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Abstract
The Galerkin finite element method (FEM) is used widely in finding approximative solutions
to field problems in engineering and natural sciences. When utilizing FEM, the field problem
is said to be discretized. In this paper, we interpret discretization in FEM through category
theory, unifying the concept of discreteness in FEM with that of discreteness in other fields
of mathematics, such as topology. This reveals structural properties encoded in this concept:
we propose that discretization is a dagger mono with a discrete domain in the category
of Hilbert spaces made concrete over the category of vector spaces. Moreover, we discuss
parallel decomposability of discretization, and through examples, connect it to different FEM
formulations and choices of basis functions.

Keywords Mathematical modeling · Category theory · Engineering · Finite element
method · Discretization

Mathematics Subject Classification 00A71 · 00A79 · 53Z05

1 Introduction

Throughout engineering and physical sciences, field problems, arising from e.g. device
design, are confronted. Apart from some exceptionally simple cases, such field problems
cannot be solved analytically. Hence, in real modeling situations, they are solved numeri-
cally with a computer.1 One cannot, however, represent the solution in a function space that is

1 By analytical solution, we mean a solution which can be expressed in closed form. Numerical methods, on
the other hand, are approximation techniques that lead to a solution of a problem. However, even though it is
often the case, this solution is not necessarily an approximation. A numerical solution can be exact, too.
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not finite-dimensional: Computers can only deal with a finite number of equations.Modelers,
such as engineers and physicists, say that the problem has to be discretized. One of the most
popular approximative numerical methods for discretizing and solving a field problem is the
Galerkin finite element method (FEM) [3,16,18,19].2

In natural language, the word discrete refers to something separate and non-continuous.3

Hence, discretization is intuitively related to transferring from continuum to a state of separa-
tion, while maintaining enough information to utilize it in the sub-sequent decision making.
In FEM, this is done by taking the function space in which the solution of the field problem is
known to reside and then finding a suitable finite-dimensional subspace for it, from which an
approximative solution to the original problem can be found. This process is what is referred
to as discretization of the field problem when utilizing FEM.

However, the term discrete object has also a very specific meaning in category theory,
revealing something interesting about the structural properties of the object by relating the
web of morphisms originating from it with a counterpart in another category (see section 8
in [1]). Discrete objects arise in conrete categories, which formalize the concept of math-
ematical structure (see section 5 in [1]). Concrete categories relate structured objects and
morphisms to their underlying objects and morphisms with less structure, such as groups
and group homomorphisms to their underlying sets and functions. A discrete object in a con-
crete category is then characterized by surjectivity between morphisms originating from an
object and the morphisms originating from its less structured counterpart. Hence, a question
arises: Can we relate discretization, as understood in FEM, to the concept of discreteness
in category theory? That is, in which sense, if any, can we interpret discretization in FEM
through category theoretical concepts, unifying it with the concept of discreteness in other
fields of mathematics? By answering this question, we want to reveal what kind of structure
is encoded in the term discretization on an abstract level.4 Or more concretely, of what kind
of abstract structure discretization is an instance.

Hence, in this paper, we propose a category theoretical interpretation of discretization in
FEM. Moreover, building on our earlier work on decomposability of abstract processes in a
monoidal category [14], we discuss the concept of decomposability of discretization within
a concrete framework. In particular, we consider how the decomposability of the function
spaces from which the solution is sought relates to the decomposability of discretization.
This is linked to different potential formulations of field problems and to choosing a suitable
combination of basis functions for the discretized problem. To keep things simple, we will
only consider elliptic (time-independent) field problems, leaving hyperbolic and parabolic
problems (time-dependent) outside our treatment.5

With this paper, we offer insight to mathematically oriented engineers about the structural
properties of discretization and approximative solution of field problems. On the other hand,
we also hope to shed light on the mathematical side of engineering with application-oriented
mathematicians in mind, building a bridge between engineering and different fields of math-
ematics through the interaction between category theory and numerical methods. We expect
the reader to be familiar with basic differential geometry [10] and elementary category theory
[1,7]. In particular, a certain level of familiarity with exterior calculus of differential forms

2 In this paper, by FEM we mean precisely the Galerkin finite element method.
3 Separate; detached from others; individually distinct. Opposed to continuous. (Oxford English Dictionary,
http://www.oed.com).
4 This means that we will not be so much concerned with particular discretizations and their properties, such
as what foundational properties are inherited by a certain discrete problem from its non-discrete counterpart.
For such compatibility problematics the reader is referred to e.g. [2].
5 This is not to say that the framework could not be extended to cover time-dependent problems, too.
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and the concepts of categories, objects, morphisms, functors and natural transformations is
expected. For introductory category theory, we refer the reader to [1,7]. A survey of necessary
category theoretical prerequisites for this work can also be found in our recent article [14].

