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Abstract
We study the asymptotic Dirichlet problem for Killing graphswith prescribedmean curvature
H in warped product manifolds M ×� R. In the first part of the paper, we prove the existence
of Killing graphs with prescribed boundary on geodesic balls under suitable assumptions on
H and the mean curvature of the Killing cylinders over geodesic spheres. In the process we
obtain a uniform interior gradient estimate improving previous results byDajczer and de Lira.
In the second part we solve the asymptotic Dirichlet problem in a large class of manifolds
whose sectional curvatures are allowed to go to 0 or to −∞ provided that H satisfies certain
bounds with respect to the sectional curvatures of M and the norm of the Killing vector field.
Finally we obtain non-existence results if the prescribed mean curvature function H grows
too fast.
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1 Introduction

Let N be a Riemannian manifold of the form N = M ×� R, where M is a complete n-
dimensional Riemannian manifold and � ∈ C∞(M) is a smooth (warping) function. This
means that the Riemannian metric ḡ in N is of the form

ḡ = (� ◦ π1)
2π∗

2 dt2 + π∗
1 g, (1.1)

where g denotes the Riemannian metric in M whereas t is the natural coordinate in R and
π1 : M × R → M and π2 : M × R → R are the standard projections. It follows that the
coordinate vector field X = ∂t is a Killing field and that � = |X | on M . Since the norm of X
is preserved along its flow lines, we may extend � to a smooth function � = |X | ∈ C∞(N ).
From now on, we suppose that � > 0 on M .

In this paper we study Killing graphs with prescribed mean curvature. Such graphs were
introduced by Dajczer and Ripoll in [9], where the Dirichlet problem for a graph of constant
mean curvature H with C2,α boundary values was solved in a bounded domain � contained
in a normal geodesic disk D ⊂ M of radius r0 under hypothesis involving r0, data on �, and
the curvature of the ambient 3-dimensional space N . A bit later in [10] the Dirichlet problem
for prescribed mean curvature H ∈ Cα with C2,α boundary values was solved in bounded
domains � ⊂ M with C2,α boundary again under hypothesis involving data on � and the
Ricci curvature of the ambient space N . Recall that given a domain � ⊂ M , the Killing
graph of a C2 function u : � → R is the hypersurface given by

�u = {(x, u(x)) : x ∈ �} ⊂ M × R.

In other words,

�u = {�(x, u(x)) : x ∈ �},
where � : �×R → N is the flow generated by X . In [11] the Dirichlet problem was solved
with merely continuous boundary data. Furthermore, the authors proved the existence and
uniqueness of so-called radial graphs in the hyperbolic spaceHn+1 with prescribedmean cur-
vature and asymptotic boundary data at infinity thus solving the asymptotic Dirichlet problem
in H

n ×cosh r R. One of our goals in the current paper is to solve the asymptotic Dirichlet
problem with prescribed mean curvature in a large class of negatively curved manifolds.
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Asymptotic Dirichlet problems in warped products 213

On the other hand, it is an interesting question under which conditions on a Riemannian
manifold M every entire constant mean curvature graph over M is a slice, i.e. a graph of a
constant function. The first such result is the celebrated theorem due to Bombieri, De Giorgi,
and Miranda [3] that an entire minimal positive graph over Rn is a totally geodesic slice.
Their result was extended by Rosenberg, Schulze, and Spruck [18] to a complete Riemannian
manifold M with nonnegative Ricci curvature and the sectional curvature bounded from
below by a negative constant. Ding, Jost, and Xin considered in [12] complete, noncompact
Riemannian manifolds with nonnegative Ricci curvature, Euclidean volume growth, and
quadratic decay of the curvature tensor. They proved that an entire minimal graph over such
a manifold M must be a slice if its height function has at most linear growth on one side
unless M is isometric to Euclidean space. In the recent paper [5] Casteras, Heinonen, and
Holopainen showed that a minimal positive graph over a complete Riemannian manifold
with asymptotically nonnegative sectional curvature and only one end is a slice if its height
function has at most linear growth. Entire Killing graphs in M ×� R with constant mean
curvature were studied in [7,8]. In particular, it was shown in [7] that a bounded entire
Killing graph of constant mean curvature must be a slice if RicM ≥ 0, KM ≥ −K0 for some
K0 ≥ 0, and if � ≥ �0 > 0, with ||�||C2(M) < ∞.

Our current paper is inspired by the above mentioned research [7,8,10,11] on Killing
graphs with prescribed mean curvature as well as by the recent paper [4]. In the latter,
the asymptotic Dirichlet problem for f -minimal graphs in Cartan–Hadamard manifolds M
has been studied. Recall that f -minimal hypersurfaces are natural generalizations of self-
shrinkers which play a crucial role in the study of mean curvature flow. Moreover, they are
minimal hypersurfaces of weighted manifolds M f = (

M, g, e− f d volM
)
, where (M, g) is

a complete Riemannian manifold with the Riemannian volume element d volM .
Returning to the Killing graph �u of a function u, we note that the induced metric in �u

has components

gi j + �2(x)ui u j , (1.2)

where gi j are local components of the metric g. The induced volume element in �u (or
equivalently, on the domain � ⊂ M) is given by

d� = �

√
�−2 + |∇u|2 dM .

We consider the constrained area functional

AH [u] =
∫

�

�

√
�−2 + |∇u|2 dM + VH [u],

where

VH [u] =
∫

�

∫ u(x)�(x)

0
nHdM =

∫

�

nH�u dM

and H is a smooth function on �. Given an arbitrary compactly supported function v ∈
C∞
0 (�) we have the first variation formula

δAH [u] · v = d

ds

∣∣∣
s=0

AH [u + sv] = −
∫

�

(
div
(∇u

W

)
+
〈
∇ log �,

∇u

W

〉
− nH

)
v� dM,

where

W =
√

�−2 + |∇u|2
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214 J.-B. Casteras et al.

and the differential operators ∇ and div are taken with respect to the metric g in M . Then the
Euler-Lagrange equation of this functional is

div
(∇u

W

)
+
〈
∇ log �,

∇u

W

〉
= nH (1.3)

and H(x) is the mean curvature of the graph �u ⊂ M ×� R at (x, u(x)). The equation (1.3)
can be rewritten as

div− log �

(∇u

W

)
= nH ,

where the weighted divergence operator corresponding to a smooth density function f ∈
C∞(M) is defined by

div f Z = e f div(e− f Z) = divZ − 〈∇ f , Z〉.
Note that this is the divergence-form operator that fits well with the weighted measure � dM
in the sense that a suitable version of the divergence theorem is still valid in this context.
Reasoning another way around, since � is oriented by the normal vector field

N = 1

W

(
�−2X − ∇u|(x,u(x))

)

and
〈
∇ log �,

∇u

W

〉
= −〈∇̄ log �, N 〉,

where ∇̄ is the Riemannian connection in N , we can interpret

Hlog � = H + 1

n
〈∇ log �, N 〉

as a weighted mean curvature of the submanifold �u in the Riemannian product M × R in
the sense that the Euler-Lagrange PDE may be rewritten as

div
(∇u

W

)
= nHlog �.

More generally, if f is an arbitrary density in M we consider a weighted area functional of
the form

AH , f [u] =
∫

�

e− f �

√
�−2 + |∇u|2 dM +

∫

�

nHe− f �u dM .

In this case, the Euler-Lagrange equation is

div f

(∇u

W

)
+
〈
∇ log �,

∇u

W

〉
= nH . (1.4)

As before, this equation may be rewritten either in terms of a modified weighted divergence

div f −log �

(∇u

W

)
= nH

or as a prescribed weighted mean curvature equation

div f

(∇u

W

)
:= div

(∇u

W

)
+ 〈∇̄ f , N 〉 = nHlog �.
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Asymptotic Dirichlet problems in warped products 215

For the time being, we restrict ourselves to the case where f = 0. Intrinsically, given a
hypersurface � ⊂ N and denoting u = t |� , the parametric counterpart of (1.3) is


�u = nH〈N , ∂t 〉 − 2〈∇� log �,∇�u〉, (1.5)

where
� is the Laplace-Beltrami operator in�. Indeed if∇� denotes the intrinsic covariant
derivative in �, we have

∇�u = (∇̄t)T = �−2∂T
t ,

where T denotes tangential projection onto T �. Hence we obtain


�u = nH�−2〈∂t , N 〉 + 〈∇��−2, ∂T
t 〉,

from where the formula (1.5) above follows.
In particular, minimal graphs in N = M ×� R have height function that satisfies the

weighted harmonic equation


�u + 2〈∇� log �,∇�u〉 = 0. (1.6)

This may be considered as a PDE in � if we replace the metric g by the induced metric with
components given by (1.2).

Denoting

σ i j = gi j − ui u j

W 2

we can write (1.3) in non-divergence form as

σ i j ui; j + (log �)i ui

(
1 + 1

�2W 2

)
= nH W . (1.7)

2 Main results

The existence of Killing graphs with prescribed mean curvature H over bounded domains
� ⊂ M with continuous boundary data on ∂� was established in [11, Theorem 2] under
suitable conditions on the Ricci curvature on �, the mean curvature function H , and on the
mean curvature of the Killing cylinder over ∂�; see also [10].

In this paper we mainly focus on the setting where M is a Cartan–Hadamard manifold
with sectional curvatures controlled from above and below by some radial functions. We
prove quantitative a priori height and gradient estimates for solutions of (1.3) on geodesic
balls � = B(o, k) ⊂ M under natural conditions on the prescribed mean curvature function
in terms of sectional curvatures KM and the warping function �. These estimates allow us to
use the continuity method (the Leray-Schauder method) and hence are enough to guarantee
the existence of solutions to the following Dirichlet problem

{
div
(∇u

W

)+ 〈∇ log �, ∇u
W

〉 = nH in �

u|∂� = ϕ in ∂�,
(2.1)

where ϕ ∈ C(∂�). We formulate the (local) existence result in geodesic balls on Cartan–
Hadamard manifolds.
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216 J.-B. Casteras et al.

Theorem 2.1 Let M be a Cartan–Hadamard manifold, � = B(o, k) ⊂ M, and ϕ ∈ C(∂�).
Suppose that the prescribed mean curvature function H ∈ Cα(�) satisfies

|H(x)| < Hk−d(x)

in �̄, where d(x) = dist
(
x, ∂ B(o, k)

) = k − r(x) and Hk−d is the mean curvature of the
Killing cylinder Ck−d over the geodesic sphere ∂ B(o, k − d). Then there exists a unique
solution u ∈ C2,α(�) ∩ C(�̄) to (2.1).

Above and in what follows we denote by r(x) = d(x, o) the distance from x to a fixed point
o ∈ M . We notice that the mean curvature of the Killing cylinder Cr over a geodesic sphere
∂ B(o, r) is given by

Hr = 1

n

(

r + 1

�
〈∇�,∇r〉

)

and therefore can be estimated from below in terms of a suitablemodelmanifold M−a2(r)×�+
R, where M−a2(r) is a rotationally symmetric Cartan–Hadamard manifold with radial sec-
tional curvatures equal to −a2(r) and �+ : M → (0,∞) is a positive rotationally symmetric
C1 function such that

1

�
〈∇�,∇r〉 = ∂r�

�
≥ ∂r�+

�+
. (2.2)

To formulate the next corollary and for later purposes we denote by fκ ∈ C∞([0,∞)) the
solution of the Jacobi equation

⎧
⎪⎨

⎪⎩

f ′′
κ − κ2 fκ = 0

fκ (0) = 0

f ′
κ (0) = 1,

(2.3)

whenever κ : [0,∞) → [0,∞) is a smooth function.

Corollary 2.2 Let M be a Cartan–Hadamard manifold whose radial sectional curvatures are
bounded from above by

K (Px ) ≤ −a
(
r(x)

)2

for some smooth function a : [0,∞) → [0,∞). Suppose, moreover, that (2.2)holds with some
positive rotationally symmetric C1 function �+ = �+(r). If the prescribed mean curvature
function H ∈ Cα(�), � = B(o, k), satisfies

n|H(x)| <
(n − 1) f ′

a

(
r(x)

)

fa
(
r(x)

) + �′+
(
r(x)

)

�+
(
r(x)

)

for all x ∈ �̄, then there exists a unique solution u ∈ C2,α(�) ∩ C(�̄) to (2.1).

