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Abstract

In this article, the existence of ghost classes for the Shimura varieties associated to algebraic
groups of orthogonal similitudes of signature (2, ) is investigated. We make use of the study
of the weights in the mixed Hodge structures associated to the corresponding cohomology
spaces and results on the Eisenstein cohomology of the algebraic group of orthogonal simil-
itudes of signature (1, n — 1). For the values of n = 4, 5 we prove the non-existence of ghost
classes for most of the irreducible representations (including most of those with an irregular
highest weight). For the rest of the cases, we prove strong restrictions on the possible weights
in the space of ghost classes and, in particular, we show that they satisfy the weak middle
weight property.
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1 Introduction

Let (G, X) be a Shimura pair, and let p : G — GL(V) be an irreducible finite dimensional
representation (not necessarily defined over Q). For every open compact subgroup Ky C
G(A ) of the group of finite adelic points of G, we consider the level variety

Sk = GQ\X x (G(Ay)/Ky)

and we denote by S the projective limit, over the directed set of open compact subgroups, of
these level varieties (i.e. the space of complex points of the corresponding Shimura variety).
One can define in a natural way a local system V on the Shimura variety S associated to
(G, X), underlying a variation of complex Hodge structure of a given weight wt (V).
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Let A C G be a maximal Q-split torus and T C G a maximal torus defined over Q
such that A C T. We choose systems of positive roots in the corresponding root systems
D (G, T), ©(G, A) so that they are compatible, i.e. the restriction to A, of a positive root in
@ (G, T) is either zero or positive in (G, A). Let A : T(C) —> C* be the highest weight
of V. We will usually denote V by V;. The choice of the system of positive roots @+ (G, A)
in ®(G, A) defines a set of standard proper Q-parabolic subgroups denoted by Pg(G).

From now on we will assume that the semisimple Q-rank of G is 2. In this case Pg(G)
consists of three elements: two maximal QQ-parabolic subgroups denoted by P; and P», and
a minimal QQ-parabolic subgroup denoted by Py.

We consider the Borel— Serre compactification S of S (see [2]). The inclusion S < Sisa
homotopy equivalence and V,\ can be extended naturally to S. The corresponding local system
will again be denoted by VA In fact there is a natural isomorphism H*(S, V)\) >~ He(S, VA)
and as a consequence we obtain a long exact sequence in cohomology

> HI(S, V) —> HY(S. Vi) 5> HIDS, V) — --- )

where H? (S, Vx) denotes the cohomology with compact support and S = § — S is the
boundary of the Borel-Serre compactification.

On the other hand, we have a covering 3§ = UpEpQ (G)0p, where this union is indexed
by the elements of Pg(G). The aforementioned covering induces a spectral sequence in
cohomology abutting to H*(dS, V;L) and in the case of (Q-rank 2 this is just a long exact
sequence in cohomology

— o~ ~ ~ ~
— HY(3S, V) LaN H4(dp,, V,) ® H1(9p,, V2) — H1(dp,, V3) = - -~ 2)

We define the space of g-ghost classes by Gh? (‘7)\) = Im(r?)NKer(p?). Bothlong exact
sequences in cohomology (1) and (2) are long exact sequences of mixed Hodge structures
(see [12]).

For eachi € {0, 1, 2} there is a decomposition (see [16, Section 7.2]):

H o, Vi) = @D Indpy ) HIO (M, W, ) 3)
weWPi
obtained by using Kostant’s theorem (see [13]), where the induction is the algebraic (unnor-
malized) induction, WPi is the set of Weyl representatives associated to P;, SMi is the
symmetric space associated to the Levi quotient M; of P;, £(w) denotes the length of the
element w and W,y is the irreducible representation of M; with highest weight w (1) (see
Sect. 6.1 for the definition of w,(1)).

The mixed Hodge structure on HY(dp,, VA) splits completely with respect to the afore-
mentioned decomposition (see Remark 5.5.6 of [12]). Moreover, for i € {1, 2} there exists
a subset Wl-o C W(G, T) such that Wl-o WP = WP0 and the corresponding morphism in
cohomology r; : H®(dp,, Vi) — H*(0p,, V) restricted to Indg((i’;)) HI~tW) (§Mi Ww*(/\))
(with w € WFi) has image in

GAp)
D 1nd, ] DS, Wi, )
wew?

In the cases to be studied in this article, S0 has non trivial cohomology only in degree
zero, and when i = 0, the mixed Hodge structure of each term in (3) has a pure weight.

The idea behind this paper is the fact that the space K er(p?) (involved in the definition of
ghost classes) is the image of the connecting homomorphism H4~! (9p, V;L) — H1(38, VA)

@ Springer



Ghost classes in Q-rank two orthogonal Shimura varieties 1211

from the long exact sequence (2) and, after (3), we have a list of possible weights in the corre-
sponding space of ghost classes. By using mixed Hodge theory and Eisenstein cohomology,
a study of the morphisms r* : H*(S, V,\) — H*(@S, VA), ri : H*(0p,;, \7)\) — H*(0p,, ‘7,\)
is used to rule out most of the possible weights in the space of ghost classes.

Ghost classes were introduced by A. Borel [1] in 1984. Later on, G. Harder mentioned
these classes several times in his work. At the very end in the article [9], Harder refers to the
case of GL3 and said “... the ghost classes appear if some L-values vanish. The order of
vanishing does not play a role. But this may change in the higher rank case”. He further added
that this aspect is worth investigating. Not to mention much, this gives a nice motivation to
pursue the study of ghost classes further and specially in higher rank groups. Since then,
though some mathematicians have studied them, the general theory of these classes has been
slow in coming.

Ghost classes can be introduced for any reductive algebraic group and their definition does
not depend on the existence of a complex structure. In the case of a Shimura variety, the space
of ghost classes is equipped with mixed Hodge structure. It is then interesting to study the
nontriviality of the space of ghost classes for a Shimura variety and to give some description
of the possible weights in its mixed Hodge structure. When S is a Shimura variety, the local
system \7;L defines a complex variation of Hodge structure of a certain weight wt(V)) (see
[18] for this notion) and it is known that the weights in the mixed Hodge structure on the
space H9(S, V) are greater than or equal to the middle weight, given by g + wt(V)) (see
Theorem 2.2.7 of [11]). Therefore the weights in the mixed Hodge structure on the space
of ghost classes are greater than or equal to the middle weight. We say that the Shimura
variety satisfies the weak middle weight property if for every finite dimensional highest
weight representation V, of G and every nonnegative integer g, the only possible weights in
the mixed Hodge structure on the space of g-ghost classes, in H? a8, V,\), are the middle
weight and the middle weight plus one. In addition, the Shimura variety is said to satisfy the
middle weight property if, for every choice of highest weight A and every nonnegative integer
¢, the only possible weight in the space of ghost classes in H9 (3, V) is the middle weight.

The middle weight property is expected to be true by the experts, but there is no proof of
this fact for the moment. We were unable to trace down the attribution of this conjecture in
the literature and therefore we consider it a folklore conjecture. Recently, the second author
has provided a strong support for the (weak) middle weight property by a thorough study of
the cases of the Shimura varieties associated to GSp(4) in [4] and GU(2, 2) in [5].

In this article, we present a study of the Shimura varieties associated to the groups of
orthogonal similitudes GO(2, n) for n > 3. The study of ghost classes is discussed in detail,
in the last two sections, for the cases n = 4 and n = 5. For example, in the case of n = 5
(see Theorem 11) we obtain the following result:

Theorem Let V) be the finite dimensional irreducible representation with highest weight
A =aj€] + axex + azez + ck. One has:

(1) Ifay # O then there are no ghost classes in the cohomology space H*(3S, VA).

(2) If ao = 0 (which implies az = 0 and therefore in terms of fundamental weights one has
A = ayw| + ck), then the only possible weights in the mixed Hodge structure of the
space of ghost classes are the middle weight and the middle weight plus one.

We obtain a similar result in the case n = 4 (see Theorem 9). When the highest weight A
of the irreducible representation is regular, one can obtain the non-existence of ghost classes
by combining [15, Theorem 4.11] and [3, Theorem 19]. In this article, we take a step further
and prove the non-existence of ghost classes for most of the irregular highest weights. In the
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remaining cases we restrict the list of degrees in cohomology in which there could exist ghost
classes and prove that there is, in each degree, only one possible weight in their corresponding
mixed Hodge structure which is in all cases the middle weight or the middle weight plus one.

