), (Y , y1, . . . , ym))

have pairwise distinct Hilbert polynomial. This shows that

Homk((V , v1, . . . , vm), (Y , y1 . . . , ym))

is not of finite type, so that Y is not (n,m)-bounded over k.
We note that (3) is due to Kwack [32, Theorem 1]. (One could also use Brody’s lemma

and the analogous statement for Brody hyperbolicity. One could also appeal to [29, Proposi-
tion 3.2.11]) This concludes the proof. �	
Corollary 5.3 Let X be a projective scheme over k. Let Y be a normal projective scheme and
let P ∈ Q[t] be a non-zero polynomial. Then the following statements hold.

(1) If X is algebraically hyperbolic over k, thenHomP
k (Y , X) is a projective algebraically

hyperbolic scheme over k with dimHomP
k (Y , X) ≤ dim X.

(2) If n ≥ 1 and m ≥ 0 are integers and X is (n,m)-bounded over k, then HomP
k (Y , X) is

a projective (n,m)-bounded scheme over k with dimHomP
k (Y , X) ≤ dim X.
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Proof Let X be as in (1) or (2). Note that, replacing Y by a desingularization if necessary,
we may and do assume that Y is smooth. First, note that X is groupless by Corollary 4.5) and
Proposition 4.4. Therefore, as X is proper and groupless, it follows that X is pure (Proposition
3.7). Thus, since Z := HomP

k (Y , X) is a finite type closed subscheme of Homk(Y , X), by
Corollary 3.11, the schemeHomP

k (Y , X) is projective and, for every y in Y (k), the evaluation
morphism evaly : HomP

k (Y , X) → X is finite. This implies that dim HomP
k (Y , X) ≤ dim X .

Now, if X is algebraically hyperbolic (resp. (n,m)-bounded), it follows from Proposition 5.2
that HomP

k (Y , X) is algebraically hyperbolic (resp. (n,m)-bounded). This concludes the
proof. �	
Proposition 5.4 Let f : X → Y be a finite étale morphism of projective varieties. Then the
following statements hold.

(1) If X is algebraically hyperbolic over k, then Y is algebraically hyperbolic over k.
(2) If n ≥ 1 and m ≥ 0 are integers and X is (n,m)-bounded over k, then Y is (n,m)-

bounded over k.
(3) Assume k = C. If X an is Kobayashi hyperbolic, then Y an is Kobayashi hyperbolic.

Proof Let d = deg(Y/X), let L be an ample line bundle on Y , and note that f ∗L is ample
on X .

To prove (1), assume that X is algebraically hyperbolic over k, and let α be a real number
(which depends on L and f : X → Y ) such that, for every smooth projective connected
curve C ′ over k and every morphism f ′ : C ′ → X we have s( f ′) ≤ α. To show that Y is
algebraically hyperbolic over k, letC be a smooth projective curve over k and let f : C → Y
be a morphism. Let D := C ×Y X , and let g : D → X be the natural morphism. Note that
D is a smooth projective curve over k. We now bound the slope s( f ) of f (Definition 5.1).
Note that genus(D) = dgenus(C) > 0 and that

α ≥ s(g) = degD g∗ f ∗L
genus(D)

= d degC f ∗L
dgenus(C)

= s( f ).

In particular, the slope of f is bounded by α. We conclude that Y is algebraically hyperbolic
over k.

To prove (2), assume that Y is not (n,m)-bounded. Let V be a normal projective variety
of dimension at most n over k, let v1, . . . , vm be points in V (k), let y1, . . . , ym be points
in Y (k), and let fi : V → Y be a sequence of morphisms with pairwise distinct Hilbert
polynomials and f (vi ) = yi . Since k is an algebraically closed field of characteristic zero,
it follows from [17, Exposé II. Theorem 2.3.1] that the set of k-isomorphism classes of
(normal) projective varieties W such that there is a finite étale morphism W → V of degree
at most d is finite. Therefore, replacing ( fi )∞i=1 by a subsequence if necessary, we may and
do assume that, for all positive integers i , we have W := V × f1,Y , f X ∼= V × fi ,Y , f X . Let
gi : W = Vi ×Y X → X be the natural morphism. For every positive integer i , consider the
morphism W = Vi ×Y X → V and let wi be a point lying over vi . Replacing ( fi )∞i=1 by a
subsequence if necessary, we may and do assume that gi (w1), . . . , gi (wm) are independent
of i . Let x1 := g1(w1), . . . , xm = g1(wm). Note that gi is an element of

Homk((W , w1, . . . , wm), (X , x1, . . . , xm)).