As mentioned above the proofs of Theorem 2.1 and Corollary 2.2 for boundary data
ϕ ∈ C2,α(∂�) follow from the well-known continuity method once the a priori height and
gradient estimates are at our disposal. The case of a continuous boundary values ϕ ∈ C(∂�)

can be treated as in [11]; see also [4].
Our main object in this paper is the asymptotic Dirichlet problem for Killing graphs with

prescribed mean curvature and behaviour at infinity. To solve the problem, we extend the
given boundary value function ϕ ∈ C(∂∞M) to a continuous function ϕ ∈ C(M̄); see Sect. 5
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Asymptotic Dirichlet problems in warped products 217

for the notation. Thenwe applyCorollary 2.2 for an exhaustion�k = B(o, k), k ∈ N, of M to
obtain a sequence of solutions uk with boundary values uk |∂�k = ϕ. Under a suitable bound
on |H | in terms of a comparison manifold M−a2(r) ×�+ Rwe obtain a global height estimate
and, consequently together with Schauder estimates, the sequence is uniformly bounded in
the C2,α-norm. Hence there exists a subsequence that converges in the C2,α-norm to a global
solution u to the equation

div

(∇u

W

)
+ 〈∇ log �,

∇u

W

〉 = nH

in M . Finally, under suitable curvature upper and lower bounds as well as conditions on
|H | we are able to construct (local) barriers at infinity and prove that the solution u extends
continuously to ∂∞M and attains the given boundary values ϕ there.

The following two solvability theorems will be proven in Sect. 6.

Theorem 2.3 Let M be a Cartan–Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)–(A7) in Sect. 5. Furthermore, assume that the prescribed mean curvature
function H : M → R satisfies the assumptions (4.18) and (5.7) with a convex warping
function � satisfying (4.13), (4.14), (5.8), and (5.9). Then there exists a unique solution
u : M → R to the Dirichlet problem

⎧
⎨

⎩

div− log �

∇u
√

�−2 + |∇u|2 = nH(x) in M

u|∂∞M = ϕ

(2.4)

for any continuous function ϕ : ∂∞M → R.

Theorem 2.4 Let M be a Cartan–Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)–(A7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H : M → R satisfies the assumptions (4.25) and (5.7) with a convex warping
function � satisfying (4.19), (5.8), and (5.9). Then there exists a unique solution u : M → R

to the Dirichlet problem (2.4) for any continuous function ϕ : ∂∞M → R.

Remark 2.5 The following example illustrates the need of our assumptions about the warping
function � in Theorems 2.3 and 2.4. Let N be the (n + 1)-dimensional hyperbolic space
H

n+1 and consider the Killing vector field X in H
n+1 corresponding to a one-parameter

family of parabolic isometries of Hn+1 preserving a given ideal point, say p0 ∈ ∂∞H
n+1.

This configuration cannot be directly compared with a rotationally invariant model (that is,
invariant by a one-parameter family of elliptic isometries) as we have assumed for instance
in conditions 4.13 and 4.14. This borderline case of a one-parameter family of parabolic
isometries and the correspondingKillingfield inHn+1 were studied byRipoll andTelichevsky
in [17] using different techniques relying on a variant of the Perron method.

3 A priori height and gradient estimates

Throughout this section we denote by �k = B(o, k) the geodesic ball centered at a given
point o ∈ M with radius k ∈ N, and by d(·) = dist(·, ∂�k) the distance function to the
boundary of �k .
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218 J.-B. Casteras et al.

3.1 Height estimate

Fix k ∈ N and suppose that uk ∈ C2(�k) is a solution of the Dirichlet problem (2.1). We
aim to show that the function

vk(x) = sup
∂�k

ϕk + h(d(x)), (3.1)

where h will be determined later, is an upper barrier for the solution uk . It suffices to show
(see [19, p. 795] or [10, pp. 239–240]) that vk is a barrier in an open neighbourhood of ∂�k

in which the points can be joined to ∂�k by unique geodesics. In this neighbourhood the
distance function d has the same regularity as ∂�k and therefore the derivatives of d in the
following computations are well-defined.

Since X is Killing field, we have

〈∇ log �,∇d〉 = 1

�
〈∇�,∇d〉 = − 1

�2

〈∇̄X X ,∇d〉 =: −κ(d), (3.2)

where κ is the principal curvature of the Killing cylinder Ck−d over the geodesic sphere
∂ B(o, k − d). This implies that

Q[vk] = div

(
h′∇d

√
�−2 + h′2

)
− κ

h′
√

�−2 + h′2

= h′
√

�−2 + h′2
(

d − κ) + ∂d

(
h′

√
�−2 + h′2

)
,

where ∂d denotes the derivative to the direction ∇d . However,


d − κ = − nHk−d ,

where Hk−d is the mean curvature of the cylinder Ck−d , and we have

∂d

(
h′

√
�−2 + h′2

)
= h′′
√

�−2 + h′2 − h′

(�−2 + h′2)3/2
(�−2κ + h′h′′)

= �−2

(�−2 + h′2)3/2
(h′′ − κh′).

Hence it follows that

Q[vk] = − h′
√

�−2 + h′2 nHk−d + �−2

(�−2 + h′2)3/2
(h′′ − κh′).

Suppose that the principal curvature of the Killing cylinder Ck−d satisfies

κ(d) ≥ −�′
0(d)

�0(d)
,

where�0 is a smooth positive increasing function on [0,∞).We note already at this point that,
in the case of Cartan–Hadamard manifolds, ∇d = −∇r and this agrees with the assumption
(4.13). Then define the function h as

h(d) = C
∫ d

0
�−1
0 (t)dt (3.3)
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Asymptotic Dirichlet problems in warped products 219

for some constant C > 0 to be fixed later. Now, since h′ > 0, we have

h′′ − κh′ ≤ 0

and

Q[vk] ≤ − h′
√

�−2 + h′2 nHk−d = − C�
√

�2
0 + C2�2

nHk−d .

Assuming that

|H | < Hk−d

in �̄k and choosing the constant C as

C2 >
H2/H2

k−d

1 − H2/H2
k−d

sup �2
0

inf �2

we see that

Q[vk] − nH ≤ 0

and hence vk is an upper barrier for uk .
Similarly we see that the function

v−
k = inf

∂�k
ϕk − h(d)

is a lower barrier for uk and together these barriers give the following height estimate.

Lemma 3.1 Assume that

|H | < Hk−d (3.4)

in �̄k and that uk is a solution to the Dirichlet problem (2.1). Then there exists a constant
C = C(�k) such that

sup
�k

|uk | ≤ C + sup
∂�k

|ϕ|.

3.2 Boundary gradient estimate

For given ε > 0 we define an annulus

Uk(ε) = {x ∈ �k : d(x) < ε}.
In order to obtain a boundary gradient estimate, we aim to show that a function of the form

w(x) = g(d(x)) + ψ(x)

is an upper barrier in the setUk(ε) for a fixed ε ∈ (0, 1/2) chosen so that d is smooth inUk(ε).
Here we denote by ψ the extension of the boundary data that is constant along geodesics
issuing perpendicularly from ∂�k , i.e. ψ(expy t∇d(y)) = ϕ(y), where y ∈ ∂�k and ∇d(y)

is the unit inward normal to ∂�k at y. From (1.7) we have that

Q[w] = 1

W

w − 1

W 3 〈∇∇w∇w,∇w〉 − 1

�2

(
1 + 1

�2W 2

)〈
∇̄X X ,

∇w

W

〉
, (3.5)
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220 J.-B. Casteras et al.

where

W =
√

�−2 + |∇w|2 =
√

�−2 + g′2 + |∇ψ |2.
Since

∇w = g′∇d + ∇ψ,

with 〈∇d,∇ψ〉 = 0, it follows that


w = g′
d + g′′ + 
ψ

and

〈∇∇w∇w,∇w〉 = g′2g′′ − g′〈∇∇ψ∇d,∇ψ〉 + 〈∇∇ψ∇ψ,∇ψ〉.
Moreover, by (3.2)

〈∇w, ∇̄X X〉 = g′〈∇d, ∇̄X X〉 + 〈∇ψ, ∇̄X X〉 = g′�2κ + 〈∇ψ, ∇̄X X〉.
Using the expression (3.5) we obtain that

Q[w] = 1

W
(g′′ + g′
d + 
ψ) − 1

W 3 (g′2g′′ − g′〈∇∇ψ∇d,∇ψ〉 + 〈∇∇ψ∇ψ,∇ψ〉)

− 1

W

(
1 + 1

�2W 2

)(
g′κ +

〈
∇̄ X

|X |
X

|X | ,∇ψ
〉)

and combining with the previous reasoning, this results to

Q[w] = g′′

W 3 (�−2 + |∇ψ |2) + g′

W

(

d −

(
1 + 1

�2W 2

)
κ

)
+ 1

W

ψ

− 1

W 3 〈∇∇ψ∇ψ,∇ψ〉 + g′

W 3 〈∇∇ψ∇d,∇ψ〉

− 1

W

(
1 + 1

�2W 2

)〈
∇̄ X

|X |
X

|X | ,∇ψ
〉
.

We note that

1

W

ψ − 1

W 3 〈∇∇ψ∇ψ,∇ψ〉 = 1

W

(
gi j − ψ iψ j

W 2

)
ψi; j

and, on the other hand,

1

W

(
gi j − (g′di + ψ i )(g′d j + ψ j )

W 2

)
ψi; j = 1

W

(
gi j − ψ iψ j

W 2

)
ψi; j − 2g′diψ j

W 3 ψi; j

= 1

W

(
gi j − ψ iψ j

W 2

)
ψi; j − 2g′

W 3
〈∇∇d∇ψ,∇ψ〉 .

Moreover, the matrix (σ i j ) has eigenvalues 1/(�2W 3) and 1/W which can be estimated as

max

(
1

�2W 3 ,
1

W

)
≤ 1

�2W 3 + 1

W
≤ 1

W
(1 + �2). (3.6)
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When � ≥ 1, this is trivial, and when � < 1 we can choose the constant K in the definition
(3.7) of g such that this holds. Therefore we are able to estimate

Q[w] ≤ g′′

W 3 (�−2 + |∇ψ |2) + g′

W

(

d −

(
1 + 1

�2W 2

)
κ

)
+ 1

W
(1 + �2)||∇2ψ ||

+ 3g′

W 3 〈∇∇ψ∇d,∇ψ〉 + 1

W

(
1 + 1

�2W 2

)
〈∇ log �,∇ψ〉

≤ g′′

W 3 (�−2 + |∇ψ |2) − g′

W

(
nHk−d + 1

�2W 2 κ

)
+ 1

W
(1 + �2)||∇2ψ ||

+ 3g′

W 3 |I Ik−d(∇ψ,∇ψ)| + 1

W

(
1 + 1

�2W 2

)
〈∇ log �,∇ψ〉.

Now we choose

g(d) = C

log(1 + K )
log(1 + K d), (3.7)

where

C = K (1 + K ε) log(1 + K )

and K ≥ (1 − 2ε)ε−2 so large that

C ≥ 2

(
max
�̄k

|uk | + max
�̄k

|ψ |
)

. (3.8)

Note that this choice yields g ≥ uk on the “inner” boundary {x ∈ �k : d(x) = ε} of Uk(ε).
Then, for K large, we have

1 ≥ g′2

W 2 ≥ K 4(1 + K ε)2

(1 + K d)2L + K 4(1 + K ε)2
= (1 + K ε)2

(1+K d)2

K 4 L + (1 + K ε)2
≥ c21 > 0,

where

c21 ≤ (1 + K ε)2

(1 + K ε)2 + L

with

L = sup
�

(�−2 + |∇ψ |2).

