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Abstract
We provide an axiomatic approach for studying support varieties of objects in a triangulated
category via the action of a tensor triangulated category, where the tensor product is not neces-
sarily symmetric. This is illustrated by examples, taken in particular from the representation
theory of finite dimensional algebras.
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Introduction

The main purpose of this paper is to present a common framework where most of the exist-
ing occurrences of support varieties fit in. Examples of such are support varieties for finite
dimensional algebras, finite groups, restricted finite dimensional Lie algebras, smooth alge-
braic groups, finite group schemes, stable homotopy categories and complete intersections.
This paper is an early thought of, but late arriving, companion of [14]. Some of the results
were presented in [34,35].

An inspiration for this work have been the notes on axiomatic stable homotopy theory by
Hovey et al. [24], where tensor triangulated categories play a central role. There is also the
more recent approach of Balmer towards a support theory for tensor triangulated categories
[5,6] and closely related a theory of support via central ring actions [8]. The purpose of this
paper is to point out (1) that then one oftenmisses a vital underlying structure, namely a tensor
triangulated category acting on the categorywhere the theory of support is constructed and (2)
that one obtains a central ring action from the graded endomorphism ring of the tensor identity
of the acting tensor triangulated category. This point of view has been taken successfully by
Stevenson in [36,37], but there the tensor triangulated category acting has a symmetric tensor
product. This is not necessarily true in our setting as our prime example is to consider the
category of bimodules over a finite dimensional algebra Λ, which are projective both as a
left and as a right Λ-module.

The pivotal results for conceiving a theory of support varieties in a noncommutative setting
were shown in [20,21,40] around 1960, where the group cohomology ring of a finite group is
shown to beNoetherian, and further structural results of the cohomology ringwere obtained in
[32] in 1971. Then in 1981 Carlson defined a theory of support varieties for finitely generated
modules over a group algebra of a finite group (see [17,18]). These papers define the genesis
of a theory of support varieties considered in noncommutative settings, as they have served
as a motivation providing the means to associate geometric data to algebraic structures. We
also have to adopt similar finiteness conditions to obtain a proper theory of support varieties
in our setting, following ideas in [19,33].

An interesting source of examples are the stable module categories of finite dimensional
Hopf algebras. The Hopf structure gives rise to a tensor product which is not necessarily
symmetric. In some cases, results from the theory of cocommutative Hopf algebras carry over
to the noncommutative setting [30,31], while other examples exhibit some new phenomena
[10].

The rough outline of this paper is as follows: Sects. 1 and 2 are devoted to the foundations
of triangulated categories with a tensor action. In Sects. 3–6 the basic properties of support
varieties are discussed. The final Sects. 7–9 present various classes of examples.

1 Tensor categories and actions

A category with a tensor product is called a monoidal or a tensor category in the literature.
This section is devoted to recalling the definition of a tensor category and an action of
a tensor category on another category (see [26,27]). The examples we have in mind are
mostly triangulated categories, in particular those equipped with a suspension. Even though
some of our results only depend on having suspended categories, in the main results we are
assuming the presence of a triangulated structure. Therefore we focus throughout this paper
on triangulated tensor categories and actions of such on triangulated categories. We end the
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Support varieties: an axiomatic approach 397

section by reviewing our arsenal of examples of triangulated tensor categories and actions of
these.

Recall that an additive category C is a tensor category if C carries an additional structure
(C,⊗, e, a, l, r), where − ⊗ −: C × C → C is an additive bifunctor, e is an object in C,
and a : (− ⊗ −) ⊗ − → − ⊗ (− ⊗ −) is an isomorphism of functors C × C × C → C.
Furthermore, l : e⊗− → − and r : −⊗e → − are isomorphisms of functors C → Cmaking
the following diagrams commute for all objects x , y, z and w in C: (Pentagon Axiom)

((x ⊗ y) ⊗ z) ⊗ w
a

a⊗1

(x ⊗ y) ⊗ (z ⊗ w)
a

x ⊗ (y ⊗ (z ⊗ w))

(x ⊗ (y ⊗ z)) ⊗ w
a

x ⊗ ((y ⊗ z) ⊗ w)

1⊗a

and (Triangle Axiom)

(x ⊗ e) ⊗ y
a

r⊗1

x ⊗ (e ⊗ y)

1⊗l

x ⊗ y

Recall that

le⊗x = 1e ⊗ lx ,

rx⊗e = rx ⊗ 1e,

le = re : e ⊗ e → e

from ([27, Lemma XI.2.3]). A suspended category is a category D equipped with an autoe-
quivalence T : D → D.

