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Abstract
In this paper,we construct a pyramidRicci flowstartingwith a completeRiemannianmanifold
(Mn, g0) that is PIC1, or more generally satisfies a lower curvature bound KIC1 ≥ −α0. That
is, instead of constructing a flow on M × [0, T ], we construct it on a subset of space-time
that is a union of parabolic cylinders Bg0(x0, k) × [0, Tk] for each k ∈ N, where Tk ↓ 0, and
prove estimates on the curvature and Riemannian distance. More generally, we construct a
pyramid Ricci flow starting with any noncollapsed IC1-limit space, and use it to establish
that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms
that are locally bi-Hölder.

1 Introduction

A central issue in differential geometry is to understand Riemannian manifolds with lower
curvature bounds. One of the important tasks in this direction is to understand the topological
implications of such geometric bounds. Another, which is the main focus of this paper, is to
understand the structure of Gromov–Hausdorff limits of sequences of manifolds satisfying
a uniform lower curvature bound.

There is some choice as to the precise notion of curvature bound to consider. Imposing
a uniform lower bound on the sectional curvatures gives limits that are Alexandrov spaces,
studied since the middle of the twentieth century, and about which we now have a great
deal of information, e.g. [5]. In practice, we often know a uniform lower bound not for each
sectional curvature, but for a suitable average of sectional curvatures, and the instance that
has received the most attention is the case of limits of manifolds with a uniform lower Ricci
bound. Such Ricci limit spaces have been studied extensively since the work of Cheeger-
Colding, starting in the 1990s, and have been widely applied, for example in the study of
Einstein manifolds, [7]. One result that is particularly relevant to the present paper is the
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topological regularity of (non-collapsed) three-dimensional Ricci limit spaces in the sense
that they are globally homeomorphic to smooth manifolds via homeomorphisms that are
locally bi-Hölder [11,15,22].

This paper is concerned principally with a way of averaging sectional curvatures that
is less familiar than Ricci curvature. Positivity of this average is generally referred to as
PIC1, with this concept first appearing in the seminal work of Micallef and Moore [16]
that was principally concerned with the weaker notion of positive isotropic curvature, itself
now abbreviated as PIC. We will give the definition and basic properties of PIC1, and its
nonnegative version WPIC1 (sometimes called NIC1) in Sect. 2.

The PIC1 condition is natural for multiple reasons. To begin with, it can be naturally
compared with other curvature conditions. For example, it is implied by 1

4 -pinching, positive
curvature operator, 2-positive curvature operator, and positive complex sectional curvature
separately [16, §5].Aswe recall in Sect. 2, the PIC1 condition implies that Ric > 0, so volume
comparison and compactness are at our disposal, and in three dimensions the conditions are
equivalent.Moreover, formany purposes PIC1 appears to be just the right condition to control
the topology of the underlying manifold and the regularity of limit spaces. Related to this
is that PIC1 interacts very well with the Ricci flow. First, it is preserved under the flow
[4,9,17,24]. Second, PIC1 is strong enough to guarantee that closed manifolds flow under
(renormalised) Ricci flow to spherical space forms, as shown by Brendle [3], generalising the
earlier work of Hamilton [8], Böhm–Wilking [2] and Brendle–Schoen [4]. In the noncompact
case, it is tempting to make the following conjecture.

Conjecture 1.1 If (M, g0) is a smooth, complete, n-dimensional Riemannian manifold, n ≥
3, satisfying the WPIC1 condition, then there exists a smooth complete WPIC1 Ricci flow
g(t) on M for t ∈ [0, T ), some T > 0, such that g(0) = g0.

The three-dimensional version of this conjecture, where the assumption is of nonnegative
Ricci curvature, has been considered for a long time. However, the conjecture should be
false if we were to assume only nonnegative Ricci curvature in higher dimensions rather than
WPIC1. Under the much stronger condition of nonnegative complex sectional curvature,
Cabezas-Rivas and Wilking managed to start the Ricci flow in [6]. In three-dimensions this
would correspond to nonnegative sectional curvature, which is much more restrictive than
nonnegative Ricci curvature despite the close links between Ricci and sectional curvatures in
this dimension. Under the additional asymptotic condition of maximal volume growth, the
flow was started in [10].

For the remainder of the paper we will mainly consider a weaker condition than PIC1 in
the sense that we ask that all the complex sectional curvatures corresponding to degenerate
2-planes (see Sect. 2) are not necessarily positive, as for PIC1, but are bounded below by
−α < 0, say. If we write KIC1 for the function acting on the space of all degenerate 2-planes
in fibres of TCM , and returning the corresponding complex sectional curvature (see Sect. 2)
then this condition is written KIC1 ≥ −α.

In contrast to Conjecture 1.1, it seems that a completemanifold can satisfyKIC1 ≥ −ε < 0
but not admit a Ricci flow even for a short time. Indeed it is easy to generalise the example
in [23] to higher dimensions, although it remains an open problem to prove this rigorously.
Alternativelywe can take a productR×Sn−1 with thewarped productmetric dr2+ f (r)gSn−1 ,
where f (r) is a suitable slowly-decreasing function with f (r) → 0 as r → ∞. Because the
manifold is collapsing at infinity, and looks like a product metric at the curvature scale, the
Ricci flow would intuitively like to pinch the Sn−1 component at a given value of r in a time
of order f (r) → 0.