Since the fi have pairwise distinct Hilbert polynomial, it follows that the gi have pairwise
distinct Hilbert polynomial. This shows that X is not (n,m)-bounded.

Note that (3) follows from [29, Theorem 3.2.8.(2)]. (One can also use Brody’s lemma and
the easier to establish analogous statement of (3) for Brody hyperbolicity to prove (3).) �	
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6 Finiteness results for bounded varieties

In this section we prove finiteness results for certain moduli spaces of maps. The main
ingredients in this section are the theorem of Hwang–Kebekus–Peternell (Theorem 2.9), and
the properties of Hom-schemes of pure varieties established in Sect. 3.

Our first lemma gives the finiteness of surjective maps from a given projective variety Y
to a bounded projective variety X .

Lemma 6.1 Let n ≥ 1 be an integer. Let X be a projective n-bounded variety over k. If Y is
a (reduced) projective variety of dimension at most n, then the set of surjective morphisms
Y → X is finite.

Proof Wemay and do assume that Y is integral. Let Y ′ → Y be the normalization of Y . Note
that the natural map of sets Surk(Y , X) → Surk(Y ′, X) is injective. Therefore, replacing
Y by its normalization if necessary, we may and do assume that Y is normal. Since X is
n-bounded, it follows that X is groupless (Proposition 4.4). Therefore, by Hwang–Kebekus–
Peternell’s theorem (Theorem 2.9), the scheme Surk(Y , X) is zero-dimensional. Since X is
n-bounded and Y is a normal projective variety, the scheme Homk(Y , X) is of finite type
over k. In particular, the zero-dimensional scheme Surk(Y , X) is of finite type over k, and is
therefore finite over k. This concludes the proof. �	
Corollary 6.2 Let n ≥ 1 be an integer. Let X be an n-dimensional (reduced) projective n-
bounded variety over k. Then X has only finitely many surjective endomorphisms, and every
surjective endomorphism of X is an automorphism of X. In particular, Aut(X) is finite.

Proof This follows from Lemma 6.1. �	
Proposition 6.3 Let n ≥ 1 be an integer. Let X be a projective n-bounded scheme over k. If
Y is a (reduced) projective variety of dimension at most n over k, then the set of dominant
rational maps Y ��� X is finite.

Proof Replacing Y by a desingularization if necessary, we may and do assume that Y is a
smooth projective variety over k. Since X is n-bounded, it is pure (Proposition 4.4). Therefore,
every dominant rationalmapY ��� X extends uniquely to awell-defined surjectivemorphism
Y → X (Lemma 3.2). The result now follows from Lemma 6.1.

Corollary 6.4 Let n ≥ 1 be an integer. Let X be a projective n-bounded scheme over k. Let
Y be a projective scheme of dimension at most n over k. Let A ⊂ X be a non-empty reduced
closed subscheme of X, and let B ⊂ Y be a non-empty reduced closed subscheme of Y . Then
the set

{ f ∈ Homk(Y , X) | f (B) = A}
is finite.

Proof Note that the inclusion A → X is finite. Therefore, since X is n-bounded over k, it
follows that A is n-bounded over k (Proposition 5.2). Thus, as dim B ≤ dim Y ≤ n and B is
reduced, the set Sur(B, A) of surjective morphisms B → A is finite (Lemma 6.1). Fix b in
B(k). Then, the finiteness of Sur(B, A) implies that the set

I := Ib := {a ∈ A | there is a surjective morphism f : B → A with f (b) = a}
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is finite. Now, if Homk((Y , B), (X , A)) denotes the set of morphisms f : Y → X with
f (B) = A, then it is clear that

Homk((Y , B), (X , A)) ⊂ ∪a∈I Homk((Y , b), (X , a)).

Thus, as the set I is finite, it suffices to show that, for every a ∈ X(k), the set

Homk((Y , b), (X , a))

is finite. Since an n-bounded variety is (n, 1)-bounded (Remark 4.3), the latter finiteness
follows from Lemma 4.6. �	

7 Geometricity theorems

Note that a variety over k of general type remains of general type after any algebraically closed
field extension. In other words, the property that a variety is of general type is “geometric”
(in the sense that it persists over any algebraically closed field extension). Similarly, by
Lemma 2.2, the property that a variety is groupless is also “geometric”, and the property that
a variety is pure is also “geometric” (Remark 3.3). Therefore, as the Green–Griffiths–Lang’s
conjecture says that a projective variety is groupless if andonly if it is algebraically hyperbolic,
we see that the Green–Griffiths–Lang conjecture predicts that algebraic hyperbolicity is a
“geometric” property (i.e., persists over any algebraically closed field extension). We now
prove this.

