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Abstract

We study the asymptotic Dirichlet problem for Killing graphs with prescribed mean curvature
H in warped product manifolds M x, R. In the first part of the paper, we prove the existence
of Killing graphs with prescribed boundary on geodesic balls under suitable assumptions on
H and the mean curvature of the Killing cylinders over geodesic spheres. In the process we
obtain a uniform interior gradient estimate improving previous results by Dajczer and de Lira.
In the second part we solve the asymptotic Dirichlet problem in a large class of manifolds
whose sectional curvatures are allowed to go to 0 or to —oo provided that H satisfies certain
bounds with respect to the sectional curvatures of M and the norm of the Killing vector field.
Finally we obtain non-existence results if the prescribed mean curvature function H grows
too fast.
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1 Introduction

Let N be a Riemannian manifold of the form N = M x, R, where M is a complete n-
dimensional Riemannian manifold and ¢ € C*(M) is a smooth (warping) function. This
means that the Riemannian metric g in N is of the form

3= (oom)’n}d®* +n}g, (1.1)

where g denotes the Riemannian metric in M whereas ¢ is the natural coordinate in R and
7w M xR — Mandm : M x R — R are the standard projections. It follows that the
coordinate vector field X = 9, is a Killing field and that o = | X| on M. Since the norm of X
is preserved along its flow lines, we may extend o to a smooth function o = |X| € C*°(N).
From now on, we suppose that o > 0 on M.

In this paper we study Killing graphs with prescribed mean curvature. Such graphs were
introduced by Dajczer and Ripoll in [9], where the Dirichlet problem for a graph of constant
mean curvature H with C>% boundary values was solved in a bounded domain €2 contained
in a normal geodesic disk D C M of radius ry under hypothesis involving ry, data on €2, and
the curvature of the ambient 3-dimensional space N. A bit later in [10] the Dirichlet problem
for prescribed mean curvature H € C* with C>* boundary values was solved in bounded
domains @ C M with C>% boundary again under hypothesis involving data on € and the
Ricci curvature of the ambient space N. Recall that given a domain 2 C M, the Killing
graph of a C? function u : @ — R is the hypersurface given by

Yu={x,ux):xeQ}C M xR.
In other words,
Xy = {Wx,u(x)): x € 2},

where W: Q x R — N is the flow generated by X. In [11] the Dirichlet problem was solved
with merely continuous boundary data. Furthermore, the authors proved the existence and
uniqueness of so-called radial graphs in the hyperbolic space H" ! with prescribed mean cur-
vature and asymptotic boundary data at infinity thus solving the asymptotic Dirichlet problem
in H" X¢oshr R. One of our goals in the current paper is to solve the asymptotic Dirichlet
problem with prescribed mean curvature in a large class of negatively curved manifolds.
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Asymptotic Dirichlet problems in warped products 213

On the other hand, it is an interesting question under which conditions on a Riemannian
manifold M every entire constant mean curvature graph over M is a slice, i.e. a graph of a
constant function. The first such result is the celebrated theorem due to Bombieri, De Giorgi,
and Miranda [3] that an entire minimal positive graph over R” is a totally geodesic slice.
Their result was extended by Rosenberg, Schulze, and Spruck [18] to a complete Riemannian
manifold M with nonnegative Ricci curvature and the sectional curvature bounded from
below by a negative constant. Ding, Jost, and Xin considered in [12] complete, noncompact
Riemannian manifolds with nonnegative Ricci curvature, Euclidean volume growth, and
quadratic decay of the curvature tensor. They proved that an entire minimal graph over such
a manifold M must be a slice if its height function has at most linear growth on one side
unless M is isometric to Euclidean space. In the recent paper [5] Casteras, Heinonen, and
Holopainen showed that a minimal positive graph over a complete Riemannian manifold
with asymptotically nonnegative sectional curvature and only one end is a slice if its height
function has at most linear growth. Entire Killing graphs in M x, R with constant mean
curvature were studied in [7,8]. In particular, it was shown in [7] that a bounded entire
Killing graph of constant mean curvature must be a slice if Ricyy > 0, Ky > — K for some
Ko > 0,and if o > gp > 0, with llellc2ary < oo.

Our current paper is inspired by the above mentioned research [7,8,10,11] on Killing
graphs with prescribed mean curvature as well as by the recent paper [4]. In the latter,
the asymptotic Dirichlet problem for f-minimal graphs in Cartan-Hadamard manifolds M
has been studied. Recall that f-minimal hypersurfaces are natural generalizations of self-
shrinkers which play a crucial role in the study of mean curvature flow. Moreover, they are
minimal hypersurfaces of weighted manifolds My = (M , g, e fdvol M), where (M, g) is
a complete Riemannian manifold with the Riemannian volume element d vol ;.

Returning to the Killing graph ¥, of a function u, we note that the induced metric in X,
has components

gij + o (Wujuj, (1.2)

where g;; are local components of the metric g. The induced volume element in %, (or
equivalently, on the domain 2 C M) is given by

d¥ = 0y/0 2+ |Vu|2dM.

We consider the constrained area functional

Anlul = /QQ\/Q’Z + |Vul2dM + Vy[ul,

where

u(x)o(x)
VH[u]=// anM=/nHQudM
QJo Q

and H is a smooth function on . Given an arbitrary compactly supported function v €
COoo (€2) we have the first variation formula

SAg[u] -v= i“ZOAH[u +sv] = —/ (div(%) + <Vlogg, %) —nH)deM,

dsls Q

where

W =,/0"2+|Vul?
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214 J.-B. Casteras et al.

and the differential operators V and div are taken with respect to the metric g in M. Then the
Euler-Lagrange equation of this functional is

di (V”>+<V1 V”> H (1.3)
iv(— 080, — ) = )

and H (x) is the mean curvature of the graph X, C M x, R at (x, u(x)). The equation (1.3)
can be rewritten as

Vu

diV—logQ(W> = I’lH,

where the weighted divergence operator corresponding to a smooth density function f €
C°° (M) is defined by

divyZ = e/div(e™/2) = divZ — (Vf, Z).
Note that this is the divergence-form operator that fits well with the weighted measure o dM

in the sense that a suitable version of the divergence theorem is still valid in this context.
Reasoning another way around, since X is oriented by the normal vector field

1, _
N = W(Q 2x - Vu|(x,u(x)))
and
Vu -
<Vlogg, —) = —(Vlogo, N),
w
where V is the Riemannian connection in N, we can interpret
1
Hiogo = H + ;(VIOng N)

as a weighted mean curvature of the submanifold X, in the Riemannian product M x R in
the sense that the Euler-Lagrange PDE may be rewritten as

le =n .
w logeo

More generally, if f is an arbitrary density in M we consider a weighted area functional of

the form
AH,f[u]=/ e lo Q*2+|Vu|2dM+/ nHe oudM.
Q Q

In this case, the Euler-Lagrange equation is
Vu Vu
divy(+) +(Vioge, < ) = nH. 1.4
vy W + 0ogo W n (1.4)

As before, this equation may be rewritten either in terms of a modified weighted divergence

. Vu
lefflogg (W) =nH

or as a prescribed weighted mean curvature equation

divf(%) = div(%) + (Vf.N) = nHiggo.
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Asymptotic Dirichlet problems in warped products 215

For the time being, we restrict ourselves to the case where f = 0. Intrinsically, given a
hypersurface ¥ C N and denoting u = t|yx, the parametric counterpart of (1.3) is

Asu =nH(N,?d,) —2(V¥logo, V¥u), (1.5)

where Ay is the Laplace-Beltrami operator in . Indeed if V* denotes the intrinsic covariant
derivative in X, we have

by T 24T

Viu = (Vt): =0 79, ,
where T denotes tangential projection onto 7 ¥. Hence we obtain
Asu=nHo *(3,N)+ (V¥o 2, 3]),

from where the formula (1.5) above follows.
In particular, minimal graphs in N = M x, R have height function that satisfies the
weighted harmonic equation

Asu+2(VElogo, V¥u) = 0. (1.6)

This may be considered as a PDE in 2 if we replace the metric g by the induced metric with
components given by (1.2).

Denoting
.. .. uiuj
ij — Gij _ 2
ol =g W2
we can write (1.3) in non-divergence form as
oui. i + (log 0) u; 1+L =nHW (1.7
Uij;j Z20) Uj W2 = . .

2 Main results

The existence of Killing graphs with prescribed mean curvature H over bounded domains
2 C M with continuous boundary data on 92 was established in [11, Theorem 2] under
suitable conditions on the Ricci curvature on €2, the mean curvature function H, and on the
mean curvature of the Killing cylinder over 92; see also [10].

In this paper we mainly focus on the setting where M is a Cartan-Hadamard manifold
with sectional curvatures controlled from above and below by some radial functions. We
prove quantitative a priori height and gradient estimates for solutions of (1.3) on geodesic
balls Q2 = B(o, k) C M under natural conditions on the prescribed mean curvature function
in terms of sectional curvatures Kj; and the warping function o. These estimates allow us to
use the continuity method (the Leray-Schauder method) and hence are enough to guarantee
the existence of solutions to the following Dirichlet problem

div(%) + (V log o, %) =nH in Q

. 2.1
ulo2 =g in 082,

where ¢ € C(0€2). We formulate the (local) existence result in geodesic balls on Cartan—
Hadamard manifolds.

@ Springer



216 J.-B. Casteras et al.

Theorem 2.1 Let M be a Cartan—Hadamard manifold, Q@ = B(o,k) C M, and ¢ € C(0L2).
Suppose that the prescribed mean curvature function H € C%(2) satisfies

|H(x)| < Hi—a)

in Q, where d(x) = dist (x, dB (o, k)) = k — r(x) and Hy_g4 is the mean curvature of the
Killing cylinder Cy_4 over the geodesic sphere dB(o, k — d). Then there exists a unique
solution u € C2*(Q) N C() 10 (2.1).