In Sect. 2, we discuss the foundations of FEM, and take the reader through the discretiza-
tion process without explicitly referring to category theory. Then, in Sect. 3 we introduce
the relevant category theory for our interpretation of discretization. In Sect. 4 we present
discretization in FEM in the light of category theory and discuss its decomposability within
this framework, giving also examples. Finally, conclusions are drawn in Sect. 5.

2 Functional analytic background for FEM

In this section, we go through the foundations of FEM. In particular, we introduce relevant
Sobolev spaces of differential forms for FEM analysis. Moreover, we go through the basic
steps of the discretization process. For a more detailed discussion of the correct spaces of
differential forms for FEM, see e.g. [13].

2.1 The weighted residual formulation and the weak formulation

In the following,Ω is an n-dimensional bounded open subset of a Riemannian manifold with
a boundary ∂Ω that is sufficiently regular.

Let us first recall the definition of a Hilbert space.

Definition 1 A Hilbert space H is a vector space V , equipped with an inner product 〈·, ·〉,
complete with respect to the norm ‖ · ‖ induced by 〈·, ·〉.
The fundamental building block of FEM is the following theorem in Hilbert spaces [20]:

Theorem 1 γ ∈ H, γ = 0 ⇔ 〈γ, γ ′〉 = 0, ∀γ ′ ∈ H,

which gives us the permission to utilize the inner product ofH to test whether an element of
H is zero. To utilize this theorem in the realm of differential forms, we need an inner product
of differential p-forms. Hence, we define a global inner product of p-forms on Ω as

〈γ, γ ′〉 =
∫

Ω

γ ∧ �γ ′, (1)

where � is the Hodge operator, taking p-forms on n-dimensional Ω to n − p-forms on Ω

(see section 14 in [10]). The (completed)6 space of piecewise smooth p-forms on Ω with
the inner product (1) satisfying 〈γ, γ 〉 < ∞ for all γ is denoted as L2Fp(Ω).

What kind of Hilbert spaces are suitable for carrying out FEM analysis? L2Fp(Ω) is a
good candidate but not quite perfect. We need the following Sobolev spaces of differential
forms:

L2Fp(d̃,Ω) =
{
γ ∈ L2Fp(Ω) | d̃γ ∈ L2Fp+1(Ω)

}
, (2)

L2Fp(δ̃,Ω) =
{
γ ∈ L2Fp(Ω) | δ̃γ ∈ L2Fp−1(Ω)

}
. (3)

In the above equations, d̃ is the weak exterior derivative defined as

〈d̃γ, η〉 = 〈γ, (−1)p�−1d�η〉, ∀η ∈ DFp+1(Ω), (4)

6 In this paper, we assume that the spaces we deal with have been completed to Hilbert spaces.
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where d is the exterior derivative operator (see section 2 in [10]), and δ̃ is the weak co-
derivative defined to satisfy

〈δ̃γ ,� 〉 = 〈γ, d� 〉, ∀� ∈ DFp−1(Ω). (5)

Note that in (4) the linear operator δ := (−1)p�−1d� is the (strong) co-derivative operator,
highlighting the duality between (4) and (5) and thus also that between (2) and (3). The
symbols DFp−1(Ω) and DFp+1(Ω) denote the spaces of smooth p − 1-forms and p + 1-
forms with supports in Ω , respectively. Smooth p-forms see d and d̃ as the same operator,
as well as δ and δ̃, but these operators differ for piecewise smooth forms. However, as is
customary, we shall not make a notational difference between d and d̃ nor between δ and δ̃ in
our following examples. Moreover, note that � acts as an isomorphism between L2Fp(d̃,Ω)

and L2Fn−p(δ̃,Ω).
So, in L2Fp(d̃,Ω) and L2Fp(δ̃,Ω) the p-forms and their weak exterior derivatives and

weak co-derivatives, respectively, are piecewise smooth and square-integrable. The weak-
ness of these operators is important for modeling physical phenomena: it enables us, for
example, to have discontinuities at material boundaries. For instance in electromagnet-
ics, it is necessary to allow normal or tangential jumps in the quantities across material
boundaries.

Now it is time to put these pieces of puzzle together. How exactly do we utilize the spaces
(2) and (3) and Theorem 1 in FEM? Consider an equation of the form

Lα = ν, (6)

where L is a linear operator, α is the unknown form and ν is known. Now, supposing Lα and
ν reside in L2Fp(d̃,Ω) we can equivalently state the problem as

∫
Ω

(Lα − ν) ∧ �γ ′ = 0, ∀γ ′ ∈ L2Fp(d̃,Ω), (7)

which translates to
〈Lα, γ ′〉 = 〈ν, γ ′〉, ∀γ ′ ∈ L2Fp(d̃,Ω). (8)

Now, �γ ′ is obviously in L2Fn−p(δ̃,Ω). Equation (8) is theweighted residual formulation
of the problem, guaranteed to be equivalent to the strong form (6) by theorem 1. Then, the
weak formulation of the problem is obtained byweakening the differentiability requirements
through partial integration of the left-hand side, which gives us a coercive and bounded
bilinear form a(·, ·) on L2Fp(d̃,Ω) and leads us to [3]

a(α, γ ′) = 〈ν, γ ′〉, ∀γ ′ ∈ L2Fp(d̃,Ω). (9)

Usually, in engineering jargon, we say that (6) is weighted with weighting functions
γ ′. This workflow of forming the weak formulation will become more apparent in later
examples.