2 The Shimura variety involved

In this section we present the family of Shimura varieties to be studied. Throughout the
article, n > 3. We denote by G,, the multiplicative group and by S the restriction of scalars
Resc/RGy,. That is,

S(F) = G,,(F ®g C) for every R-algebra F.

and in particular S(R) = C* is the multiplicative group of C. We denote by z, 7 : S(C) — C*
the algebraic characters of S(C) such that the composition of C* = S(R) — S(C) with
them are respectively the identity and the complex conjugation. Consider the Shimura pair
(GO(2, n), X), where GO(2, n) is the group of orthogonal similitudes of signature (2, n)
defined by

GO@2,n)(A) = {g € GL,12(A) | g'lh.ng = v(&) 20, v(g) € A},

for every Q-algebra A, where I, = —21d> x Id,—» x 21d> and X is the GO(2, n)(R)-

conjugacy class of homomorphisms containing the element & : S(R) — GO(2, n)(R)

given by

Mx2—y2 2xy
—2xy x%— y2

x2+y2
h(x +iy) = . V(x +1iy) € S(R).

x2+y2

L x4 y?

Thus, the weight morphism w, : G,, — GO(2, n) of the Shimura pair is given by
w, (1) = 21 dy 42 where Id, > denotes the identity in dimension n + 2.

The choice of 1> , may seem a bit artificial, but we are using it only to get the description
of h and being able to work with the more canonical quadratic form defined below by J,,. In
fact, what follows is also valid for general orthogonal groups of signature (2, n) but we will
keep working with this particular orthogonal group in order to give an explicit description of
this case.

For the description of the parabolic subgroups it is better to consider the algebraic group
G, that is isomorphic, as an algebraic group defined over Q, to GO(2, n), given by

Gn(A) = {g € GL32(A) | g'Jug = v(g)Jn, v(g) € A*}, for every Q-algebra A,

where

Jy = Id, >
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Ghost classes in Q-rank two orthogonal Shimura varieties 1213

In fact, it can be verified that the conjugation, inside GL,, 4>, by the element

1 0 0 0 1

0 1 0 1 0
D=]| 0 0 Idy,—2 0 0],

0 -1 0 1 0

-1 0 0 0 1

gives an isomorphism between the groups GO(2, n) and G,, defined over Q. We introduced
the group GO(2, n) because it allows to give an explicit and simple description of 4. From
now on we will work with the group G, (and in this setting, the corresponding morphism
S(R) — G,(R) is given by z — Dh(z)D™1).

We denote by A the ring of finite adeles and by K, the centralizer in G, (RR) of the
morphism DhD™ ! S(R) — G, (R). Let Ky C G, (Ay) be an open compact subgroup, we
denote K = K x Ky C G,(A) and define by

Sk = G(Q\G,(R) x Gn(Af)/Koo x Ky
its corresponding level variety and by

S =lim Sk
K

the space of complex points of the Shimura variety defined by this Shimura datum.

3 Root system, Q-parabolic subgroups and irreducible representations

Consider the maximal Q-split torus

hi 0 0 0 0
0 hy 0 0 0

A={r| 0 0 Idya O O |:hhi,haeG,{CG,
0 0 0 An' o0
0 0 0 0 h!

Let a and g, denote the Lie algebra of A and G,,, respectively. The corresponding QQ-root
system ®(g,, a) is of type By and Ag = {1 — &2, &2}, where €1, &2 € a* denote the usual
elements, is a system of simple roots. This determines a set of proper standard (Q-parabolic
subgroups P(G,)q = {Po, P1, P2}, given by

0 * ... =% =

P (C) = .o .. 1 eGLn+2, C) NGO,
0 =x *
0 0 0 =
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1214 J. Bajpai, M.V. Moya Giusti

* ok ok * ok ok
* % ok *
0 0 % ... *x x x

P>(C) = ot .t 1 1 eGLin+2,0) ¢ NGy (C)
0 0 % ... * % =x
0O 0 0 ... 0 % =x
L0 0 0 ... 0 i

and Py = Py NPy. Let Ap,, Ap,, Ap, C A be the following Q-subtori:

[h1 0 0
Ap,={h| 0 Idy O |:h hi€Gyy,
Lo o0 At
[holdy, 0 0
Ap, = {h 0 1d,_» 0 th,hy € Gy ¢,
0 0 hy'ld

and Ap, = A. Finally, fori € {0, 1, 2}, the Levi quotient M; of P; is canonically isomorphic
to the centralizer Zg, (Ap,) of Ap, in G, (so we will use the same notation M; for both
groups). One can see that over C the group G, is isomorphic to the group of orthogonal
similitudes GO(n + 2) of matrices preserving the quadratic form defined by the matrix

0 0 0 01
00 0 1 0
o0 .- 00
01 0 0 O
1 0 0 0 O

(in dimension n + 2) up to a scalar multiple. An isomorphism between G,, and GO(n + 2)
can be established by conjugation by a certain matrix of the form

1 0 0 0 0
01 0 0 0
00 M 0 0
00 0 1 0
00 0 0 1
where M € GL,,_»(C) is given by
L0 0 0 0 —in 1 0 00 0 0 —i
0o .0 0 . 0 0 000 0
0 0 1 0 —i 0 0
1o 0 1 —i 0 0 1
— | and — |0 0 O 1 0 0 0|,
V210 0 i 00 V210 0 10 i 0 0
?'6886'9 0 .00 0 . 0
L P 1 0 00 O 0 i

if n is even and odd respectively. The point is the following. We will study the cohomology
spaces of the Shimura variety S with respect to the local systems defined by absolutely
irreducible representations of G,, that is by representations of G,, that are irreducible over C.
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These are therefore the same as the absolutely irreducible representations of GO(n + 2). On
the other hand the classification of the irreducible representations of GO(n + 2) is easier to
obtain. There is a canonical maximal torus T in GO(n + 2) which is given by the subgroup
of all its diagonal matrices. It is clear that, under the aforementioned isomorphism G, =
GO(n + 2) the maximal Q-split torus A is contained in T (this is important because of
the compatibility condition between A and T enunciated in the introduction). Let t be the
Lie algebra associated to T then t is given by all the diagonal elements in the Lie algebra
g = go(n + 2) corresponding to GO(n + 2). For the study of the corresponding root system
and the irreducible representations we need to treat the cases n odd and n even separately. In
what follows, tc is the Lie algebra of T(C).

3.1 Case n odd

T is a torus of dimension [ + 1, where [ = ”—erl Now, we describe the irreducible finite
dimensional representations of G,. One can see that go(n + 2)c = so(n + 2)c ® Cld,42.
On the other hand, let t{c C so0(n + 2)c be the /-dimensional subspace of diagonal matrices.
Here t(’c is a Cartan subalgebra of so(n + 2)c. We consider the canonical coordinate elements
€(....,€ € (tr)*. Then one knows that the corresponding root system is of type B; and
A= {ei —€), ... € — €, el’} is a system of simple roots. With respect to this choice of
system of simple roots, the fundamental weights for so(n + 2) are given by:

k I
1
wk=E €/, forl <k<I and wl=§E €
i=1

i=1

and the finite dimensional irreducible representations of so(n + 2) are determined by their
highest weights, given by the expressions of the formnjw +- - - +n;; withny, ..., n; € N.
One says that such a representation is regular if n; > O foralli € {1, ..., [}. Only the highest
weights with n; even will correspond to a finite dimensional irreducible representation of
SO(n + 2) (see for example, Proposition 3.1.19 and Theorem 5.5.21 of [6]). In other words,
the irreducible finite dimensional representations of SO(n + 2) can be determined by their
highest weights and these are given by the elements of the form aje| + --- + aj¢; with
a; > .-+ > a; € N. With respect to the decomposition t¢c = t{c ® Cld, 47, lete; € t(*c, for
eachi € {1,...,1}, be the extension of elf by zero on the second component and let k € t[&
be the element that is zero in the first component and such that « (z/dy,+2) = z. From the fact
that GO(n + 2) is the direct product of its center Z (= G,,) and SO(n + 2), one can deduce
that the finite dimensional irreducible representations of GO(n + 2) are in bijection with the
highest weights of the form aje| + - - - 4+ aje; + ck witha; > --- > g e Nand ¢ € Z.