Above and in what follows we denote by r(x) = d(x, o) the distance from x to a fixed point
0 € M. We notice that the mean curvature of the Killing cylinder C, over a geodesic sphere
dB(o, r) is given by

H, = 1 (Ar + 1(VQ, Vr))
n @

and therefore can be estimated from below in terms of a suitable model manifold M_ 2,y X,

R, where M_ 2, is a rotationally symmetric Cartan-Hadamard manifold with radial sec-

tional curvatures equal to —a?(r) and 0+: M — (0, 00) is a positive rotationally symmetric

C! function such that

0r0 0r0+

=

0 o+

To formulate the next corollary and for later purposes we denote by f,, € C*°([0, 00)) the
solution of the Jacobi equation

l (Vo, Vr) = (2.2)
o

f;(// - Kz.fl( =0
Je©) =0 (2.3)
fe©) =1,

whenever « : [0, o0) — [0, c0) is a smooth function.

Corollary 2.2 Let M be a Cartan—Hadamard manifold whose radial sectional curvatures are
bounded from above by

K(P) < —a(r(x)’

for some smooth functiona: [0, 0c0) — [0, 00). Suppose, moreover, that (2.2) holds with some
positive rotationally symmetric C' function 04 = 04.(r). If the prescribed mean curvature
function H € C¥(2), Q = B(o, k), satisfies

(=1 f,(r) n 0y (r))
Ja(r@) 0+(r(x)

forall x € Q, then there exists a unique solution u € C2(Q)NC(Q) 1o (2.1).

n|H(x)| <

As mentioned above the proofs of Theorem 2.1 and Corollary 2.2 for boundary data
@ € C**(3Q) follow from the well-known continuity method once the a priori height and
gradient estimates are at our disposal. The case of a continuous boundary values ¢ € C(92)
can be treated as in [11]; see also [4].

Our main object in this paper is the asymptotic Dirichlet problem for Killing graphs with
prescribed mean curvature and behaviour at infinity. To solve the problem, we extend the
given boundary value function ¢ € C (3, M) to a continuous function ¢ € C(M); see Sect. 5
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Asymptotic Dirichlet problems in warped products 217

for the notation. Then we apply Corollary 2.2 for an exhaustion 2, = B(o, k), k € N, of M to
obtain a sequence of solutions u; with boundary values 1|02 = ¢. Under a suitable bound
on |H| in terms of a comparison manifold M_ 2,y X,, R we obtain a global height estimate
and, consequently together with Schauder estimates, the sequence is uniformly bounded in
the C%“-norm. Hence there exists a subsequence that converges in the C>%-norm to a global
solution u to the equation

. (Vu Vu
d1v<W) +(Vlogo, W> =nH

in M. Finally, under suitable curvature upper and lower bounds as well as conditions on
| H| we are able to construct (local) barriers at infinity and prove that the solution u extends
continuously to dsc M and attains the given boundary values ¢ there.

The following two solvability theorems will be proven in Sect. 6.

Theorem 2.3 Let M be a Cartan—Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)—~(AT7) in Sect. 5. Furthermore, assume that the prescribed mean curvature
function H: M — R satisfies the assumptions (4.18) and (5.7) with a convex warping
Sfunction o satisfying (4.13), (4.14), (5.8), and (5.9). Then there exists a unique solution
u: M — R to the Dirichlet problem

Vu
div_jgop ——=nH(x) inM
*®¢ Jo T+ |Vul? 2.4)
UldooM = ¢

for any continuous function ¢: dooM — R.

Theorem 2.4 Let M be a Cartan—Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)-(A7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H: M — R satisfies the assumptions (4.25) and (5.7) with a convex warping
Sunction o satisfying (4.19), (5.8), and (5.9). Then there exists a unique solutionu: M — R
to the Dirichlet problem (2.4) for any continuous function ¢: dooM — R.

Remark 2.5 The following example illustrates the need of our assumptions about the warping
function o in Theorems 2.3 and 2.4. Let N be the (n + 1)-dimensional hyperbolic space
H"*! and consider the Killing vector field X in H"*! corresponding to a one-parameter
family of parabolic isometries of H"*! preserving a given ideal point, say po € 9o H"T!.
This configuration cannot be directly compared with a rotationally invariant model (that is,
invariant by a one-parameter family of elliptic isometries) as we have assumed for instance
in conditions 4.13 and 4.14. This borderline case of a one-parameter family of parabolic
isometries and the corresponding Killing field in H*+! were studied by Ripoll and Telichevsky
in [17] using different techniques relying on a variant of the Perron method.

3 A priori height and gradient estimates
Throughout this section we denote by Qx = B(o, k) the geodesic ball centered at a given

point 0 € M with radius k € N, and by d(-) = dist(-, €2) the distance function to the
boundary of €.
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218 J.-B. Casteras et al.

3.1 Height estimate

Fix k € N and suppose that uy € C 2(Q) is a solution of the Dirichlet problem (2.1). We
aim to show that the function

v (x) = sup ¢k + h(d(x)), (3.1)
A

where h will be determined later, is an upper barrier for the solution u. It suffices to show
(see [19, p. 795] or [10, pp. 239-240]) that v is a barrier in an open neighbourhood of 92
in which the points can be joined to d€2; by unique geodesics. In this neighbourhood the
distance function d has the same regularity as €2 and therefore the derivatives of d in the
following computations are well-defined.

Since X is Killing field, we have

(ngQ,Vd)::é(VQ,Vd):-—éﬂ@XX}Vd)::—K&D, (3.2)

where « is the principal curvature of the Killing cylinder Cx_4 over the geodesic sphere
dB(0, k — d). This implies that
. h'vd n

Qlvg] = div —

!

h/
R VI -
/Q—2 + h/2( /Q—2 + h/2
where d; denotes the derivative to the direction Vd. However,
Ad —k = —nHy_g4,

where Hj_g4 is the mean curvature of the cylinder Cx_4, and we have

h/ h// h/ ) s
ad<\/Q2 +h/2> = \/Q72 Ty - (02 + h2)3/2 (0 "k +hh")
Q72 1" /
Hence it follows that
' Q_z " ’
Q[Uk] = —mn[‘lk_d + m(}l —«xh )

Suppose that the principal curvature of the Killing cylinder C;_; satisfies

_gy(d)
00(d)’
where g is a smooth positive increasing function on [0, 0c0). We note already at this point that,

in the case of Cartan-Hadamard manifolds, Vd = —Vr and this agrees with the assumption
(4.13). Then define the function 4 as

k(d) =

d
M@:cfgymm (3.3)
0
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Asymptotic Dirichlet problems in warped products 219

for some constant C > 0 to be fixed later. Now, since i’ > 0, we have

h' —Kkh' <0
and
Qlue] = —7/'1Hk—d = —LnHk—d-
T Jarow
Assuming that
|H| < Hk—a

in Q; and choosing the constant C as

. HY/H] , supo}
1 — H?/H_, inf 02

we see that
Qvg] —nH <0

and hence vy is an upper barrier for uy.
Similarly we see that the function

. = inf ox —h(d
U = 1ol ek (d)
is a lower barrier for u; and together these barriers give the following height estimate.

Lemma 3.1 Assume that
|H| < Hy_g (3.4)

in Q. and that uy is a solution to the Dirichlet problem (2.1). Then there exists a constant
C = C (L) such that

sup |ug| < C +sup|g|.
Qe Elol

3.2 Boundary gradient estimate

For given ¢ > 0 we define an annulus
Ur(e) ={x € Qr:dx) < ¢}.
In order to obtain a boundary gradient estimate, we aim to show that a function of the form

w(x) = gd(x)) + ¥ (x)

is an upper barrier in the set U (¢) forafixed ¢ € (0, 1/2) chosen so that d is smooth in U (¢).
Here we denote by v the extension of the boundary data that is constant along geodesics
issuing perpendicularly from 9€2, i.e. ¥ (exp, tVd(y)) = ¢(y), where y € 92 and Vd(y)
is the unit inward normal to d€2; at y. From (1.7) we have that

1 1

1 1 _
Aw] = — Aw — — (Vyu Vw, Vi) — ?<1 + —)(vxx,

Vw
w w3 0*W? 7)

W (3.5)
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220 J.-B. Casteras et al.

where

W= o2+ Vol = Jo2 + g% + VY 2.
Since
Vw = g'Vd + Vi,
with (Vd, Vi) = 0, it follows that
Aw=gAd+g"+ Ay
and
(VywVw, Vw) = g%¢" — ¢'(Vvy Vd, Vi) + (Vyy Vi, V).
Moreover, by (3.2)
(Vw, VxX) = ¢'(Vd, VxX) + (V§, Vx X) = g'0°k + (VY, Vx X).

Using the expression (3.5) we obtain that

1 1
Qw] = (" +&'Ad + Ay) — W(g’zg” — & (Vwy Vd, Vi) + (Vyy Vi, Vi)

“w (e ) (7))

and combining with the previous reasoning, this results to

& -2 ! s
Qlw] = (g +VyH) + W(Ad <1+Q2W2) >+ WAw

!

1
— 3 (Ve VYL YY) + %(vww, V)

‘We note that

vy j
—Alﬁ (VvlpVIﬂ Vi) = W <gu v )1//: j

and, on the other hand,

1 - /di+ i /d]+ j 1 N Jj 2 /dl j
W<gzj_(g 1/’3;5 W))‘/fi;j=*<glj ww)%] 8 \/fw”

1

L. J 20’
= W <gl] w 1// )wl j V{/g:; (Vvdvllf vw>

Moreover, the matrix (¢/) has eigenvalues 1/(0>W?3) and 1/W which can be estimated as

11 11
- — | < — 1+0° 3.6
max<g2w3 W>_92W Tw= W( +e9)- (36)

@ Springer



Asymptotic Dirichlet problems in warped products 221

When o > 1, this is trivial, and when o0 < 1 we can choose the constant K in the definition
(3.7) of g such that this holds. Therefore we are able to estimate
" 2 g 1 1 2411972
Qw] Sﬁ(g +IVy[9) + W(Ad - <1 + 2W2) > + W(l +e)INVYl
3¢’ 1 1
+W<VW/V”" V) + (l + 2W2>(Vlogg, Vi)

_ ! 1 1
_W3(g 24+ vyl )—W(nﬂk 4t s )+W<1+QZ>|W2¢||

3¢’ 1 1
+ WUIk—d(VW, V)l + W(l + QZWZ)(VIOng V).