Now we recall the definition of a triangulated tensor category. A triangulated tensor
category [38] is a tensor category (C,⊗, e, a, l, r) and at the same time a triangulated category
with a suspension T : C → C, where there exist isomorphisms of functors λ : − ⊗T (−) →
T (−⊗−) and ρ : T (−)⊗− → T (−⊗−) from C×C → Cmaking the following diagrams
commutative

e ⊗ T (x)
l

λ

T (x)

T (e ⊗ x)
T (l)

T (x)

T (x) ⊗ e

ρ

r
T (x)

T (x ⊗ e)
T (r)

T (x)

and the following diagram anti-commutative

T (x) ⊗ T (y)
ρx,T (y)

λT (x),y

T (x ⊗ T (y))

T (λx,y)

T (T (x) ⊗ y)
T (ρx,y)

T 2(x ⊗ y)

for all objects x and y in C.
By an action of a tensor category on a categorywemean the following. Let (C,⊗, e, a, l, r)

be a tensor category, and letA be a category. An action of C onA is defined by the following
data (see [26]):

123



398 A. B. Buan et al.

(i) an additive bifunctor − ∗ −: C × A → A,
(ii) a natural isomorphism αx,y,a : (x ⊗ y) ∗ a → x ∗ (y ∗ a) for all x and y in C and a in

A,
(iii) a natural isomorphism l′a : e ∗ a → a for all a in A,

where these satisfy the following commutative diagrams:

((x ⊗ y) ⊗ z) ∗ a
α

a∗1

(x ⊗ y) ∗ (z ∗ a)
α

x ∗ (y ∗ (z ∗ a))

(x ⊗ (y ⊗ z)) ∗ a
α

x ∗ ((y ⊗ z) ∗ a)

1∗α

(e ⊗ x) ∗ a
αe,x,a

l∗1

e ∗ (x ∗ a)

l′x∗a
x ∗ a

and

(x ⊗ e) ∗ a
αx,e,a

r∗1

x ∗ (e ∗ a)

1∗l′a
x ∗ a

for all x , y and z in C and a inA. Using that le = re one obtains immediately from the above
axioms that l′e∗a = 1e ∗ l′a : e ∗ (e ∗ a) → e ∗ a for all objects a in A.

Finally we recall the definition of an action of a triangulated tensor category on a tri-
angulated category. Let (C,⊗, e, a, l, r, T , λ, ρ) be a triangulated tensor category, and let
A = (A,Σ) be a triangulated category. Then we define an action of C on A to be

(i) a functor−∗−: C×A → A, a natural isomorphism αx,y,a and a natural isomorphism
l′a for all x and y in C and a in A as above, such that

(ii) there exist isomorphisms λ′ and ρ′ between the functors

λ′ : − ∗Σ(−) → Σ(− ∗ −)

and

ρ′ : T (−) ∗ − → Σ(− ∗ −)

when viewed as bifunctors from C × A to A, and such that
(iii) the diagram

e ∗ Σ(a)
l′
Σ(a)

λ′

Σ(a)

Σ(e ∗ a)
Σ(l′a)

Σ(a)

commutes for all a in A, and such that
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Support varieties: an axiomatic approach 399

(iv) there is an anti-commutative diagram

T (x) ∗ Σ(a)

λ′
T (x),a

ρ′
x,Σ(a)

Σ(x ∗ Σ(a))

Σ(λ′
x,a)

Σ(T (x) ∗ a)
Σ(ρ′

x,a)

Σ2(x ∗ a)

for all x in C and a in A.

Remark 1.1 Let C = (C,⊗, e, a, l, r, T , λ, ρ) be a triangulated tensor category. Then it fol-
lows directly from the definition, that there is an action of C on C by letting −∗− = −⊗−,
α = a, l′ = l, λ′ = λ and ρ′ = ρ. Also note that we do not assume any exactness properties
of the tensor product − ⊗ − in either of the variables. It is only the graded structure through
the shift in the triangulated categories that is crucial for Sect. 2.