Finally, with respect to the root system defined by t, the Weyl group W = W(go(n +
2)c, tc) has 2!1! elements and these elements are given by the composition of a permutation
in S; acting on {€y, ..., €} and any possible change of signs on these elements. For a given
permutation o € Sy and f : {1,...,[} — {1, —1}, we denote by w = wy, s the element in
W that takes each €; to f(0(i))€s ().

3.2 Case neven
Following a similar procedure, we can determine the irreducible finite dimensional repre-

sentations of G,, by their corresponding highest weights. In this case [ = ”—erz and T has
dimension / 4 1. Let t(’c C so(n + 2)c be, again, the /-dimensional subspace of diagonal
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1216 J. Bajpai, M.V. Moya Giusti

matrices, then t; is a Cartan subalgebra of so(n 4 2)c. The corresponding root system is
of type D; and A = {ei — €. € —€,€_+ el’} is a system of simple roots, where
€l,....€ € (tp)* is the canonical base in (t)*. Therefore the fundamental weights for
so(n + 2) are given by:

k = 1
/ / / /
wy = gl:el-, forl <k<Il—-1, w_1 = 2 (;ei 61) and o] = > ;Ei
and the finite dimensional irreducible representations of so(n + 2) are determined by their
highest weights, given by the expressions of the formny@+- - - +n;; withny, ..., n; € N.
One says that such a representation is regular if n; > 0 for alli € {1,...,[}. Among these
highest weights, only those with n;_1 + n; even will correspond to a finite dimensional
irreducible representation of SO(n + 2).

In other words, the finite dimensional irreducible representations of SO(n + 2) are deter-
mined by their highest weights, that are of the form aj€] + --- + aj¢/ where a; > --- >
aj—1 > lajl € N.

In this case GO(n + 2) is the semidirect product of its center Z and SO(n + 2), and their
intersection is {+/d,42}. We define the elements €1, ..., €,k € t<*c as in Sect. 3.1. One can
finally deduce that the finite dimensional irreducible representations of G,, are in bijection
with the highest weights of the form aj€; + - - - + a1 +ck withay > --- > a1 > |g;| € N
and ¢ € Z with ¢ = a1 + a3 + -+ + ; (mod 2), where the congruence modulo 2 is the
compatibility condition between the representation of SO(n + 2) and the character on the
center.

The Weyl group W has 2¢~D1! elements. It is given by all compositions of an element
of the group of permutations S; on {€y, ..., €} and a change of sign on an even number of
these elements. For a given permutation o € Sy and f : {1,...,1} — {1, —1}, we use the
same notation as in the last subsection to denote the corresponding element w = wy,  in the
Weyl group.

4 Weyl representatives

In this section we describe the set of Weyl representatives associated to each standard Q-
parabolic subgroup of G, as defined in [13]. A; will denote the set of roots appearing in the
Lie algebra of the unipotent radical of the parabolic subgroup P; of G, fori € {0, 1, 2}.
Because of the difference between the corresponding Weyl groups, the even and odd cases
will be treated separately.

4.1 Casenodd

We begin with the description of the Weyl representatives for the minimal Q-parabolic sub-
group Pg. The roots appearing in the unipotent radical of Py are

Ag={e1Lter,....,e1 €, epte3,...,6t¢,€, e}

and by definition the set of Weyl representatives W' are the elements w € W such
that w(®~) N dT C Ag, but the elements in &+ which are not in Ay are dT\Ay =
{em L €n,€m | 2 <m < n <I}.From this fact one can see the following:

Lemma 1 Let wg, r be an element of the Weyl group W, then we, € WP if and only if
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Ghost classes in Q-rank two orthogonal Shimura varieties 1217

(1) fm)=1 Vm > 2, and
@2) o7 m) <o) for2<m<n<lI

Infactwg, r € WP0 is determined by the values f (1), f(2), o ~!(1) and o ~!(2). Therefore
WP0 has 4(1 — 1) elements. Observe that the only element in Ag whichisnotin Aj is €] — €.
Then, clearly WP2 is the subset of WF0 of Weyl elements w such that €] — e ¢ w(P7).
From this fact one can easily see that, for ws, s € WFOif £(1) = —1 and f(2) = 1 then
Wo, f & WP2_ On the other hand, if f(1) = 1 and f(2) = —1 then for any ¢ € S, the
corresponding element we, f € WPo. Moreover we see the following

Lemma2 WF2 consists of the elements Wq, f € WP satisfying one of the following condi-
tions

o f()=1and f(2) =—1.
e f(H=fR)=1lando~'(1) <o~ (2).
e f()=fQ)=—-lando~ (1) > o1 (2).

Finally, A| = {ej £ ea, ..., e1 £ e1, e1} and using the above methods, we get the follow-
ing
Lemma 3 WP consists of the elements Wo, f € WP satisfying the following conditions
e f(2)=1and
e 07 '(2) <o 1(3).

In particular, if [ = 3, we, s € WPLIf £(2) = f(3) = 1 and o € {id, (12), (123)}. One
can observe the similarity with the description of the Weyl representatives in Proposition 8
of [7].

We now describe the Weyl representatives Wio of Po N M; in M; fori = 1, 2. Using the
same methods as above, we determine WS = {we, 1, W(1,2), l}, where 1 denotes here the
constant function that takes always the value 1, and

WY ={wo | f(m)=1 ¥m #2,0(1)=1lando'(m) <o™'(n) V2<m<n<l}.

Note that WP = WiWFi fori = 1,2.

4.2 Case n even

In this case, Agis givenby {e; L€, | 1 <k <l}U{ex Lt e |2 <k <I}.For2 <k <[, we
see thatif f (k) = —1thenw,, s ¢ WY (because this element takes the root —e,, -1 ) —€s-1()
to a positive root not in Ag). In fact we get the following

Lemma 4 WP is given by all the elements We, f € W satisfying

() fky=1 for2 <k <.

Q2 o7V m) <o) for2<m<n<I

Also, the only element in Ag whichisnotin Ayise;—eyand Ay ={e; e, | 1 <k <I}.
From these facts we deduce the following

Lemma 5 WF2 is the subset of W0 consisting of the elements Wo, f € WRO satisfying one
of the following conditions:
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1218 J. Bajpai, M.V. Moya Giusti

M f)=1land f(2) = —1.
@ fH=f@ =lando (1) <o ().
B f)=f@) =—-lando~ (1) > o~ 1(2).

and WP is the subset of W' consisting of the elements W, f € WP satisfying both condi-
tions

1 f@ =1
) o7 '2) <o~ 1®3).

By similar computations, the sets WY and WY are given by WY = {we,1, w1,2),,} and

WY = {wop e WP o) =1, f() = 1}

5 Mixed Hodge theory

We now collect some information regarding the weight filtration of the mixed Hodge structure
for the cohomology spaces in the long exact sequences (1) and (2).

First of all, the weight morphism of the orthogonal Shimura variety associated to GO(2, n)
is given by the morphism : G,, — GO(2, n) definedby ¢ > t2Id,,.». Therefore, for a finite
dimensional irreducible representation (p, , V) with highest weight 1 = Z§=1 ai€; + ck,
the composition p, o w : G,, — GL(V}) is given by ¢ — 2] dp+2. Therefore V) defines a
complex variation of Hodge structure of weight —2c¢ and the mixed Hodge structure on the
space HY(S, \7)\) has weights greater than or equal to ¢ — 2c¢ (see Theorem 2.2.7 of [11]).

We continue by calculating, for each i € {0, 1, 2}, the morphism %; : S — Gy, ; defining
a Shimura pair (Gy,;, h;) where Gy, ; is the Hermitian part of the Levi subgroup M; of P;.
For this we use the description given in [10] (but one could also use Chapter 4 of [14]).