Now we choose

C
g(d) = m log(1 + Kd), 3.7

where
C=K({(+ Ke)log(1+K)

and K > (1 — 28)8_2 so large that
C Z2(m_ax|uk|+1r1ax|w|). (3.9)
Qe 1973

Note that this choice yields g > uj on the “inner” boundary {x € Q: d(x) = ¢} of Ui (¢).
Then, for K large, we have

2 K41 K 2 1 K 2
12%2 2(+48) 2= d(2+ : =i >0,
w (14 Kd)*L+ K*(1+ Ke) (HK#L_HHLKSV
where
2 < (1+ Ke)?
'= 0+ Ke2+L
with

= sgp(g*2 + VY.

We also have

g/2

g'(d) = _m,

which implies that

g// 1 g/2 1

_ < 2
A = T T o T = _761
w2 K(l14+ Kg) W2 K(1+4+Keg)

Hence we obtain

Qlw] < !

< K(1+Ks) (Q +1Vy1%) Cl(nHk d+ W2 )

g VYl VY| 1
—<1+Q>||v2w||+w a1 kall + ==V iogel (1+ s ).
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222 J.-B. Casteras et al.

However,
1 o1 1+ Kd \*¢ 1 A
> -
02W2 = 02g? — \ K2(1+ Ke) ) 0% ~ K*(1 + K¢)? o2
and
1 14+ Kd 1

— = cr = Cl
w K2(14+Ke) K2(14+Ke)

Combining these with the fact that W > K 2. we obtain the estimate

K+« c? 1
Q[w]s—clm;;—cmHk_d+—(1+Q2>||V2w||
g IV 1 VY|
+W w2 [ Iie—ql| + l+72ﬁ 7|V10g9|

K+« c%

<—Cl— H 1 v?
S ORIl T KR g2 M k—d T 33 (+Q)|| vl

1 1
FIVYPI -all 7 (1 + >|w||v1ogg|

Therefore

K+« c]2

1
L N S U TE | 2y11v2
R Kot TRz TNV

Olw] —nH < —n(c1Hy—q + H) — ¢

1 1
+|VW|2||IIk—d||F+(1+Q )IVWIIVIOgQI*- (3.9)

Finally observe that
c1Hy_q > |H|
if we choose K such that

H? ) (1+ Ke)?
) <c = ) ,
H? , (1+Ke)2+L

that is

H?/H?
1-HH
Taking (3.6), (3.8), (3.9) and (3.10) into account, we can choose

1+ Ke)> > (3.10)

K = K(Qk» Hv ||W||c2» &, Sup Iul)
Qi

so large that
Qlw] —nH <0

holds in U (¢e). This suffices for the following boundary gradient estimate.
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Asymptotic Dirichlet problems in warped products 223

Lemma 3.2 Assume that
|H| < Hi—q

in Q and that uy, is a solution to the Dirichlet problem (2.1). Then there exists a constant
C =CQu%, H, |Y¥llc2, &, supg, |ul) such that

max |Vuy| < C.
FIoN

3.3 Interior gradient estimate

In this subsection we prove a quantitative interior gradient estimate that is interesting on
its own. The proof is based on the technique due to Korevaar and Simon [14], and further
developed by Wang [20]. We will perform the computations in a coordinate free way.

Let u be a (C3-smooth) positive solution of the Eq. (1.3) in aball B(p, R) C M. Suppose
that sectional curvatures in B(p, R) are bounded from below by —Kg for some constant
Ko = Ko(p, R) > 0. We consider a nonnegative and smooth function n with = 0 in
M \ B(p, R) and define a function x in B(p, R) of the form

x =y @y (Vul®), (3.11)

where the functions 7, y and ¥ will be specified later.
Suppose that x attains its maximum at xo € B(p, R), and without loss of generality, that
1n(xo) 7 0. Then at xg

. ! /
(logx); = %’+%u; +2%Mkuk;j =0 (3.12)
and therefore
/ . /
2%u"uk;1 = —(%’ + y?uj> (3.13)

Moreover, the matrix

/ !/

/ /
Y Y 14
(log x)i;; = (logmi;j + (;) uinj + ;ui;_/ + Zi(ukuk;u + Mfiuk;_/)

/ ’
+ 4(%) ukuk;iueug;j

is non-positive at xg. Applying the Ricci identities for the Hessian of u we have
¢
Uk;ij = Uiskj = Ui jk + Ryjiue,

and this yields

nij v’ y' v (i n;
(log x)i;j = - + —uiuj + —u; i+ — *luj-i-fjui
n Y Y Y \n n

w/ k k w/ ek Y ? k 14
+2?(u ui;jk+u;iuk;j)—2?Rjkiu ug+4 | — ) — =5 |uupiuug ;.
On the other hand, denoting

f(x)=nHW — (Vlogo, Vu)<1 +%>’
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and differentiating both sides in (1.7) we have

ok = fi — olfuij. (3.14)
Contracting (3.14) with u*, we get
. 1
a’fuku,';jk = fru* + qu k! kuf +u u )u, i
2 ..
- W“lujui;j(—é’fz(log o)ttt + uFutugp).
Using the previous identity, (3.13) and noticing that
o R utuy = —Ricy(Vu, Vu),
lengthy computations give
v’ )/’ 1 1 /vy
1 w/ ,(p/ / wlz 3 w/ 1 ” ‘
—2nHQ2—W?(V10gQ,Vu)+4<<? 1/f2 +§?W oulu Uil jie

y Q2W2

i TV !
+oii M 217<J, w> + 2%(Ricg(Vu, Vu) — V2 log o(Vu, Vur))
n

4|Vul* ¢’

Y (Vlogo. Vi) — > (Viogo, V )<v"+y1v v >
ogo, Vu ogo, Vu){ — + ~—Vu, Vu
CotwA U

Zw4 1/, y
2‘0/ ' o2 (Vu,Vu) +(V1 Vi 1+ :
-2— 0 u, 0g 0,
v Y loge u g0, — ZW2
2 v "
2W4<l + J; Vu, Vu>(VlogQ, Vu) + y70”u uj + Zﬁ ’Zajkuk;,-uj;g.

Notice that (3.13) yields to
2

” / 2 ’
0 \Y 1 |V
4%0’Zu1ukuk;,’uﬁg — ‘J + yivu > —— vn V—Vu
14 nov e eWin oy |,
_ |vu|2 Vi y/ Yu 2
~QPWE[|Vuln  y |Vull,

Plugging this into the previous estimate, we get
V(Y v 3y L\ IVel| Vi oy Vu
Y2\ v Y22y W2)oPW2||[Vuln  y [Vul|,

y// w k
+ oYuju; +2—c'c’ Uil jig
y Tyl !
’ Vul V1
<2n%|VH||Vu|W+2n%|H|| ul | Ozggl
0
v 2 w’ |Vlogol? [Vul*
— 22 (Ric,(Vu, V V2logo(Vu, V I LA
W( icg(Vu, Vu) — ogo(Vu, M)) pe W
" |V21 v 2 v
+2¢f |V-logol |Vul nlH |7 + ‘ n|1Vul ul i s

voooF W2
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y' 1 |Vul Vn’+4IV10gQI<‘Vn |Vul? y’|W|3>
y o*W W | p 0? n| wt oy wh
£ VI wvﬂ@+ ! )
ogol|— .
n Q2W2

Suppose that |Vu|(xo) > 1. Otherwise we are done. Hence, following [20], we set

Y (t) =logt, (3.15)

where ¢ = |Vu|?. Then we have

\Vul? 2 (v v 3y ] t 1t —072
(V) - ivw) (i )

Now we fix a constant

2 Q2
max § —, <B<l1
371+ 2

and suppose that

t |Vul?
W= e > B. (3.16)

8

Setting in = 5= %/3 —1,and p :=2B%2, we get
0

1| Vp v Vu >y | Vul?
wlog|Vul— — — 53
o”[IVuln vy [Vull, vy oW
v’ of . Vu Vu ) Vu Vu
+2—|Vul"{ Ricg | =, — V~logo s
14 [Vul " [Vul [Vul " [Vul

2
< N (nIVH| + (1 — B)n|H||Vlog ol +2(1 — )|V logol* + (1 — )|V logol)

1y 1y'|Vn
+/1—B—"—(n|H| +4|Viogo|) +2J/1 - p——|—
QV( ) evinm
\Y
+\J
n

By modifying the argument in [18, Proof of Theorem 4.1, Case 2] we may assume that the
maximum point xo is not in the cut-locus C(p) of p. Then we choose 1 as

ij iy
(n|H| + (6 —5B)|Vlogol) — o JTJ.

n =i’ (3.17)

where

h=1-— 1 /rs(r)dr, r=d(, p), (3.18)
Cr Jo

with
R
Cg :/ E(r)dr
0

and &£(7) = KO_1 sinh(Ko7) if Ko > 0 and £(7) = 7 if K9 = 0. Denoting

K= Q_2<§X6r, X) = (Vr, Vlogo),
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one can show that |Vy| = 2175(’) and

Asn =2/3Ash + 2|V2ﬁ|2

B)

£(r) £2(r)
) _KH+2 cz

As in [20], we set

Y =1+ f( min Q)u
M Bp.R)

where M > 0 is a constant to be fixed later. Then " = 0 and hence

Vn vy Vu |?
Q*|1Vuln * v |Vul g

W ) Vu Vu ’ Vu Vu ~ 1
+2E|Vu| Ricg | —, —V7logo| —, — <M—, (3.19)

[Vu| |Vu| [Vul| |Vu| Mn
where
1‘712Jgs,(nIVHI-F(l—ﬁ)nIHIIV10gQ|+2(1—ﬂ)lVlogQ|2
+ (1= B)|V*logol)Mn + /1 — B(n|H| +4|Vlogol)n +4/1 —ﬂ%:e)ﬁ
*2%:( |H| + (6 — 58)|V log ol) M
&(r) 5( ) g'(r) S (r)
M2 — — .
* (” ‘( ) Plew KH+ c2)
(3.20)
Let L = L(p, R) > 0 be chosen in such a way that
Ric, + VZlogo > —Lg (3.21)

in B(p, R). Then we obtain

Vi v Vu |?
[Vuln —y [Vull,

1 ~ 1
< )
8~ Mn

MIOgIVul 22

Set M = max g, ) u. We consider first the case

/
Vi | _ 7Y
[Vuln| — 2
Then we have
4 2.2 -
nlog|Vul < — & 2<MM+2LM2—>.
pming , g0

On the other hand, when

/
v _ | Vn ’
[Vuln
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we have
4y §(r)
nVu| < 7’C7
R
which implies that
nlog|Vu| < l@
/ CR

Hence at x

4y (u(x0))é (r (x0)) 4)/2(14(960))92(360)(

~ 1
nlog |Vu| Smax[ MM+2LM2>].