We also have

g′′(d) = − g′2

K (1 + K ε)
,

which implies that

g′′

W 2 = − 1

K (1 + K ε)

g′2

W 2 ≤ − 1

K (1 + K ε)
c21.

Hence we obtain

Q[w] ≤ − 1

K (1 + K ε)
c21

1

W
(�−2 + |∇ψ |2) − c1

(
nHk−d + 1

�2W 2 κ

)

+ 1

W
(1 + �2)||∇2ψ || + g′

W

|∇ψ |2
W 2 ||I Ik−d || + |∇ψ |

W
|∇ log �|

(
1 + 1

�2W 2

)
.
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However,

1

�2W 2 ≥ c21
�2g′2 ≥

(
1 + K d

K 2(1 + K ε)

)2 c21
�2 ≥ 1

K 4(1 + K ε)2

c21
�2

and

1

W
≥ 1 + K d

K 2(1 + K ε)
c1 ≥ 1

K 2(1 + K ε)
c1.

Combining these with the fact that W ≥ K 2, we obtain the estimate

Q[w] ≤ − c1
K + κ

K 4(1 + K ε)2

c21
�2 − c1nHk−d + 1

W
(1 + �2)||∇2ψ ||

+ g′

W

|∇ψ |2
W 2 ||I Ik−d || +

(
1 + 1

�2

1

K 2

) |∇ψ |
W

|∇ log �|

≤ − c1
K + κ

K 4(1 + K ε)2

c21
�2 − c1nHk−d + 1

K 2 (1 + �2)||∇2ψ ||

+ |∇ψ |2||I Ik−d || 1

K 4 +
(
1 + 1

�2K 4

)
|∇ψ ||∇ log �| 1

K 2 .

Therefore

Q[w] − nH ≤ −n(c1Hk−d + H) − c1
K + κ

K 4(1 + K ε)2

c21
�2 + 1

K 2 (1 + �2)||∇2ψ ||

+ |∇ψ |2||I Ik−d || 1

K 4 +
(
1 + 1

�2K 4

)
|∇ψ ||∇ log �| 1

K 2 . (3.9)

Finally observe that

c1Hk−d ≥ |H |
if we choose K such that

H2

H2
k−d

≤ c21 ≤ (1 + K ε)2

(1 + K ε)2 + L
,

that is

(1 + K ε)2 ≥ L
H2/H2

k−d

1 − H2/H2
k−d

. (3.10)

Taking (3.6), (3.8), (3.9) and (3.10) into account, we can choose

K = K (�k, H , ||ψ ||C2 , ε, sup
�k

|u|)

so large that

Q[w] − nH ≤ 0

holds in Uk(ε). This suffices for the following boundary gradient estimate.
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Lemma 3.2 Assume that

|H | < Hk−d

in �̄k and that uk is a solution to the Dirichlet problem (2.1). Then there exists a constant
C = C(�k, H , ||ψ ||C2 , ε, sup�k

|u|) such that

max
∂�k

|∇uk | ≤ C .

3.3 Interior gradient estimate

In this subsection we prove a quantitative interior gradient estimate that is interesting on
its own. The proof is based on the technique due to Korevaar and Simon [14], and further
developed by Wang [20]. We will perform the computations in a coordinate free way.

Let u be a (C3-smooth) positive solution of the Eq. (1.3) in a ball B(p, R) ⊂ M . Suppose
that sectional curvatures in B(p, R) are bounded from below by −K 2

0 for some constant
K0 = K0(p, R) ≥ 0. We consider a nonnegative and smooth function η with η = 0 in
M \ B(p, R) and define a function χ in B(p, R) of the form

χ = ηγ (u)ψ(|∇u|2), (3.11)

where the functions η, γ and ψ will be specified later.
Suppose that χ attains its maximum at x0 ∈ B(p, R), and without loss of generality, that

η(x0) �= 0. Then at x0

(logχ) j = η j

η
+ γ ′

γ
u j + 2

ψ ′

ψ
ukuk; j = 0 (3.12)

and therefore

2
ψ ′

ψ
ukuk; j = −

(
η j

η
+ γ ′

γ
u j

)
. (3.13)

Moreover, the matrix

(logχ)i; j = (log η)i; j +
(

γ ′

γ

)′
ui u j + γ ′

γ
ui; j + 2

ψ ′

ψ
(ukuk;i j + uk

;i uk; j )

+ 4

(
ψ ′

ψ

)′
ukuk;i u�u�; j

is non-positive at x0. Applying the Ricci identities for the Hessian of u we have

uk;i j = ui;k j = ui; jk + R�
k ji u�,

and this yields

(logχ)i; j = ηi; j

η
+ γ ′′

γ
ui u j + γ ′

γ
ui; j + γ ′

γ

(
ηi

η
u j + η j

η
ui

)

+ 2
ψ ′

ψ
(ukui; jk + uk

;i uk; j ) − 2
ψ ′

ψ
R�

jki u
ku� + 4

((
ψ ′

ψ

)′
− ψ ′2

ψ2

)
ukuk;i u�u�; j .

On the other hand, denoting

f (x) = nH W − 〈∇ log �,∇u〉
(
1 + 1

�2W 2

)
,
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and differentiating both sides in (1.7) we have

σ i j ui; jk = fk − σ
i j
;k ui; j . (3.14)

Contracting (3.14) with uk , we get

σ i j ukui; jk = fkuk + 1

W 2 uk(ui
;ku j + ui u j

;k)ui; j

− 2

W 4 ui u j ui; j (−�−2(log �)kuk + uku�u�;k).

Using the previous identity, (3.13) and noticing that

σ i j R�
jki u

ku� = −Ricg(∇u,∇u),

lengthy computations give

0 ≥σ i j (logχ)i; j = 2n
ψ ′

ψ
〈∇ H ,∇u〉W + nH

γ ′

γ

1

�2W
− nH

1

W

〈∇η

η
,∇u

〉

− 2nH
1

�2W

ψ ′

ψ
〈∇ log �,∇u〉 + 4

((
ψ ′

ψ

)′
− ψ ′2

ψ2 + 3

2

ψ ′

ψ

1

W 2

)
σ i�u j ukuk;i u j;�

+ σ i j ηi; j

η
+ 2

γ ′

γ

1

�2W 2

〈∇η

η
,∇u

〉
+ 2

ψ ′

ψ

(
Ricg(∇u,∇u) − ∇2 log �(∇u,∇u)

)

+ 4|∇u|2
�2W 4

ψ ′

ψ
〈∇ log �,∇u〉2 − 2

�2W 4 〈∇ log �,∇u〉
〈∇η

η
+ γ ′

γ
∇u,∇u

〉

− 2
ψ ′

ψ

1

�2W 2 ∇2 log �(∇u,∇u) +
〈
∇ log �,

∇η

η

〉(
1 + 1

�2W 2

)

− 2

�2W 4

〈∇η

η
+ γ ′

γ
∇u,∇u

〉
〈∇ log �,∇u〉 + γ ′′

γ
σ i j ui u j + 2

ψ ′

ψ
σ i�σ jkuk;i u j;�.

Notice that (3.13) yields to

4
ψ ′2

ψ2 σ i�u j ukuk;i u j;� =
∣∣∣∣
∇η

η
+ γ ′

γ
∇u

∣∣∣∣

2

σ

≥ 1

�2W 2

∣∣∣∣
∇η

η
+ γ ′

γ
∇u

∣∣∣∣

2

g

= |∇u|2
�2W 2

∣∣∣∣
∇η

|∇u|η + γ ′

γ

∇u

|∇u|
∣∣∣∣

2

g
.

Plugging this into the previous estimate, we get

ψ2

ψ ′2

((
ψ ′

ψ

)′
− ψ ′2

ψ2 + 3

2

ψ ′

ψ

1

W 2

) |∇u|2
�2W 2

∣∣∣∣
∇η

|∇u|η + γ ′

γ

∇u

|∇u|
∣∣∣∣

2

g

+ γ ′′

γ
σ i j ui u j + 2

ψ ′

ψ
σ i�σ jkuk;i u j;�

≤ 2n
ψ ′

ψ
|∇ H ||∇u|W + 2n

ψ ′

ψ
|H | |∇u|

W

|∇ log �|
�2

− 2
ψ ′

ψ

(
Ricg(∇u,∇u) − ∇2 log �(∇u,∇u)

)+ 4
ψ ′

ψ

|∇ log �|2
�2

|∇u|4
W 4

+ 2
ψ ′

ψ

|∇2 log �|
�2

|∇u|2
W 2 + n|H |γ

′

γ

1

�2W
+ n|H |

∣∣∣∣
∇η

η

∣∣∣∣
|∇u|
W

− σ i j ηi; j

η
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+ 2
γ ′

γ

1

�2W

|∇u|
W

∣
∣
∣
∣
∇η

η

∣
∣
∣
∣+ 4

|∇ log �|
�2

(∣∣
∣
∣
∇η

η

∣
∣
∣
∣
|∇u|2
W 4 + γ ′

γ

|∇u|3
W 4

)

+ |∇ log �|
∣
∣
∣
∣
∇η

η

∣
∣
∣
∣

(
1 + 1

�2W 2

)
.

Suppose that |∇u|(x0) > 1. Otherwise we are done. Hence, following [20], we set

ψ(t) = log t, (3.15)

where t = |∇u|2. Then we have
|∇u|2
W 2

ψ2

ψ ′2

((
ψ ′

ψ

)′
− ψ ′2

ψ2 + 3

2

ψ ′

ψ

1

W 2

)
= t

W 2

(
log t

1
2 t − �−2

t + �−2 − 2

)
.

Now we fix a constant

max

{
2

3
,

�2

1 + �2

}
< β < 1

and suppose that

t

W 2 = |∇u|2
W 2 ≥ β. (3.16)

Setting 1

�2

β

1−β
=: eδ′

, δ = 3
2β − 1, and μ := 2β δδ′−2

δ′ , we get

μ log |∇u| 1
�2

∣∣∣∣
∇η

|∇u|η + γ ′

γ

∇u

|∇u|
∣∣∣∣

2

g
+ γ ′′

γ

|∇u|2
�2W 2

+ 2
ψ ′

ψ
|∇u|2

(
Ricg

( ∇u

|∇u| ,
∇u

|∇u|
)

− ∇2 log �

( ∇u

|∇u| ,
∇u

|∇u|
))

≤ 2√
βδ′

(
n|∇ H | + (1 − β)n|H ||∇ log �| + 2(1 − β)|∇ log �|2 + (1 − β)|∇2 log �|)

+√
1 − β

1

�

γ ′

γ

(
n|H | + 4|∇ log �|)+ 2

√
1 − β

1

�

γ ′

γ

∣∣∣∣
∇η

η

∣∣∣∣

+
∣∣∣∣
∇η

η

∣∣∣∣
(
n|H | + (6 − 5β)|∇ log �|)− σ i j ηi; j

η
.

By modifying the argument in [18, Proof of Theorem 4.1, Case 2] we may assume that the
maximum point x0 is not in the cut-locus C(p) of p. Then we choose η as

η = η̂2 (3.17)

where

η̂ = 1 − 1

CR

∫ r

0
ξ(τ ) dτ, r = d(·, p), (3.18)

with

CR =
∫ R

0
ξ(τ ) dτ

and ξ(τ ) = K −1
0 sinh(K0τ) if K0 > 0 and ξ(τ ) = τ if K0 = 0. Denoting

κ = �−2〈∇̄X ∇̄r , X〉 = 〈∇r ,∇ log �〉,
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one can show that |∇η| = 2η̂ ξ(r)
CR

and


�η = 2η̂
�η̂ + 2|∇�η̂|2

≤ 2η̂(r)
ξ(r)

CR

∣
∣
∣
∣(n − 1)

ξ ′(r)

ξ(r)
+ κ + n|H | + (1 − β)

∣
∣
∣
∣
ξ ′(r)

ξ(r)
− κ

∣
∣
∣
∣

∣
∣
∣
∣+ 2

ξ2(r)

C2
R

.