2.2 Discretization of the problem: finding a finite-dimensional subspace

Solving for α from (9) numerically with a computer is still a lost cause as L2Fp(d̃,Ω) is not
finite-dimensional. Hence, the key idea in FEM is to find a finite-dimensional subspace of
L2Fp(d̃,Ω) from which a suitable approximative solution can be found by solving a matrix
equation of finite size. Let us now consider, how this is achieved.
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First, a mesh is attached to Ω by dividing it to a finite number of disjoint polyhedra that
cover together all ofΩ . Then, a set, or a few sets of basis functions are attached to the mesh,
for example to the vertices, edges, faces or volumes of its polyhedra, and the unknown is
approximated as a sum of the basis functions with unknown coefficients. The key is to define
the basis functions so, that they form a basis (hence the name) for a subspace L2Wp(Ω) of
L2Fp(d̃,Ω). A typical choice of basis functions, especially e.g. in electromagneticmodeling,
areWhitney p-forms [5].7 Then the weighting functions in (9) are also replaced with the finite
set of basis functions, yielding a finite set of linear equations, which can be solved.

FEMis particularly appealing, as the difference between the approximative solution sought
from L2Wp(Ω) and the exact solution is minimized. The error is orthogonal to L2Wp(Ω):
Given the approximative solutionα∗ of (8) and the exactα, it holds for all weighting functions
w

j
p ∈ L2Wp(Ω) that (see p. 58 in [3])

a(α − α∗, w j
p) = a(α,w

j
p) − a(α∗, w j

p) = 〈ν,w
j
p〉 − 〈ν,w

j
p〉 = 0. (10)

This is called Galerkin orthogonality.8

3 Category theoretical preliminaries

In this section, we introduce the category theoretical concepts necessary for our interpretation
of discretizaton: concrete categories, subobjects and discrete objects. In particular, we will
define the category of Hilbert spacesHilb, made concrete over the category of vector spaces
Vec. Moreover, we present the definition of monoidal structure on a category.

We shall use the following notational conventions. We denote the class of morphisms
of a category A as Mor(A) and its class of objects as Obj(A). Moreover, the hom-set of
morphisms between objects A and B in Obj(A) is denoted as homA(A, B). Existence of an
isomorphism between objects A and B is denoted as A ∼ B.

3.1 Subobjects: generalizing subsets and subspaces

The intuitive picture of a subobject is that it can in some way be included within another one.
That is, there has to exist an inclusionmorphism of somekind, in addition to the object itself. In
category theory, the role of an inclusionmorphism is played by the concept ofmonomorphism.
Monomorphisms can be seen as generalizations of injective functions: Indeed, in the category
of sets, Set, with functions between sets as its morphisms, monomorphisms are precisely the
injections.

Definition 2 A morphism f : A → B is amonomorphism, if it is cancellable from the left
with respect to composition. That is, for all morphisms g, h : A′ → A, f ◦ g = f ◦ h ⇒
g = h.

Having defined monomorphisms, we are ready to define subobjects, which generalize the
notions of, e.g., subsets and subspaces.

7 From now on, we shall reserve the notation L2Wp(Ω) solely for the space of Whitney p-forms on Ω .
8 Here we have not considered gauging: Typically a(·, ·) only induces a semi-norm to L2Fp(d̃, Ω), but the
quotient space L2Fp(d̃, Ω)/dL2Fp−1(d̃, Ω), which sees different gauge selections as equivalent, obtains a
norm through a(·, ·).
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Definition 3 A subobject of an object A is an equivalence class M of monomorphisms into
A, where two monomorphisms m1 : A1 → A and m2 : A2 → A are equivalent iff there
exists an isomorphism f : A1 → A2 such that m1 = m2 ◦ f .

Hence, for example in the case of Set, subobjects of a set S are in one-to-one correspondense
with subsets of S: a subset A ⊂ S to S comes readily equipped with a canonical monomor-
phism, i.e. the inclusion map i : A → S. Moreover, any monomorphism m : B → S factors
uniquely through an inclusion. Thus, i provides a canonical representative for the class of
monomorphisms in which m resides.