¥/ (u(x0))Cr ' Mming(p’R) Q2 &
(3.22)
Since n(p) = 1 and y(p) > 1 we conclude that
log [Vu(p)| = n(p)y (p)log|Vu(p)| < n(xo)y (xo) log |Vu(xo)]
4M(1 + minj )? (1 + minj Y02 (x0) [ ~ 1
- . B(p.R) @ max f;'(l’(xo))7 é(p,R)Q o (M +2LM—/>
ming, g) @ Cr pming , gy 0 )
(3.23)

unless |Vu(xg)| < 1.
We have proven the following quantitative gradient estimate. Here we denote by Rp the
Riemannian curvature tensor in a set B.

Lemma 3.3 Let u be a positive solution of (1.3) in an open set Q and let B = B(p, R) C Q.
Then there exists a constant C = C(Rp, 0|B, H|B, u(p), maxg u, R) such that

[Vu(p)| = C.

If the gradient of u is continuous up to the boundary of €2 and €2 is bounded, we obtain the
following quantitative global estimate.

Lemma 3.4 Let u be a positive solution of (1.3) in a bounded open set 2 and suppose,
moreover, that u € CY(Q). Then there exists a constant

C = CRq, 0|2, HIS2, u(p), max u, diam(), max [Vul)
Q

such that
IVu(p)| = C
for every p € Q.
Proof Let p € Q and R = diam(2). Define in Qn B(p, R) a function
X =1y @y (Vul),

where 1, y, and i are as in the previous proof. If x attains its maximum in an interior point
x0 € B(p, R) N Q, the proof of Lemma 3.3 applies and we have a desired upper bound.
Otherwise, x attains its maximum at xo € 9€2, but then |Vu(xo)| < maxyq |Vu| and again
we are done. O

We remark that a global gradient estimate for bounded Killing graphs follows immedi-
ately from (3.23), (3.20), and (3.21) in the case of bounded warping functions under some
assumptions on the curvature.
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Corollary 3.5 Suppose that the sectional curvatures in M satisfy Ky > —Ko for some
positive constant Ko. Suppose also thatinf yr 0 > 0 and that ||0||c2 () < +00. If a function
u: M — Risuniformly bounded and the mean curvature of its graph satisfies || H||c1 () <
~+00 then the gradient of u is uniformly bounded.

4 Global barriers

In this section we present two methods to obtain global (upper and lower) barriers for solutions
to (2.1).

In the case when H is constant along flow lines of X, that is, when H is a function in
M, there is a conservation law (a flux formula) corresponding to the invariance of Az with
respect to the flow generated by X. This flux formula for graphs is stated as

Vu ~
/(—,v)ng:/nHQdM, @.1)
r'\w Q

where I' = 92 and v is the outward unit normal vector field along I' C M.

Suppose for a while that M is a model manifold with respect to a fixed pole 0 € M and
that o = | X| is a radial function. In terms of polar coordinates (r, #) € R* x S"~! centered
at o the metric in M is of the form

g =dr? + £%(r) dv?,

where d®? stands for the canonical metric in S"~!. Suppose that H and u are also radial
functions. Applying (4.1) to 2 = B(o, r), the geodesic ball centered at o with radius r, we
obtain

W (r)
0=2(r) + ()

This is a first integral of (1.3) in this rotationally invariant setting. Indeed, taking derivatives
on both sides of (4.2) with respect to r we get

~ u'(r) ' u'(r) (Q’(r) %"(1”)>
H(r) = + +(n—1 :
e (\/QQ(F) +M/2(r)> Vo=2(r) +u2(r) \ o(r) " )S(r)

On the other hand in this particular setting (1.3) becomes

o(ME™(r) = /0 nH(t)o(r)E" () dr 4.2)

nl(r) = div<—u/(r) 5 ) + ( 4@ )Q/(r)
072 +uR(r) 0 2(r) +u”(r)/) o)
u'(r) )/ u'(r) .
= div o,
(JQ2(r) T20) et
4 < u'(r) ) o'(r)
0~ 2(r) +u2(r)/ o(r)
u'(r) ' u'(r) < &'(r) Q’(r)>
= + - + .
(\/Qz(r) +u/2(r)) Vo 2(r) +u(r) 4 Er)y o)
It is convenient to write (4.2) in a “quadrature” form as follows

1*(r)o=%(r)
02(NEXn=D(r) — I2(r)’

u'*(r) = (4.3)
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where
1(r) = /rnﬁ(r)g(r)g"*l(r)dr.
0

For instance, in the case when H is constant we have to impose a condition such as

n—1
nlf| < liminf — 205" @

44
r>o0 [Fo(r)En1 () dr @4

in order to guarantee the existence of radial solutions # = u(r) to (1.3) for model manifolds.
Note that the right-hand side in (4.4) is a sort of weighted isoperimetric ratio in M with
respect to the density o(r(x)) = | X (x)|. By I’'Hospital’s rule we see that (4.4) is equivalent
to the requirement

£'(r " o'(r)

n|H| <liminf (n — 1) . (4.5)
=00 £&(r) o)
This discussion motivates us to define in the general case a function of the form
up(x) =uy (r(x))
+ 7y ~1
_ / > Sy nH ()04 ()" N(s) ds I
"0 o (02 @EX V(@) — ([ nH ()01 ()EL (5) ds)

FHlollco@,m) 4.7

for some nonnegative functions o4 (r(x)), &4 (r(x)) and H (r(x)) to be chosen later.
Plugging u (x) = u4(r(x)) into the differential operator

Qlu] = diV(%) + <V log o, %> —nH

yields
u'y (r)
Quil =(V + , 0y
(1] < (Q_Z(X)-i-u/i_(l”))l/z >
', (r)

. 1
(0=2(x) + u/i(r))l/z <dlv or + 5<VQ7 ar)) —nH

u', (r) ul, (r) 1

=9, + )+ + <A +—V,8,)—H
<(Q—2(x) o) T m i\ T gte ) o

_, ( 'y (r) (") +u/i(r>)1/2>

"N @20 + w2 (r)12 (072(x) + w2 (r)1/2

1y () <Ar + Livos )) —nH
(©2(0) + uZ ()12 0O
-2 2 1/2 ’
_ (er (r)+u;<r>> [ _ ', (r) ( ar+ Lvo 3r>)
(@ 2(x) +uZ (DY L (02 (r) + u ()12 0
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u', (r)
3, +
- ((gf(r) + u’i(r))lﬂﬂ

' (r) ©72(r) + uS(r)'/?
— 3 0, - > m —nH
22 + w2 ()2 \(072(x) + u ()

Moreover, suppose that

dro(x) _ 0y (r(x))
o(x) T o4(rv)

for some positive and increasing C !_function 0+: [0, 00) = (0, 00) suchthat o4 (0) = 0(0).
By our choice of u,

4.8)

oy nH(5)0+ ()8 (s) ds
0+ (Mo MEX" V) — (fi nf )0+ () () ds)’

uly(r)=—

and therefore

LA ( . u’+<r>2 ) . u’+<r>2 (g’+<r> - l)sm))
(03~ (r) +uf(rn'/? (037 (r) + uZ(rN'/2 \o+(r) §4(r)
Hence we obtain
(02 +u/i(r>>'/2[ ul, (r) ( 1 )
Q = Ar + —(Vo, 0,
" e o7 Lo e\ e
s ( W, (r) )] N W (r) ) ((gf(r)ﬂ'i(r))l/z) .
N2 () + w2 ()12 @2 + w2 (rNV2 T\ (072(x) + w2 ()12
_ P+ i uly (r) <(Q;2(r) + u’i(r))”z) .
(07 2(x) +u'% (r)'/2 () + w2 (N2 \ (072 (x) + w2 ()2

In order to prove that u is indeed an upper barrier we next check that

a,(wf(r) * ”/i(r))m) > 0. (4.9)
@20 +wion'2)
Note that u’, < 0. We observe that
9 04 (r) 72+ (' (r))? -0
or o) 24+ (ul (r)? | ~
if and only if
_ dr0 ) ’\2 Q;L oy
7+ W) (= —ulul) = @ + W (= —ulull). (4.10)
+ + (Q3 + +) + <Q§r + +)

But now integrating (4.8) we get
logo(x) > logoy (r(x))
which implies
1 1
[ES— S S —
o(x) T 04 (r(x))
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and furthermore assuming

dro(x) _ o (r(x0)
0 T g, (r(x)’

we see that (4.10) holds.
Therefore we are left to show that

-2 /2
o1 (r) +u'3(r) I

—nH < 5 > n
077 (x) +u'L(r)

The conditions (4.4) and (4.5) in our mind, we choose H as

- 0l (r) &/r(r))
H =(1— —1 4.11
i) == (@m) =D @10

with some ¢ € (0, 1). Note that then

,
[ nf o0 6 ds = 1 - ooy )
0
and we see that with this choice the denominator in the definition of u stays bounded from
0. Moreover, we have
1—¢
04 (r)V2e —¢&?

and therefore u is well defined, positive and decreasing function if

ul (r) = —

/00 ! dr < oo. (4.12)
1 o+()

Now we can compute
o () +uL(r) _ 07 () + (1= ©)/(0+(Nv2e — 7))’
P HURE) 0720 + (1 =004 (V2 —eD)’
_ 001+ - /e — )
072(x) + 037 (r)(1 — e2)/(2e — &%)

and for example, taking ¢ = 1 — +/2/2 we have
o’ +ui) 20770
o2 +ui() 072 + 0 ()

For the prescribed mean curvature we obtain the bound

-2 RV ) / /
CnHG) < (1— ) Qz+ (r)(1 j‘z(l £)2/(2e — 2)) <Q+(f) (- l)f+("))
072(x) + 0y (N —e?)/(2e — ) \o+(r) §+(r)
which implies that Q[u ] < 0. Similarly, Q[—uy] > 0 if
=2 a2 2 / /
nHE) < (1—8) | -2 (r)(1:|-2(1 £)2/(2¢ — &2)) <Q+(r) e 1)$+(r)>.
072(x) + 01" (N (1 —&2)/(2e — €2) \0+(r) §+(r)
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All together, we have obtained the following.