Theorem 7.1 (Algebraic hyperbolicity is a geometric property) Let X be a projective scheme
over k and let k ⊂ L be an extension of algebraically closed fields of characteristic zero.
Then X is algebraically hyperbolic over k if and only if XL is algebraically hyperbolic over
L.

Proof Since X is algebraically hyperbolic over k, it is groupless over k (Corollary 4.5). In
particular, XL is groupless over L (by Lemma 2.3). In particular, the variety XL admits no
maps from a smooth projective curve of genus at most one.

Let α be a real number such that, for any g ≥ 2, any C ∈ Mg(k), and any non-constant
morphism f : C → X , we have that the slope s( f ), as defined in Definition 5.1, satisfies
s( f ) ≤ α. Such a real number α exists, as X is algebraically hyperbolic over k.

Let C be a smooth projective curve of genus g (at least two) over L and let g : C → XL

be a non-constant morphism. Choose a smooth affine varietyU over Spec k, choose a smooth
proper geometrically connected genus g curve C → U over U with CL ∼= C , and choose a
morphism C → X×U ofU -schemeswhich equalsC → XL after pull-back along Spec L →
U . Let u ∈ U (k) and consider the induced morphism f : Cu → X × {u} ∼= X . Note that
the slope of the morphism f : Cu → X equals the slope of the morphism g : C → XL , i.e.,
s(g) = s( f ). Therefore, since Cu is in Mg(k) and Cu → X is non-constant, we have that

s(g) = s( f ) ≤ α.

This implies that XL is algebraically hyperbolic over L , and concludes the proof. �	
Motivated by Green–Griffiths–Lang conjecture, and the similarities between the notions

of boundedness and algebraic hyperbolicity established in Sects. 4 and 5, we now establish
the geometricity of boundedness.

To do so, for g ≥ 2 an integer, letMg be the stack of smooth proper curves of genus g over
Z, and let Ug → Mg be the universal smooth proper geometrically connected curve of genus
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g over Mg . Recall that Mg is a smooth finite type separated Deligne–Mumford algebraic
stack over Z. More generally, for g ≥ 2 and m ≥ 1 an integer, let Mg,m be the stack of
m-pointed smooth proper geometrically connected curves of genus g, and let Ug,m → Mg,m

be the universal family.

Theorem 7.2 (1-Boundedness is a geometric property) Let X be a projective scheme over k.
Then X is 1-bounded over k if and only if XL is 1-bounded over L.

Proof Clearly, if XL is 1-bounded over L , then X is 1-bounded over k. To prove the converse,
assume that XL is not 1-bounded over L . Then, there is an integer g ≥ 2, a smooth projective
curve C over L of genus g, and an increasing sequence of integers d1 < d2 < . . . such that
Homdi

L (C, XL ) has an L-point.
Since X is 1-bounded over k, it follows that X is pure and groupless (Proposition 4.4).

Define M := Mg ⊗Z k and U := Ug ⊗Z k. Note that U → M is a smooth proper repre-
sentable morphism of smooth finite type separated Deligne–Mumford algebraic stacks over
k. Moreover, the relative dualizing sheaf ωU/M is an M-relative ample line bundle on U (as
g ≥ 2).

Note that, as X is projective and pure over k, the natural morphism HomM (U , X ×M) →
M satisfies the valuative criterion of properness over k (Lemma 3.10). In particular, for any
integer d , the finite type separated morphism φd : Homd

M (U , X × M) → M is proper. Let
Zd ⊂ M be the stack-theoretic image of φd , and note that Zd is a closed substack of M .

Now, since Homdi
L (C, XL) has an L-point for all i ∈ {1, 2, . . .}, the algebraic stack

Zdi (over k) has an L-object (corresponding to the curve C) for all i ∈ {1, 2, . . .}. Define
Z := ∩∞

i=1Zdi , and note that Z is a closed substack ofMg with an L-point. Since Z is a finite
type separated algebraic stack over k with an L-point, we conclude that Z(k) is non-empty.
This means that Zdi (k) �= ∅ for all i = 1, 2, . . .. Thus, there is a smooth projective curve C ′
of genus g and a sequence of morphisms gi : C ′ → X of increasing degree. This shows that
X is not 1-bounded over k, and concludes the proof. �	

The argument to prove Theorem 7.2 can be used to show that (1,m)-Boundedness is a
geometric property, as we show now.

Theorem 7.3 ((1,m)-Boundedness is a geometric property) Let X be a projective scheme
over k, and let m ≥ 1. Then X is (1,m)-bounded over k if and only if XL is (1,m)-bounded
over L.