123



Pyramid Ricci flow in higher dimensions 513

One can avoid these difficulties by preventing the manifold from being singular at infinity,
for example by imposing bounded curvature or a global noncollapsing condition (i.e. that the
volume of any unit ball has a uniform positive lower bound). Alternatively, one can flow only
locally. See [1,10,11,13,20,22]. In this paper, we take the approach of pyramid Ricci flows,
as introduced in [15], to flow on a pyramid shaped subspace of space-time with controlled
geometry:

Theorem 1.2 (Global pyramid Ricci flows) Let α0, v0 > 0, n ∈ N with n ≥ 3. Suppose
that (M, g0) is an n-dimensional complete Riemannian manifold with KIC1 [g0] ≥ −α0

throughout, and VolBg0(x0, 1) ≥ v0 for some x0 ∈ M. Then there exist increasing sequences
C j ≥ 1 and α j > 0 and a decreasing sequence Tj > 0, all defined for j ∈ N, and depending
only on n, α0 and v0, for which the following is true.

There exists a smooth Ricci flow g(t), defined on a subset of spacetime that contains, for
each j ∈ N, the cylinder Bg0(x0, j) × [

0, Tj
]
, satisfying that g(0) = g0 throughout M, and

further that, again for each j ∈ N,
⎧
⎨

⎩
KIC1 [g(t)] ≥ −α j on Bg0(x0, j) × [

0, Tj
]

|Rm|g(t) ≤ C j
t on Bg0(x0, j) × (

0, Tj
]
.

(1.1)

Thus, as in [15], the domain of definition of the Ricci flow starts with the whole manifold,
but shrinks to avoid the singularities that we envisage in the example above.

It was shown in [15], by proving an appropriate compactness result, that the existence of
global pyramid Ricci flows such as those in Theorem 1.2 follows from the construction of
local pyramid Ricci flows as in the theorem below. (Note as in Sect. 2 that IC1 lower bounds
imply lower Ricci bounds, so this implication follows as in [15, Theorem 1.3].)

Theorem 1.3 (Local pyramid Ricci flows) Let α0, v0 > 0, n ∈ N with n ≥ 3. Suppose
(M, g0) is an n-dimensional complete Riemannian manifold with KIC1 [g0] ≥ −α0 through-
out, and VolBg0(x0, 1) ≥ v0 for some x0 ∈ M. Then there exist increasing sequences Ck ≥ 1
and αk > 0, and a decreasing sequence Tk > 0, all defined for k ∈ N, and depending only
on n, α0 and v0, such that the following is true. For any l ∈ N there exists a smooth Ricci
flow solution gl(t), defined on a subset Dl of spacetime given by

Dl :=
l⋃

k=1

Bg0(x0, k) × [0, Tk] ,

with gl(0) = g0 on Bg0(x0, l), and satisfying, for each k ∈ {1, . . . , l},
⎧
⎨

⎩
KIC1 [gl(t)] ≥ −αk on Bg0(x0, k) × [0, Tk]

|Rm|gl (t) ≤ Ck
t on Bg0(x0, k) × (0, Tk] .

(1.2)

As we increase l, the local pyramid Ricci flows gl(t) are defined on a larger and larger domain
in space-time. If each flow extended the previous one, then we could take a union of them to
obtain the flow required for Theorem 1.2. However, the flows are emphatically not unique,
and instead we need to take a limit of a subsequence of the flows.

One novelty of pyramid Ricci flows, which is essential in order to be able to appeal to
compactness and take a limit of a subsequence of the flows as l → ∞, is that the shape of
the domain Dl intersected with Bg0(x0, r) × [0,∞) is independent of l ≥ r . We pay for this
by ending up with curvature bounds (1.2) that deteriorate as k increases. In contrast, partial
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Ricci flows, with instead uniform C/t curvature bounds, defined on subsets of space-time,
were considered by Hochard [11].

In fact, the shape of the domains Dl depends on the initial data g0 only in terms of n,
α0 and v0. Just as in [15] (cf. the proof of Theorem 5.1 there) this means that we can apply
Theorem 1.3 to pointed manifolds (Ml , gl , xl) approximating a limit space, and appeal to
compactness to obtain a Ricci flow starting at the given limit space. Whereas in [15] we
worked with Ricci limit spaces, here we work with IC1- limit spaces.

Definition 1.4 We call a complete metric space (X , d) a noncollapsed IC1-limit space cor-
responding to α0 > 0, v0 > 0 and n ∈ N with n ≥ 3, if it arises within a pointed
Gromov–Hausdorff limit

(Mi , gi , xi ) → (X , d, x∞)

of a sequence of pointed n-dimensional Riemannian manifolds such that VolBgi (xi , 1) ≥
v0 > 0 and KIC1 [gi ] ≥ −α0.

Theorem 1.5 (Pyramid Ricci flow from a IC1-limit space) Suppose that (X , d) is a IC1-limit
space corresponding to α0 > 0, v0 > 0 and n ∈ N with n ≥ 3. Then there exist increasing
sequences Ck ≥ 1 and αk > 0 and a decreasing sequence Tk > 0, all defined for k ∈ N, and
depending only on n, α0 and v0, for which the following holds.