As in [20], we set

γ (u) = 1 + 1

M
( min

B̄(p,R)
�)u

where M > 0 is a constant to be fixed later. Then γ ′′ = 0 and hence

μ log |∇u| 1
�2

∣
∣
∣
∣

∇η

|∇u|η + γ ′

γ

∇u

|∇u|
∣
∣
∣
∣

2

g

+ 2
ψ ′

ψ
|∇u|2

(
Ricg

( ∇u

|∇u| ,
∇u

|∇u|
)

− ∇2 log �

( ∇u

|∇u| ,
∇u

|∇u|
))

≤ M̃
1

Mη
, (3.19)

where

M̃ = 2√
βδ′

(
n|∇ H | + (1 − β)n|H ||∇ log �| + 2(1 − β)|∇ log �|2

+ (1 − β)|∇2 log �|)Mη +√
1 − β

(
n|H | + 4|∇ log �|)η + 4

√
1 − β

ξ(r)

CR
η̂

+ 2
ξ(r)

CR

(
n|H | + (6 − 5β)|∇ log �|)M η̂

+ M

(
2η̂(r)

ξ(r)

CR

∣∣∣∣(n − 1)
ξ ′(r)

ξ(r)
+ κ + n|H | + (1 − β)

∣∣∣∣
ξ ′(r)

ξ(r)
− κ

∣∣∣∣

∣∣∣∣+ 2
ξ2(r)

C2
R

)
.

(3.20)

Let L = L(p, R) ≥ 0 be chosen in such a way that

Ricg + ∇2 log � ≥ −Lg (3.21)

in B(p, R). Then we obtain

μ log |∇u| 1
�2

∣∣∣∣
∇η

|∇u|η + γ ′

γ

∇u

|∇u|
∣∣∣∣

2

g
− 2L

1

δ′ ≤ M̃
1

Mη
.

Set M = maxB̄(p,R) u. We consider first the case
∣∣∣∣

∇η

|∇u|η
∣∣∣∣ ≤ γ ′

2γ
.

Then we have

η log |∇u| ≤ 4γ 2�2

μmin B̄(p,R) �2

(
M̃ M + 2L M2 η

δ′

)
.

On the other hand, when

γ ′

2γ
≤
∣∣∣∣

∇η

|∇u|η
∣∣∣∣
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we have

η|∇u| ≤ 4γ

γ ′
ξ(r)

CR
.

which implies that

η log |∇u| ≤ 4γ

γ ′
ξ(r)

CR
.

Hence at x0

η log |∇u| ≤ max

{
4γ (u(x0))ξ(r(x0))

γ ′(u(x0))CR
,
4γ 2(u(x0))�2(x0)

μmin B̄(p,R) �2

(
M̃ M + 2L M2 1

δ′

)}

.

(3.22)

Since η(p) = 1 and γ (p) ≥ 1 we conclude that

log |∇u(p)| ≤ η(p)γ (p) log |∇u(p)| ≤ η(x0)γ (x0) log |∇u(x0)|

≤ 4M(1 + min B̄(p,R) �)2

min B̄(p,R) �
max

{
ξ(r(x0))

CR
,
(1 + min B̄(p,R) �)�2(x0)

μmin B̄(p,R) �

(
M̃ + 2L M

1

δ′

)}

(3.23)

unless |∇u(x0)| ≤ 1.
We have proven the following quantitative gradient estimate. Here we denote by RB the

Riemannian curvature tensor in a set B.

Lemma 3.3 Let u be a positive solution of (1.3) in an open set � and let B = B(p, R) ⊂ �.
Then there exists a constant C = C(RB , �|B, H |B, u(p),maxB̄ u, R) such that

|∇u(p)| ≤ C .

If the gradient of u is continuous up to the boundary of � and � is bounded, we obtain the
following quantitative global estimate.

Lemma 3.4 Let u be a positive solution of (1.3) in a bounded open set � and suppose,
moreover, that u ∈ C1(�̄). Then there exists a constant

C = C(R�, �|�, H |�, u(p),max
�̄

u, diam(�),max
∂�

|∇u|)

such that

|∇u(p)| ≤ C

for every p ∈ �̄.

Proof Let p ∈ � and R = diam(�). Define in �̄ ∩ B(p, R) a function

χ = ηγ (u)ψ(|∇u|2),
where η, γ , and ψ are as in the previous proof. If χ attains its maximum in an interior point
x0 ∈ B(p, R) ∩ �, the proof of Lemma 3.3 applies and we have a desired upper bound.
Otherwise, χ attains its maximum at x0 ∈ ∂�, but then |∇u(x0)| ≤ max∂� |∇u| and again
we are done. ��

We remark that a global gradient estimate for bounded Killing graphs follows immedi-
ately from (3.23), (3.20), and (3.21) in the case of bounded warping functions under some
assumptions on the curvature.
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Corollary 3.5 Suppose that the sectional curvatures in M satisfy KM ≥ −K0 for some
positive constant K0. Suppose also that infM � > 0 and that ||�||C2(M) < +∞. If a function
u : M → R is uniformly bounded and the mean curvature of its graph satisfies ||H ||C1(M) <

+∞ then the gradient of u is uniformly bounded.

4 Global barriers

In this sectionwepresent twomethods to obtain global (upper and lower) barriers for solutions
to (2.1).

In the case when H̃ is constant along flow lines of X , that is, when H̃ is a function in
M , there is a conservation law (a flux formula) corresponding to the invariance of AH̃ with
respect to the flow generated by X . This flux formula for graphs is stated as

∫

�

〈∇u

W
, ν
〉
� d� =

∫

�

nH̃� dM, (4.1)

where � = ∂� and ν is the outward unit normal vector field along � ⊂ M .
Suppose for a while that M is a model manifold with respect to a fixed pole o ∈ M and

that � = |X | is a radial function. In terms of polar coordinates (r , ϑ) ∈ R
+ × S

n−1 centered
at o the metric in M is of the form

g = dr2 + ξ2(r) dϑ2,

where dϑ2 stands for the canonical metric in S
n−1. Suppose that H̃ and u are also radial

functions. Applying (4.1) to � = B(o, r), the geodesic ball centered at o with radius r , we
obtain

u′(r)
√

�−2(r) + u′2(r)
�(r)ξn−1(r) =

∫ r

0
nH̃(τ )�(τ)ξn−1(τ ) dτ (4.2)

This is a first integral of (1.3) in this rotationally invariant setting. Indeed, taking derivatives
on both sides of (4.2) with respect to r we get

nH̃(r) =
(

u′(r)
√

�−2(r) + u′2(r)

)′
+ u′(r)
√

�−2(r) + u′2(r)

(
�′(r)

�(r)
+ (n − 1)

ξ ′(r)

ξ(r)

)
.

On the other hand in this particular setting (1.3) becomes

nH̃(r) = div

(
u′(r)

√
�−2(r) + u′2(r)

∂r

)
+
(

u′(r)
√

�−2(r) + u′2(r)

)
�′(r)

�(r)

=
(

u′(r)
√

�−2(r) + u′2(r)

)′
+ u′(r)
√

�−2(r) + u′2(r)
div ∂r

+
(

u′(r)
√

�−2(r) + u′2(r)

)
�′(r)

�(r)

=
(

u′(r)
√

�−2(r) + u′2(r)

)′
+ u′(r)
√

�−2(r) + u′2(r)

(
(n − 1)

ξ ′(r)

ξ(r)
+ �′(r)

�(r)

)
.

It is convenient to write (4.2) in a “quadrature” form as follows

u′2(r) = I 2(r)�−2(r)

�2(r)ξ2(n−1)(r) − I 2(r)
, (4.3)

123



Asymptotic Dirichlet problems in warped products 229

where

I (r) =
∫ r

0
nH̃(τ )�(τ)ξn−1(τ ) dτ.

For instance, in the case when H̃ is constant we have to impose a condition such as

n|H̃ | ≤ lim inf
r→∞

�(r)ξn−1(r)
∫ r
0 �(τ)ξn−1(τ ) dτ

(4.4)

in order to guarantee the existence of radial solutions u = u(r) to (1.3) for model manifolds.
Note that the right-hand side in (4.4) is a sort of weighted isoperimetric ratio in M with
respect to the density �(r(x)) = |X(x)|. By l’Hospital’s rule we see that (4.4) is equivalent
to the requirement

n|H̃ | ≤ lim inf
r→∞ (n − 1)

ξ ′(r)

ξ(r)
+ �′(r)

�(r)
. (4.5)

This discussion motivates us to define in the general case a function of the form

u+(x) = u+
(
r(x)

)

=
∫ +∞

r(x)

∫ τ

0 nH̃(s)�+(s)ξn−1+ (s) ds

�+(τ )

√
�2+(τ )ξ

2(n−1)
+ (τ ) − ( ∫ τ

0 nH̃(s)�+(s)ξn−1+ (s) ds
)2

dτ (4.6)

+||ϕ||C0(∂∞ M) (4.7)

for some nonnegative functions �+(r(x)), ξ+(r(x)) and H̃(r(x)) to be chosen later.
Plugging u+(x) = u+(r(x)) into the differential operator

Q[u] = div
(∇u

W

)
+
〈
∇ log �,

∇u

W

〉
− nH

yields

Q[u+] =
〈
∇ u′+(r)

(�−2(x) + u′2+(r))1/2
, ∂r

〉

+ u′+(r)

(�−2(x) + u′2+(r))1/2

(
div ∂r + 1

�
〈∇�, ∂r 〉

)
− nH

= ∂r

(
u′+(r)

(�−2(x) + u′2+(r))1/2

)
+ u′+(r)

(�−2(x) + u′2+(r))1/2

(

r + 1

�
〈∇�, ∂r 〉

)
− nH

= ∂r

(
u′+(r)

(�−2+ (r) + u′2+(r))1/2

(�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

)

+ u′+(r)

(�−2(x) + u′2+(r))1/2

(

r + 1

�
〈∇�, ∂r 〉

)
− nH

= (�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

[
u′+(r)

(�−2+ (r) + u′2+(r))1/2

(

r + 1

�
〈∇�, ∂r 〉

)

123



230 J.-B. Casteras et al.

+∂r

(
u′+(r)

(�−2+ (r) + u′2+(r))1/2

)]

+ u′+(r)

(�−2+ (r) + u′2+(r))1/2
∂r

(
(�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

)
− nH .

Moreover, suppose that

∂r�(x)

�(x)
≥ �′+

(
r(x)

)

�+
(
r(x)

) (4.8)

for some positive and increasingC1-function�+ : [0,∞) → (0,∞) such that�+(0) = �(o).
By our choice of u+,

u′+(r) = −
∫ r
0 nH̃(s)�+(s)ξn−1+ (s) ds

�+(r)

√
�2+(r)ξ

2(n−1)
+ (r) − ( ∫ r

0 nH̃(s)�+(s)ξn−1+ (s) ds
)2

,

and therefore

−nH̃ =
(

u′+(r)

(�−2+ (r) + u′2+(r))1/2

)′
+ u′+(r)

(�−2+ (r) + u′2+(r))1/2

(
�′+(r)

�+(r)
+ (n − 1)

ξ ′+(r)

ξ+(r)

)
.

Hence we obtain

Q[u+] = (�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

[
u′+(r)

(�−2+ (r) + u′2+(r))1/2

(

r + 1

�
〈∇�, ∂r 〉

)

+ ∂r

(
u′+(r)

(�−2+ (r) + u′2+(r))1/2

)]
+ u′+(r)

(�−2+ (r) + u′2+(r))1/2
∂r

(
(�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

)
− nH

≤ − (�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2
nH̃ + u′+(r)

(�−2+ (r) + u′2+(r))1/2
∂r

(
(�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

)
− nH .