3.2 Concrete categories

The concept of concrete category is essential for our construction of discretization. Concrete
categories reveal the structural aspects of their objects by letting us access, e.g., the sets or
other less structured objects underlying the more structured ones. Specifically, as we will
do here, we can connect Hilbert spaces with their underlying vector spaces in a formal
manner.

First, recall that a functor U : A → X is faithful provided that all its restrictions to hom-
setsU : homA(A, B) → homX(U (A),U (B)) are injective.9 Essentially, concrete categories
can be viewed as faithful functors from a category to another.

Definition 4 A concrete category A over X is the pair (A,U ), where U : A → X is a
faithful functor between categories A and X.

As an example, the faithful functor of the concrete category of vector spaces over the category
of sets (Vec,U : Vec → Set) sends each vector space to its underlying set and each linear
transformation between vector spaces to its underlying function, thus forgetting the vector
space structure. From here on, when it is clear from the context, we shall denote a concrete
category simply as the functor U : A → X. Furthermore, given a concrete category U :
A → X, the notational conventions

ObjU (X) := {O ∈ Obj(X) | ∃o ∈ Obj(A) : U (o) = O} (11)

and
MorU (X) := {H ∈ Mor(X) | ∃h ∈ Mor(A) : U (h) = H} (12)

give us a handy way of referring to the objects or morphisms of X that have a counterpart in
A via U .

The category theoretical concept that generalizes such notions as discrete topological
spaces and discrete partial orders to arbitrary concrete categories, is that of a discrete object
in a concrete category. In essence, discreteness of an object is related to surjectivity of
morphisms under the faithful functor U of the concrete category.

Definition 5 Let U : A → X a concrete category. A ∈ Obj(A) is discrete provided that
∀B ∈ Obj(A), ∀ f ∈ homX(U (A),U (B)) : f ∈ MorU (X).

So, if we consider as an example the category of topological spaceswith continuousmappings
as its morphisms, made concrete over the category of sets, U : Top → Set, the discrete
objects are precisely the discrete topological spaces. This can be easily seen. First, recall that

9 Note that this is not the same as requiring U to be injective on morphisms, since its faithfulness does not
prevent morphisms in different hom-sets from mapping into the same morphism in the codomain of U .
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any mapping between sets is a morphism in Set. Then, note that if T ∈ Obj(Top) has discrete
topology, every mapping from T is continuous, and if every map from T is continuous, its
topology must be discrete.

A concrete category of special interest for us is U : Hilb → Vec: the category of Hilbert
spaces made concrete over the category of vector spaces. InVec, the objects are vector spaces
and morphisms are linear transformations between them. Furthermore, we take the objects
ofHilb to be Hilbert spaces and bounded linear operators as its morphisms. Then, we clearly
have the faithful forgetful functor10 U from Hilb to Vec, and thus the concrete category
U : Hilb → Vec. As we shall see, this concrete category provides the natural category
theoretical framework for discretization in FEM.

3.3 Monoidal categories

To conveniently discuss parallel systems and processes, and for example, decompositions
of function spaces, we need more structure than just a category. This structure is that of a
monoidal product, which is in a sense a binary operator on a category C, mapping objects
and morphisms from the Cartesian product category C × C to C itself.11

Definition 6 Amonoidal category consists of

– a category C,
– the monoidal product functor ⊗ : C × C → C,
– the unit object I ∈ Obj(C),
– the associator α, a natural isomorphism assigning an isomorphism αA,B,C : (A ⊗ B) ⊗

C ∼ A ⊗ (B ⊗ C) to each A, B,C ∈ Obj(C),
– the left unitor λ, a natural isomorphism assigning an isomorphism λA : I ⊗ A ∼ A to

each A ∈ Obj(C), and
– the right unitor ρ, a natural isomorphism assigning an isomorphism ρA : A⊗ I ∼ A to

each A ∈ Obj(C),

such that the so-called triangle and pentagon equations hold. That is, the triangle

10 The functor which forgets the Hilbert space structure of the objects.
11 The Cartesian product of categories C1 ×C2 is a category whose objects are pairs of objects (O1, O2),
with O1 ∈ Obj(C1) and O2 ∈ Obj(C2), and whose morphisms are pairs of morphisms ( f1, f2), with
f1 ∈ Mor(C1) and f2 ∈ Mor(C2). For the pairs, composition and identities are defined elementwise.
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commutes for all A, B ∈ Obj(C) and the pentagon

commutes for all A, B,C, D ∈ Obj(C).