There exist a smooth n-manifold M, a point x0 ∈ M, a complete distance metric d :
M × M → [0,∞) generating the same topology as we already have on M, and a smooth
Ricci flow g(t) defined on a subset of spacetime M×(0,∞) that containsBd(x0, k)×(0, Tk]
for each k ∈ N, with dg(t) → d locally uniformly on M as t ↓ 0, such that (M, d) is isometric
to (X , d). Moreover, for any k ∈ N,

⎧
⎨

⎩
KIC1 [g(t)] ≥ −αk on Bd(x0, k) × (0, Tk]

|Rm|g(t) ≤ Ck
t on Bd(x0, k) × (0, Tk] .

(1.3)

Finally, if g is any smooth complete Riemannianmetric on M then the identity map (M, d) →
(M, dg) is locally bi-Hölder.

Thus Ricci flow gives enough global regularisation, as in [15], to establish that IC1-limit
spaces are manifolds:

Theorem 1.6 (IC1-limit spaces are globally smooth manifolds) Let α0, v0 > 0, and n ∈ N

with n ≥ 3. Suppose that (Mi , gi , xi ), for i ∈ N, is a sequence of n-dimensional pointed
Riemannian manifolds with VolBgi (xi , 1) ≥ v0 > 0 and KIC1 [gi ] ≥ −α0. Then there exist a
smooth n-manifold M, a point x0 ∈ M, and a complete distancemetric d : M×M → [0,∞)

generating the same topology as M such that after passing to a subsequence in i we have
(Mi , dgi , xi

) → (M, d, x0) ,

in the pointed Gromov-Hausdorff sense, and if g is any smooth complete Riemannian metric
on M then the identity map (M, d) → (M, dg) is locally bi-Hölder.

The n = 3 case of this result was proved in [15], extending the work in [11,22] that obtained
a local bi-Hölder description of noncollapsed Ricci limit spaces as smooth manifolds. The
proof of the local description extends verbatim to higher dimensions once the lower Ricci
curvature bounds of [21] have been suitably generalised, and this was done by Lai based on
extensions of the curvature estimates of Bamler et al. [1,13].
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Pyramid Ricci flow in higher dimensions 515

Remark 1.7 For the remainder of the paper, we use a slightly different way of writing the
curvature condition KIC1 [g] ≥ −α that is more consistent with the literature on which
we draw. We will write Rg for the curvature operator, and CIC1 for the closed cone of
algebraic curvature operators satisfying the WPIC1 condition; see e.g. [24] for details. Then
the condition KIC1 [g] ≥ −α can be written Rg + αI ∈ CIC1 .

Similarly,we can define the conesCCO andCCSC corresponding to the curvature conditions
positive curvature operator and positive complex sectional curvature. It is not hard to check
that CCO ⊂ CIC1 and CCSC ⊂ CIC1 . Consequently, Theorems 1.2 and 1.3 can both be applied
when the assumed curvature conditionRg0 + α0I ∈ CIC1 is strengthened toRg0 + α0I ∈ C
for any cone C ∈ {CCO , CCSC } . At first glance, the resulting flows only have a IC1-lower
bound, as in (1.1) and (1.2), however we can use Lemmas 3.1 and 3.2 to improve these to
CO or CSC lower bounds respectively, after adjusting the sequences C j , α j and Tj (cf. the
proofs of Theorems 1.3 and 5.1 in [15], for example).

An examination of Hochard’s Proposition II.2.6 in [12] reveals it is true for the cone
C2CO of two-positive curvature operators. Thus Lemma 3.2 is valid for this cone, and since
C2CO ⊂ CIC1 , the above strategy would also allow us to apply Theorems 1.2 and 1.3 under the
assumed curvature conditionRg0 +α0I ∈ C2CO with correspondingly stronger conclusions.

The remainder of the paper is devoted to the proof of Theorem 1.3 from which the other
results follow as discussed above. A key ingredient in the proof is Hochard’s local version
of the estimates of Bamler et al. [1,12] that generalises the Ricci lower bounds of the double
bootstrap lemma from [21], see Proposition A.4 and Lemma 3.2 below. The proof will be
completed in Sect. 4 by iterating a new Pyramid extension Lemma 4.1.

2 A brief review of PIC1

As mentioned in Sect. 1, PIC1 and its related curvature conditions correspond to the pos-
itivity of certain averages of sectional curvatures of a given Riemannian manifold (M, g),
just as for Ricci curvature. To express which averages to take in the most natural way, we
complexify the tangent bundle, i.e. consider TCM := T M ⊗R C, which essentially consists
of elements X + iY for vectors X , Y ∈ TpM . Just as the usual sectional curvature assigns a
real number Rm(X , Y , X , Y ) to each two-dimensional linear plane σ ⊂ TpM spanned by an
orthonormal pair X , Y , the complex sectional curvature corresponding to a two-dimensional
complex linear subspace of TC

p M spanned by v,w with 〈v, v〉 = 〈w,w〉 = 1 and 〈v,w〉 = 0
is Rm(v,w, v,w) ∈ R. Here, 〈v,w〉 := (v,w) is the usual Hermitian inner product cor-
responding to the complex linear extension (·, ·) of the Riemannian metric g, and we have
implicitly extended the curvature tensor by complex linearity.

Asking that a manifold has nonnegative complex sectional curvature, i.e. that the number
computed above is nonnegative for each two-dimensional complex linear subspace σ of
fibres of TCM , is a strong condition that coincides with a condition introduced by Brendle–
Schoen [4,18] that is often called WPIC2. It is clearly more restrictive than nonnegative
sectional curvature, since we are always free to pick σ consisting only of real elements.
Rephrased, we arrive at the more general condition of nonnegative sectional curvature by
asking for nonnegativity of the complex sectional curvatures corresponding only to complex
linear two-planes σ for which σ = σ , where σ is the linear two-plane obtained by taking the
complex conjugate of each element of σ .