First of all, we need to introduce some notation. Given an algebraic representation p :
G,, — GL(V) defined over QQ one has:

o A decreasing filtration F;? Vc of V¢ = V ®q C defined by the composition poh : S —
GL(V) by

F{Ve = @2,V

where for every p,q € Z, VP9 ={v € V¢ | poh(z)v = z7Pz79v} (where , z and Z
are as in Sect. 2).

e Every morphism x : G,, — G, defined over Q, defines an increasing filtration W}V
given by

WAV = @<,V
where foreveryn € Z, V,f ={v eV |po x(r)v=r"v}.
Let i be the unique admissible Cayley morphism o : G, — Ap, (see Theorem 5.1.3
of [10]). In particular, this morphism satisfies:

e For every representation p : G, — GL(V) defined over Q, the pair of filtrations

(Wf"Pi V, F; V) defines a mixed Hodge structure on V.
e Let U; C P; be the unipotent radical and W; C U; be the center of U;. For the adjoint

P

. oo . P; . .
representation of G, on its Lie algebra g,, the filtration W' g, satisfies that (g,)”, is

the Lie algebra of W;, (g,l)‘fpli @ (gn ‘fpzi is the Lie algebra of U; and (g”)f)"Pi is the Lie
algebra of M;.
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From now on, for every representation p : G, — GL(V), we will denote by W.P 'V and
V.P" the filtration and the graduation on V, respectively, defined by the admissible Cayley
morphism o

Once we determine the admissible Cayley morphism by using the aforementioned proper-
ties, it will be enough in our case to use 5.1.9 of [10] with the standard representation, given

by the natural inclusion G, < GL,, 42, to calculate A;.

5.1 Casei= 1

Letw : G,, — Ap, be the unique admissible Cayley morphism. Because of the description
of Ap,, there exists m, k € Z such that

pkrm 0 0
Mry=| 0 rk1id, 0 vr e C*.
0 0 rkom

By using the description of the filtration on the Lie algebra g, defined by the composition
of the adjoint representation with w®! and the fact that in this case, the unipotent radical is
commutative (therefore U; = W), one finally has m = —2.

Now, consider the standard representation given by the inclusion G, < GLj4, and let
V = Q"*2. We have defined / : S — GO(2, n), so we have to compose this morphism with
the conjugation by D in order to work with the group G, (D as in Sect. 2) and consider the
filtration defined by DAD~! on V ®q C. In particular, to get this filtration one can apply
D to the Hodge filtration defined by the morphism /4 : S — GO(2, n) < GLj4, on C"12,
Then the Hodge filtration F;;V on V¢ is defined by the graduation

(Dey — iDep) = (e1 — et —iex +iepyy), if (p,q) = (0, -2)
VP4 =1 (Des, ..., Dey, Deyi1, Deyyo) = (€3, ..., en,eqq1 +e2, 6512 +e1), if (p,q) =(—1,-1)
(Dey +iDep) = (e1 —epq2 +iex —iepyy), if (p,q) =(=2,0)

and the weight filtration W2V on V is defined by the graduation

, (en+2), ifj=k+2
le =1{(ex,...,ent1), 1fj=k
(6‘]), lf]:k—2

One can see that the Hodge filtration £}V induces on Wi,V = Vkp_l2 the filtration

. . Py f 7 = —
PIVE, = FC™n 0, 8o 0 = [ (12 @2 G 7 =72
) ] = -

On the other hand, the Hodge filtration must define a Hodge structure of weight k — 2 on
Wi —> V. This implies that k = —2.

Now, by using 5.1.9 of [10] one finally can see, by using the standard representation, that
the morphism /1 : S — Gp,,; C GO(2, n) is given by

|z|*
hi(z) = \z|? Id, , VzeSM).
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1220 J. Bajpai, M.V. Moya Giusti

In particular, the weight morphism associated to (Gy,_ 1, #1) is the morphism w; : G, —
Gp,1 C M given by

A £2
w1 (1) = 21d, =12 1d, e Vi € G (R).
1 =

From this description of the weight morphism w; one can see the following. Let w € W"!
and let wy (1) = ny€1 +- - - +ny€ + ck be defined as in Sect. 6.1. if Wy, (4 is the irreducible
representation of M; with highest weight w,. (1), then the mixed Hodge structure on the space
HY9(SM1 Ww*(k)), described in [12], has weights greater than or equal to ¢ — 2¢ — 2n;.

5.2 Casei=2

In this case, by using the same procedure as in the case i = 1, one has that Uy # W> and by
using the filtration that the Cayley morphism w2 induces on the Lie algebra of G, one can
see that

rh=1 1d;
o2 (r) = r*Id,_» Vr € S(R),
l’k+11d2

fork € Z.Now consider the representation of G, on V = Q"2 given by the natural inclusion

G, = GL,42. The property that the pair of filtrations (W.“’P2 V, F3V) defines amixed Hodge
structure on V implies that one has k = —2 and finally that 1, : S — G2 C GO(2, n) is

given by
I
-y x

ha(z) = |2|* Idy—> Vz = (x +iy) € S(R).
x oy
—y x

Thus, the corresponding weight morphism is given by

3 1dy tld,
wr(t) = 21d,_» =’ Id,_» 1 Vi € G (R).
tld, t~ Idp

One can deduce the following. For w € WP2 and w,(\) = nyje; + - + ne +ex defined
as in Sect. 6.1, the weights in the mixed Hodge structure associated to HY (M2, Wu,.(1)) are
greater than or equal to ¢ — 2¢ — n| — nas.

5.3 Casei=0

In this case, one has that the parabolic subgroup Py is subordinate (in the sense of section
2.2 of [12]) to P;. Then the hermitian part of Py is exactly the hermitian part of Py and, for
w € WP with wy(A) = ni€; + - - + nye; + ck, the mixed Hodge structure on the space
HO(sMo, Ww*(x)) has weight equal to —2¢ — 2n (note that SMo can only have cohomology
in degree zero).
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6 Important facts

For notational convenience, we use 9; in place of dp, for i € {0, I, 2}. In thrs section, we
explain the methods used to determine when a cohomology class in H*(dy, Vx) does not

contribute to a ghost class in the cohomology of the boundary. From now on, whenever 7 is
clear from the context, we will denote G,, simply by G.

6.1 A decomposition of H®(9;, VA)

In this subsection, a well known decomposition of the spaces H*®(9;, VA) is introduced. For
w € W, we denote by £(w) the length of w. Foreachi € {0, 1,2} and w € WP we write
wy(A) = wh 4+ p) — p € h* where p = %Zaed)* o. Then w,(X) is the highest weight
associated to an irreducible finite dimensional representation Wy, (1) of M;. Foreach g € N
we have,
HI@, V) = @) Indp /) HIZO (M Wy 0). @)
wewPi

G(Af . . . . . .
where / ndp_(( A'; )) denotes the algebraic (unnormalized) induction and SMi is the symmetric

space associated to M;. For the rest of this paper we will denote / ndP (( Af )) by 1 ndg’_.

For each ¢ € N, let WP (¢q) be the set of the elements w € WY with £(w) = ¢. Since
SMo can only have nontrivial cohomology in degree 0,

HY(3, V)= €@ Ind§HO(S™ W, ). Vg eN. )
weWPo(q)
In order to study ker (p?) (see (2)), we study the image of the map §, ~1(dy, V;L) —

H4(dS, VA) Therefore for each w e Wh (g — 1) we study whether the space
Indcf) HO(SM0, W, ) is in the kernel of 84 and, when this is not the case, whether it
could contribute to ghost classes.

6.2 Middle weight

The fact that the weights in the mixed Hodge structure on H9(S, VA) are greater than or equal
to ¢ — 2c is strongly used. Note that —2c¢ is the unique weight in the variation of complex
Hodge structure defined by V;. If w € WP and w, (L) = nie; + nyez + n3es + ck, then
the subspace Indg:)HO(SMO, Ww*(;\)) of Hq—l(ao, ‘7,\) in (5) has weight —2n1 — 2¢. Note
that £(w) = g — 1. Thus, a necessary condition for the space IndPGO HO(sMo, Ww*()\)) to
contribute to ghost classes is that —2¢ — 2n; > g —2c = (w) + 1 — 2¢

We summarize the above discussion in the form of following lemma.

Lemma 6 If w € W' satisfies the inequality
L(w)+ 1> —2n

then the space 1 nd]% HO(sMo, Ww*(,\)) cannot contribute to ghost classes in H *(38, VA).
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1222 J. Bajpai, M.V. Moya Giusti

6.3 Image of r; : H*(9;, V;) — H® (80, V)

To study the image of r; we use the general description of Eisenstein cohomology in [15]
and [17]. In order to enunciate the main theorem that will be used for the study of the images
of the morphisms r;, we need to introduce some notations.