In order to prove that u+ is indeed an upper barrier we next check that

∂r

(
(�−2+ (r) + u′2+(r))1/2

(�−2(x) + u′2+(r))1/2

)
≥ 0. (4.9)

Note that u′+ ≤ 0. We observe that

∂

∂r

(√
�+(r)−2 + (u′+(r))2

�(x)−2 + (u′+(r))2

)

≥ 0

if and only if

(�−2+ + (u′+)2)
(∂r�

�3 − u′+u′′+
)

≥ (�−2 + (u′+)2)
(�′+

�3+
− u′+u′′+

)
. (4.10)

But now integrating (4.8) we get

log �(x) ≥ log �+
(
r(x)

)

which implies

1

�(x)
≤ 1

�+
(
r(x)

)
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and furthermore assuming

∂r�(x)

�(x)3
≥ �′+

(
r(x)

)

�+
(
r(x)

)3

we see that (4.10) holds.
Therefore we are left to show that

−nH ≤
√√
√
√ �−2+ (r) + u′2+(r)

�−2(x) + u′2+(r)
nH̃ .

The conditions (4.4) and (4.5) in our mind, we choose H̃ as

nH̃(r) = (1 − ε)

(
�′+(r)

�+(r)
+ (n − 1)

ξ ′+(r)

ξ+(r)

)
(4.11)

with some ε ∈ (0, 1). Note that then
∫ r

0
nH̃(s)�+(s)ξn−1+ (s) ds = (1 − ε)�+(r)ξn−1+ (r)

and we see that with this choice the denominator in the definition of u+ stays bounded from
0. Moreover, we have

u′+(r) = − 1 − ε

�+(r)
√
2ε − ε2

and therefore u+ is well defined, positive and decreasing function if
∫ ∞

1

1

�+(r)
dr < ∞. (4.12)

Now we can compute

�−2+ (r) + u′2+(r)

�−2(x) + u′2+(r)
= �−2+ (r) + (

(1 − ε)/(�+(r)
√
2ε − ε2)

)2

�−2(x) + (
(1 − ε)/(�+(r)

√
2ε − ε2)

)2

= �−2+ (r)
(
1 + (1 − ε)2/(2ε − ε2)

)

�−2(x) + �−2+ (r)(1 − ε2)/(2ε − ε2)
,

and for example, taking ε = 1 − √
2/2 we have

�−2+ (r) + u′2+(r)

�−2(x) + u′2+(r)
= 2�−2+ (r)

�−2(x) + �−2+ (r)
.

For the prescribed mean curvature we obtain the bound

−nH(x) ≤ (1 − ε)

√√√√ �−2+ (r)
(
1 + (1 − ε)2/(2ε − ε2)

)

�−2(x) + �−2+ (r)(1 − ε2)/(2ε − ε2)

(
�′+(r)

�+(r)
+ (n − 1)

ξ ′+(r)

ξ+(r)

)

which implies that Q[u+] ≤ 0. Similarly, Q[−u+] ≥ 0 if

nH(x) ≤ (1 − ε)

√√√√ �−2+ (r)
(
1 + (1 − ε)2/(2ε − ε2)

)

�−2(x) + �−2+ (r)(1 − ε2)/(2ε − ε2)

(
�′+(r)

�+(r)
+ (n − 1)

ξ ′+(r)

ξ+(r)

)
.
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All together, we have obtained the following.

Lemma 4.1 Let M be a complete Riemannian manifold with a pole o and consider the warped
product manifold M ×� R, where � satisfies

∂r�(x)

�(x)
≥ �′+

(
r(x)

)

�+
(
r(x)

) ,
∂r�(x)

�(x)3
≥ �′+

(
r(x)

)

�+
(
r(x)

)3 (4.13)

for some positive and increasing C1-function �+ : [0,∞) → (0,∞) such that

�+(0) = �(o) and
∫ ∞

1
�+(s)−1 ds < ∞. (4.14)

Furthermore, assume that the radial sectional curvatures of M are bounded from above by

KM (Px ) ≤ −ξ ′′+
(
r(x)

)

ξ+
(
r(x)

)

and that the prescribed mean curvature function satisfies

n|H(x)|

≤ (1 − ε)

√√√√ �−2+
(
r(x)

)(
1 + (1 − ε)2/(2ε − ε2)

)

�−2(x) + �−2+
(
r(x)

)
(1 − ε2)/(2ε − ε2)

(
�′+
(
(r)
)

�+
(
r(x)

) + (n − 1)
ξ ′+
(
r(x)

)

ξ+
(
r(x)

)

)

(4.15)

for some ε ∈ (0, 1). Then the function u+ defined by (4.6) and (4.11) satisfies Q[u+] ≤ 0
and u+ ≥ ||ϕ||C0 in M with

u+(r) → ||ϕ||C0 as r → ∞. (4.16)

Furthermore Q[−u+] ≥ 0 and −u+ ≤ −||ϕ||C0 in M.

Remark 4.2 In particular, if the sectional curvatures of a Cartan–Hadamard manifold M are
bounded from above as

KM (Px ) ≤ −a
(
r(x)

)2 (4.17)

for some smooth function a : [0,∞) → [0,∞), the condition (4.15) reads as

n|H(x)|

≤ (1 − ε)

√√√√ �−2+
(
r(x)

)(
1 + (1 − ε)2/(2ε − ε2)

)

�−2(x) + �−2+
(
r(x)

)
(1 − ε2)/(2ε − ε2)

(
�′+
(
(r)
)

�+
(
r(x)

) + (n − 1)
f ′
a

(
r(x)

)

fa
(
r(x)

)

)

,

(4.18)

with fa as in (2.3).

In a rotationally symmetric case if � = �+(r) (and (4.12) holds), we see that the bound for
the mean curvature is

n|H(x)| ≤ (1 − ε)

(
�′+
(
r(x)

)

�+
(
r(x)

) + (n − 1)
ξ ′+
(
(r(x

)

ξ+
(
r(x)

)

)

.
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4.1 Example: hyperbolic space

We consider the warped model ofHn+1 given byHn ×cosh r R, where r is a radial coordinate
in H

n defined with respect to a fixed reference point o ∈ H
n . Then the hyperbolic metric is

expressed as

cosh2 dt2 + dr2 + sinh2 r dϑ2,

where dϑ2 stands for the standard metric in S
n−1 ⊂ ToH

n . The flow of the Killing field
X = ∂t is given by the hyperbolic translations generated by a geodesic γ orthogonal to H

n

through o. Since �(r) = cosh r and ξ(r) = sinh r in this case, we obtain

lim
r→∞

�(r)ξn−1(r)
∫ r
0 �(τ)ξn−1(τ ) dτ

= lim
r→∞

sinhn r + (n − 1) cosh2 r sinhn−2 r

cosh r sinhn−1 r

= lim
r→∞

(
sinh r

cosh r
+ (n − 1)

cosh r

sinh r

)
≥ n.

Therefore a natural bound to the mean curvature function according (4.4) is

|H | < 1,

that is, below the mean curvature of horospheres.
We also have for |H | < 1

I 2(r)�−2(r)

�2(r)ξ2(n−1)(r) − I 2(r)
≤ sinh2n r cosh−2(r)

cosh2 r sinh2(n−1) r − sinh2n r
= sinh2 r

cosh2 r
.

Therefore we have

u′2(r) ≤ 1.

If |H | = cte. < 1 we have an explicit expression

u′2(r) = H2

cosh2 r − H2 sinh2 r

cosh2 r

sinh2 r
.

4.2 Global barrier V

In this subsection we construct a global barrier using an idea of Mastrolia, Monticelli, and
Punzo [15]; see also [4]. Recall that �+ : [0,∞) → (0,∞) is an increasing smooth function
satisfying �+(0) = �(o) and

∂r�(x)

�(x)
≥ �′+

(
r(x)

)

�+
(
r(x)

) (4.19)

for all x ∈ M . Then we have an estimate


− log �r(x) ≥ (n − 1)
f ′
a(r(x))

fa(r(x))
+ �′+(r(x))

�+(r(x))
(4.20)

for the weighted Laplacian of the distance function r . Let a0 be a positive function such that

∫ ∞

0

(∫ ∞

t

ds

�2+(s) f n−1
a (s)

)

a0(t) f n−1
a (t)dt < ∞. (4.21)
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We define

V (x) =
(∫ ∞

r(x)

ds

�2+(s) f n−1
a (s)

)(∫ r(x)

0
a0(t) f n−1

a (t)dt

)

−
∫ r(x)

0

(∫ ∞

t

ds

�2+(s) f n−1
a (s)

)

a0(t) f n−1
a (t)dt − D + ||ϕ||∞,

(4.22)

where D is the constant given by (4.23). Denoting V (r) = V (r(x)), we observe that

V ′(r) = − 1

�2+(r) f n−1
a (r)

∫ r

0
a0(t) f n−1

a (t)dt < 0

and

V ′′(r) = 1

�2+(r) f n−1
a (r)

(
(n − 1) f ′

a(r)

fa(r)
+ 2�′+(r)

�+(r)

)∫ r

0
a0(t) f n−1

a (t)dt − a0(r)

�2+(r)
.

Since V ′(r) < 0, the limit

D = lim
r→∞

{ ∫ ∞

r

ds

�2+(s) f n−1
a (s)

∫ r

0
a0(t) f n−1

a (t)dt

−
∫ r

0

∫ ∞

t

ds

�2+(s) f n−1
a (s)

a0(t) f n−1
a (t)dt

} (4.23)

exists. Furthermore, D ≤ 0 (see [15, (4.5)]) and finite by (4.21) and therefore V is well
defined. Next we write

Q[V ]

= (�−2 + |∇V |2)
− log �V − (�−2 + |∇V |2)3/2nH(x) − 1
2

〈∇(�−2 + |∇V |2),∇V
〉

(�−2 + |∇V |2)3/2
(4.24)

and aim to prove that Q[V ] ≤ 0. First we estimate the weighted Laplacian of V by using
(4.20)


− log �V = V ′′(r) + V ′(r)
− log �r

≤V ′′(r) +
(

(n − 1)
f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)
V ′(r)

= 1

�2+(r) f n−1
a (r)

(
(n − 1) f ′

a(r)

fa(r)
+ 2�′+(r)

�+(r)

)∫ r

0
a0(t) f n−1

a (t)dt

− a0(r)

�2+(r)
− 1

�2+(r) f n−1
a (r)

(
(n − 1) f ′

a(r)

fa(r)
+ �′+(r)

�+(r)

)∫ r

0
a0(t) f n−1

a (t)dt

= − a0(r)

�2+(r)
+ �′+(r)

�3+(r) f n−1
a (r)

∫ r

0
a0(t) f n−1

a (t)dt

= − a0(r)

�2+(r)
− �′+(r)

�+(r)
V ′(r),
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and thus the first term of (4.24) can be estimated as

(
�−2 + |∇V |2)
− log �V ≤ − (�−2 + (V ′(r))2

)
(

a0(r)

�2+(r)
+ �′+(r)

�+(r)
V ′(r)

)

.

Then, for the last term of (4.24) we have

− 1

2

〈∇(�−2 + |∇V |2),∇V
〉 = −(V ′(r)

)2
V ′′(r) + ∂r�

�3 V ′(r)

= −(V ′(r))2

((
(n − 1) f ′

a(r)

fa(r)
+ 2�′+(r)

�+(r)

)
V ′(r) − a0(r)

�2+(r)

)

+ ∂r�

�3 V ′(r).

Hence

�2+(r)
(
�−2 + |∇V |2)
− log �V − 1

2
�2+(r)

〈∇(�−2 + |∇V |2),∇V
〉

≤ −�−2a0(r) − �−2�2+(r)

(
�′+(r)

�+(r)
− ∂r�

�

)
V ′(r)

− �2+(r)
(
V ′(r)

)3
(

(n − 1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)

≤ −�−2a0(r) − �2+(r)
(
V ′(r)

)3
(

(n − 1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)
.

Finally, if the prescribed mean curvature function satisfies

−nH ≤
�−2�−2+ (r)a0(r) + (− V ′(r)

)3 ( (n−1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)

(
�−2 + (

V ′(r)
)2)3/2

in M , we obtain Q[V ] ≤ 0 as desired. Similarly, we see that Q[−V ] ≥ 0 if

nH ≤
�−2�−2+ (r)a0(r) + (− V ′(r)

)3 ( (n−1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)

(
�−2 + (

V ′(r)
)2)3/2

.

Hence we have proved the following uniform height estimate.