The definition looks a bit daunting but in fact it is not very complicated. The coherence
conditions above merely ensure that different isomorphisms constructed using the unitor and
the associators are all the same. Themonoidal structure on a category allows us to link objects
and morphisms together in parallel in an associative manner, resembling the multiplication
operations occuring in a monoid. For example, taking the monoidal product of A ⊗ B and
C gives us an object isomorphic to the monoidal product of A and B ⊗ C , and taking the
monoidal product of an object and the unit object gives an object isomorphic to the original.
Note that these are isomorphisms, not necesarily equalities. A classic example is the category
of sets and functions with the monoidal product given by the cartesian product of sets. There,
(A × B) × C �= A × (B × C) but there clearly is an isomorphism between the two sets.
This is where the associator is needed. For a comprehensive, physics-oriented introduction
to monoidal categories, see [7].

4 Discretization in FEM: finding discrete subobjects

Now we have all the machinery to discuss FEM discretization and its decomposability in a
category theoretical framework. In this section, we will give a category theoretical interpre-
tation of discretization and discuss some examples from magnetostatics, elliptic equations
arising from modeling magnetic fields caused by known source current (densities).

4.1 Interpreting discretization in U : Hilb → Vec equipped withmonoidal structure

Consider the category Hilb with monoidal structure ⊕ given by the direct sum of Hilbert
spaces with the zero-dimensional space as its unit object. This turns Hilb into a monoidal
category [7]. Moreover, let us make Hilb concrete over Vec. That is, we have a monoidal
category of Hilbert spaces, with the direct sum ⊕ as the monoidal product, made concrete
over Vec. For simplicity, we shall denote this concrete monoidal category merely as U :
Hilb → Vec. This category provides us with tools to formalize concepts related to FEM. In
the following, note that by a discrete subobjectwe mean a subobject with discrete domains.
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Furthermore, note that monomorphisms in Hilb are precisely the injective bounded linear
operators.

As discussed in Sect. 2, discretization of a field problem means, in the context of FEM,
finding a finite-dimensional subspace of a Hilbert space. Hence, when defining discretization,
wewould like to capture the intuition of it being an inclusion of a finite-dimensional subspace
into a larger Hilbert space. However, let us first note the following theorem:

Theorem 2 An objectH ∈ Obj(Hilb) is discrete with respect to U : Hilb → Vec if and only
if it is finite-dimensional.

This can be seen as follows. LetH be finite-dimensional. To see thatH is discrete with respect
to U : Hilb → Vec, note that every linear transformation with a finite-dimensional Hilbert
space as its domain is bounded. Then, utilizing contraposition, letH be infinite-dimensional.
Then, there exists a linear mapping onH that is not bounded, due to existence of orthonormal
bases, assuming the axiom of choice. For details of the non-trivial arguments above, see e.g.
[11,20].

Subobjects of objects of Hilb correspond precisely to their Hilbert subspaces [12]. A
discretization, is thus a representative of a subobject of H in U : Hilb → Vec. Even though
not every monomorphism in Hilb preserves the inner product, every subobject has a unique
representative that does,12 and in FEM, we want that (1) is preserved in such a mapping.
An inner product preserving monomorphism in Hilb is called a dagger mono.13 Hence, we
define discretization as follows.

Definition 7 A discretization (of infinite-dimensional H) is the unique dagger mono repre-
sentative of a subobject of H, discrete with respect to U : Hilb → Vec.

Hence, a discretization is a dagger mono from discrete Hs to H. One might have the urge
to say that a discretization should be a morphism going the other way: Should it not take a
Hilbert space to its discrete subspace? However, by closer inspection, we are interested in the
relationships between the two objects and the two categories. These are best captured by a
morphism from discreteHs toH and the functorU . This way, the existence of a discretization
guarantees us that there exists an object which is, in a formal sense, a discrete version of
another object, which is exactly the idea wewant to capture. After the discretization, injective
mapping of the discrete object Hs to H, everything in FEM will be done within Hs. So, in
order for a morphism in Mor(Hilb) to represent a discretization, its domain Hs needs to be
such an object that every morphism from its vector space counterpart in Vec (viaU ) is also a
morphism inHilb (discreteness), it must be injective (monomorphism), and it must preserve
the inner product of its domain object (the dagger-property). So actually, when we say that
the function space from which we seek the solution in FEM has been discretized, we mean
that we have found a discrete subspace for it with respect to the underlying vector space
structure, while keeping its metric properties intact. And abstractly, we are talking about a
dagger mono from a discrete object in a dagger category.