In practice, we would like to restrict to different subsets of all complex linear two-planes
σ by comparing σ to σ in other ways. If σ and σ are orthogonal in the sense that every
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element of σ is orthogonal to every element of σ with respect to the Hermitian inner product,
then we say that σ is totally isotropic. A single vector v ∈ TCM is said to be isotropic if
(v, v) = 0, and this is easily seen to be equivalent to being a complex multiple of some
e1 + ie2 with e1, e2 orthonormal. It can be shown that an equivalent formulation of σ being
totally isotropic is that σ is spanned by elements e1 + ie2 and e3 + ie4 for some orthonormal
collection e1, e2, e3, e4 ∈ TpM . A third formulation would be that every v ∈ σ is isotropic
[16]. Positivity of all the complex sectional curvatures corresponding to suchσ is the condition
of positive isotropic curvature (PIC) mentioned in the introduction. Nonnegativity (i.e. weak
positivity) of all such curvatures is called WPIC (or NIC). One needs to be working in
dimension at least 4 for this to make sense.

In practice, the PIC condition is too weak for many purposes. We can strengthen the
condition by considering all the planes σ whose projection onto σ may be the zero element (as
for PIC) or more generally may be of complex dimension one (i.e. it is not of dimension two).
Equivalently, we consider all degenerate σ , i.e. that contain an element v such that (v,w) = 0
for all w ∈ σ . Positivity of all curvatures corresponding to such σ is the condition known as
PIC1. Nonnegativity of all such curvatures is known as WPIC1 or NIC1. The terminology
arises because an equivalent way of stating the PIC1 condition is to say that (M, g) × R

satisfies the PIC condition.
By picking an arbitrary orthonormal collection {e1, e2, e3} and considering the plane

spanned by e1 and the isotropic vector v := e2 + ie3, we see that the PIC1 condition implies
that Rm(e1, e2, e1, e2)+Rm(e1, e3, e1, e3) > 0. In particular, it implies Ric > 0, so volume
comparison and compactness can be applied. On the other hand, in three dimensions, any
of the degenerate ‘PIC1 planes’ can be viewed as the span of e1 and e2 + ie3 for some
orthonormal collection {e1, e2, e3}, and so PIC1 is equivalent to positive Ricci curvature in
this dimension.

3 Local flows and curvature estimates

We begin by recording some minor variants of known local estimates for Ricci flow, and a
known local existence result. We first examine the consequences of a flow g(t) satisfying
Rg(t) + γI ∈ CIC1 throughout a local region in space-time. The n = 3 case of the following
result can be found in [22, Lemma 4.1], or in this form in [15, Lemma A.1]. By developing
the curvature estimates of [1], and using an extension of the work of Perelman [19, §11.4],
also from [1], the same proof extends to higher dimensions, as shown by Lai. The statement
we give differs from [13, Lemma 3.4] mainly in that C0 does not depend on γ , and will
follow easily from Lai’s statement by scaling.

Lemma 3.1 Given any n ∈ N and v0 > 0, there exists a constant C0 = C0(n, v0) ≥ 1 such
that the following is true. Let (M, g(t)) be a smooth n-dimensional Ricci flow, defined for
all times t ∈ [0, T ], such that for some p ∈ M and ε > 0 we have Bg(t)(p, ε) ⊂⊂ M for
each t ∈ [0, T ], and so that for any r ∈ (0, ε] we have that VolBg(0)(p, r) ≥ v0rn. Further
assume that for some γ > 0 and all t ∈ [0, T ] we have

Rg(t) + γI ∈ CIC1 on
⋃

s∈[0,T ]
Bg(s)(p, ε). (3.1)

Then there exists S = S(n, v0, γ, ε) > 0 such that for all 0 < t ≤ min {S, T } we have both

|Rm|g(t)(p) ≤ C0

t
and injg(t)(p) ≥

√
t

C0
. (3.2)
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Proof of Lemma 3.1 Without loss of generalitywemay assume that ε ≤ 1 (otherwise replace ε

by 1) and thatγ ≥ 1
ε2
(otherwise replaceγ by 1

ε2
). Consider the rescaledflow gγ (t) := γ g( t

γ
)

for 0 ≤ t ≤ γ T . Since γ − 1
2 ≤ ε, we have

VolBgγ (0)(p, 1) = γ
n
2 VolBg(0)

(
p, γ − 1

2

)
≥ γ

n
2 γ − n

2 v0 = v0. (3.3)

Moreover, for any 0 ≤ t ≤ γ T , again using that γ − 1
2 ≤ ε,

Bgγ (t)(p, 1) = B
g
(

t
γ

)
(
p, γ − 1

2

)
⊂ B

g
(

t
γ

)(p, ε) ⊂⊂ M, (3.4)

which in turn tells us that
⋃

s∈[0,γ T ]
Bgγ (s)(p, 1) ⊂

⋃

s∈[0,T ]
Bg(s)(p, ε). (3.5)

Together, (3.1) and (3.5) yield that the rescaled flow gγ (t) satisfies

Rgγ (t) + I ∈ CIC1 on
⋃

s∈[0,γ T ]
Bgγ (s)(p, 1) for all t ∈ [

0, γ T
]
. (3.6)

Combining (3.3), (3.4) and (3.6) we have the hypotheses to be able to apply Lemma 3.4 in
[13]. Doing so gives us constants C0 = C0(n, v0) ≥ 1 and S0 = S0(n, v0) > 0 such that
for all 0 < t ≤ min {γ T , S0} the conclusion (3.2) hold for gγ (t) instead of g(t). But these
estimates are invariant under parabolic scaling, so the lemma holds with S = S0/γ . �
Next, we record a result that generalises the double-bootstrap lemma of Simon and the second
author, see Lemma 9.1 in [21] and Lemma 4.2 in [22], to higher dimensions. This result is
a minor adaptation of Proposition II.2.6 in the thesis of Hochard [12] (see Proposition A.4
here).