Lemma 4.3 Let ϕ : M → R be a bounded function and assume that the prescribed mean
curvature function H and the function V defined in (4.22) satisfy

n|H | ≤
�−2�−2+ (r)a0(r) + (− V ′(r)

)3 ( (n−1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

)

(
�−2 + (

V ′(r)
)2)3/2

, (4.25)

with some positive functions �+ and a0 satifying (4.19) and (4.21), respectively. Then

Q[V ] = div− log �

∇V
√

�−2 + |∇V |2 − nH ≤ 0 in M, (4.26)

V (x) > ||ϕ||∞ for all x ∈ M, (4.27)
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and

lim
r(x)→∞ V (x) = ||ϕ||∞. (4.28)

Furthermore, Q[−V ] ≥ 0 in M.

Next we discuss possible choices of the functions �+ and a0 and their influence on the
bound of |H |. Notice that the right hand side of (4.25) can be written as

��−2+ (r)a0(r)
(
−V ′(r)�

)3 + (n−1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)

(
1 + (− V ′(r)�

)−2)3/2 . (4.29)

Hence if we can choose the comparison manifold M−a2(r) ×�+ R and a0 such that V ′(r)� →
−∞ and

��−2+ (r)a0(r)
(− V ′(r)�

)3 → 0

as r → ∞, we obtain

n|H | ≤ (n − 1) f ′
a(r)

fa(r)
+ �′+(r)

�+(r)
(4.30)

asymptotically as r → ∞.

Example 4.4 In the hyperbolic case Hn+1 = H
n ×cosh r R we may take �+(r) = � = cosh.

Choosing a0(r) = sinhα r for someα ∈ (1, 2) yields to the natural asymptotic bound |H | < 1
as r → ∞.

Example 4.5 More generally, if N = M ×� R, where the sectional curvatures of M have a
negative upper bound −k2 and if the warping function � satisfies (4.19) with �+(r) ≥ c1eαr

for some α > 0, then fa(r) ≈ ekr and (4.21) holds if
∫ ∞

0
a0(t)e

−2αtdt < ∞.

Moreover, if �+(r) ≤ c2eβr for some 0 < β < 2α, then by choosing a0(t) = eκt , β < κ <

2α, we get (4.30) asymptotically as r → ∞.

Example 4.6 If N = M ×� R, where the sectional curvatures of M have a negative upper
bound

K (Px ) ≤ −φ(φ − 1)

r(x)2
, φ > 1,

and if the warping function � satisfies (4.19) with �+(r) = crα, α > 1, then fa(r) ≈ rφ

and (4.21) holds if
∫ ∞

0
a0(r)r−2α+1dr < ∞.

Choosing a0(r) = rκ , for some α − 1 < κ < 2(α − 1), we get (4.30) asymptotically as
r → ∞.
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5 Barrier at infinity

In this section we assume that M is a Cartan–Hadamard manifold of dimension n ≥ 2,
∂∞M is the asymptotic boundary of M , and M̄ = M ∪ ∂∞M the compactification of
M in the cone topology. Recall that the asymptotic boundary is defined as the set of all
equivalence classes of unit speed geodesic rays in M ; two such rays γ1 and γ2 are equivalent
if supt≥0 d

(
γ1(t), γ2(t)

)
< ∞. The equivalence class of γ is denoted by γ (∞). For each

x ∈ M and y ∈ M̄ \ {x} there exists a unique unit speed geodesic γ x,y : R → M such that
γ

x,y
0 = x and γ

x,y
t = y for some t ∈ (0,∞]. If v ∈ Tx M \ {0}, α > 0, and r > 0, we define

a cone

C(v, α) = {y ∈ M̄ \ {x} : �(v, γ̇
x,y
0 ) < α}

and a truncated cone

T (v, α, r) = C(v, α) \ B̄(x, r),

where �(v, γ̇
x,y
0 ) is the angle between vectors v and γ̇

x,y
0 in Tx M . All cones and open balls

in M form a basis for the cone topology on M̄ .
Throughout this section, we assume that the sectional curvatures of M are bounded from

below and above by

− (b ◦ r)2(x) ≤ K (Px ) ≤ −(a ◦ r)2(x) (5.1)

for all x ∈ M , where r(x) = d(o, x) is the distance to a fixed point o ∈ M and Px is
any 2-dimensional subspace of Tx M . The functions a, b : [0,∞) → [0,∞) are assumed to
be smooth such that a(t) = 0 and b(t) is constant for t ∈ [0, T0] for some T0 > 0, and
that assumptions (A1)–(A7) hold. These curvature bounds are needed to control the first two
derivatives of “barrier” functions that wewill construct in the next subsection.We assume that
function b in (5.1) is monotonic and that there exist positive constants T1 ≥ T0, C1, C2, C3,
and Q ∈ (0, 1) such that

a(t)

{
= C1t−1 if b is decreasing,

≥ C1t−1 if b is increasing
(A1)

for all t ≥ T1 and

a(t) ≤ C2, (A2)

b(t + 1) ≤ C2b(t), (A3)

b(t/2) ≤ C2b(t), (A4)

b(t) ≥ C3(1 + t)−Q (A5)

for all t ≥ 0. In addition, we assume that

lim
t→∞

b′(t)
b(t)2

= 0 (A6)

and that there exists a constant C4 > 0 such that

lim
t→∞

t1+C4b(t)

f ′
a(t)

= 0; (A7)

see (2.3) for the definition of fa .
We recall from [13] the following two examples of functions a and b.
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Example 5.1 Let C1 = √
φ(φ − 1), where φ > 1 is a constant. For t ≥ R0 let

a(t) = C1

t

and

b(t) = tφ−2−ε/2,

where 0 < ε < 2φ − 2, and extend them to smooth functions a : [0,∞) → (0,∞) and
b : [0,∞) → (0,∞) such that they are constants in some neighborhood of 0, b is monotonic
and b ≥ a. Then a and b satisfy (A1)–(A7) with constants T1 = R0, C1, some C2 > 0, some
C3 > 0, Q = max{1/2,−φ + 2+ ε/2}, and any C4 ∈ (0, ε/2). It is easy to verify that then

fa(t) = c1tφ + c2t1−φ

for all t ≥ R0, where

c1 = R−φ
0

fa(R0)(φ − 1) + R0 f ′
a(R0)

2φ − 1
> 0,

and

c2 = Rφ−1
0

fa(R0)φ − R0 f ′
a(R0)

2φ − 1
.

We then have

lim
t→∞

t f ′
a(t)

fa(t)
= φ

and, for all C4 ∈ (0, ε/2)

lim
t→∞

t1+C4b(t)

f ′
a(t)

= 0.

It follows that a and b satisfy (A1)–(A7) with constants T1 = R0, C1, some C2 > 0, some
C3 > 0, Q = max{1/2,−φ + 2 + ε/2}, and any C4 ∈ (0, ε/2).

Example 5.2 Let k > 0 and ε > 0 be constants and define a(t) = k for all t ≥ 0. Define

b(t) = t−1−ε/2ekt

for t ≥ R0 = r0 + 1, where r0 > 0 is so large that t �→ t−1−ε/2ekt is increasing and greater
than k for all t ≥ r0. Extend b to an increasing smooth function b : [0,∞) → [k,∞) that
is constant in some neighborhood of 0. We can choose C1 > 0 in (A1) as large as we wish.
Then a and b satisfy (A1)-(A7) with constants C1, T1 = C1/k, some C2 > 0, some C3 > 0,
Q = 1/2, and any C4 ∈ (0, ε/2).

5.1 Construction of a barrier

Following [13], we construct a barrier function for each boundary point x0 ∈ ∂∞M . Towards
this end let v0 = γ̇

o,x0
0 be the initial (unit) vector of the geodesic ray γ o,x0 from a fixed point

o ∈ M and define a function h : ∂∞M → R,

h(x) = min
(
1, L�(v0, γ̇

o,x
0 )

)
, (5.2)
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where L ∈ (8/π,∞) is a constant. Then we define a crude extension h̃ ∈ C(M̄), with
h̃|∂∞M = h, by setting

h̃(x) = min
(
1,max

(
2 − 2r(x), L�(v0, γ̇

o,x
0 )

))
. (5.3)

Finally, we smooth out h̃ to get an extension h ∈ C∞(M) ∩ C(M̄) with controlled first
and second order derivatives. For that purpose, we fix χ ∈ C∞(R) such that 0 ≤ χ ≤ 1,
suppχ ⊂ [−2, 2], and χ |[−1, 1] ≡ 1. Then for any function ϕ ∈ C(M) we define functions
Fϕ : M × M → R, R(ϕ) : M → M , and P(ϕ) : M → R by

Fϕ(x, y) = χ
(
b(r(y))d(x, y)

)
ϕ(y),

R(ϕ)(x) =
∫

M
Fϕ(x, y)dm(y), and

P(ϕ) = R(ϕ)

R(1)
,

where

R(1)(x) =
∫

M
χ
(
b(r(y))d(x, y)

)
dm(y) > 0.

ThusP(ϕ) is an integral average of ϕ with respect to χ similar to that in [1, p. 436] except that
here the function b is taken into account explicitly. If ϕ ∈ C(M̄), we extend P(ϕ) : M → R

to a function M̄ → R by setting P(ϕ)(x) = ϕ(x) whenever x ∈ M(∞). Then the extended
functionP(ϕ) is C∞-smooth in M and continuous in M̄ ; see [13, Lemma 3.13]. In particular,
applying P to the function h̃ yields an appropriate smooth extension

h := P(h̃) (5.4)

of the original function h ∈ C
(
∂∞M

)
that was defined in (5.2).

We denote

� = C(v0, 1/L) ∩ M and �� = C(v0, �/L) ∩ M

for � > 0. We collect together all these constants and functions and denote

C = (a, b, T1, C1, C2, C3, C4, Q, n, L).

Furthermore, we denote by ‖Hessx u‖ the norm of the Hessian of a smooth function u at x ,
that is

‖Hessx u‖ = sup
X∈Tx M|X |≤1

|Hess u(X , X)|.

The following lemma gives the desired estimates for derivatives of h. We refer to [13] for
the proofs of these estimates; see also [6].

Lemma 5.3 [13, Lemma 3.16] There exist constants R1 = R1(C) and c1 = c1(C) such that
the extended function h ∈ C∞(M) ∩ C(M̄) in (5.4) satisfies

|∇h(x)| ≤ c1
1

( fa ◦ r)(x)
,

‖Hessx h‖ ≤ c1
(b ◦ r)(x)

( fa ◦ r)(x)
,

(5.5)

123



240 J.-B. Casteras et al.

for all x ∈ 3� \ B(o, R1). In addition,

h(x) = 1

for every x ∈ M \ (2� ∪ B(o, R1)
)
.

Let A > 0 be a fixed constant, and R3 > 0 and δ > 0 constants that will be determined
later, and h the function defined in (5.4). We will show that a function

ψ = A(Rδ
3r−δ + h) (5.6)

is a supersolution

Q[ψ] = div− log �

∇ψ
√

�−2 + |∇ψ |2 − nH

= div
∇ψ

W
+
〈
∇ log �,

∇ψ

W

〉
− nH < 0

in the 3� \ B̄(o, R3). In the proof we shall use the following estimates obtained in [13]:

Lemma 5.4 [13, Lemma 3.17] There exist constants R2 = R2(C) and c2 = c2(C) with the
following property. If δ ∈ (0, 1), then

|∇h| ≤ c2/( fa ◦ r),

‖Hess h‖ ≤ c2r−C4−1( f ′
a ◦ r)/( fa ◦ r),

|∇〈∇h,∇h〉| ≤ c2r−C4−2( f ′
a ◦ r)/( fa ◦ r),

|∇〈∇h,∇(r−δ)〉| ≤ c2r−C4−2( f ′
a ◦ r)/( fa ◦ r),

∇〈∇(r−δ),∇(r−δ)
〉 = −2δ2(δ + 1)r−2δ−3∇r

in the set 3� \ B(o, R2).