12 In terms of subspaces, this is rather obvious: subspace inherits the inner product from the ambient space.
13 More generally, a dagger mono is a concept related to dagger categories. A dagger category is a category
equipped with an identity-on-objects functor † from its opposite category to itself, satisfying f †† = f for
morphisms. In Hilb, the dagger of a linear operator f is its adjoint operator, which satisfies 〈 f (γ ), γ ′〉 =
〈γ, f †(γ ′)〉, for all γ, γ ′ ∈ H ∈ Obj(Hilb). A dagger monom : H1 → H2 is then a monomorphism with the
property that its composition with its dagger, i.e. its adjoint, is the identity: m† ◦m = id. It preserves the inner
product, since 〈m(γ ),m(γ ′)〉H2

= 〈γ,m† ◦ m(γ ′)〉H1
= 〈γ, γ ′〉H1

, for all γ and γ ′ in H1 ∈ Obj(Hilb).
[12]
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1280 V. Lahtinen, A. Stenvall

So, the term discretization in FEM is justified in the concrete categorical point of view:
the concept of finiteness corresponds with the concept of discreteness. Hence, discretization
is finite-dimensionalization. Note, however, that meshing a non-compact manifold does not
lead to a discrete Hilbert space in this sense, as one would then end up dealing with an infinite
number of basis functions. So even though in some intuitive respect, forming such a mesh
could be considered as a discretization of the space, it is not a discretization in the sense
of finite element method. Thus, this concrete categorical point of view captures exactly the
concept of discreteness in FEM.14

On the other hand, through this framework we can also interpret discretization differently
(yet equivalently) than simply as finite-dimensionalization: It is a process of forming such a
vector subspace of the original function space, that equipping it with the necessary Hilbert
structure does not affect how it relates to other spaces: There must not be linear mappings
from the subspace that are not bounded. An intuitive picture in the concrete modeling setting
thus is that meshing will guarantee the boundedness of all linear operators on the space. On
the chosen abstraction level this becomes obvious, as it is emphasized in the definition of
discretization.

We can also connect all this with our previous work on decomposability of processes.
This is where monoidality comes into play. In certain cases, we might be able to find two
parallel discretizations, which combined together yield a single discretization. The following
definition is an instance of parallel decomposability of processes in the framework of an
arbitrary monoidal category, discussed in [14].

Definition 8 A discretization md : Hs → H is parallel decomposable if there exist objects
Hs1,Hs2,H1,H2, such thatHs1⊕Hs2 ∼ Hs andH1⊕H2 ∼ H, andnon-trivial discretizations
m1 : Hs1 → H1, m2 : Hs2 → H2 such that the diagram

commutes.

As we shall see in the examples to follow, this decomposability is directly related to repre-
senting the quantities to be solved in terms of different types of basis functions, and thus, to
different FEM formulations.

4.2 A case study inmagnetostatics

In magnetostatics on three-dimensional Ω , the magnetic field {B, H} is defined to satisfy

dB = 0, dH = J , B = (μ ◦ �)H := μ�H , (13)

where the magnetic flux density B is a 2-form, the magnetic field intensity H is a 1-form,
the current density J is a 2-form and μ� is the permeability operator taking 1-forms to
2-forms, composed of the material specific part μ and the metric-dependent Hodge

14 A way to deal with non-compact manifolds within FEM is to map part of such a domain into a compact
one, thus ensuring the discreteness of the Hilbert space resulting from meshing. For more, see e.g. [6].
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operator �. Next, we will take a look at two different well-known formulations of (13) and
their FEM discretizations through the eyes of our category theoretical framework. We will
be brief, and not consider, e.g., gauging.

4.2.1 The A-formulation

A common way to formulate (13) is to use the magnetic vector potential A. Since dB = 0,
there exists a 1-form A such that

dA = B. (14)

Thismeans,we can combine the equations in (13) and take theHodge of the resulting equation
to yield

�dμ�
−1dA = �J . (15)

This is the strong form of the A-formulation of magnetostatics. Here, the linear operator
in (6) is �dμ�

−1d, the unkown α is A and �J corresponds to the source term ν, Then, the
weighted residual formulation of (15) yields∫

Ω

�dμ�
−1dA ∧ �A′ =

∫
Ω

�J ∧ �A′, ∀A′ ∈ L2F1(d̃,Ω), (16)

which is equivalent15 to∫
Ω

dμ�
−1dA ∧ A′ =

∫
Ω

�J ∧ �A′, ∀A′ ∈ L2F1(d̃,Ω). (17)

Now, through partial integration, the weak formulation reads∫
Ω

μ�
−1dA ∧ dA′ +

∫
∂Ω

μ�
−1dA ∧ A′ =

∫
Ω

�J ∧ �A′, ∀A′ ∈ L2F1(d̃,Ω). (18)

Given a homogeneousNeumann boundary condition on ∂Ω (i.e.μ�
−1dA = 0), the boundary

integral has no contribution to (18), rendering the weak formulation to

a(A, A′) :=
∫

Ω

μ�
−1dA ∧ dA′ =

∫
Ω

�J ∧ �A′ = 〈�J , A′〉, ∀A′ ∈ L2F1(d̃,Ω). (19)