Lemma 3.2 (Propagation of lower curvature bounds; Variant of Proposition II.2.6 in [12])
Let n ∈ N with n ≥ 3 and c0, α0 > 0. Suppose that (M, g(t)) is a smooth n-dimensional
Ricci flow, defined for 0 ≤ t ≤ T , and satisfying that for some point x ∈ M and ε > 0 we
have Bg(0)(x, ε) ⊂⊂ M . We further assume that

|Rm|g(t) ≤ c0
t

and injg(t) ≥
√

t

c0
(3.7)

throughout Bg(0)(x, ε) × (0, T ] and that
Rg(0) + α0I ∈ C (3.8)

throughout Bg(0)(x, ε), where C is one of the invariant curvature cones CCO , CIC1 or CCSC ,
that are described in Remark 1.7. Then there exist constants S = S(n, c0, α0, ε) > 0 and
K = K (n, c0, α0, ε) > 0 such that

Rg(t)(x) + KI ∈ C (3.9)

for all times 0 ≤ t ≤ min {S, T } .

Proof of Lemma 3.2 By making a single parabolic rescaling, it suffices to prove the lemma in
the case that ε = 4.
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518 A. D. McLeod, P. M. Topping

Regardless of which curvature cone C we are working with, we always have the inclusion
C ⊂ CIC1 . Thus there exists λ = λ(n, α0) ≥ 1 such that Ricg(0) ≥ −λ and Rg(0) ≥ −λ

throughout Bg(0(x, 4).
By the shrinking balls lemma A.2, for sufficiently small S ∈ (0, 1], depending only on

n and c0, we can be sure that for all z ∈ Bg(0)(x, 2) we have Bg(t)(z, 1) ⊂⊂ Bg(0)(z, 2) ⊂
Bg(0)(x, 4) for all 0 ≤ t ≤ min{T , S}. We will reduce S > 0 further below, with the
understanding that it can only depend on n, c0 and α0. By Lemma 8.1 of [21], applied
with x0 there equal to z here, we can deduce (for possibly smaller S) that Rg(t) ≥ −2λ on
Bg(0)(x, 2) for all 0 ≤ t ≤ min{T , S}.

This allows us to apply Proposition A.4 to an appropriately parabolically scaled up version
of g(t), to deduce that Rg(t)(x) + KI ∈ C for some K > 0 depending only on n, c0 and λ,
i.e. on n, c0 and α0, for all 0 ≤ t ≤ min{T , S} (for possibly smaller S). �
We conclude this section by recording that it is possible to find a local solution to the Ricci
flow, assuming a lower KIC1 bound. This is the content of Theorem 1.1 in [13] and the
independently obtained Théorème C in [12]; we state a minor variant that is more convenient
for our purposes. In particular, working from [13], we reduce the initial noncollapsedness
hypothesis to a lower volume bound for a single unit ball, rescale the result to apply to any
ball of radius strictly larger than one, and add explicitly a lower injectivity radius bound to
the conclusion that was implicit in the proof of Theorem 1.1 in [13].

Theorem 3.3 (Local Existence; Variant of Theorem 1.1 in [13] and Théorème C in [12])
Given n ∈ N, R ≥ 1 and ε, α0, v0 > 0 there exist positive constants C, τ > 0, both
depending only on n, α0, v0, ε and R, for which the following is true. Let (M, g0, x0) be a
smooth pointed Riemannian n-manifold, and suppose that Bg0(x0, R + ε) ⊂⊂ M and

Rg0 + α0I ∈ CIC1 throughout Bg0(x0, R + ε) (3.10)

and

VolBg0(x0, 1) ≥ v0. (3.11)

Then there exists a smooth Ricci flow g(t) defined for 0 ≤ t ≤ τ on Bg0(x0, R), with
g(0) = g0 where defined, such that for all 0 < t ≤ τ we have

|Rm|g(t) ≤ C

t
and injg(t) ≥

√
t

C
and Rg(t) + CI ∈ CIC1 (3.12)

throughout Bg0(x0, R).

Proof of Theorem 3.3 By parabolically scaling up the flowby a factor depending only on ε and
α0, we may assume that α0 ≤ 1 and ε ≥ 6. Note that as long as we scale up, Bishop–Gromov
will ensure that the volume condition (3.11) will be satisfied for some new v0 depending on
the old v0, α0 and n. (Recall that the curvature condition (3.10) implies a lower Ricci bound.)

In fact, repeatedly applying Bishop–Gromov tells us that, for the scaled up flow, for all
x ∈ Bg0(x0, R + 4), we have a positive lower bound for VolBg0(x, 1) that depends only on
v0, α0, n and R. More generally we obtain such a lower bound for r−nVolBg0(x, r) for any
r ∈ (0, 1], with the bound independent of r .