From now on, i will denote an element in {0, 1, 2}. As usual, we denote by U; the unipotent
radical of P;. We denote d; = dim(Up(R)/U; (R)).

We use the following notations

ap, = X.(Ap) ®R, dp, = X"(P) ®R

where X, (Ap,) and X*(P;) denote, respectively, the group of Q-rational cocharacters of Ap,
and the group of QQ-rational characters of P;. There is a natural isomorphism between ap, and
the Lie algebra of Ap, (R), and dp, is naturally isomorphic to al’il_ . The natural pairing between
ap, and ap; will be denoted by (, ). In particular, ap, is naturally isomorphic to Lie(A(R)).
Remember, from Sect. 2, that €1, &> denote the usual first and second coordinate functions
in the diagonal matrices of A.

Let Agg C Ag be the set of simple roots which occur in the Lie algebra of Uy but not
in the Lie algebra of U;. We denote by &gg the subspace of ap, generated by the elements
in APg. Let an) be the subspace of ap, annihilated by dp,. Let Agg C Ap, be the subtorus
whose corresponding Lie subalgebra is allzz') C ap,. Let A(Po, Agﬁ)) be the system of simple
roots defined by the choice of minimal parabolic Py and the torus Ag:).

On the other hand, fori = 1 or 2, let QP (ap,) be the set of isomorphisms of ap, given by
the restriction to ap, of an element of the Weyl group W and leaving the space ap, pointwise
fixed. In our case, QFi (ap,) has two elements, one is the identity and the other one will be
denoted by s;. For the cases we will work on, the fact that s; € Wl.o and L(w) + £(s;w) = d;
will be enough to describe ;.

Finally, for w € WP we denote

P _ _
AL} = —uwGt Pl g
Although in Section 6 of [17] one finds this definition with pp, (as in Section 1.7 of [15])
instead of p, one has pl,, = pp, (see Section 1.7 of [15]). That is why one also finds this
definition with p instead ofz op, in the introduction of [17]. With all this notation, we can now

introduce the theorem that we will use, whose details for the proof can be found in [15] and
[17].

Theorem 7 Let i be 1 or 2. Let w € WY be such that, if w = w'/PowP with respect to

the decomposition WX = WiOWPi , then £(wP/P0) > %. Let [¢] be a cohomology class

inl ndl(;’0 HO(sMo, Wu,(0)) represented by a cuspidal form ¢. Let E(¢, A) be the Eisenstein
series in the complex variable A, defined formally in Section 6 of [17]. Then:

@ If (MY V) > (pl p, ) foralla € APy, Ap) (ie if Ay — pl p, is in the posi-
Po Po

tive Weyl chamber of the system of simple roots A(Py, Ag:)) ) then the Eisenstein series

E(p, A) is holomorphic at A = AE)".
(b) If (AP avy > 0 for all a € A(Py, Allz:)) (ie. ifAP,;" is in the positive Weyl chamber of

the system of simple roots A(Py, Agg)) and the highest weight wf:" (X) of M; is regular,
then the Eisenstein series E(¢, A) is holomorphic at A = Al,j)’.
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In both cases, E (¢, AE}) defines a closed form representing a cohomology class [ E (¢, Agf )
in Indg HOR ) (gMi WPy, o) C H'™)(3;, V) and one has:

then r; (LE (¢, Av)]) = [¢).
then, let w' be (s;wFi/PO)ywFi. One has

. d;
(1) Ifaw:/iw >4
@) IfePi/Py =4
r((E(p. ASDD) = [p] + c(A)[p] € IndF HO(SMO, Wy, )

@Indg)HO(SMO, VT’w;(A)) C H" ™ (3, V).

where c(AEj) : Indg)HO(SMO, VT/w*(,\)) — Indg)HO(SMO, Ww;(x)) C H!®) (39, V3) is
certain intertwining operator (that will not be used in this paper).

Proof For the case (a), when AE{ - 'OlaP" is in the positive Weyl chamber of the system of
Po

simple roots A(Py, AES), this theorem is a combination of results of Section 6 in [17], in
particular Theorem 6.3, Theorem 6.4 and the proposition of that section. We observe that the
result enunciated is this theorem is true even for nonregular highest weight A, because the fact

that Al;i - ,olap,- is in the positive Weyl chamber of the system of simple roots A(Py, Agf))
Po
already implies that the Eisenstein series is holomorphic at A% and represents a closed form
in H*W)(3;, V,). Then we can use the same reasoning as in the proof of Theorem 6.4 of [17]
and Theorem 4.11 of [15] to get the description of r; ([ E (¢, Agf ).
For the item (1), in principle one has

ri(E(@, ASDD) =[] + c(AP) @] € IndS HO(SM, Wy, 1)) @ IndS HO(S™, W), )

On the other hand IndPGO HO(SMo, Wy, 0y) € HY™) (3, V) and therefore [E (¢, AP e
H* ™ (3;, V).

But £(s;w’i/?0) < £(wPi/P0) and therefore £(s;w) < £(w). Therefore HO(SMO, Wiy, (1)
defines cohomology classes in degree £(s; w). Hence c(AEj el =0.

For the case (b), when Al;i is in the positive Weyl chamber and the highest weight wf:" (A)
of M; is regular, we still need to prove that the Eisenstein series E (¢, A) is holomorphic at
A= AE,". For this we observe the following fact. One knows that, for i € {0, 1, 2} one has a
decomposition

HY3;. V)= @ Ind§HI™ (M Wy, 0).

weWPi

If i is 1 or 2, then for w € W¥i, such that w = wP/PowPi with respect to the decomposition
wro = Wlo WPi | the restriction of r; to the summand

Indg HI~tw) (SMi , ﬁ}(wl’i )*(A)) (©6)
has image in
@ Indl% H9~tw—ta) (SMO’ W(zbwpi)*(l)) ™

wew?

and (7) can be thought of as the boundary of the Borel-Serre compactification of (6). One
could therefore think about the construction of Eisenstein cohomology classes in

Indg HI OV (SMW e )
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from cohomology classes in the space Irwll?0 HI—tw) (Mo Ww*(x)) as in [15]. We remark
here that the parabolic induction ndlgl appears after taking the inverse limit over the level
varieties. So, we can work on the level varieties and then, when taking the inverse limit,
obtain the same results for / ndPGi H1—tw) (M W(wPi)*(A)) or we can use the exactness of
the parabolic induction.

In that case we would be thinking about the reductive group M; and the Q-system of
positive roots Q&i = dT(M;, Ap,) defined by the (minimal) Q-parabolic subgroup Py N M;.
In this setting, one has the corresponding element pp;, = Zae¢+ a. One can see that
oM, |aP pl . In fact, remember that the evaluation point, as in Theorem 4.11 of [15], in

Po Po
this case is given by

—uP (@00 + o)l g = —uP @R G+ p) = )+ o) 1 = —w Gt o)
0 0 0

Then, as it is already explained in the proof of Theorem 6.3 of [17], one has that if the
highest weight (w), (1) for M; is regular, the Eisenstein series E (¢, A) does not have a
pole at AB , otherwise the residue of that Eisenstein series would represent a square integrable
cohomology class in / ndG HI~t) (gMi W(w i), (v) (see the comment before Proposition
in Section 6 of [17]). But in the regular case, the square integrable cohomology is equal to
the cuspidal cohomology (Corollary 2.3 in [17]). This would be a contradiction, since the
Eisenstein series could not represent cuspidal cohomology classes. O

Let / be the rank of G, as defined in Sects. 3.1 and 3.2. In the case treated in this paper
one has that p is given by

S (—k+ ) e, ifnisodd
PEIS - b, ifn is even

6.3.1 Thecasei =1

In this case, by using the results in Sect. 4 one has d; = |A;| — |Ag], then
_ _ ) 1+2(1-2), ifnisodd
di =1a1l IAOI_i2(1—2), if nis even ’

where |A;| denotes the cardmahtly of the set A;.
APO C Ag = {e1 — &2} and aP is the R-vector space generated by €1 — &3. On the other

hand, aP(') is generated by the character
1 0 0 0 O
0 r 0 0 0
r—> |0 0 Idy—» 0 O
0 0 0 =10
0 0 0 0 1

or equivalently, under the natural isomorphism, it is the real vector subspace of Lie(Ap,)
generated by £2 5 — Ej 11,41 (Where E; ; denotes the (n + 2) x (n + 2) matrix with (i, j)
entry 1 and all other entries equal to 0).
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6.3.2 Thecasei =2

In this case, one has d) = |Ay| — |Ag| = 1.