Now, to discretize the problem, we consider a simplicial mesh on Ω; a finite number
of tetrahedra covering all of our modeling domain. Then a suitable subspace L2W1(Ω) of
L2F1(d̃,Ω) is spanned byWhitney 1-forms attached to the edges of the mesh. The unknown
A is approximated as a sumof theseWhitney 1-forms and theweighting functions are replaced
with them as well, to yield the finite-dimensional problem

a

(
n∑

i=1

Aiw
i
1, w

j
1

)
= 〈�J , w

j
1 〉, ∀w

j
1 ∈ L2W1(Ω), (20)

where Ai are unknown real number coefficients to be solved for. The key here is the existence
of a dagger mono md : L2W1(Ω) → L2F1(d̃,Ω) in Hilb, where L2W1(Ω) is discrete
in U : Hilb → Vec due to its finite-dimensionality. That is, there exists a discretization
md : L2W1(Ω) → L2F1(d̃,Ω), allowing us to approximate A as an element of L2W1(Ω)

in an optimal manner due to Galerkin orthogonality.

15 Since for p-forms, it holds that � ◦ � = (−1)p(n−p), where n = dim(Ω), and γ ∧ �α = α ∧ �γ , and if γ

is a p-form and η is a q-form, γ ∧ η = (−1)pqη ∧ γ .
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4.2.2 Decomposability of discretization: the (T )–�–9-formulation

In this example, we consider utilization of cohomology in FEM-based modeling of magneto-
statics. We will see how the category theoretical framework reveals the conceptual simplicity
behind it.

Consider Ω consisting of conducting Ωc and non-conducting Ωnc, that do not overlap.
Ωc consists of tunnels through Ωnc. Formulating (13) in terms of H gives us the equation

dμ�H = 0 (21)

in Ω with
dH = J , (22)

with prescribed J inΩc. Now, to solve H approximatively, we could try a monomorphism of
the form md : L2W1(Ω) → L2F1(d̃,Ω) as a discretization, but it would not be directly of
much use in forming the weak formulation for FEM as (21) is a 3-form equation. However,
the Hodge decomposition (see p. 372 in [10]) guarantees us that

H = T + dφ + Ψ (23)

where φ is a 0-form, T is the co-derivative of a 2-form, andΨ is a 1-form representative from
the 1-cohomology space ofΩ , H1(Ω).16 That is, in our monoidal categoryU : Hilb → Vec,
we can express L2F1(d̃,Ωnc) as the monoidal product

L2F1(d̃,Ω) ∼ L2δF2(δ̃,Ω) ⊕ L2dF0(d̃,Ω) ⊕ H1(Ω), (24)

where L2δF2(δ̃,Ωnc) and L2dF0(d̃,Ωnc) are the space of co-derivatives of 2-forms in
L2F2(δ̃,Ωnc) and the space of exterior derivatives of 0-forms in L2F0(d̃,Ωnc), respectively.
Similarly, the subspace

L2W1(Ω) ∼ L2δW2(Ω) ⊕ L2dW0(Ω) ⊕ H1(Ω), (25)

where the factors of the monoidal product have similar roles as above, is Hodge decom-
posable [8]. Now, there exist discretizations m1 : L2δW2(Ω) → L2δF2(δ̃,Ω) and
m2 : L2dW0(Ω) ⊕ H1(Ω) → L2dF0(d̃,Ω) ⊕ H1(Ω) and isomorphisms such that

commutes, thus giving us the possibility to utilize a discretization of the form m1 ⊕ m2.
Let us focus our interest only in the solution in Ωnc. Our modeling domain is thus Ωnc,

which has k tunnels through it. A prescribed current flows in each of the tunnels. We can
safely fix T = 0 inΩnc as no currents flow there, so in that case the solution to (13) will lie in
L2dF0(d̃,Ωnc)⊕H1(Ωnc). That is, inΩnc we can focus our interest only on the discretization
of the form m2 : L2dW0(Ωnc) ⊕ H1(Ωnc) → L2dF0(d̃,Ωnc) ⊕ H1(Ωnc). Hence, there we
can write H = dφ +Ψ , where Ψ takes into account the currents flowing in Ωc. This implies
that we can approximate H in Ωnc in a FEM formulation as a sum of exterior derivatives of

16 Recall that in terms of differential forms cocycles are represented by closed forms (via integration), and
thus, we have dΨ = 0. Now, since dH = J , we must have J = dT as d ◦ dφ = dΨ = 0.
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Fig. 1 A demonstrative depiction of the 1-chains to which cohomology basis functions are related. In this
figure, the modeling domain Ω = Ωc ∪ Ωnc with Ωc = T1 ∪ T2 and Ωnc = Ω\Ωc. We represent H as
dφ +Ψ in Ωnc. Thus, per each Ti we assign a cohomology basis function Ψi to one such chain reaching from
∂Ω to ∂Ti , and fix its degree of freedom so that

∮
Ψ over any cycle homologous to the dashed circle, that

the chain crosses, is equal to the desired net current flowing in corresponding Ti . This way the integrals of H
over the dashed circles, or any cycles homologous to them, yield the desired net currents, as

∮
Γ dφ = 0 for

all cycles Γ . See e.g. [17] for more information on how to compute and utilize these basis functions in a FEM
setting

Whitney 0-forms attached to the nodes of the mesh and a representative of the 1-cohomology
basis of Ωnc. See Fig. 1 for clarification.