Proof We follow the proof of Theorem 7.2 with only minor modifications. Assume that XL is
not (1,m)-bounded over L . Then, there is an integer g ≥ 2, a smooth proper connected curve
C over L of genus g, pairwise distinct points c1, . . . , cm ∈ C(L), and points x1, . . . , xm ∈
X(L) such that the scheme

HomL((C, c1, . . . , cm), (XL , x1, . . . , xm))

is not of finite type over L . We fix C , c1, . . . , cm , and x1, . . . , xm with this property.
Define M := Mg,m ⊗Z k and U := Ug,m ⊗Z k. Note that U → M is a smooth proper

morphism of smooth finite type separated Deligne–Mumford algebraic stacks over k which
is representable by schemes. Moreover, there is an M-relative ample line bundle on U .

For any integer d , let

φd : Homd
M (U , X × M) → M × Xm

be the morphism defined by

((D, d1, . . . , dm), f : D → X) 
→ ((D, d1, . . . , dm), ( f (d1), . . . , f (dm)).
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Since X is (1,m)-bounded over k, it follows that X is pure (Proposition 4.4). Therefore, as
X is projective and pure over k, the natural morphism

Homd
M (U , X × M) → M

is proper (Lemma 3.10). As Xm is separated over k and the composed morphism
Homd

M (U , X × M) → M × Xm → M is proper, the morphism

φd : Homd
M (U , X × M) → M × Xm

is proper [34].
Let Zd be the image of φd in M × Xm , and note that Zd is a closed substack of M × Xm .

Since HomL((C, c1, . . . , cm), (XL , x1, . . . , xm)) is not of finite type over L (by assumption),
there is a sequence of integers d1 < d2 < . . . such that

HomL((C, c1, . . . , cm), (XL , x1, . . . , xm)) = HomL((C, c1, . . . , cm), (XL , x1, . . . , xm))(L)

is non-empty. In particular, Zdi (L) is non-empty. Define Z := ∩∞
i=1Zdi . Then Z is a

closed substack of M × Xm (over k) with an L-point. Thus, it follows that Z(k) �= ∅.
This means precisely that there is a smooth projective connected curve C ′ of genus g over
k , pairwise distinct points c′

1, . . . , c
′
m ∈ C(k), and points x ′

1, . . . , x
′
m ∈ X(k) such that

Homk((C
′, c′

1, . . . , c
′
m), (X , x ′

1, . . . , x
′
m)) is not of finite type over k. This shows that X is

not (1,m)-bounded over k, and concludes the proof of the theorem. �	

8 Relating (1,m)-boundedness and (n,m)-boundedness

We use the geometricity theorems in the previous section, and a specialization argument, to
prove that (1, 1)-bounded varieties are (n, 1)-bounded for every n ≥ 1. To prove our result
we use the following application of Bertini’s theorem.

Lemma 8.1 Let X be a variety over an uncountable algebraically closed field k. Let I be a
countable set and let (Zi )i∈I be a collection of proper closed subsets of X. Let S ⊂ ∩i∈I Zi

be a finite (possibly empty) closed subset. Then there is a smooth irreducible curve C ⊂ X
such that, for all i in I , the set C ∩ Zi is finite and contains S.

Proof Since k is uncountable and Zi �= X for all i in I , we have that X(k) �= ∪i∈I Zi (k).
Therefore, there is a k-point Q in X not contained in any of the Zi . By Bertini’s theorem, a
general complete intersection curve C containing the set S and the point Q is smooth and
irreducible. For every i in I , the intersection Zi ∩ C does not contain the specified point Q.
Therefore, the intersection is a proper closed subset of the irreducible curve C . We conclude
that, for all i in I , the intersection of C and Zi is a finite subset of C containing S. �	

Proposition 8.2 Let m ≥ 1 be an integer. Let X be a (1,m)-bounded projective variety. Then,
for every integer n ≥ 1, the projective variety X is (n,m)-bounded.

Proof By the geometricity of (1,m)-boundedness (Theorem7.3), for any algebraically closed
field extension k ⊂ L , the projective scheme XL is (1,m)-bounded over L (Theorem 7.2).
Therefore, to prove that X is (n,m)-bounded, we may and do assume that k is uncountable.

Now, assume that X is not (n,m)-bounded over k. Let Y be a projective variety
of dimension at most n over k, let y1, . . . , ym ∈ Y (k) be pairwise distinct points, let
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x1, . . . , xm ∈ X(k), and let f1, f2, f3, . . . be pairwise distinct morphisms Y → X such
that

fi ∈ Homk((Y , y1, . . . , ym), (X , x1, . . . , xm)).