Lemma 4.1 Let M be a complete Riemannian manifold with a pole o and consider the warped
product manifold M x , R, where o satisfies

drot) _ 0L(r®) o) _ @i(r(n)

) > 4.13
o) T o4(r@)’ e T oy (r(n)? @19
for some positive and increasing C'-function o4 : [0, 00) — (0, 00) such that
0+(0) = 0(0) and /OOQ+(S)_] ds < oo. (4.14)
1
Furthermore, assume that the radial sectional curvatures of M are bounded from above by
£ (r)
Ky(Py) < ————=
RN )
and that the prescribed mean curvature function satisfies
n|H(x)|
-2 a2 2 l ’
g |V Ao/ =) (o) | EC)
072 + 07 (r)) (1 — £2)/(2e — &) \ 0+ (r() £1(r()

(4.15)

for some ¢ € (0, 1). Then the function uy defined by (4.6) and (4.11) satisfies Quy] < 0
and uy > ||¢l||co in M with

up(r) = |lgllco asr — oo. (4.16)

Furthermore Q[—uy] > 0 and —uy < —||¢||co in M.

Remark 4.2 1n particular, if the sectional curvatures of a Cartan—Hadamard manifold M are
bounded from above as

2
Ky (Py) < —a(r(x)) 4.17)
for some smooth function a: [0, o0) — [0, 00), the condition (4.15) reads as

n|H(x)|

=(-e

t -1
=D o)

(4.18)

02 (re))(1+ 1 —e)2/2e —e2) [ o} (()
072(x) + 02 (r(0)) (1 — e2)/(2e — &%) \ 04 (r(x))

£ (r(x))> |

with f, asin (2.3).

In a rotationally symmetric case if ¢ = ¢+ (r) (and (4.12) holds), we see that the bound for
the mean curvature is

0% (r))

+(n—1
0+(r(x) =D

an(X)|§(1—8)< W)

£ (r(x))
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4.1 Example: hyperbolic space

We consider the warped model of H ! given by H" X ¢oshr R, where r is a radial coordinate
in H" defined with respect to a fixed reference point 0 € H". Then the hyperbolic metric is
expressed as

cosh? d#? + dr? + sinh? r d92,

where d9? stands for the standard metric in S"~! C T,H". The flow of the Killing field
X = 9, is given by the hyperbolic translations generated by a geodesic y orthogonal to H"
through o. Since o(r) = coshr and &£ (r) = sinh r in this case, we obtain

o(ME1(r) i sinh” r + (n — 1) cosh? r sinh” 2 r
= l1im
r>o0 [Fo(r)E "l (r)dr  r—oo cosh 7 sinh"~1 r
N A L
r—oc \ coshr sinh r

Therefore a natural bound to the mean curvature function according (4.4) is
|H| <1,

that is, below the mean curvature of horospheres.
We also have for |H| < 1
12 (r)g_2 (r) sinh?" r cosh™2 (r) _ sinh? r

02(NEXn=D(r) — I2(r) = cosh? r sinh2®=D y —sinh?* r ~ cosh?r’

Therefore we have

u?(r) < 1.
If |[H| = cte. < 1 we have an explicit expression

H? cosh? r

2
uw(r)= - ; .
cosh? r — H2 sinh? r sinh? r

4.2 Global barrier V

In this subsection we construct a global barrier using an idea of Mastrolia, Monticelli, and
Punzo [15]; see also [4]. Recall that o : [0, 00) — (0, 00) is an increasing smooth function
satisfying o4 (0) = o(0) and

dro(x) _ o (r(x)

4.19
0@~ o (rv) 19

for all x € M. Then we have an estimate
A togor(x) = (1 — 1)fa(r(X)) 05 (r(x)) 4.20)

Jar(x)) — 04+(r(x))

for the weighted Laplacian of the distance function r. Let ag be a positive function such that

> * ds B
AL ' d ' 4.21
/0 </f Qi(s)f,;H(s))“O(’)fa (ndr < oo 421)
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We define

Vix) = /WL /rma o 1 (0)dr
o 2o i e J\ o T

_/m /OOL ao() f7~1()ydt — D + |lg]|
o\ 2eie) e Pliees

where D is the constant given by (4.23). Denoting V (r) = V (r(x)), we observe that

4.22)

1 r
() . — "~L(1)ds < 0
D= e /0 a0 2 (1)dr <
and
p 1 (n—1)f,(r) 2QL(F))/r o ap(r)
V() = dr — .
“ Qi(r)f:—1<r)< fr) o ) Jy @O O4 =
Since V/(r) < 0, the limit
o0 ds r
D= lin;o[/ 2771/ ao(0) £ (D)t
roo0i () fd(s) Jo 4.23)

—/r/w &, (r)f”*l(z)dt}
TR Y O R

exists. Furthermore, D < 0 (see [15, (4.5)]) and finite by (4.21) and therefore V is well
defined. Next we write

Q[Vv]

@2 HIVVIDHA 16goV — (@ 2+ IVVIDZnH(x) — 5 (V02 + |[VV ), VV)

- (@2 +IVVP)y/

(4.24)

and aim to prove that Q[V] < 0. First we estimate the weighted Laplacian of V by using
(4.20)

A_1ogoV = V() + V’(r)A_logQr

Ja(r) n Q+(r)> V)

v —1
= (r”((” ) T oo

_ 1 (n—1) fa(r) ZQ/JF(V))/’ —1(g
_Qi(r)fé”(r)< Sy onn ) Jy e O

ao(r) 1 (n — l)fa/(r) Q;(l’)) /r .
_ B . )
A RN A (VAR ( falr) o)) Jo O 0di
ao(r) ol (r) /r -
- + 0 frede
20 T ZnaTo J OO0

ar) oL
_ %4 ,
20 o’
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and thus the first term of (4.24) can be estimated as

+
03(r)  0+(r)

(@ 2+ 1VV) A ooV < — (02 + (V/(1))?) (“O(r) 0+(") V’(r>> .

Then, for the last term of (4.24) we have

9
V()
0

1
-3 (V2 +|VVP), VV) = —(V/(n) V() +

_ / 2 /
= —(V/(r)? (((" DS Q+(r)) V() - 20 ) - Zf V().

Ja(r) o+(r) oy (r)

Hence
_ 1 _
202 +IVVI})AliogoV — Egi(m (V2 +IVV 3, vV)

< —0 %ap(r) — 0 20%(r) (Q+(r) - a’Q) V'(r)
o+(r) 0

(n—1)fa(r) N Qﬂ”)
fa(r) 0+(r)

(n—=1)f(r) Q;(ﬂ)
Ja(r) 0+(r))

Finally, if the prescribed mean curvature function satisfies

—2n (V') (

< —o02ap(r) — 2N (V') (

oy 3 ((n=1f) L (r)
0720 (Nao() + (= V') (UpA + £03)
32
(e2+ (Vo))

in M, we obtain Q[V] < 0 as desired. Similarly, we see that Q[—V] > 0 if

—nH <

- 3 ((n-1)f, L)
_ e W) + (= V') (U=pht 4 )
) , 2 3/2 )
(g‘ + (V/(r)) )

Hence we have proved the following uniform height estimate.

nH

Lemma4.3 Let o: M — R be a bounded function and assume that the prescribed mean
curvature function H and the function V defined in (4.22) satisfy

- 3 ((n=1)f] !
0 202 (Nag(r) + (=V'(m) (7('1 ﬁl)(‘f‘)’(r) + gig;)
N3/2
(o2 + (i)

with some positive functions o+ and ag satifying (4.19) and (4.21), respectively. Then

n|H| <

, (4.25)

Vv
AVl =div_jogg ——=————=—nH <0 in M, (4.26)
Vo4 |VV|?
V(x) > |l¢lle forallx e M, (4.27)
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and
lim  V(x) = [l¢]loo- (4.28)
r(x)—>o0

Furthermore, Q[—V] > 0in M.

Next we discuss possible choices of the functions o4 and ag and their influence on the
bound of | H|. Notice that the right hand side of (4.25) can be written as

00 (MNao(r) | (n=1) f1(r) G
(4,,(,)@)3 fa(r) 0+(r)

(14 (= vine) )

Hence if we can choose the comparison manifold M_,20) %o, R and ag such that V'(r)o —
—o0 and

(4.29)

007> (rag(r)
—_—
(= V'(ro)

as r — 00, we obtain

(n—Dfar) e\ ()
Ja(r) o+(r)

n|H| < (4.30)

asymptotically as r — oo.

Example 4.4 1In the hyperbolic case H" ! = H” X coenr R we may take o4 (r) = o = cosh.
Choosing ag(r) = sinh® r forsome « € (1, 2) yields to the natural asymptotic bound |H| < 1
asr — o0o.

Example 4.5 More generally, if N = M x, R, where the sectional curvatures of M have a
negative upper bound —k? and if the warping function o satisfies (4.19) with o4 (r) > cje*”
for some a > 0, then f,(r) ~ e and (4.21) holds if

[e.@]
/ ao(®)e 2 dt < co.
0

Moreover, if o4 (r) < c2eP" for some 0 < B < 2a, then by choosing ag(t) = !, B <k <
2a, we get (4.30) asymptotically as r — oo.