Let us denote

φ =
1 +

√
1 + 4C2

1

2
> 1, and δ1 = min

{
C4/2,

−1 + (n − 1)φ

1 + (n − 1)φ

}
∈ (0, 1),

where C1 and C4 are constants defined in (A1) and (A7), respectively.

Lemma 5.5 Assume that the prescribed mean curvature function H satisfies

sup
r(x)=t

n|H(x)| <
C0t−δ1−1

√
�−2(t) + (C0t−δ−1)2

(
(n − 1)

f ′
a(t)

fa(t)
+ ∂r�

�
− 1

t

)
(5.7)

for some positive constants C0 > 1 and δ < min{δ1, φ − 1}, and that the warping function
� satisfies

max

(
0,−r∂r�

�

)
= o

(
r f ′

a(r)

fa(r)

)
(5.8)

and

|∇�| = o

(
fa(r)

r δ+1 |∂r�|
)

(5.9)

as r → ∞. Then there exists a constant R3 = R3(C, C0, δ) ≥ R2 such that the function ψ

defined in (5.6) satisfies Q[ψ] < 0 in the set 3� \ B̄(o, R3).
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Proof In the proofwewill denote by c those positive constantswhose actual value is irrelevant
and may vary even within a line. Furthermore, the estimates will be done in 3� \ B̄(o, R3),
with R3 large enough. Note that

Q[ψ] = 
− log �ψ
√

�−2 + |∇ψ |2 − 1

2

〈∇(�−2 + |∇ψ |2),∇ψ
〉

(�−2 + |∇ψ |2)3/2 − nH

= (�−2 + |∇ψ |2)
− log �ψ − 1
2

〈∇(�−2 + |∇ψ |2),∇ψ
〉− (�−2 + |∇ψ |2)3/2nH

(�−2 + |∇ψ |2)3/2
and hence we only need to find R3 = R3(C, C0, δ) ≥ R2 so that

(�−2 + |∇ψ |2)3/2Q[ψ]
= (�−2 + |∇ψ |2)
− log �ψ − 1

2

〈∇(�−2 + |∇ψ |2),∇ψ
〉− (�−2 + |∇ψ |2)3/2nH < 0

(5.10)

holds in the set 3� \ B̄(o, R3).
The function ψ is C∞-smooth and, in M \ {o}, we have

∇ψ = A(−Rδ
3δr−δ−1∇r + ∇h).

ByLemma 5.3, |∇h| ≤ c1/ fa(r) ≤ δr−δ−1 when r is large enough and 0 < δ < min{δ1, φ−
1}; see [13, (3.30)]. Hence, for any fixed ε > 0, we have

|∇ψ |2 = (ARδ
3δ)

2r−2δ−2 + A2|∇h|2 − 2A2Rδ
3δr−δ−1 〈∇r ,∇h〉

≤ A2δ2
(
R2δ
3 + 2Rδ

3 + 1
)
r−2δ−2

≤ (1 + ε)(ARδ
3δ)

2r−2δ−2

and

|∇ψ |2 ≥ A2δ2
(
R2δ
3 − 2Rδ

3

)
r−2δ−2 ≥ (1 − ε)(ARδ

3δ)
2r−2δ−2

in 3� \ B̄(o, R3) for R3 large enough.
Next we fix ε > 0 so that

ε < 1 − δ + 1

(n − 1)(1 − δ)φ
, (5.11)

which is possible since δ < δ1. To simplify the notation below, we denote ε̃ = ε sgn(∂r�).
In order to estimate the first term in the right-hand side of (5.10), we first observe that

− (n − 1)
r f ′

a(r)

fa(r)
− r∂r�

�
+ δ + 1

1 − ε
< 0 (5.12)

for r ≥ R3 by (5.8) and (5.11); see [13, (3.25)]. Then we can estimate the weighted Laplacian
of ψ as


− log �ψ = ARδ
3
− log �r−δ + A
− log �h

= ARδ
3

(

r−δ + 1

�

〈∇�,∇(r−δ)
〉)+ A

(

h + 1

�
〈∇�,∇h〉

)

= ARδ
3

(
−δr−δ−1
r − δr−δ−1 1

�
〈∇�,∇r〉 + δ(δ + 1)r−δ−2

)
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+ A

(

h + 1

�
〈∇�,∇h〉

)

≤ARδ
3δ

(
−(n − 1)

r f ′
a(r)

fa(r)
− r∂r�

�
+ δ + 1

)
r−δ−2

+ A

(
nc2r−C4−1 f ′

a(r)

fa(r)
+ c2|∇�|

� fa(r)

)

≤ARδ
3δ

(−(1 − ε)(n − 1)r f ′
a(r)

fa(r)
− (1 − ε̃)r∂r�

�
+ δ + 1

)
r−δ−2 < 0

for r ≥ R3. In the last step we used (5.8), (5.9), and the fact that C4 > δ. Hence

(�−2 + |∇ψ |2)
− log �ψ

≤ −(�−2 + (1 − ε)(ARδ
3δ)

2r−2δ−2)ARδ
3δ

(
(1 − ε)(n − 1)r f ′

a(r)

fa(r)

+ (1 − ε̃)r∂r�

�
− 1 − δ

)
r−δ−2. (5.13)

To estimate the second term of (5.10) we split it into two parts as

−1

2

〈∇(�−2 + |∇ψ |2),∇ψ
〉 = −1

2

〈∇(�−2),∇ψ
〉− 1

2

〈∇|∇ψ |2,∇ψ
〉
.

For the first term, by (5.9) and Lemma 5.4, we have

−1

2

〈∇(�−2),∇ψ
〉 =

〈∇�

�3 ,∇ψ

〉
=
〈∇�

�3 ,−ARδ
3δr−δ−1∇r

〉
+
〈∇�

�3 , A∇h

〉

≤ −ARδ
3δr−δ−1 ∂r�

�3 + c2A
|∇�|

�3 fa(r)

≤ −(1 − ε̃)ARδ
3δr−δ−1 ∂r�

�3 . (5.14)

To estimate the second term we note that

∇|∇ψ |2 = A2∇ 〈Rδ
3∇(r−δ) + ∇h, Rδ

3∇(r−δ) + ∇h
〉

= (ARδ
3)

2∇ 〈∇(r−δ),∇(r−δ)
〉+ 2A2Rδ

3∇
〈∇(r−δ),∇h

〉+ A2∇ 〈∇h,∇h〉
and hence, by a straightforward computation using the estimates of Lemma 5.4, we get

−1

2

〈∇|∇ψ |2,∇ψ
〉 = − 1

2
(ARδ

3)
2 〈∇ 〈∇(r−δ),∇(r−δ)

〉
,∇ψ

〉

− A2Rδ
3

〈∇ 〈∇(r−δ),∇h
〉
,∇ψ

〉− 1

2
A2 〈∇ 〈∇h,∇h〉 ,∇ψ〉

≤(ARδ
3δ)

2(δ + 1)r−2δ−3 〈∇r ,∇ψ〉 + A2Rδ
3c2r−C4−2 f ′

a(r)

fa(r)
|∇ψ |

+ 1

2
A2c2r−C4−2 f ′

a(r)

fa(r)
|∇ψ |

≤(ARδ
3δ)

2(δ + 1)r−2δ−3 〈∇r ,−ARδ
3δr−δ−1∇r + A∇h

〉

+ cr−C4−δ−3 f ′
a(r)

fa(r)
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≤ − cr−3δ−4 + cr−2δ−3 1

fa(r)
+ cr−C4−δ−3 f ′

a(r)

fa(r)

≤ − cr−3δ−4 + cr−C4−δ−3 f ′
a(r)

fa(r)
, (5.15)

where in the last step we have absorbed the term cr−2δ−3 1
fa(r)

into the first by using the fact

that fa(r) ≥ crφ and the choice of δ < φ − 1. Putting together (5.14) and (5.15) we get

−1

2

〈∇(�−2 + |∇ψ |2),∇ψ
〉 ≤ −(1 − ε̃)ARδ

3δr−δ−1 ∂r�

�3 − cr−3δ−4 + cr−C4−δ−3 f ′
a(r)

fa(r)
,

and combining this with (5.13) yields

(�−2 + |∇ψ |2)
− log �ψ − 1

2

〈∇(�−2 + |∇ψ |2),∇ψ
〉

≤ − ARδ
3δ

�2

(
(1 − ε)(n − 1)r f ′

a(r)

fa(r)
+ 2(1 − ε̃)r∂r�

�
− δ − 1

)
r−δ−2

− (1 − ε)(ARδ
3δ)

3
(

(1 − ε)(n − 1)r f ′
a(r)

fa(r)
+ (1 − ε̃)r∂r�

�
− 1 − δ + c

)
r−3δ−4,

(5.16)

where we have absorbed the positive term cr−C4−δ−3 f ′
a(r)/ fa(r) by using the assumption

δ < C4/2. Finally, using the assumption (5.7) we can estimate the term involving the mean
curvature as

− (�−2 + |∇ψ |2)3/2nH

≤ (1 + ε)3/2(�−2 + (ARδ
3δ)

2r−2δ−2)3/2n|H |
≤ c

�2

(
(n − 1)r f ′

a(r)

fa(r)
+ r∂r�

�
− 1

)
r−δ1−2

+ c

(
(n − 1)r f ′

a(r)

fa(r)
+ r∂r�

�
− 1

)
r−2δ−δ1−4. (5.17)

Combining (5.16) and (5.17) and noting that δ1 > δ we obtain (5.10) and the claim follows.
��

Remark 5.6 In the case of the hyperbolic (ambient) space H
n+1 = H

n ×cosh r R we have
� = �+(r) = cosh r and fa(r) = sinh r on H

n for any reference point o ∈ H
n . Hence (5.8)

and (5.9) hold trivially. Moreover, we may choose φ > 1 as large as we wish by increasing
R3 and therefore (5.11) and (5.12) hold even with δ = δ1. Finally,

−(�−2 + |∇ψ |2)3/2nH ≤ (1 + ε)(ARδ
3δ)

3r−3δ−3)n|H |
for r large enough, and consequently we may assume δ = δ1 in (5.7) thus reducing it to an
asymptotically sharp assumption.

Similarly, if the sectional curvatures of M have estimates

−r(x)−2−εe2kr(x) ≤ K (Px ) ≤ −k2

for r(x) ≥ R0 as in Example 5.2 and if the warping function � satisfies (5.8), (5.9), and

�(x) ≥ cr(x)2

for r(x) ≥ R0, we may take δ = δ1 in (5.7).
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6 Solving the asymptotic Dirichlet problem

In this section we solve the asymptotic Dirichlet problem (5.1) on a Cartan–Hadamard man-
ifold M with given boundary data ϕ ∈ C(∂∞M). If the ambient manifold N = M ×� R is a
Cartan–Hadamard manifold, too, we will interpret the graph S = {(x, u(x)) : x ∈ M} of the
solution u as a Killing graph with prescribed mean curvature H and continuous boundary
values at infinity. We recall from [2, 7.7] that N is a Cartan–Hadamard manifold if and only
if the warping function � is convex. In that case we may consider ∂∞M as a subset of ∂∞N
in the sense that a representative γ of a boundary point x0 ∈ ∂∞M is also a representative of
a point x̃0 ∈ ∂∞N since M is a totally geodesic submanifold of N . Given ϕ ∈ C(∂∞M) we
define its Killing graph on ∂∞N as follows. For x ∈ ∂∞M , take the (totally geodesic) leaf

Mϕ(x) = �(M, ϕ(x)) = {(y, ϕ(x)) : y ∈ M} ⊂ M × R,

where � is the flow generated by X . Let γ x be any geodesic on M representing x . Then
γ̃ x : t �→ �(γ x (t), ϕ(x)) is a geodesic on Mϕ(x) and also on N since �(·, ϕ(x)) is an
isometry. Hence γ̃ x defines a point in ∂∞N which we, by abusing the notation, denote by
(x, ϕ(x)). Using this notation, we call the set

� = {(x, ϕ(x)) : x ∈ ∂∞M} ⊂ ∂∞N

the Killing graph of ϕ. Note that, in general, ∂∞N has no canonical smooth structure.