Agg C Ag = {&2} and &gg is the R-vector space generated by &,. On the other hand, agé
is generated by the character

r 0 0 0 0
0o r! 0 0 0
r—> |0 0 Idy 0 0
0 0 0 r 0

0 0 0o o0 r!

or equivalently, under the natural isomorphism, it is the real vector subspace of Lie(Ap,)
generated by E1,1 — E20 + Entin+1 — Engo,n42.

Theorem8 Ifw = wP2/PoyP2 e Who = WSWPZ and (WP2), (M) = nje) + -+ -+ nje; + ck.
Then, ifwPZ/PO = W(1,2),1 (notation as in Sects. 4.1 and 4.2) and n1 > ny then the space

1 ndg) H O(SMO, Wu,.(3)) is contained in the image of r» and does not contribute to ghost
classes.

Proof We know that d> = 1, therefore, under the hypothesis of the theorem K(wP2/ P 0) > dj.
On the other hand, w, (%) = w5 P (WP, (1) = w(1.2).1 (W) (L) + p) — p. Therefore
if we(A) = mi€; + -+ mye; + ck one has m; = np — 1 and my = n| + 1. Moreover,

52 = —wA+ p)lap,- = —(wsx(A) + P)|al’i . Then the inequality in item (a) of Theorem 7

P P

is given by —(m — m3) > 2, but this means 2 + (1 — ny) > 2. Therefore, if nj > n then
the hypothesis of items (a) and (1) of Theorem 7 are satisfied and the result is proved. This
theorem can also be proved by using Theorem 2 in [8] together with the exactness of the
parabolic induction. O

7 Ghost classes For GO(2, 4)

In this section, we closely study each element w € WY to determine when the associated
space 1 ndPGO HO(sMo, Ww*()\)) will have possible contribution to ghost classes. This is done
by using the discussion carried out in Sects. 4, 5 and the facts listed in Sect. 6. In this case
the set of Weyl representatives W0 is the whole Weyl group W. In this particular case, the
description of the sets of Weyl representatives given in the Sect. 4.2 can be summarized as
follows:

WP = W, this is the set of all 24 elements listed in Table 1 below.
WE2 = (w1, wa, we, wg, Wo, W11, Wi3, Wis, Wis, Wie, W17, Wig} .
WP = {wy, wa, ws, wig, wao, wa3}.

Wg = {w1, ws, w13, wie}.

W, = {wy, wa}.

We present a table with the elements in W0 and where each column delivers specific infor-
mation described below.

In the first column of Table 1, we indicate the Weyl representatives determined by the
permutation o € S3 and the choice of signs f given in the second and third column respec-
tively. In the third column we describe f by giving the set f —1(=1) c {1, 2, 3}. The fourth
column collects the length of the corresponding Weyl representative and the fifth column
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Table 1 The set of Weyl representatives WF0 for GO (2, 4)

w o f L(w)  Weight + 2¢ VVSVVP2 VVIOVVPl ny ny n3

wi e ] 0 —2a wiw] wiw] ap a as

wy (12) ] 1 2 —2ap woywy wiwy ay—1 ap +1 as

w3 (13) % 3 4 —2a3 wowe waws az —2 ay a;+2
w4 (23) [ 1 —2ay wiwy wawq aj az —1 ay+1
ws (123) @ 2 4 —2a3 wywy wiws az —2 a; +1 a + 1
we 321) @ 2 2 —2ap wiwe w4w ay — 1 ay — 1 ay +2
w7 e {1,2} 6 8 + 2a; wywg wi3wig —a;—4 —ap—2 a3

wg (12) {1,2} 5 6 + 2ay wiwg wi3wrQ —ap—3 —a;—3 a3

wy (13) {1,2} 3 44 2a3 wiwg wqawn3 —a3—2 —ap—2 a;+2
wi  (23) {1,2} 5 8 4 2a wywi | wawi9 —a1—4 —a3—1 ar+1
wyp (123)  {1,2} 4 44 2a3 wiw] w3 w3 —a3—2 —a1—3 ar+1
wip (321 {1,2} 4 6 + 2ap wawg w4wyQ —ap—3 —az3—1 a;+2
wiz e {2,3} 2 —2ay wiw3 wi3w] ay —ar —2 —a3
wig  (12) {2,3} 3 2 —2ap wiwi4 wizwy ay — 1 —a;—3 —a3
wis  (13) {2,3} 3 4 —2a3 wiwis wiews az —2 —ar —2 —ay;—2
wig  (23) {2,3} 1 —2ay wiwie wiew] aj —az3—1 —ap—1
wyy (123)  {2,3} 4 4 —2a3 wiwy7 wizws az —2 —a;—3 —ap—1
wig  (321) {2,3} 2 2 —2ayp wiwg wiew2 ay) —1 —a3—1 —a;—2
wig e {1,3} 4 8+ 2a; wywi4 wiwig —a;—4 a —az
wyo (12) {1,3} 3 6 + 2ap waw3 wiwyQ —ay—3 a;+1 —az
wyr  (13) {1,3y 3 44 2a3 wowig wiew3 —a3—2 a —a; —2
wyy  (23) {1,3} 5 8 + 2a; wow17 wiew19 —a;—4 az3—1 —apy — 1
wyy  (123)  {1,3} 2 44 2a3 wrwie wiwn3 —a3—2 a;+1 —ar — 1
wyge (321) {1,3} 4 6 + 2ap wawis wiewW20 —ar—3 az3—1 —a) —2

indicates the weights in the mixed Hodge structure of / ndPGO HO(sMo, VT/w*(,\)) plus 2c¢ (this
is just —2n1, by Sect. 5.3). The sixth and seventh column indicates the components of w
with respect to the decomposition Wg WP and W?WP‘ of WP0_ In the last three columns
we write the coefficients n1, no, n3 from the expression w,(A) = ni€; + ny€ex + nzez + ck.
We now prove the following

Theorem 9 Let V) be the finite dimensional irreducible representation of GO(2, 4) with
highest weight . = a1€1 4+ arey + azes3 + ck. One has:

(1) Ifas # 0O, then there are no ghost classes in the cohomology space H*(dS, VA).

(2) If aa = 0 (which implies a3 = 0 and therefore, in terms of fundamental weights,
A = arw) + ck), then the only possible weights in the space of ghost classes are the
middle weight and the middle weight plus one.

Proof We begin by using the facts from Sect. 6.2 to eliminate certain possible contributions
of the spaces / ndg) HO(SMo, W, 1)) to ghost classes for w € WF0. Following Lemma 6,
one can see by comparing the entries of fourth and fifth columns of Table 1 that for the Weyl
representatives

w € {wr, wy, We, W13, W14, Wie, W18}
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the space Indg)HO(SMO, W, () has weight less than the middle weight of H¢)+!

(S, VA) and therefore this space cannot contribute to ghost classes. In addition, we note
the following

(i) For w = w;, the space / ndl% HO(sMo, VT/w*(x)) could only contribute to ghost classes
ifap = 0. _
(i) For w € {ws, ws, wys}, the space Indg) HO(sMo, Wuy.)) could only contribute to
ghost classes if a3 < 0. _
(iii) For w € {wy, war, wa3}, the space Indg HO(SM0, Wy, ) could only contribute to
ghost classes if az > 0.

Following Theorem 8, we study the image of the morphism
ry: H* (32, Vi) — H* (0, V2).