Example4.6 If N = M x, R, where the sectional curvatures of M have a negative upper
bound
D)

K(Py) < —W,

¢>1,

and if the warping function ¢ satisfies (4.19) with o, (r) = cr%, « > 1, then f,(r) =~ r?
and (4.21) holds if

o0
[ ao(r)r~ 2t dr < co.
0

Choosing ag(r) = r”, forsome ¢ — 1 < k < 2(a — 1), we get (4.30) asymptotically as
r — o0.
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5 Barrier at infinity

In this section we assume that M is a Cartan—-Hadamard manifold of dimension n > 2,
dsoM 1is the asymptotic boundary of M, and M = M U 3d,oM the compactification of
M in the cone topology. Recall that the asymptotic boundary is defined as the set of all
equivalence classes of unit speed geodesic rays in M; two such rays y; and y» are equivalent
if sup;~¢ d(yl ), 2 (t)) < 00. The equivalence class of y is denoted by y (c0). For each
x € Mandy e M\ {x} there exists a unique unit speed geodesic y*¥: R — M such that
Yo" =xandy,”" = yforsomet € (0, 00]. If v € T, M \ {0}, > 0, and r > 0, we define
acone

Cw,e) ={ye M\ {x}:<v,y”) <a}
and a truncated cone
T(,a,r)=C,a)\ B(x,r),

where <((v, )'/(“; ') is the angle between vectors v and )'/6r Y in T, M. All cones and open balls
in M form a basis for the cone topology on M.

Throughout this section, we assume that the sectional curvatures of M are bounded from
below and above by

—(bor)*(x) < K(Py) < —(aor)*(x) (5.1)

for all x € M, where r(x) = d(o, x) is the distance to a fixed point 0 € M and Py is
any 2-dimensional subspace of Ty M. The functions a, b: [0, co) — [0, co) are assumed to
be smooth such that a(t) = 0 and b(¢) is constant for ¢t € [0, Tp] for some Ty > 0, and
that assumptions (A1)—(A7) hold. These curvature bounds are needed to control the first two
derivatives of “barrier” functions that we will construct in the next subsection. We assume that
function b in (5.1) is monotonic and that there exist positive constants 77 > Ty, C1, Ca, C3,
and Q € (0, 1) such that

O\ Er o
forall t+ > T; and
a(r) = Cy, (A2)
bt +1) = Cab(1), (A3)
b(t/2) < C2b(1), (A4)
b(t) = C3(1+1)7° (AS)
for all + > 0. In addition, we assume that
/
i, 72 = "o
and that there exists a constant C4 > 0 such that
4 Cap(r) o A

im ———
t—oo  f é (1)
see (2.3) for the definition of f,.
We recall from [13] the following two examples of functions a and b.
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Example 5.1 Let C; = /¢ (¢ — 1), where ¢ > 1 is a constant. For t > Ry let

a(t) = Q
t
and
b(r) = 19722,

where 0 < ¢ < 2¢ — 2, and extend them to smooth functions a: [0, co) — (0, co) and
b: [0, 00) — (0, 0o) such that they are constants in some neighborhood of 0, b is monotonic
and b > a. Then a and b satisfy (A1)—(A7) with constants 71 = Ry, Cy, some C; > 0, some
C3 > 0,0 =max{l/2, —¢p+2+¢/2},and any C4 € (0, £/2). Itis easy to verify that then

fa@t) = c11? 4 2t 79

for all t > R(, where

—¢ Ja(Ro)(¢ — 1) 4+ Ro f;(Ro) -

c1 =R, -1 0,
and
¢—1 fa(Ro)® — Ro f;(Ro)
=R, .

2¢ — 1

We then have
[ !
A
=00 fu (1)
and, for all C4 € (0, £/2)
tl+C4b ¢
() _o.

im ———
t—00 ft; ([)

It follows that a and b satisfy (A1)—(A7) with constants 71 = Ry, C1, some C, > 0, some

C3 >0, 0 =max{1/2, —¢ + 2+ ¢/2}, and any C4 € (0, £/2).

Example 5.2 Let k > 0 and ¢ > 0 be constants and define a(¢) = k for all + > 0. Define

b([) — [—I—S/Zekl‘

fort > Ro = ro + 1, where ro > 0 is so large that  — ~17¢/2¢¥ is increasing and greater

than k for all + > rg. Extend b to an increasing smooth function b: [0, c0) — [k, 00) that
is constant in some neighborhood of 0. We can choose C; > 0 in (Al) as large as we wish.
Then a and b satisfy (A1)-(A7) with constants C1, T1 = C1/k, some C> > 0, some C3 > 0,
Q0 =1/2,and any C4 € (0, £/2).

5.1 Construction of a barrier

Following [13], we construct a barrier function for each boundary point xo € 9., M. Towards
this end let vp = )'/6’ **0 be the initial (unit) vector of the geodesic ray y?* from a fixed point
0 € M and define a function / : 0o M — R,

h(x) = min(1, L<(vo, 7)), (5.2)
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where L € (8/m, 00) is a constant. Then we define a crude extension i € C(M), with
h|dscM = h, by setting

fz(x) = min(l, maX(Z —2r(x), L<t(vg, )}OO’X))). 5.3)

Finally, we smooth out h to get an extension 1 € C®(M) N C(M) with controlled first
and second order derivatives. For that purpose, we fix x € C®°(R) such that 0 < xy < 1,
supp x C [—2,2],and x|[—1, 1] = 1. Then for any function ¢ € C (M) we define functions
Fo: M xM — R, R(¢): M — M, and P(p): M — R by

Fy(x,y) = x(br(md(x, »))e®k),
Rp)(x) = fM Fy(x, y)dm(y), and

R(e)

Plp) = R

where
RD(x) = /M x (b(r(y)d(x, y))dm(y) > 0.

Thus P(g) is an integral average of ¢ with respect to x similar to thatin [1, p. 436] except that
here the function b is taken into account explicitly. If ¢ € C(M), we extend P(¢): M — R
to a function M — R by setting P(¢)(x) = ¢(x) whenever x € M (0c0). Then the extended
function P(¢) is C*°-smooth in M and continuous in M see [13, Lemma 3.13]. In particular,
applying P to the function & yields an appropriate smooth extension

h = P(h) (5.4)

of the original function i € C(3x0M) that was defined in (5.2).
We denote

Q=C(o,l/L)YNM and €Q = C(vo,¢/L)YNM
for £ > 0. We collect together all these constants and functions and denote
C=(a,b,T1,C1,C2,C3,C4, Q,n, L).

Furthermore, we denote by || Hess, u|| the norm of the Hessian of a smooth function « at x,
that is

|| Hessy u|| = sup |Hessu(X, X)]|.
XeTxM
[X]=1
The following lemma gives the desired estimates for derivatives of k. We refer to [13] for
the proofs of these estimates; see also [6].

Lemma5.3 [/3, Lemma 3.16] There exist constants Ry = R; (C) and c¢1 = ¢1(C) such that
the extended function h € C*°(M) N C(M) in (5.4) satisfies

1
Vh _
VROl = e o h @

(bor)(x)
"Saor)

(5.5)
[ Hessy h|| < ¢

@ Springer



240 J.-B. Casteras et al.

forall x € 3Q2\ B(o, Ry). In addition,
h(x) =1
foreveryx € M \ (29 U B(o, Rl)).

Let A > 0 be a fixed constant, and R3 > 0 and § > 0 constants that will be determined
later, and /4 the function defined in (5.4). We will show that a function

V= AR +h) (5.6)
is a supersolution
Vy

——— —nH
Ve +|Vy|?

\% \Y
:diva+<Vlogg, Ww>—nH <0

Qy] = diV—logg

in the 3Q2 \ B(o, R3). In the proof we shall use the following estimates obtained in [13]:

Lemma5.4 [13, Lemma 3.17] There exist constants Ry, = Ry(C) and ¢y = c»(C) with the
Sfollowing property. If § € (0, 1), then

IVh| < c2f/(faor),
I Hess k|| < cor™ " (f)0r)/(faor),
IV(Vh, V)| < cor™ 72 (f) o r)/(faor),
IV(VR, V()| < cor™ @2 (f) o) /(fa o 1),
V(VG™), Vo)) = =28 + Dr @ vr
in the set 32\ B(o, Ry).

Let us denote
1+,/1+4C? 1 1
SOV T and 8 =mindcygo, 2T DO,
2 1+ — g
where C| and Cy4 are constants defined in (A1) and (A7), respectively.

¢:

Lemma 5.5 Assume that the prescribed mean curvature function H satisfies

Cot 11 ORI 1
sup n|H(x)| < 0 <(n— pyLald) | e —7> (5.7)
r(x)=t Vo 2(t) + (Cor—5-1)2 fa@®) 0 1
for some positive constants Cy > 1 and 6 < min{d1, ¢ — 1}, and that the warping function
o satisfies
a !
max (O, ! rQ) =0 (rf“ (r)) (5.8)
Q Ja(r)
and
Ja(r)
Vol =0(,5+1 19,0l (5.9)

as r — 00. Then there exists a constant R3 = Rj3 (_C, Co, 8) > Ry such that the function
defined in (5.6) satisfies Q[v] < 0 in the set 32\ B(o, R3).
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Proof In the proof we will denote by ¢ those positive constants whose actual value is irrelevant
and may vary even within a line. Furthermore, the estimates will be done in 322 \ B(o, R3),
with Rj3 large enough. Note that

Aciogo¥ 1V +IVYP), Vy)
Jolr VY 2 @+ VU
_ @ IVYPDA ooV — 3 (V@2 + VYD), YY) - @72 + [V ¥k
(@72 + VY232
and hence we only need to find R3 = R3(C, Cp, §) > R so that

@ >+ IVyH3 2y

1
=+ VYDA 10go¥ — 5 (V™ + VY, Vi) — (02 + VY)Y nH < 0
(5.10)

Qy] = —nH

holds in the set 3Q2 \ B(o, R3).
The function v is C°°-smooth and, in M \ {0}, we have

Vi = A(=R38r°71Vr 4 Vh).