This puts us in a position to apply [13, Theorem 1.1] with s0 = R+5 to obtain a Ricci flow
on Bg0(x0, R + 3) and deduce all the conclusions aside from the injectivity radius bound
on (3.12). However, this follows easily from Lemma 3.1 as follows. The shrinking balls
Lemma A.2 allows us to deduce that if x ∈ Bg0(x0, R) then Bg(t)(x, 1) ⊂⊂ Bg0(x, 2) ⊂
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Bg0(x0, R+2), for all times 0 ≤ t ≤ τ , if we reduce τ > 0 appropriately. ThusRg(t) +CI ∈
CIC1 throughout

⋃
s∈[0,τ ] Bg(s) (x, 1) for all t ∈ [0, τ ], and we are directly in a position to

apply Lemma 3.1 with ε there equal to 1. �

4 The pyramid extension lemma

The following result is an analogue of the Pyramid Extension Lemma [15, Lemma 2.1] in
higher dimensions. It can be considered an extension of the local existence Theorem 3.3 of
Y. Lai.

Lemma 4.1 (Pyramid Extension Lemma) Let α0, v0 > 0 and n ∈ N with n ≥ 3. Suppose
(M, g0, x0) is a pointed complete Riemannian n-manifold such that VolBg0(x0, 1) ≥ v0 and
Rg0 +α0I ∈ CIC1 throughout M . Then there exist increasing sequences Ck ≥ 1 and αk > 0,
and a decreasing sequence Tk > 0, all defined for k ∈ N and depending only on n, α0 and
v0, with the following properties.

(1) For each k ∈ N there exists a Ricci flow g(t) on Bg0(x0, k) for t ∈ [0, Tk] such that
g(0) = g0 where defined and so that |Rm|g(t) ≤ Ck/t and injg(t) ≥ √

t/Ck for all
t ∈ (0, Tk] and Rg(t) + αkI ∈ CIC1 for all t ∈ [0, Tk].

(2) Given any Ricci flow g̃(t) on Bg0(x0, k + 1) over a time interval t ∈ [0, S], S > 0,
with g̃(0) = g0 where defined, satisfying for all t ∈ (0, S] that |Rm|g̃(t) ≤ Ck+1/t and
injg̃(t) ≥ √

t/Ck+1, we may choose the Ricci flow g(t) above to agree with the restriction
of g̃(t) to Bg0(x0, k) for times t ∈ [0,min{S, Tk}].

Proof of Lemma 4.1 We will refine the strategy of Lemma 2.1 in [15], with the roles of the
double bootstrap lemma 9.1 in [21] and the local lemma A.1 in [15] being played by the
propagation Lemma 3.2 and Lemma 3.1 here, respectively.

The first part of the lemma, giving the initial existence statement for g(t), follows imme-
diately by the local existence Theorem 3.3 with R = k and ε = 1, giving Ck ≥ 1, αk > 0
and Tk > 0 depending only on n, α0, v0 and k. We will need to increase Ck and αk , and
decrease Tk , in order to establish the remaining claims of the lemma.

Recall that Rg0 + α0I ∈ CIC1 throughout M implies that Ricg0 ≥ −D throughout M
for some D = D(n, α0) > 0. Thus, by Bishop–Gromov, for all k ∈ N, there exists vk > 0
depending only on k, n, α0 and v0 such that if x ∈ Bg0(x0, k + 1) and r ∈ (0, 1] then
VolBg0(x, r) ≥ vkrn .

We increase each Ck to be at least as large as the constant C0 retrieved from Lemma 3.1
with v0 there equal to vk here. Note that we are not actually applying Lemma 3.1, but simply
retrieving a constant in preparation for its application at the end of the proof. By inductively
replacing Ck by max{Ck,Ck−1} for k = 2, 3, . . ., we can additionally assume that Ck is
increasing in k. Thus Ck still depends only on k, n, α0 and v0, and can be fixed for the
remainder of the proof.

Suppose now that we would like to extend a Ricci flow g̃(t). Appealing to the propagation
Lemma 3.2 centred at each x ∈ Bg0(x0, k + 1

2 ), and with ε = 1
2 and c0 = Ck+1, after

possibly reducing Tk > 0 and increasing αk , depending only on n, Ck+1 and α0, and hence
only on n, k, α0 and v0 as before, we may assume that for all t ∈ [0,min{S, Tk}] we have
Rg̃(t) + αkI ∈ CIC1 throughout Bg0(x0, k + 1

2 ).
A first consequence of this estimate is that Ricg̃(t) ≥ −Dk over the same region of space-

time, for some Dk > 0 depending only on n and αk , i.e. only on k, n, α0 and v0. In turn,
these Ricci lower bounds give volume bounds beyond time t = 0 via Lemma A.1. We apply
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that result with R = k + 1
3 and ε = 1

6 , using that |Rm|g̃(t) ≤ Ck+1/t , to obtain that for every
t ∈ [0,min{S, Tk}], where we have reduced Tk > 0 again without adding any additional
dependencies, we have

Bg̃(t)
(
x0, k + 1

3

) ⊂ Bg0

(
x0, k + 1

2

)
, (4.1)

and VolBg̃(t)(x0, 1) ≥ μk > 0, where μk depends only on n, v0, k, and α0.
A further reduction of Tk > 0 will ensure appropriate nesting of balls defined at different

times. By the expanding balls Lemma A.3, exploiting again our lower Ricci bounds, we
deduce that

{
Bg0

(
x0, k + 1

5

) ⊂ Bg̃(t)
(
x0, k + 1

4

)

Bg0(x0, k) ⊂ Bg̃(t)
(
x0, k + 1

20

) (4.2)

and by the shrinking balls Lemma A.2, we deduce that

Bg̃(t)
(
x, 1

6

) ⊂ Bg0

(
x, 1

5

)
for every x ∈ Bg0(x0, k), (4.3)

all for t ∈ [0,min{S, Tk}], where Tk > 0 has been reduced appropriately, without additional
dependencies.