We end this section by giving some examples of triangulated tensor categories with actions
on triangulated categories. To do this it is convenient to point out some elementary general
facts about categories of complexes.

Let R be a ring. Denote by C(R) and C(mod R) the category of complexes of all left R-
modules and all finitely presented left R-modules, respectively. The tensor product gives rise
to a functorC(Rop)×C(R) → C(Z) via the total complex. Our conventions for the signs are
the following. The shift of a complex X is given by X [p]n = Xn−p and dX [p] = (−1)pdX
for any integer p in Z. For a morphism f : X → Y of complexes f [p]n = f n−p . Given a
complex X inC(Rop) and a complex Y inC(R), the total complex Tot(X , Y ) = X ⊗R Y has
(X ⊗R Y )n = �i∈ZXi ⊗R Y n−i with differential dn : (X ⊗R Y )n → (X ⊗R Y )n+1 given
by xi ⊗ yn−i �→ dX (xi ) ⊗ yn−i + (−1)i x i ⊗ dY (yn−i ).

By abuse of notation let R also denote the stalk complex with R concentrated in degree
zero. The multiplication maps R ⊗R M → M and N ⊗R R → N for an R-module M and
an Rop-module N induce natural isomorphisms r : X ⊗R R → X and l : R ⊗R Y → Y for
all complexes X in C(Rop) and all complexes Y in C(R). Hence R is the tensor identity in
C(R).

Define λ : X ⊗R Y [−1] → (X ⊗R Y )[−1] by letting

λn = �i∈Z(−1)i idXi ⊗ idYn−i+1 : (X ⊗R Y [−1])n → (X ⊗R Y )[−1]n .

Let ρ : X [−1] ⊗R Y → (X ⊗R Y )[−1] be given by

ρn = �i∈ZidXi+1 ⊗ idYn−i : (X [−1] ⊗R Y )n → (X ⊗R Y )[−1]n .

Both of these maps are isomorphisms, which are natural in each variable. We leave it to the
reader to check that the diagrams

R ⊗R X [−1] l

λ

X [−1]

(R ⊗R X)[−1] l[−1]
X [−1]

X [−1] ⊗R R

ρ

r
X [−1]

(X ⊗R R)[−1] r[−1]
X [−1]
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400 A. B. Buan et al.

are commutative and that the following diagram

X [−1] ⊗R Y [−1] ρX ,Y [−1]

λX [−1],Y

(X ⊗R Y [−1])[−1]
λX ,Y [−1]

(X [−1] ⊗R Y )[−1] ρX ,Y [−1]
(X ⊗R Y )[−2]

is anti-commutative.
If we are in a setting where (X ⊗R Y ) ⊗S Z and X ⊗R (Y ⊗S Z) are defined, then there

is an associativity isomorphism between them induced by the associativity isomorphism for
tensor products of modules. In addition the tensor productC(Sop)×C(S) → C(Z) given by
the total tensor product over S sends null homotopic maps to null homotopic maps, such that
the tensor product induces a functor K(Sop) × K(S) → K(Z). Here K(S) and K(mod S)

denote the homotopy category of complexes of all left S-modules and all finitely presented
left S-modules over the ring S, respectively. Having this in mind it is easy to check that the
other requirements for a triangulated tensor category are satisfied in the following examples.

Example 1.2 Let R be a commutative ring. ThenK(R) is a triangulated tensor category with
the tensor product induced by the total tensor product over R, and with e = R, a, l, r, T , and
λ and ρ given as above. This gives rise to an action of K(R) on K(R).

Example 1.3 Let G be a finite group, and let k be a field. ThenK(kG) is a triangulated tensor
category with the tensor product induced by the total tensor product over k, and with e = k,
a, l, r, T , and λ and ρ given as above. Consequently there is an action of K(kG) on K(kG).

Example 1.4 An easy generalization of the above example is to consider a finite dimensional
Hopf algebra H over a field k. Then K(H) is a triangulated tensor category with the same
choice of structures as for the group ring case. Hence there is an action of K(H) on K(H).