ByLemma5.3,|Vh| <c1/f,(r) < §r=%=1 whenr is large enoughand 0 < § < min{§;, ¢ —
1}; see [13, (3.30)]. Hence, for any fixed ¢ > 0, we have

IVY > = (AR}S)*r 7% + A*|Vh|* — 2A>R38r =2~ (Vr, V)
< A%8%(R3® +2RS + 1)r 2072
< (1+e)(AR38) 272
and
V|2 > A%6%(RP —2RS)r 272 > (1 — &)(AR38)* r 272
in 3Q \ B(o, R3) for Rj large enough.
Next we fix € > 0 so that
5+1
ol oL (5.11)
(n =D =8¢
which is possible since § < §;1. To simplify the notation below, we denote & = ¢ sgn(9,0).
In order to estimate the first term in the right-hand side of (5.10), we first observe that
rfi(r)  rdo  S+1
Ja(r) Q l—¢

forr > R3 by (5.8) and (5.11); see [13, (3.25)]. Then we can estimate the weighted Laplacian
of ¥ as

S UESY)

<0 (5.12)

A_togo¥ = ARSA _1ogor % + AA_1ogoh
8 —s 1 -3 1
=AR; (Ar—°+ = (Vo V(™)) + A Ah + — (Vo, Vh)
0 0

1
= AR} <—3r*HAr =81 —(Vo, Vr) + (8 + 1)r*H>
0
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1
+A (Ah + — (Vo, vm)
0

<ARJS (—(n - 1)’}{3((:)) _Ie sy 1) pi2

A —ci1Ja) 62|VQ|>
("c” fu) " 0falr)
5AR§8 (—(1 — 8)]([’1(; Drf,(r) _ (1 —-28&)roo 54 1) 52 _ g

for r > Rj3. In the last step we used (5.8), (5.9), and the fact that C4 > §. Hence

© 2+ VU A 1090

<—(e?+1- e)(AR§8)2r*2‘S’2)AR§a<(1 — &)= Drfa(r)
Sa(r)
+ % 1= 8),.7872. (5'13)

To estimate the second term of (5.10) we split it into two parts as
1 _ 1 _ 1
=5 (V@ +IVYP), Vi) = =2 (V(@™), V) = S (VIVY I, V).

For the first term, by (5.9) and Lemma 5.4, we have

1 2 Vo Vo §g . —5—1 Vo
—E(V(g ),V¢):<—3,V1//>:<—3,—AR3& Vr)+ ?,sz

B \%

< — AR 22 1A 3| al
e 0> fa(r)

~ §g.—5—10rQ
= -1 =8ARr" 5. (5.14)
o

To estimate the second term we note that

VIVY|? = A2V (RSV(r =) + Vi, RSV (r—) + Vh)
= (ARD*V(V(r™), V(r™®)) + 242 RV (V(r™?), Vh) + A*V (Vh, Vh)

and hence, by a straightforward computation using the estimates of Lemma 5.4, we get

1 1
=5 (VIVU I, Vi) = = S(ARD*(V(VG™), V™), V)
— AR} (V(V(r™®), Vi), Vi) — %AZ (V(Vh,Vh), V)

<(ARS8)2(5 + yr 273 (Vr, V) +A2R§C27_C4_2%|Vw|

oo _ciafa®)
+§A cor 4 m|v'¢f|

<(AR38)*(8 + )r =73 (Vr, —AR38r —°~'Vr + AVh)

_C _5_3f¢;(”)
e o
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35— o531 —cys_3 fa)
< op3h 283 4 op—Ca—o-3Ja
B fa(r) far)
< —cr 0Ty opm e j:z E:i (5.15)

—26-3

where in the last step we have absorbed the term cr % into the first by using the fact

that f,(r) > cr® and the choice of § < ¢ — 1. Putting together (5.14) and (5.15) we get

1 ) ’
(V> + V), Vy) < —(1 — E)ARgar‘B‘lr—f e S /10)
0

2 G
and combining this with (5.13) yields
1
@72 + VYA toge¥ = 5 (V@2 + VYD), VY
- _AR2§a ((1 — O —Drfa)  20=8rde o 1) 52
0 Ja(r) 0
— (1= &) (AR} <(1 - s)(; (—r)l)rfa(r) (11— z)ra,g s +C> vy
(5.16)

where we have absorbed the positive term cr =473 £/(r)/ f,(r) by using the assumption
8 < C4/2. Finally, using the assumption (5.7) we can estimate the term involving the mean
curvature as

— (@ + VY1) *nH
< 1+ (072 + (AR} r 2723 n|H]|
< < ((n - 1)”f¢;(”) + 70,0 _ 1) r_gl_z

T o fa(r) 0
c <(” —Drfa() | rdre 1) pmBhd (5.17)

Ja(r) Q
Combining (5.16) and (5.17) and noting that §; > § we obtain (5.10) and the claim follows.
m}

Remark 5.6 In the case of the hyperbolic (ambient) space H'"t! = H" xosh, R we have
0 = 04 (r) = coshr and f,(r) = sinhr on H" for any reference point o € H". Hence (5.8)
and (5.9) hold trivially. Moreover, we may choose ¢ > 1 as large as we wish by increasing
R3 and therefore (5.11) and (5.12) hold even with § = §;. Finally,

—@ 2+ VYD PnH < (1 + &) (AR3S) r > =3)n|H]|

for r large enough, and consequently we may assume § = §; in (5.7) thus reducing it to an
asymptotically sharp assumption.
Similarly, if the sectional curvatures of M have estimates

—r(n) Y < K(P) < -k
for r(x) > Rp as in Example 5.2 and if the warping function o satisfies (5.8), (5.9), and
o(x) = cr(x)?

for r(x) > Ro, we may take § = &1 in (5.7).
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6 Solving the asymptotic Dirichlet problem

In this section we solve the asymptotic Dirichlet problem (5.1) on a Cartan—-Hadamard man-
ifold M with given boundary data ¢ € C(3o0M). If the ambient manifold N = M x, Risa
Cartan—Hadamard manifold, too, we will interpret the graph S = {(x, u(x)): x € M} of the
solution u as a Killing graph with prescribed mean curvature H and continuous boundary
values at infinity. We recall from [2, 7.7] that N is a Cartan—-Hadamard manifold if and only
if the warping function o is convex. In that case we may consider d.o M as a subset of doo N
in the sense that a representative y of a boundary point xo € d.c M is also a representative of
a point Xp € dso N since M is a totally geodesic submanifold of N. Given ¢ € C(d,cM) we
define its Killing graph on 9., N as follows. For x € 9., M, take the (totally geodesic) leaf

Moy =V (M, p(x)) = {(y, ¢(x)): y € M} C M xR,

where W is the flow generated by X. Let y* be any geodesic on M representing x. Then
yiit = W(y*(@), ¢(x)) is a geodesic on My(,) and also on N since W(-, ¢(x)) is an
isometry. Hence y* defines a point in dooN which we, by abusing the notation, denote by
(x, @(x)). Using this notation, we call the set

I'={(x,9(x)): X € 0ccM} C oo N

the Killing graph of ¢. Note that, in general, dc N has no canonical smooth structure.

Lemma 6.1 Let u be the solution to (5.1) with boundary data ¢ and let S be the graph of u.
If 30 S = S\S, where § is the closure of S in the cone topology N, we have 3,S = T.

Proof Suppose first that x € 95 and let (x;, u(x;)) be a sequence in S converging to x
in the cone topology of N. Since M is compact, there exist xo € dooM and a subsequence
(xi;, u(x;;)) such that x;; — xo € dooM in the cone topology of M. Hence u(xi;) —
®(x0), and consequently (x;;, u(x;;)) — (X0, ¢(x0)) in the product topology of M x R. On
the other hand, \Il(x,-j ,@(x0)) — (x0, ¢(xp)) in the cone topology of M y,). We need to
verify that W (x; > u(xi;)) = (x0, ¢(x0)) in the cone topology of N which then implies that
x = (x0, ¢(xp)) € I'. Towards this end, let V be an arbitrary cone neighborhood in N of
(x0, ¢(x0)) and let o be a geodesic ray emanating from (o, ¢(xg)) representing (xo, go(xg))
It is a geodesic ray both in N and in My, yy). Let T (69, 2, r) C V be a truncated cone in N
and T := TM(6y, a, 2r) a truncated cone in M(/,(XO) Then W (T, (¢(x9) —6, ¢(x0)+6)) C V
for sufficiently small § > 0. It follows that \IJ(x,J, u(x,_])) € V for all i; large enough, and
therefore x = (xg, ¢(xg)) € I'.

Conversely, if (xg, ¢(x9)) € T, let x;, € M be a sequence such that x; — xo in the
cone topology of M. Then W (x;, u(x;)) € S and (x;, u(x;)) — (xo, ¢(x0)) in the product
topology of M x R. We need to show that W (x;, u(x;)) — (xo, ¢(x0)) € T in the cone
topology of N. To prove this, fix 0 = W(x, ¢(x9)) € My, and let o be a geodesic
ray in N (and in My (y,)) representing (x0, ¢(x0)). Let V.= T(o0, 2, ) be an arbitrary
truncated cone neighborhood in N of (xp, ¢(x0)). Furthermore, let 5 > 0 be so small that
U := ¥(V, (p(x0) — 8, p(x0) + 8)) C V, where V = T(60,, 2r) is a truncated cone
neighborhood in My, of (xp, ¢(x0)). Since x; — xp and u(x;) — @(xp), we obtain
W (x;, u(x;)) € U for all sufficiently large i. Hence W (x;, u(x;)) — (x0, ¢(x0)) € T in the
cone topology of N. O

We formulate our global existence results in the following two theorems depending on
the assumption on the prescribed mean curvature function H.
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Theorem 6.2 Let M be a Cartan—Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)—(AT7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H: M — R satisfies the assumptions (4.18) and (5.7) with a convex warping
function o satisfying (4.13), (4.14), (5.8), and (5.9). Then there exists a unique solution
u: M — R to the Dirichlet problem

Vu .
———— =nH(x) inM
Vo 2+ |Vul? (5.1)

UldooM = ¢

div_ logo

Sfor any continuous function ¢: deoM — R.

Theorem 6.3 Let M be a Cartan—Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)—(A7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H: M — R satisfies the assumptions (4.25) and (5.7) with a convex warping
Sunction o satisfying (4.19), (5.8), and (5.9). Then there exists a unique solution u: M — R
to the Dirichlet problem (5.1) for any continuous function ¢ : doocM — R.

Proof The proofs of Theorems 6.2 and 6.3 are similar. The only difference is to use the global
barrier u4 in Lemma 4.1 for 6.2 relative to V in Lemma 4.3 for 6.3.

Extend the boundary data function ¢ € C (8-, M) to a function ¢ € C(M) and let By =
B(o,k), k € N be an exhaustion of M. Then by Corollary 2.2 there exist solutions uj €
C%%(By) N C(By) to the Dirichlet problem

. Vuy .
div_1ogo ———— = nH(x) in By
Vo2 + |Vu|?
ug|0By = .