At this point we can temporarily fix Tk and try to find our desired extension g(t) of g̃(t)
by considering g̃(τ ) for τ := min{S, Tk} > 0 and restarting the flow from there using the
local existence Theorem 3.3. (Note that τ is now fixed, but we will make further reductions
of Tk later.)

In order to do so, note that g̃(τ ) satisfies the estimatesRg̃(τ ) +αkI ∈ CIC1 on Bg0(x0, k+
1
2 ) ⊃ Bg̃(τ )(x0, k + 1

3 ), by (4.1), and VolBg̃(τ )(x0, 1) ≥ μk > 0.
The output of the local existence Theorem 3.3, applied with M = Bg0(x0, k + 1), R =

k + 1
4 , ε = 1

12 , α0 = αk , and g0 = g̃(τ ), is that after reducing Tk > 0, still depending only
on n, α0, k and v0, there exists a Ricci flow h(t) on Bg̃(τ )(x0, k + 1

4 ) for t ∈ [0, Tk], with
h(0) = g̃(τ ) where defined, and such that Rh(t) + αkI ∈ CIC1 (after possibly increasing αk

further, still depending only on n, α0, k and v0) and |Rm|h(t) ≤ ck/t , where ck also depends
only on n, α0, k and v0. By the first inclusion of (4.2), this flow is defined throughout
Bg0(x0, k + 1

5 ).
Define a concatenated Ricci flow onBg̃(τ )(x0, k+ 1

4 ) ⊃ Bg0(x0, k+ 1
5 ) for t ∈ [0, τ +Tk]

by

g(t) :=
{
g̃(t) 0 ≤ t ≤ τ

h (t − τ) τ < t ≤ τ + Tk .
(4.4)

This already satisfies the required lower curvature estimate Rg(t) + αkI ∈ CIC1 .
We claim that after possibly reducing Tk > 0, without further dependencies, we have that

for all x ∈ Bg0(x0, k), there holds the inclusion Bg(t)(x,
1
6 ) ⊂⊂ Bg̃(τ )(x0, k + 1

4 ), where the
flow is defined, for all t ∈ [0, τ + Tk].

Because our curvature estimates currently deteriorate at time τ , i.e. we do not yet have c/t
decay for all times, we prove this claim separately for the cases t ∈ [0, τ ] and t ∈ (τ, τ +Tk].

For t ∈ [0, τ ], the inclusion (4.3) and the first inclusion of (4.2) tell us that (for a reduced
Tk > 0)

Bg(t)
(
x, 1

6

) ⊂ Bg0

(
x, 1

5

) ⊂⊂ Bg0

(
x0, k + 1

5

) ⊂ Bg̃(τ )

(
x0, k + 1

4

)
,

so the claim holds up until time τ .
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Thus to prove the claim it remains to show that for all x ∈ Bg0(x0, k), there holds the
inclusion Bh(t)(x,

1
6 ) ⊂⊂ Bh(0)(x0, k + 1

4 ) for all t ∈ [0, Tk], and by the second inclusion
of (4.2), it suffices to prove this for each x ∈ Bh(0)(x0, k + 1

20 ). But by the shrinking balls
Lemma A.2, after reducing Tk > 0 we can deduce that Bh(t)(x,

1
6 ) ⊂⊂ Bh(0)(x,

1
5 ) ⊂

Bh(0)(x0, k + 1
4 ) as required, thus proving the claim.

At this point we truncate the flow g(t) to live only on the time interval [0, Tk] (i.e. we
chop off an interval of length τ from the end, not the beginning).

The main final step is to apply Lemma 3.1 to g(t) with M there equal to Bg̃(τ )(x0, k + 1
4 )

here. Using the claim we just proved, for every x ∈ Bg0(x0, k), after a possible further
reduction of Tk > 0, and withCk as fixed earlier, Lemma 3.1, applied with ε = 1

6 , tells us that|Rm|g(t)(x) ≤ Ck/t and injg(t)(x) ≥ √
t/Ck for all t ∈ (0, Tk].We finally have a sequence Tk

that does what the lemma asks of it, except for being decreasing. The monotonicity of Tk and
αk can be arranged by iteratively replacing Tk by min{Tk, Tk−1}, and αk by max{αk, αk−1},
for k = 2, 3, . . .. �

The pyramid Ricci flows of Theorem 1.3 are an immediate consequence of the Pyramid
Extension Lemma 4.1:

Proof of Theorem 1.3 By appealing to the Pyramid Extension Lemma 4.1 we may retrieve
increasing sequences Ck ≥ 1, αk > 0 and a decreasing sequence Tk > 0, all defined for
k ∈ N, and depending only on the given n, α0 and v0.