Lemma 6.1 Let u be the solution to (5.1) with boundary data ϕ and let S be the graph of u.
If ∂∞S = S̄\S, where S̄ is the closure of S in the cone topology N̄ , we have ∂∞S = �.

Proof Suppose first that x ∈ ∂∞S and let (xi , u(xi )) be a sequence in S converging to x
in the cone topology of N̄ . Since M̄ is compact, there exist x0 ∈ ∂∞M and a subsequence
(xi j , u(xi j )) such that xi j → x0 ∈ ∂∞M in the cone topology of M̄ . Hence u(xi j ) →
ϕ(x0), and consequently (xi j , u(xi j )) → (x0, ϕ(x0)) in the product topology of M̄ × R. On
the other hand, �(xi j , ϕ(x0)) → (x0, ϕ(x0)) in the cone topology of Mϕ(x0). We need to
verify that �(xi j , u(xi j )) → (x0, ϕ(x0)) in the cone topology of N̄ which then implies that
x = (x0, ϕ(x0)) ∈ �. Towards this end, let V be an arbitrary cone neighborhood in N̄ of
(x0, ϕ(x0)) and let σ be a geodesic ray emanating from (o, ϕ(x0)) representing (x0, ϕ(x0)).
It is a geodesic ray both in N and in Mϕ(x0). Let T (σ̇0, 2α, r) ⊂ V be a truncated cone in N̄
and T := T M (σ̇0, α, 2r) a truncated cone in M̄ϕ(x0). Then�(T , (ϕ(x0)−δ, ϕ(x0)+δ)) ⊂ V
for sufficiently small δ > 0. It follows that �(xi j , u(xi j )) ∈ V for all i j large enough, and
therefore x = (x0, ϕ(x0)) ∈ �.

Conversely, if (x0, ϕ(x0)) ∈ �, let xi ∈ M be a sequence such that xi → x0 in the
cone topology of M̄ . Then �(xi , u(xi )) ∈ S and (xi , u(xi )) → (x0, ϕ(x0)) in the product
topology of M̄ × R. We need to show that �(xi , u(xi )) → (x0, ϕ(x0)) ∈ � in the cone
topology of N̄ . To prove this, fix o = �(x, ϕ(x0)) ∈ Mϕ(x0) and let σ be a geodesic
ray in N (and in Mϕ(x0)) representing (x0, ϕ(x0)). Let V = T (σ̇0, 2α, r) be an arbitrary
truncated cone neighborhood in N̄ of (x0, ϕ(x0)). Furthermore, let δ > 0 be so small that
U := �(Ṽ , (ϕ(x0) − δ, ϕ(x0) + δ)) ⊂ V , where Ṽ = T (σ̇0, α, 2r) is a truncated cone
neighborhood in Mϕ(x0) of (x0, ϕ(x0)). Since xi → x0 and u(xi ) → ϕ(x0), we obtain
�(xi , u(xi )) ∈ U for all sufficiently large i . Hence �(xi , u(xi )) → (x0, ϕ(x0)) ∈ � in the
cone topology of N̄ . ��

We formulate our global existence results in the following two theorems depending on
the assumption on the prescribed mean curvature function H .
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Theorem 6.2 Let M be a Cartan–Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)–(A7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H : M → R satisfies the assumptions (4.18) and (5.7) with a convex warping
function � satisfying (4.13), (4.14), (5.8), and (5.9). Then there exists a unique solution
u : M → R to the Dirichlet problem

⎧
⎨

⎩

div− log �

∇u
√

�−2 + |∇u|2 = nH(x) in M

u|∂∞M = ϕ

(5.1)

for any continuous function ϕ : ∂∞M → R.

Theorem 6.3 Let M be a Cartan–Hadamard manifold satisfying the curvature assumptions
(5.1) and (A1)–(A7) in Section 5. Furthermore, assume that the prescribed mean curvature
function H : M → R satisfies the assumptions (4.25) and (5.7) with a convex warping
function � satisfying (4.19), (5.8), and (5.9). Then there exists a unique solution u : M → R

to the Dirichlet problem (5.1) for any continuous function ϕ : ∂∞M → R.

Proof The proofs of Theorems 6.2 and 6.3 are similar. The only difference is to use the global
barrier u+ in Lemma 4.1 for 6.2 relative to V in Lemma 4.3 for 6.3.

Extend the boundary data function ϕ ∈ C(∂∞M) to a function ϕ ∈ C(M̄) and let Bk =
B(o, k), k ∈ N be an exhaustion of M . Then by Corollary 2.2 there exist solutions uk ∈
C2,α(Bk) ∩ C(B̄k) to the Dirichlet problem

⎧
⎨

⎩

div− log �

∇uk√
�−2 + |∇uk |2

= nH(x) in Bk

uk |∂ Bk = ϕ.

By Lemma 4.1, we see that the sequence (uk) is uniformly bounded. Applying the gradient
estimates in compact domains and then the diagonal argument, we obtain a subsequence
converging locally uniformly with respect to C2-norm to a solution u. Next we show that u
extends continuously to the boundary ∂∞M with u|∂∞M = ϕ.

Let x0 ∈ ∂∞M and ε > 0 be fixed. By the continuity of the function ϕ we find a constant
L ∈ (8/π,∞) so that

|ϕ(y) − ϕ(x0)| < ε/2

whenever y ∈ C(v0, 4/L) ∩ ∂∞M , where v0 = γ̇
o,x0
0 is the initial direction of the geodesic

ray representing x0. Taking (4.16) into account, we can choose R3 in Lemma 5.5 so big that
u+(r) ≤ ||ϕ||∞ + ε/2 when r ≥ R3.

We will show that

w−(x):= − ψ(x) + ϕ(x0) − ε ≤ u(x) ≤ w+(x):=ψ(x) + ϕ(x0) + ε (5.2)

in the set U :=3� \ B̄(o, R3). Here ψ = A(Rδ
3r−δ + h) is the supersolution from the

Lemma 5.5 and A = 2||ϕ||∞.
Again, by the continuity of the function ϕ in M̄ , we can choose k0 such that ∂ Bk ∩U �= ∅

and

|ϕ(x) − ϕ(x0)| < ε/2 (5.3)

for every x ∈ ∂ Bk ∩ U when k ≥ k0. We denote Vk = Bk ∩ U for k ≥ k0 and note that

∂Vk = (Bk ∩ Ū ) ∪ (∂U ∩ B̄k).
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We prove (5.2) by showing that

w− ≤ uk ≤ w+ (5.4)

holds in Vk for every k ≥ k0.
Let k ≥ k0 and x ∈ ∂ Bk ∩ Ū . Since uk |∂ Bk = ϕ|∂ Bk , (5.3) implies

w−(x) ≤ ϕ(x0) − ε/2 ≤ ϕ(x) = uk(x) ≤ ϕ(x0) + ε/2 ≤ w+(x).

By Lemma 5.3

h|M \ (2� ∪ B(o, R1)
) = 1

and since Rδ
3r−δ = 1 on ∂ B(o, R3) we have

ψ ≥ A = 2||ϕ||∞
on ∂U ∩ Bk . Since u+ from Lemma 4.1 is global supersolution with u+ ≥ ||ϕ||∞ on ∂ Bk ,
the comparison principle gives uk |Bk ≤ u+|Bk and by the choice of R3, we have

uk ≤ ||ϕ||∞ + ε/2

in the set Bk \ B(o, R3).
Putting all together, it follows that

w+ = ψ + ϕ(x0) + ε ≥ 2||ϕ||∞ + ϕ(x0) + ε ≥ ||ϕ||∞ + ε ≥ uk

on ∂U ∩ B̄k . Similarly we have uk ≥ w− on ∂U ∩ B̄k and therefore w− ≤ uk ≤ w+ on
∂Vk . By Lemma 5.5 ψ is a supersolution in U and hence the comparison principle yields
uk ≤ w+ in U . On the other hand, −ψ is a subsolution in U , so uk ≥ w− in U , and (5.4)
follows. This is true for every k ≥ k0 so we have (5.2). Since limx→x0 ψ(x) = 0, we have

lim sup
x→x0

|u(x) − ϕ(x0)| ≤ ε.

The point x0 ∈ ∂∞M and constant ε > 0 were arbitrary so this shows that u extends
continuously toC(M̄) and u|∂∞M = ϕ. Finally, the uniqueness follows from the comparison
principle. ��

7 Non-existence result

In the following, we state a non-existence result for the prescribed weighted mean curvature
graph equation by adapting the approach of Pigola, Rigoli and Setti in [16]. We denote by
A(r) the area of the geodesic sphere ∂ B(o, r) centred at a fixed point o ∈ M .

Proposition 7.1 Let p : [0,∞) → [0,∞) be a continuous function such that for some R̄ > 0
and for all r ≥ R̄ at least one of the following conditions is satisfied:

exp
(

D
(∫ r

0

√
p(s)ds

)2)

�0(r)2A(r)
/∈ L1(+∞) (5.1)

for some constant D > 0 and a smooth function �0, so that �(x) ≤ �0(r(x)), or
(∫ 3r/2

r

√
p(s)ds

)2

r log
(
�0(2r)2 vol(B(o, 2r))

) ≥ h(r) /∈ L1(+∞) (5.2)
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with some continuous and monotonically non-increasing h : [R̄,∞) → (0,∞). Let u, v ∈
C2(M) satisfy

div− log �

∇u
√

�−2 + |∇u|2 − div− log �

∇v
√

�−2 + |∇v|2 = q(x)

≥ p
(
r(x)

)
�0
(
r(x)

) ≥ 0, (5.3)

and

sup
M

(u − v) < +∞.

Then, if q �≡ 0, there are no solutions to (5.3).

Proof The proof is very similar to that in [16], the only differences being our use of the
divergence operator with respect to the weighted volume form �dM and a suitable form of
the Mikljukov-Hwang-Collin-Krust inequality which in our setting reads as follows

〈
∇u

√
�−2 + |∇u|2 − ∇v

√
�−2 + |∇v|2 ,∇u − ∇v

〉

≥ 1

2

(√
�−2 + |∇u|2 +

√
�−2 + |∇v|2

) ∣∣∣∣∣
∇u

√
�−2 + |∇u|2 − ∇v

√
�−2 + |∇v|2

∣∣∣∣∣

2

≥ �−1

∣∣∣∣∣
∇u

√
�−2 + |∇u|2 − ∇v

√
�−2 + |∇v|2

∣∣∣∣∣

2

.

Together these result in the extra factors of �0 in (5.1), (5.2), and on the right hand side of
(5.3). Taking into account these differences the proof in [16] applies almost verbatim. ��

As direct corollaries of the previous theorem, we have

Corollary 7.2 Let u be a bounded solution to

div− log �

∇u
√

�−2 + |∇u|2 = nH(x) in M,

with H ≥ 0.

(i) Suppose that �(x) ≤ �0
(
r(x)

) ≤ r(x)β1 , β1 > 0, and that A(r) ≤ rβ2 , β2 > 0, for
large values of r = r(x). Then

lim inf
r(x)→∞ H(x) · r(x)2 log r(x)

�0
(
r(x)

) = 0.

(ii) Suppose that �(x) ≤ �0
(
r(x)

) ≤ eβ1r(x), β1 > 0, and that A(r) ≤ eβ2r , β2 > 0, for
large values of r = r(x). Then

lim inf
r(x)→∞ H(x) · r(x) log r(x)

�0
(
r(x)

) = 0.

(iii) Suppose that �(x) ≤ �0
(
r(x)

) ≤ eβ1r(x)2 , β1 > 0, and that A(r) ≤ eβ2r2 , β2 > 0, for
large values of r = r(x). Then

lim inf
r(x)→∞ H(x) · log r(x)

�0
(
r(x)

) = 0.
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Proof By choosing p(s) = (s2 log s)−1 in (i), we see that (5.1) holds, and therefore the
claim follows. Similarly, choosing p(s) = (s log s)−1 in (ii) or p(s) = (log s)−1 in (iii), the
condition (5.2) holds and the claim follows. ��
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