For w € WP we write by w = wP2/PowP2 € Wg WP2 its decomposition described in the
sixth column of Table 1. We see that for

w € {ws, wig, w9, W20, W22, W23} .

the componentin Wg is wp and the component in WPz s, respectively, w4, w1y, wi4, W13, W17
and wie. For each of these wP2, we can see, following the values of n; and n, in the expres-
sion (wF2), (L) = n1€; +- - - +ny€ + ek encoded in the last two columns of the Table 1, that
n1 > ny. By Theorem 8, this implies that the associated space Ind[(% HO(SMO, Vfiv/w*(;\)) will
be entirely contained in the image of r; and therefore this space cannot contribute to ghost
classes.

Using the same argument for the cases wy and w7, the corresponding space can contribute
to ghost classes only when a; = a. For ws and w2, the corresponding space could contribute
to ghost classes only when ay = a3 and the cases wy; and wy4 could contribute to ghost
classes only when a, = —a3.

Note that the case w = w7 could only contribute to ghost classes in degree 7. As the
dimension of the symmetric space associated to G is 8, then by Corollary 11.4.3 in [2] one
can rule out the possibility of contribution to ghost classes.

Now, we continue analyzing further the possible contribution of the space 1 ndPGO H°

(SMo, W, (1)) for the remaining Weyl representatives, i.e. for
w € {wy, w3, W, Wy, Wii, W2, Wi5, W7, W21, W24}, (®)

by studying the image of the restriction of the map ry : H*(dp,, V) —> H *(3py, V;,) follow-
ing the discussion of Sect. 6.3.

One has 51 = w3, Wx«(A) = n1€] +noex +nzez +ck, p = 2€1 + €3, Ag(l) ={er},d1 =2
and —w(A + p) = —(w4(A) 4+ p). Then, in this case, Ai‘ = —(n2 + 1) and the inequality
in item (a) of Theorem 7 is given by —ny > 2.

We see that for w € {ws, wi1, w7}, its component in WP1/P0 with respect to the decompo-
sition WF0 = WPI/POAPL js w13 (U(w3) =2 > %) and w satisfies the condition —ny > 2.
Thus, a direct application of item (1) of Theorem 7 gives that / ndPGO HO(sMo, VT/w*()\)) is
contained in /m(r1) and therefore it does not contribute to ghost classes.

Again, in the setting of Theorem 7, w = w9 = waw73 € WPI/PoWPI one has £(ws) = %‘
and Ail = ap + 1 and the inequality of item (a) is given by a» + 1 > 1. Therefore, if a, > 0,
all the hypothesis of item (a) of the aforementioned theorem are satisfied. Thus, for every
form [¢p] € 1 ndg) H 0(SMO, Ww* (1)), the projection to the first coordinate of
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r(LE(p, AED]) = [@] + c(AY) (] € Indf HO(SM, Wy, )
@Indg)HO(SMO, W(wm*(x)) c H' ™ (3, V3)

is again [¢]. This together with the fact that, for a, > 0, Indg) HO(SMO, W(WZI)*()\)) is in
the image of rp implies that Indg] HO(sMo, Ww*(k)) is contained in Im(ry) + Im(rp). In
conclusion, wg could contribute to ghost classes only if a, = 0. By the same procedure and
using the already proved fact that w5 can only contribute to ghost classes if az < 0, one can
show that w5 can contribute to ghost classes only if a; = 0.

Finally, we make use of item (b) in Theorem 7. For w € WPL the highest weight w, (1) =
ni€1 + ny€r + n3es + ck is regular for My if np > |n3| > 0.

For w = wia = wawyg € WFI/POWPI | we checked before that wys could contribute to
ghost classes only if a3 = ay. Suppose a; = a3z > 0. One has £(wy4) = dj‘ and AS} =a3+1
and the inequality of item (a) is given by a3 + 1 > 2. On the other hand, (w¢)+(}) is regular.
Therefore, if a = az > 0, all the hypothesis of item (b) of the aforementioned theorem
are satisfied. Thus, for every form [¢] € 1 rwl}(;’0 HO(sMo, W,U*(A)), the projection to the first
coordinate of

n(E(@. ASDD) = @] + c(AL)lp] € Indf HO(SM0, Wy, (1))
@]ndPGOHO(SMO, W(w24)*(x)) - Hz(w)(ao, ‘7A)

is again [¢]. This together with the fact that, for a3 > 0, Indl% HO(sMo, W(wm*(,\)) is
in the image of r; implies that Indl% HO(sMo, Ww*(k)) is contained in Im(r;) + Im(rp). In
conclusion, wi; could contribute to ghost classes only if ap = a3z = 0. By the same procedure
and using the already proved fact that w4 can only contribute to ghost classes if a3 = —a»,
one can show that wy4 could contribute to ghost classes only if a; = 0.

We now summarize the above discussion to point out the possible contribution of the
spaces Indlgf) HO(sMo, Ww*(k)) to the ghost classes, as follows:

(1) Ifa; = a» = a3z = 0 then the space Indl?0 HO(sMo, W(wz)*(x)) could contribute to ghost
classes in degree 2 and would have weight equal to the middle weight of H2(S, Vy).
(2) If a = a3z = 0 then the space [ ndgj HO(sMo, W(m)*(,\)) could contribute to ghost
classes in degree 4 and would have weight equal to the middle weight of H*(S, \7,\).
(3) If a2 = a3 = 0 then the space Indg) HO(sMo, W(wg)*(k)) could contribute to ghost
classes in degree 4 and would have weight equal to the middle weight of H*(S, V).
(4) If aa = az = 0 then the space IndPGO HO(sMo, W(wn)*(,\)) could contribute to ghost

classes in degree 5 and would have weight equal to the middle weight of H(S, Vx) plus
one.

(5) If aa = az = 0 then the space Indg) HO(sMo, W(wls)*(/\)) could contribute to ghost
classes in degree 4 and would have weight equal to the middle weight of H*(S, V).

(6) If aa = az = 0 then the space IndPG0 HO(SMO, W(wzl)*(/\)) could contribute to ghost
classes in degree 4 and would have weight equal to the middle weight of H*(S, V,\).

(7) If ay = a3 = 0 then the space Indg HO(SM0, Wiy, ) could contribute to ghost
classes in degree 5 and would have weight equal to the middle weight of H>(S, VA) plus
one.

Hence, we have proved the theorem. ]

We conclude the discussion with the following
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Corollary 10 Let V), be the finite dimensional irreducible representation of GO(2, 4) with
highest weight . = niw| + nywy + n3w3 + ck. Then ghost classes can exist only if
ny = n3 = 0, and in that case one has

(1) Ifny # O then ghost classes can exist only in degree 4 with middle weight and in degree
5 with middle weight plus one.

(2) Ifny = 0 then ghost classes can exist only in degrees 2 and 4 with middle weight and in
degree 5 with middle weight plus one.

8 Ghost classes For GO(2, 5)

In this last section, we will study each element w € W to determine when the associated
space [ ndl% HO(sMo, ﬁ}w*(k)) will have possible contribution to ghost classes. Note that in
this case the Weyl group of Py is not the whole Weyl group of the underlying group. In this
case WF0 has 41(l — 1) = 4 -3 -2 = 24 elements. We proceed in a similar fashion as in
Sect. 7 by using the results discussed in Sects. 4, 5 and the facts listed in Sect. 6.

In this particular case, the description of the sets of Weyl representatives given in the
Sect. 4.1 can be summarized as follows:

WP W, and all elements of WF0 are listed in the first column of the Table 2 below.
WP2 = {wy, wa, we, w13, Wi, Wis, Wi6, W17, Wig, W20, W21, W23} -

WP = {wy, w, ws, wy, ws, wiy}.

WY = (w1, wa, w13, wie)-

Wé = {wr, wa}.

We present a similar table as provided in Sect. 7, with the elements in W and where
each column delivers same type of information.

Theorem 11 Let V, be the finite dimensional irreducible representation of GO(2, 5) with
highest weight A = a1€1 + axey + azez + ck. One has:

(1) Ifay # O then there are no ghost classes in the cohomology space H®*(3S, \71).

2) If ap = 0 (which implies az = 0 and therefore in terms of fundamental weights one has
A = a1@| + ck), then the only possible weights in the mixed Hodge structure of the
space of ghost classes are the middle weight and the middle weight plus one.

Proof By Lemma 6 and the information in the Table 2 one can see that the spaces
1 ndgo HO(sMo, Wy, 1)) will not contribute to ghost classes for

w € {wy, wy, we, W13, W14, W15, W6, W17, W) -

On the other hand, w; could contribute to ghost classes only if a; = 0 (which clearly implies
az = 0). w3 and ws could contribute to ghost classes only if a3 = 0.