(We will show that this leads to a contradiction.)
For any pair of positive integers, define Y n,m := {y ∈ Y | fn(y) = fm(y)}. Note that Yn,m

is a proper closed subset of Y which contains the points y1, . . . , ym . (The fact that Yn,m �= Y
is equivalent to the fact that fn �= fm .)

Let I = Z≥1 × Z≥1\� be the set of pairs of distinct positive integers. For i in I
(corresponding to (n,m)), define Zi := Yn,m . As the collection of proper closed subsets
(Zi )i∈I is countable and contains {y1, . . . , ym}, it follows from Lemma 8.1 that there is a
smooth projective connected curve C in Y such that the intersection of C with any Zi is
finite and contains {y1, . . . , ym}. This means that the morphisms fi restricted to C are all
still pairwise distinct. Thus, their restrictions fi |C give rise to pairwise distinct elements of
Homk((C, y1, . . . , ym), (X , x1, . . . , xm)). This implies that

Homk((C, y1, . . . , ym), (X , x1, . . . , xm))

is infinite. By Lemma 4.6, we see that Homk((C, c1, . . . , cm), (X , x1, . . . , xm)) is not of
finite type. In particular, X is not (1,m)-bounded over k. This contradicts our hypothesis. �	
Corollary 8.3 Let X be a projective variety over k. Assume that there is an integer m ≥ 1 such
that X is (1,m)-bounded. Then, for every n ≥ 1, the projective variety X is (n, 1)-bounded
over k.

Proof Since X is (1,m)-bounded, it is (1, 1)-bounded (Proposition 4.8). Therefore, it is
(n, 1)-bounded (Proposition 8.2). �	
Theorem 8.4 Let X be a projective variety over k. Then the following are equivalent.

(1) There exist n ≥ 1 and m ≥ 1 such that X is (n,m)-bounded.
(2) For every n ≥ 1 and m ≥ 1, we have that X is (n,m)-bounded over k.

Proof This follows from Corollary 8.3. �	

9 Relating 1-boundedness, boundedness, and algebraic hyperbolicity

The property of being bounded has to be (by definition) “tested” on maps from all projective
varieties. In this section, we prove that a 1-bounded variety is in fact bounded, i.e., one can
“test” boundedness of a variety on maps from curves. This result is an algebraic analogue
of the complex-analytic fact that one can “test” the Borel hyperbolicity of a variety on
holomorphic maps from a curve [23, Theorem. 1.5]. To prove the main result of this section,
we start with a simple intersection-theoretic lemma.

Lemma 9.1 Let D be a very ample divisor on a reduced projective scheme Y over k of
dimension at least two. Let κ be a positive real number. Then, the set of numerical equivalence
classes of big base-point free divisors L with intersection number L · Ddim Y−1 ≤ κ is finite.

Proof (See Remark 9.2 below for an alternative proof) Let f : ˜Y → Y be a projective
birational surjective morphism with ˜Y a smooth projective variety over k. By the projection
formula, we have that ( f ∗L) · ( f ∗D)dim

˜Y−1 = L · Ddim Y−1 ≤ κ . Therefore, since f ∗ :
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NS(Y ) → NS(˜Y ) is injective, replacing Y by ˜Y if necessary, we may and do assume that Y
is a smooth projective variety over k. Moreover, we may and do assume that Y is connected.

Suppose that dim Y = 2. Define e := L · L , g := L · D, and h := D · D. Then
(hL − gD) · D = 0. Also, by the Hodge index theorem, the inequality (hL − gD)2 ≤ 0
holds. Therefore, since h is fixed and g ≤ κ , we conclude that

L · L = e = g2

h
≤ κ2

h

is bounded from above. Now, since L is big and base-point free, the general member C of
the linear system defined by L is a smooth projective connected curve. Let genus(L) be the
genus ofC . Since 2genus(L)−2 = L ·(KY +L), we see that 2genus(L)−2 is also bounded.
Thus, the lemma holds when dim Y ≤ 2.

Therefore, to prove the lemma, we may and do assume that dim Y ≥ 3. In this case,
by the Lefschetz hyperplane theorem, the induced map from the Picard group of Y to the
Picard group of a smooth hyperplane section is injective. Therefore, the lemma follows from
induction on dim Y . �	
Remark 9.2 The refere has pointed out to us that one can show that, with the notation of
Lemma 9.1, the set of numerical equivalence classes of big divisors L with intersection
number L ·Ddim Y−1 ≤ κ is finite. Indeed, as char(k) = 0, the linear form L 
→ L ·Ddim Y−1

defines a half-space in the Néron-Severi group of Y whose intersection with the big cone is a
bounded convex subset, hence finite.Wehave chosen to leaveLemma9.1 as stated, because its
proof is also valid in positive characteristic (replacing the resolution of singularities ˜Y → Y
by an alteration).