By Lemma 4.1, we see that the sequence (i) is uniformly bounded. Applying the gradient
estimates in compact domains and then the diagonal argument, we obtain a subsequence
converging locally uniformly with respect to C2-norm to a solution u. Next we show that u
extends continuously to the boundary 9o M with u|0c M = ¢.

Let xo € dooM and ¢ > 0 be fixed. By the continuity of the function ¢ we find a constant
L € (8/m, o0) so that

lp(y) —@(x0)| < €/2

whenever y € C(vg, 4/L) N 0o M, where vo = )}00 Y0 is the initial direction of the geodesic

ray representing x¢. Taking (4.16) into account, we can choose R3 in Lemma 5.5 so big that
uy(r) <llglloc + /2 whenr > Rs.
We will show that

W ()= — Y (x) + @) —& < ulx) < wh @)=y ) +px) +¢ (5.2

in the set U:=3Q \ B(o, R3). Here v o= A(R‘gr“S + h) is the supersolution from the
Lemma 5.5 and A = 2||¢||co- )

Again, by the continuity of the function ¢ in M, we can choose ko such that 0 By NU # ¢
and

lp(x) — @(xo)| < &/2 (5.3)
for every x € By N U when k > ko. We denote V;, = By N U for k > ko and note that
Ve = (ByNU)U (U N By).
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We prove (5.2) by showing that
w <up < wt 5.4)

holds in Vj for every k > ko. .
Letk > ko and x € dBx N U. Since uy|0 By = ¢|d Bk, (5.3) implies

w™(x) < @x0) —&/2 < 9(x) = ur(x) < @(x0) +£/2 < wh(x).
By Lemma 5.3
hIM\ (22U B(o, Ry)) =1
and since R‘gr“S = 1 on dB(o, R3) we have

¥ = A=2l¢llo

on dU N By. Since u from Lemma 4.1 is global supersolution with u > ||¢||c on 0By,
the comparison principle gives u| By < u.|By and by the choice of R3, we have

uk < @lloo + /2

in the set By \ B(o, R3).
Putting all together, it follows that

wh =9y +9x0) +& > 2/|gllo + @(x0) + & = |l@lloo + & > ux

on dU N By. Similarly we have uy > w™ on dU N By and therefore w™ < u; < wt on
dVi. By Lemma 5.5 1 is a supersolution in U and hence the comparison principle yields
uxy < wtin U. On the other hand, —1 is a subsolution in U, so ux > w™ in U, and (5.4)
follows. This is true for every k > ko so we have (5.2). Since lim,_, y, ¥ (x) = 0, we have
lim sup [u(x) — @(xo)| < &.
X—>X0
The point xg € 9d,0M and constant & > 0 were arbitrary so this shows that u extends
continuously to C (M) and u|dsc M = ¢. Finally, the uniqueness follows from the comparison
principle. O

7 Non-existence result

In the following, we state a non-existence result for the prescribed weighted mean curvature
graph equation by adapting the approach of Pigola, Rigoli and Setti in [16]. We denote by
A(r) the area of the geodesic sphere d B(o, r) centred at a fixed pointo € M.

Proposition 7.1 Let p: [0, 00) — [0, 00) be a continuous function such that for some R>0
and for all r > R at least one of the following conditions is satisfied:

exp (D (fy «/p(s)ds)z) [ .
oA P e-b
for some constant D > 0 and a smooth function gy, so that o(x) < po(r(x)), or
3r/2 2
(/772 vpGias)
> h(r) ¢ L'(4+00) (5.2)

rlog (00(2r)? vol(B(o, 2r))) —
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with some continuous and monotonically non-increasing h : [R, 00) = (0,00). Letu, v €
C2(M) satisfy

di Vu di Vv )
iv_| — —div_; - —g(x
ogo /—sz ¥ [VuP ogo /—9*2 VR q
> p(r(x))oo(r(x)) =0, (5.3)

and

sup(u — v) < 4o00.
M

Then, if g # O, there are no solutions to (5.3).

Proof The proof is very similar to that in [16], the only differences being our use of the
divergence operator with respect to the weighted volume form odM and a suitable form of
the Mikljukov-Hwang-Collin-Krust inequality which in our setting reads as follows

Vu Vv
- ,Vu — Vo
Vo2 +|Vul2 o2+ |Vuf?

1
=5 <\/Q_2 + | Vu|? + \/Q—Q + |Vv|2>

Vu Vv
Vo 2+ Vul2 ol +|Vuf?

Together these result in the extra factors of gg in (5.1), (5.2), and on the right hand side of
(5.3). Taking into account these differences the proof in [16] applies almost verbatim. O

Vu Vv

Vot IVulP o X+ Vol
2

-1

As direct corollaries of the previous theorem, we have

Corollary 7.2 Let u be a bounded solution to
Vu

Vo4 |Vul?

div_1og, =nH(x) inM,

with H > 0.
(i) Suppose that o(x) < Qo(r(x)) < rx)P, B > 0, and that A(r) < rP2, By > 0, for

large values of r = r(x). Then

liminf H (x) - re)logr) _
r(x)—00 00(r(x))
(i) Suppose that o(x) < Qo(r(x)) < ePrr0), B1 > 0, and that A(r) < ePr B2 > 0, for
large values of r = r(x). Then

L r(x)logr(x)
1 fHx)- ———=0
AL @)

(iii) Suppose that o(x) < Qo(r(x)) < eﬂlr(")z, B1 > 0, and that A(r) < eﬁ”z, B2 > 0, for
large values of r = r(x). Then
logr(x) B

liminf H(x) - ———— =0
r(x)—00 *x) Qo(}’(x))
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Proof By choosing p(s) = (szlog $)~1in (1), we see that (5.1) holds, and therefore the
claim follows. Similarly, choosing p(s) = (s log $)"Vin (i) or p(s) = (log $)~!in (iii), the
condition (5.2) holds and the claim follows. ]

Acknowledgements Open access funding provided by University of Helsinki including Helsinki University
Central Hospital.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Anderson, M.T., Schoen, R.: Positive harmonic functions on complete manifolds of negative curvature.
Ann. Math. (2) 121(3), 429-461 (1985)
2. Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1-49 (1969)
3. Bombieri, E., De Giorgi, E., Miranda, M.: Una maggiorazione a priori relativa alle ipersuperfici minimali
non parametriche. Arch. Rational Mech. Anal. 32, 255-267 (1969)
4. Casteras, J.B., Heinonen, E., Holopainen, I.: Dirichlet problem for f-minimal graphs. J. Anal. Math., To
appear
5. Casteras, J.B., Heinonen, E., Holopainen, I.: Existence and non-existence of minimal graphic and p-
harmonic functions. Proc. R. Soc. Edinburgh Sect. A, To appear
6. Casteras, J.B., Holopainen, I., Ripoll, J.B.: Convexity at infinity in Cartan—Hadamard manifolds and
applications to the asymptotic Dirichlet and Plateau problems. Math. Z. 290(1-2), 221-250 (2018)
7. Dajczer, M., de Lira, ].H.S.: Entire bounded constant mean curvature Killing graphs. J. Math. Pures Appl.
(9) 103(1), 219-227 (2015)
8. Dajczer, M., de Lira, J.H.: Entire unbounded constant mean curvature Killing graphs. Bull. Braz. Math.
Soc. (N.S.) 48(2), 187-198 (2017)
9. Dajczer, M., Ripoll, J.: An extension of a theorem of Serrin to graphs in warped products. J. Geom. Anal.
15(2), 193-205 (2005)
10. Dajczer, M., Hinojosa, P.A., de Lira, J.H.: Killing graphs with prescribed mean curvature. Calc. Var.
Partial Differ. Equ. 33(2), 231-248 (2008)
11. Dajczer, M., de Lira, J.H., Ripoll, J.: An interior gradient estimate for the mean curvature equation of
Killing graphs and applications. J. Anal. Math. 129, 91-103 (2016)
12. Ding, Q., Jost, J., Xin, Y.: Minimal graphic functions on manifolds of nonnegative Ricci curvature.
Commun. Pure Appl. Math. 69(2), 323-371 (2016)
13. Holopainen, L., Vihikangas, A.: Asymptotic Dirichlet problem on negatively curved spaces. J. Anal. 15,
63-110 (2007)
14. Korevaar, N.: An easy proof of the interior gradient bound for solutions to the prescribed mean curvature
equation. In Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), volume 45
of Proc. Sympos. Pure Math., pages 81-89. Amer. Math. Soc., Providence, RI (1986)
15. Mastrolia, P., Monticelli, D.D., Punzo, E.: Elliptic and parabolic equations with Dirichlet conditions at
infinity on Riemannian manifolds. Adv. Differ. Equ. 23(1-2), 89-108 (2018)
16. Pigola, S., Rigoli, M., Setti, A.G.: Some remarks on the prescribed mean curvature equation on complete
manifolds. Pac. J. Math. 206(1), 195-217 (2002)
17. Ripoll, J., Telichevesky, M.: On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic
space. Bull. Braz. Math. Soc. (N.S.) (2018)
18. Rosenberg, Harold, Schulze, Felix, Spruck, Joel: The half-space property and entire positive minimal
graphs in M x R. J. Differ. Geom. 95(2), 321-336 (2013)
19. Spruck, J.: Interior gradient estimates and existence theorems for constant mean curvature graphs in
M" x R. Pure Appl. Math. Q., 3(3, Special Issue: In honor of Leon Simon. Part 2):785-800 (2007)
20. Wang, X.J.: Interior gradient estimates for mean curvature equations. Math. Z. 228(1), 73-81 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://creativecommons.org/licenses/by/4.0/

	Asymptotic Dirichlet problems in warped products
	Abstract
	1 Introduction
	2 Main results
	3 A priori height and gradient estimates
	3.1 Height estimate
	3.2 Boundary gradient estimate
	3.3 Interior gradient estimate

	4 Global barriers
	4.1 Example: hyperbolic space
	4.2 Global barrier V

	5 Barrier at infinity
	5.1 Construction of a barrier

	6 Solving the asymptotic Dirichlet problem
	7 Non-existence result
	Acknowledgements
	References