Following Theorem 8 and similar steps as the ones taken in Theorem 9, we continue
with analyzing the image of o, : H®(d2, VA) — H*(9p, \7;). If w € WFo is written as
w = wP2/PoyP2 with respect to the decomposition WP = WgWPZ, then for

w € {ws, wy, wg, w9, Wig, W11, W12, W2}
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Table2 The set of Weyl representatives YWF0 for GO(2, 5)

w o f L(w)  Weight + 2¢ VVSV\/’P2 W?Wpl ny ny n3
w e ] 0 —2a wiw] wiw] aj ap as
wy (12) ] 1 2 —2ap wow wiw ay —1 ap +1 as
w3 (13) ) 3 4 —2a3 wwe waws az —2 a) a;+2
w4 23) ] 1 —2a wiwyg waw aj az —1 ay+1
ws (123) @ 2 4 —2a3 wywWy wiws az —2 a; +1 a +1
we 321) @ 2 2 —2ay w1 wWe wawo ay — 1 azy — 1 ay + 1
w7 e {1} 5 10 + 2a; waw4 wiwy —a;1—5 a aj
wg (12) {1} 4 8+ 2ap wawi3 wiwg —ar—4 a;+1 as
wy (13) {1} 4 6+ 2a3 wywig w4w | —a3—3  ap ap +2
wig (23) {1} 6 10 + 2ay wyw17 wawy —ar—5 az3—1 ay)+1
wyp (123) {1} 3 6+ 2a3 wawie wiw| —a3—3 a;+1 a) +1
wip (321 {1} 5 8+ 2ap wawis w4wg —ap)—4 a3z —1 a; +2
wiz e {2} 3 —2ay wiwi3 wizw] ai —ay—3 a3
wig  (12) {2} 4 2 —2ay wiwi4 wi3wr ay — 1 —a;—4 a3
wis  (13) {2} 4 4 —2a3 wiwis wieWs az —2 —ay—3 a;+2
wie  (23) {2} 2 —2ay wiwie wiew] aj —a3—2 ay+1
wyy (123) {2} 5 4 —2a3 wiwy7y wi3ws az —2 —a;—4 ar+1
wig  (321) {2} 3 2 —2ay wiwig wiew? ay—1 —a3—2 a;+2
wig e {1,2} 8 10 + 2a; wrwWo() wi3wy —a1—5 —ap—-3 a3
wyy (12) {1,2y 7 8+ 2ap wiw0 w13wg —ay—4 —a;—4 a3
wy  (13) {1,2} 5 6+ 2a3 wiwr] wiew1 ] —a3—3 —ap—3 a;+2
wy  (23) {1,2} 7 10 + 2ay wywo3 wiew7 —a1—5 —a3—2 ar+1
wyz  (123) {1,2} 6 6+ 2a3 wiwo3 w3w]] —a3—3 —a1—4 ar+1
wye (321) {1,2} 6 8+ 2ap wawy] wieWs —ar—4 —az3—2 a;+2

onehas, wF2/P0 = w, £ e, andits componentin WPz g, respectively, wa, w14, w13, Wi, W17,
wie, wis and wo3. For each of these w2, we can see, following the values of n; and
ny in the expression wP2), (L) = nie; + naex + nze3 + ck encoded in the last three
columns of the Table 2, that n; > ny. By Theorem 8, this implies that the associated space
1 ndG HO(sMo, ~w*(k)) will be entirely contained in the image of > and therefore this space
cannot contribute to ghost classes. However, for w,, w3, wig, w4, we made the following
observation. For w, and w9, the corresponding space is not entirely contained in the image
of rp only when a; = a; whereas for w3 and wy4 this will happen only when ay = as.

In the case wig, one has that the space / ndG HO(sMo W(wlg)*(;\)) could contribute to
ghost classes in degree 9. On the other hand, the symmetric space associated to G has
dimension 10 and by Corollary 11.4.3in [2], HO(S, \7)\) = 0. Asaconclusion H°(Sk, VA) —
H% Sk, \7;\) is the zero morphism and there are no ghost classes in degree 9 cohomology.
Therefore, w19 does not contribute to ghost classes.

Therefore the only possible contributions to ghost classes come from the following six
Weyl representatives

w € {wz, w3, w0, W21, W23, W24} .
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We will study now each one of these cases to determine whether they could actually
contribute to ghost classes and in that case what the possible weights in the corresponding
mixed Hodge structure are. We do this by studying the image of r; : H®(dp,, V,\) —
H*(9p,, VA) following the discussion of Sect. 6.3.

One has s1 = w3, wy(X) = nie; +nrex +nzez+ck, p = %61 + %62 + %63, AE; = {e2},
dy = 3 and —w(A + p) = —(w4(A) + p). Then, in this case, Ai‘ = —(ny + %) and the
inequality in item (a) of Theorem 7 is given by —na > 3.

We see that for w = wyo, its component in WF1/P0 with respect to the decomposition
WP = WPI/POWPL i 45 l(wz) =3 > d—z‘) and w satisfies the condition —ny > 3. Thus,
a direct application of item (1) of Theorem 7 gives that / ndl(% HO(sMo, Ww* (»)) is contained
in I'm(ry) and therefore it does not contribute to ghost classes. By the same procedure, but for
w = wp3, one can see that Indgo HO(SM", W(wm*()\)) is contained in /m(r1) and therefore
it does not contribute to ghost classes. On the other hand, the same calculations for wy;
show that this element could only contribute to ghost classes if a; = 0 (because in that case
—np = apy + 3).

Finally, we make use of item (b) in Theorem 7. For w € WPI the highest weight w, (1) =
ni€y + no€y + n3ez + ck is regular for My if np > n3 > 0.

Assume a; > ay. For w = way; = wiewy; € WP/POWPI one has €(w6) > d—zl and
Ail = ay + % We will assume ap = 0, since we already proved that this element could
only contribute to ghost classes in that case. On the other hand, under these assumptions,
(w11)«(A) is regular. Therefore, if a; > a; = 0, all the hypothesis of item (b) of the
aforementioned theorem are satisfied. Thus, for every form [¢] € 1 na’gO HO(sMo, Ww*(,\)),
one has 1 ([E(¢, AY)]) = [¢]. This implies that Indg HO(SM, W, ) is contained in
Im(ry). In conclusion, wy; could contribute to ghost classes only if a; = 0. By the same
procedure and using the already proved fact that wy4 can contribute to ghost classes only if
ap = az, one can show that wy4 can contribute to ghost classes only if a, = 0.

We now summarize the above discussion to point out the possible contribution of the
space [ ndg) HO(sMo, Ww*(;\)) for w € WY to the ghost classes, as follows:

(1) Ifa; = ay = a3 = O(i.e. V is one dimensional) then the space Ind§ H(SM0, W,) 1))
could contribute to ghost classes in degree 2 and would have weight equal to the middle
weight of H%(S, V).

(2) If a» = a3z = 0 then the space Indlgf) HO(sMo, W(w3)*(/\)) could contribute to ghost
classes in degree 4 and would have weight equal to the middle weight of H*(S, V).

(3) Ifa; = a» = a3 = Othen the space Inaflg}0 HO(sMo, W(wzl)*(k)) could contribute to ghost
classes in degree 6 and would have weight equal to the middle weight of H(S, \7,\).

(4) If ap = a3 = 0 then the space Indgo HO(sMo, W(w24)*(,\)) could contribute to ghost
classes in degree 7 and would have weight equal to the middle weight of H” (S, VA) plus
one.

This completes the proof. O

We conclude this section with the following corollary that follows from the proof of
Theorem 11.

Corollary 12 Let V, be the finite dimensional irreducible representation of GO (2, 5) with
highest weight A = n1@| + nows + n3w3 + ck. Then ghost classes can exist only if
ny = n3 = 0, and in that case one has:
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(1) Ifny # 0 then ghost classes can exist only in degree 4 with middle weight and in degree
7 with middle weight plus one.

(2) Ifny = 0 then ghost classes can exist only in degrees 2, 4 and 6 with middle weight and
in degree 7T with middle weight plus one.
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