Theorem 9.3 (1-Bounded implies bounded) Let X be a 1-bounded projective scheme over
k. Then X is bounded over k.

Proof We show by induction on n ≥ 1 that X is n-bounded over k. By assumption, the
projective scheme X is 1-bounded. Thus, let n ≥ 2 and assume that X is (n − 1)-bounded.
Note that, for Y a projective normal variety over k, the Hilbert polynomial of a morphism
f : Y → X is uniquely determined by the numerical equivalence class of f ∗O(1). Indeed, by
Hirzebruch–Riemann–Roch, χ( f ∗(O(d)) = deg ch( f ∗(O(d)) · τY , where τY is the refined
Todd class (as in Fulton [12]), and the Chern character depends only on the first Chern class,
which is determined by the numerical equivalence class of f ∗O(1).

Assume that X is not n-bounded. Then, there is a projective normal n-dimensional variety
Y over k and morphisms f1, f2, f3, . . . from Y to X with pairwise distinct Hilbert poly-
nomials. Note that the numerical equivalence classes of f ∗

1 O(1), f ∗
2 O(1), . . . are pairwise

distinct. Now, to arrive at a contradiction, fix a very ample divisor class D on Y . FromLemma
9.1 it follows that

f ∗
i (O(1)) · Ddim Y−1 → ∞, i → ∞.

In particular, we have that f ∗
i (O(1))|D · D|dim Y−2

D → ∞. Since D is a smooth projective
variety with dim D = n − 1 < n, this contradicts the fact that X is (n − 1)-bounded. We
conclude that X is n-bounded, as required. �	
As an application of our results, we obtain that (n,m)-boundedness (and thus boundedness)
is a geometric property.

Corollary 9.4 (Boundedness is a geometric property) Let n ≥ 1 and m ≥ 0 be integers.
Let k ⊂ L be an extension of algebraically closed fields of characteristic zero. A projective
variety X over k is (n,m)-bounded over k if and only if XL is (n,m)-bounded over L.
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Proof If X is (n,m)-bounded, then X is (1,m)-bounded. In particular, if m = 0, then XL

is (1,m)-bounded by Theorem 7.2. Moreover, if m ≥ 1, then XL is (1,m)-bounded by
Theorem 7.3. Now, as XL is (1,m)-bounded, for m = 0, it follows from Theorem 8.4 that
XL is (n,m)-bounded. If m ≥ 1, then Theorem 9.3 implies that XL is (n,m)-bounded. This
concludes the proof. �	

The relation between algebraic hyperbolicity and bounded varieties is provided by the
following theorem.

Theorem 9.5 A projective algebraically hyperbolic scheme over k is bounded over k.

Proof (This follows from [31, Theorem 1.7]. We give a self-contained proof using the results
of this paper.) Let X be a projective algebraically hyperbolic variety over k. Then, for every
projective normal (hence smooth) curve C over k, the degree of any morphism C → X is
bounded linearly in the genus of C . In particular, the scheme Homk(C, X) is of finite type
over k. This implies (clearly) that X is 1-bounded over k. Therefore, X is bounded over k
(Theorem 9.3).

It seems reasonable to suspect that (n,m)-bounded varieties are in fact bounded. Indeed,
as we explain in Sect. 11, the Green–Griffiths–Lang conjecture implies that a (1,m)-bounded
projective variety is 1-bounded, and hence bounded (Theorem 9.3). In the direction of this
“reasonable” expectation, we prove the following result.

Proposition 9.6 Let m ≥ 1 be an integer, and let X be a (1,m)-bounded projective scheme
over k. Let Y be a projective variety over k. Then, almost all (non-empty) connected compo-
nents of the scheme Homk(Y , X) have dimension < dim X.

Proof Note that X is (n, 1)-bounded for all n ≥ 1 (Corollary 8.3). Let y ∈ Y (k). Consider the
evaluationmap evaly : Homk(Y , X) → X defined by f 
→ f (y). Suppose that Homk(Y , X)

has infinitely many pairwise distinct connected components H1, . . . of dimension at least
dim X . Then, as the restriction evaly : Hi → X of evaly to Hi is finite, it is surjective. Let
x be any point in X . Then, for every i , the fibre of Hi → X over x is non-empty. Thus, for
every i , the set Hom((Y , y), (X , x)) contains a point from Hi , and is therefore infinite. This
contradicts the fact that X is (dim Y , 1)-bounded. We conclude that almost all components
of Homk(Y , X) have dimension < dim X . �	
Remark 9.7 Let n ≥ 1 and m ≥ 1 be positive integers. Let X be a projective scheme over k.
We have shown the following statements (see also [22, Chapter 12]).