To verify that these sequences meet the requirements of the theorem we fix l ∈ N and use
Lemma 4.1 l times to construct gl(t) as follows. First we use the first part of that lemma with
k = l to obtain an initial flow living on Bg0(x0, l) for times t ∈ [0, Tl ].

Since Tl ≤ Tl−1, we may appeal to the second part of Lemma 4.1 with k = l−1 to extend
this flow to the longer time interval [0, Tl−1], albeit on the smaller ball Bg0(x0, l − 1).

We repeat this process inductively for the remaining values of k down until it is finally
repeated for k = 1. The resulting smooth Ricci flow gl(t) is now defined, for each k ∈
{1, . . . , l}, on Bg0(x0, k) over the time interval t ∈ [0, Tk], still satisfying that gl(0) = g0
where defined. Moreover, our repeated applications of Lemma 4.1 provide, in particular, the
estimates

⎧
⎨

⎩
Rgl (t) + αkI ∈ CIC1 on Bg0 (x0, k) × [0, Tk]

|Rm|gl (t) ≤ Ck
t on Bg0 (x0, k) × (0, Tk]

(4.5)

for each k ∈ {1, . . . , l}, which completes the proof. �
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A Appendix: Supporting results

Here we collect some results from [15] and [12], in slightly modified forms. The following
is a variant of Lemma A.4 from [15], which in turn originates in Lemma 2.3 in [21]. It differs
by a parabolic scaling and a reduction in the conclusions.

Lemma A.1 (Volume control) Suppose that (Mn, g(t)) is a smooth Ricci flow over the time
interval t ∈ [0, T ) and that for some R ≥ 1, ε > 0 and x0 ∈ M we haveBg(0)(x0, R+ε) ⊂⊂
M. Moreover assume that

• Ricg(t) ≥ −K on Bg(0)(x0, R + ε), for some K > 0 and all t ∈ [0, T ),
• |Rm|g(t) ≤ c0

t on Bg(0)(x0, R + ε), for some c0 > 0 and all t ∈ (0, T ),
• VolBg(0)(x0, 1) ≥ v0 > 0.

Then there exist μ = μ (v0, K , R, n, ε) > 0 and T̂ = T̂ (v0, c0, K , n, R, ε) > 0 such that
for all t ∈ [0, T )∩[0, T̂ )we haveBg(t)(x0, R) ⊂ Bg(0)(x0, R+ε), and VolBg(t)(x0, 1) ≥ μ.

The following results from [21] relate geodesic balls taken with respect to the metric at
different times of a smooth Ricci flow satisfying various local curvature bounds.

Lemma A.2 (The shrinking balls lemma; Corollary 3.3 in [21]) There exists a constant β =
β(n) ≥ 1 such that the following is true. Suppose M is a smooth n-manifold and g(t) is a
smooth Ricci flow on M defined for all times 0 ≤ t ≤ T . Suppose x0 ∈ M and r > 0 are such
that Bg(0)(x0, r) ⊂⊂ M . Further assume that for some c0 > 0 we have |Rm|g(t) ≤ c0

t , or

more generally Ricg(t) ≤ c0(n−1)
t , throughout Bg(0)(x0, r) ∩ Bg(t)(x0, r − β

√
c0t) for each

t ∈ (0, T ]. Then whenever 0 ≤ s ≤ t ≤ T , we have

Bg(t)
(
x0, r − β

√
c0t

) ⊂ Bg(s)
(
x0, r − β

√
c0s

)
. (A.1)

In particular, for all 0 ≤ t ≤ T

Bg(t)
(
x0, r − β

√
c0t

) ⊂ Bg(0)(x0, r). (A.2)

Lemma A.3 (The expanding balls lemma; see Lemma 3.1 in [21] and Lemma 2.1 in [22])
Let K , T > 0 both be given. Suppose g(t) is a smooth Ricci flow on a smooth n-manifold
M, defined for all times −T ≤ t ≤ 0. Let x0 ∈ M with R > 0 such that Bg(0)(x0, R) ⊂⊂ M
and for each t ∈ [−T , 0] suppose that we have Ricg(t) ≥ −K throughout Bg(0)(x0, R) ∩
Bg(t)

(
x0, ReKt

) ⊂ Bg(t) (x0, R) . Then for all t ∈ [−T , 0]
Bg(t)

(
x0, Re

Kt
)

⊂ Bg(0) (x0, R) . (A.3)

Finally we record the following result from [12] which establishes the propagation of lower
curvature bounds forwards in time under Ricci flows that may be incomplete. Details of all
curvature cones within the following result may be found in [24].

Proposition A.4 (Proposition II.2.6 in [12]) Let n ∈ N and c0 > 0 both be given. Then there is
a constant A = A(n, c0) > 0 for which the following is true. Assume C is one of the invariant
curvature cones CCO , CIC1 or CCSC that are described in Remark 1.7. Let (M, g(t)) be a
smooth n-dimensional Ricci flow, defined for 0 ≤ t ≤ T , satisfying Rg(t) ≥ −1 throughout

M × [0, T ], and both |Rm|g(t) ≤ c0
t and injg(t) ≥

√
t
c0

throughout M × (0, T ]. Then, if
Rg(0) + I ∈ C throughout M, we may conclude that Rg(t) + Aρ−2

0 I ∈ C throughout M ×
[0, T ], where ρ0 : M → [0, 1] is defined by ρ0(x) := sup

{
r ∈ (0, 1] : Bg(0)(x, r) ⊂⊂ M

}
.
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