Let us derive this FEM formulation. So, in Ωnc, we can take the Hodge of (21) and write

�dμ�(dφ + Ψ ) = 0 (26)

with prescribed Ψ . Its weighted residual formulation is then
∫

Ωnc

�dμ�(dφ + Ψ ) ∧ �φ′ = 0, ∀φ′ ∈ L2F0(d̃,Ωnc). (27)

Separating φ and Ψ into integrals of their own, we obtain

−
∫

Ωnc

�dμ�dφ ∧ �φ′ =
∫

Ωnc

�dμ�Ψ ∧ �φ′, ∀φ′ ∈ L2F0(d̃,Ωnc), (28)

which is equivalent to

−
∫

Ωnc

dμ�dφ ∧ φ′ =
∫

Ωnc

�dBΨ ∧ �φ′, ∀φ′ ∈ L2F0(d̃,Ωnc), (29)

where we have denoted BΨ := μ�Ψ . Partial integration of the left-hand side yields the weak
formulation

−
∫

Ωnc

μ�dφ ∧ dφ′ −
∫

∂Ωnc

μ�dφ ∧ φ′ = 〈
�dBΨ , φ′〉 , ∀φ′ ∈ L2F0(d̃,Ωnc). (30)

With suitable boundary conditions, we thus obtain

a(φ, φ′) := −
∫

Ωnc

μ�dφ ∧ dφ′ = 〈
�dBΨ , φ′〉 , ∀φ′ ∈ L2F0(d̃,Ωnc), (31)

where again, the left-hand side is a bounded and coercive bilinear form. Now, exploiting the
discretizationm2 : L2dW0(Ωnc)⊕H1(Ωnc) → L2dF0(d̃,Ωnc)⊕H1(Ωnc), whereW0(Ωnc)
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is spanned byWhitney 0-forms attached to the nodes of a simplicial mesh onΩ , we can write
an equation for the unknowns φi ∈ R:

a

(
n∑

i=1

φiw
i
0, w

j
0

)
=

〈
�dBΨ ,w

j
0

〉
, ∀w

j
0 ∈ L2W0(Ωnc), (32)

with Ψ = ∑k
i=1 IiΨi , Ii ∈ R, prescribing currents through the k holes in Ωnc and Ψi being

a basis for H1(Ωnc).
This example connects the choice of basis functions in FEM to parallel decomposability

of discretization: If a discretization of, e.g., space of p-forms is parallel decomposable in the
concrete monoidal category U : Hilb → Vec, we do not necessarily need to approximate
the unknown we are searching from that space using merely p-form basis functions, but we
might be able to recognize a different basis. This obtains a formal, structural context through
the monoidal categorical point of view we have taken here. It is an instance of the abstract
notion of parallel decomposability of morphisms in a monoidal category.

5 Conclusions and outlook

We have shown that discretization in FEM is a dagger mono with a discrete domain in
a monoidal concrete category U : Hilb → Vec, with its monoidal product given by
the direct sum ⊕. Not only does this reveal the structural properties of discretization
within the category, as how certain objects need to be related, but also between the rele-
vant categories Hilb and Vec. Even though our discussion was carried out in this specific
concrete category, this interpretation highlights the abstract structure encoded in FEM dis-
cretization. Analyzing discretization in this context offers insight to the background of
different potential formulations of field problems and allowable choices of basis functions
for FEM. The existence of dagger monos in Hilb is crucial for the existence of FEM,
and the abstract notion of parallel decomposability of processes in a monoidal category
translates into the possibility of formulating FEM problems using several basis functions.
These results were discussed in the context of elliptic problems arising from magneto-
statics. Moreover, discretization in FEM obtains a formal, unified meaning through this
monoidal categorical point of view: Discreteness in FEM is the same concept as discrete-
ness in, e.g., topology, on an abstract level. In the concrete modeling setting, this translates
to finite-dimensionalization through meshing and ensures the boundedness of linear opera-
tors.

The recognition of the category theoretical interpretation of FEM discretization can yield
us theoretical advancements in terms of generalization as well as direct practical benefits in,
for example, search and recognition of different ways of finding approximative solutions to
field problems. The structural properties of FEM discretization revealed here may transfer
readily to other approximative solution methods too, such as spectral methods [4], finite
volume methods [9] and finite difference methods [15], all of which utilize discretizations in
some form. Moreover, this interpretation suggests that (monoidal) dagger categories are of
interest in the foundational analysis of such methods.
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