• If X is algebraically hyperbolic over k, then X is bounded over k.
• The scheme X is bounded over k if and only if X is 1-bounded over k.
• The scheme X is (n,m)-bounded over k if and only if X is (1, 1)-bounded over k.
• If X is 1-bounded over k, then X is (n,m)-bounded over k.
• If X is (n,m)-bounded over k, then X is groupless over k.

In a diagram, taking into account Demailly’s theorem and Brody’s Lemma when k = C, our
results can be summarized as follows (with n ≥ 1 and m ≥ 1 below):
Kobayashi hyper-
bolic

⇐⇒ Brody
hyperbolic�⇒

algebraically hyper-
bolic

�⇒ bounded ⇐⇒ 1-bounded �⇒ (1, 1)-bounded

⇐⇒

groupless ⇐� (n,m)-bounded
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The conjectures of Demailly, Green–Griffiths, and Lang predict that all of these implications
are actually equivalences.

10 Proofs of main results

In this section we prove the results on algebraic hyperbolicity and 1-bounded varieties.

10.1 Algebraically hyperbolic varieties

We prove all the results on algebraic hyperbolicity stated in Sect. 1.1. The proofs are appli-
cations and combinations of all our results.

Proof of Theorem 1.5 This is Theorem 7.1. �	
Proof of Theorem 1.6 Since algebraically hyperbolic projective varieties are bounded (Theo-
rem 9.5), there are only finitely many dominant rational maps Y ��� X by Proposition 6.3.
The rest of the theorem follows from Corollary 6.2. �	
Proof of Theorem 1.8 Since algebraically hyperbolic projective varieties are bounded (Theo-
rem 9.5), the theorem follows from Corollary 6.4. �	
Proof of Theorem 1.9 Let X be a projective algebraically hyperbolic scheme over k and
let Y be a projective normal scheme over k. Since X is bounded (Theorem 9.5),
the scheme Homk(Y , X) is an algebraically hyperbolic projective scheme over k with
dimHomk(Y , X) ≤ dim X (Corollary 5.3).

To see that dim Homnc
k (Y , X) < dim X , let Z ⊂ Homnc

k (Y , X) be a reduced irreducible
component with dim Z = dim X . For all y in Y (k), consider the evaluation map evaly : Z →
X , and note that it is finite (as shown in the proof of Corollary 5.3). Since dim Z = dim X , for
all y in Y (k), the finite morphism evaly is surjective. Thus, as Surk(Z , X) is finite (Theorem
1.6), there exist an integer n ≥ 1 and points y1, . . . , yn ∈ Y (k) such that, for all y in Y (k),
we have that evaly ∈ {evaly1 , . . . , evalyn }. In other words, every morphism f : Y → X in
Z takes on only finitely many values (namely f (y1), . . . , f (yn)). In particular, since Z is
irreducible, we conclude that every f in Z takes on precisely one value, i.e., f is constant.
This contradicts the fact that Z ⊂ Homnc(Y , X). �	

10.2 Bounded varieties

We prove all the results on 1-bounded varieties stated in Sect. 1.2.

Proof of Theorem 1.11 This is Theorem 7.2. �	
Proof of Theorem 1.12 Since 1-bounded projective projective varieties are bounded (Theorem
9.3), the theorem follows from Corollary 6.4. �	
Proof of Theorem 1.13 (We follow very closely the proof of Theorem 1.9) Let X be a pro-
jective 1-bounded scheme over k and let Y be a projective normal scheme over k. Since X
is bounded (Theorem 9.3), the scheme Homk(Y , X) is a bounded projective scheme over k
with dimHomk(Y , X) ≤ dim X (Corollary 5.3).

To see that dim Homnc
k (Y , X) < dim X , let Z ⊂ Homnc

k (Y , X) be a reduced irreducible
component with dim Z = dim X . We now redo the argument in the proof of Theorem 1.13.
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For all y in Y (k), consider the evaluation map evaly : Z → X , and note that it is finite (as
shown in the proof of Corollary 5.3). Since dim Z = dim X , for all y in Y (k), the finite
morphism evaly is surjective. Thus, as Surk(Z , X) is finite (Theorem 1.12), there exist an
integer n ≥ 1 and points y1, . . . , yn ∈ Y (k) such that, for all y in Y (k), we have that
evaly ∈ {evaly1 , . . . , evalyn }. In other words, every morphism f : Y → X in Z takes on only
finitely many values (namely f (y1), . . . , f (yn)). In particular, since Z is irreducible, we
conclude that every f in Z takes on precisely one value, i.e., f is constant. This contradicts
the fact that Z ⊂ Homnc(Y , X). �	
Proof of Theorem 1.14 Let g ≥ 2 be an integer and let U → M be the universal smooth
proper curve of genus g over the moduli stackM := Mg,k of smooth proper genus g curves
over k. Let U → M be the universal stable curve over the moduli stack M of stable curves
of genus g. Let Z be a normal projective bounded scheme over k and let Z → M be a flat
surjective morphism. Let Y := U ×M Z and consider the morphism Y → Z .

Now, since X is 1-bounded over k, it follows from Theorem 9.3 that X is bounded over k.
Therefore, the scheme Homk(Y , X × Z) is of finite type over k. In particular, the morphism
HomZ (Y , X×Z) → Z is of finite type.By descent, themorphismHomM(U, X×M) → M
is of finite type. By base-change, the morphism

HomM(U, X × M) → M
is of finite type. As the latter morphism is of finite type (for every g ≥ 2) we see that, for
every ample line bundle L on X and every integer g ≥ 2, there is an integer α(X ,L, g) such
that, for every smooth projective connected curve C of genus g over k and every morphism
f : C → X , the inequality

degC f ∗L ≤ α(X ,L, g)

holds. This implies the desired statement and concludes the proof. �	
Note that Theorem 1.14 says that a projective variety over k is 1-bounded over k if and

only if it is weakly bounded in the sense of Kovács–Lieblich [31].

11 Conjectures related to Demailly’s and Green–Griffiths–Lang’s
conjecture

The following conjecture is a consequence of Demailly’s conjecture (Conjecture 1.4), and
thus also Green–Griffiths–Lang’s conjecture [33]. The conjecture says that the total space
of a family of projective algebraically hyperbolic varieties over a projective algebraically
hyperbolic base variety is algebraically hyperbolic.

Conjecture 11.1 (Fibration property) Let k be an algebraically closed field of characteristic
zero. Let f : X → Y be a morphism of projective varieties over k. If Y is algebraically
hyperbolic over k, and, for all y in Y (k), the projective scheme Xy is algebraically hyperbolic
over k, then X is algebraically hyperbolic over k.

The analogue of this conjecture for projective families of Kobayashi hyperbolic varieties
is known and follows from [29, Corollary 3.11.2]. We now explain how Conjecture 11.1
follows from Demailly’s conjecture (Conjecture 1.4).

Remark 11.2 (Demailly’s conjecture implies Conjecture 11.1). To see that Conjecture 11.1 is
a consequence of Demailly’s conjecture (Conjecture 1.4), we may and do assume that k ⊂ C.
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Then, with the notation as in Conjecture 11.1, by the geometricity of algebraic hyperbolicity
(Theorem 1.5), the fibers of the morphism XC → YC are algebraically hyperbolic overC and
YC is algebraically hyperbolic overC. ByDemailly’s conjecture, for every t in Y (C), the fiber
Xy is Kobayashi hyperbolic (as a complex analytic space) and the projective variety YC is
Kobayashi hyperbolic. Therefore, XC is Kobayashi hyperbolic [29, Corollary 3.11.2]. Since
Kobayashi hyperbolic projective varieties overC are algebraically hyperbolic (Theorem 1.2),
this shows that XC is algebraically hyperbolic over C. We conclude that X is algebraically
hyperbolic over k.

The following conjecture relates all notions of “boundedness” introduced in this paper
(see Sect. 4).

Conjecture 11.3 Let k be an algebraically closed field of characteristic zero and let X be a
projective variety over k. Then the following are equivalent.

(1) The projective variety X is algebraically hyperbolic over k.
(2) The projective variety X is bounded over k.
(3) For all n ≥ 1, the projective variety X is (n, 1)-bounded.

Note that (1) �⇒ (2) is Theorem 9.5 and that (2) �⇒ (3) is Remark 4.3. Other
relations between the three notions in Conjecture 11.3 are summarized in Remark 9.7. The
implication (3) �⇒ (2) is currently not known and neither is the implication (2) �⇒ (1).
To show that (3) �⇒ (2), it suffices to show that, if X is (n, 1)-bounded for all n ≥ 1, then
X is 1-bounded.

We conclude by noting that the implication (3) �⇒ (1) in Conjecture 11.3 is a conse-
quence of Green–Griffiths–Lang’s conjecture in [33]. Indeed, (1,m)-bounded varieties are
groupless by Proposition 4.4, and it follows from Green–Griffiths–Lang’s conjectures that
projective groupless varieties are algebraically hyperbolic.
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