Example 1.5 Let Λ be an algebra over a commutative ring k. Let Λe = Λ ⊗k Λop be the
enveloping algebra ofΛ. ThenK(Λe) is a triangulated tensor categorywith the tensor product
induced by the total tensor product over Λ, and with e = Λ, a, l = r, T , and λ and ρ given
as above. As above this gives rise to an action of K(Λe) on K(Λe). Furthermore, we obtain
an action of K(Λe) on K(Λ) in a natural way.

In the examples K(kG) and K(H) the tensor product ⊗k in Mod kG and Mod H is
exact, so that the tensor product of a complex with an acyclic complex is always an acyclic
complex again, or equivalently tensoringwith a fixed complex preserves quasi-isomorphisms.
It follows from this that the tensor product in the homotopy categories induces a tensor product
on the derived categories D(kG) and D(H). In addition, this induces a triangulated tensor
structure on D(kG) and D(H).

The situation is different forK(Λe). Here, we restrict to the full subcategoryB in ModΛe

(or modΛe) consisting of those Λe-modules which are projective over Λ and Λop. Then the
tensor product − ⊗Λ − is exact on B. Let C = Db(B) be the full subcategory of D(Λe)

generated by all complexes of modules in B with bounded homology. Similarly as above,
the tensor product − ⊗Λ − induces a tensor product on C making it a triangulated tensor
category with the tensor structure induced from K(Λe). This also gives rise to an action of
C on D(Λ), D−(modΛ) and Db(modΛ).

The derived tensor product − ⊗L

Λ − on D(Λe) given by X ⊗Λ p(Y ) where p(Y ) → Y
is a quasi-isomorphism and p(Y ) is a complex of projective modules, makes D(Λe) into a
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Support varieties: an axiomatic approach 401

triangulated tensor category. Similarly, if Y is in D(Λ), the derived tensor product X ⊗L

Λ Y
yields an action of D(Λe) on D(Λ).

As above, for a commutative Noetherian ring R the derived tensor product − ⊗L

R − on
D(R)makesD(R) into a triangulated tensor category. Consider the full subcategoryDperf (R)

of perfect complexes and Db(mod R) under this action. It is easy to see that the above action
restricts to an action of Dperf (R) on Db(mod R), where the tensor product is given by taking
the total tensor product over R.

Example 1.6 For a selfinjective algebra Λ let ModΛ denote the category ModΛ modulo
the morphisms factoring through projective modules. This is a triangulated category with
suspension given by the first negative syzygy, Ω−1

Λ . In the stable categories ModkG or
ModH there is an induced tensor product by the Hopf structure and since P ⊗k M and
M ⊗k P are projective modules whenever P is a projective module and M is any module.
In addition this tensor product induces exact functors (triangle functors) for a fixed object
in each of the variables of the tensor product. Hence we obtain that the stable categories
ModkG and ModH are triangulated tensor categories.

Example 1.7 Let Λ be a finite dimensional selfinjective algebra over a field k. Again let B
denote the full subcategory of ModΛe consisting of the bimodules projective as modules on
either side. Since P⊗Λ B and B⊗Λ P are projectiveΛe-modules whenever P is a projective
Λe-module and B is in B, the tensor product − ⊗Λ − also induces a tensor product on the
stable category B as a full subcategory of ModΛe. As above the category B becomes a
triangulated tensor category.

Example 1.8 Let Sd be the symmetric group permuting d elements and let k be a field. Let
n ≥ d and set V = kn . Then the Schur algebra Sk(n, d) is by definition the endomorphism
algebra EndkSd (V

⊗d) and there exists an idempotent e in Sk(n, d) such that eSk(n, d)e ∼=
kSd . Multiplying with e yields the Schur functor mod Sk(n, d) → mod kSd (see [22]).

The category mod Sk(n, d) carries a (not necessarily exact) symmetric tensor product
[28]. On the other hand, mod kSd is a tensor category via − ⊗k − with the diagonal group
action. The Schur functor preserves the tensor product [1] and this yields an exact functor
Db(mod Sk(n, d)) → Db(mod kSd) between triangulated tensor categories. In fact, it is a
triangulated quotient functor [25, Lemma 1.15]. Thus the known classification of thick tensor
ideals of Db(mod kSd) via homogeneous prime ideals of the cohomology ring H∗(Sd , k)
(see [7]) embeds into the presently unknown classification for Db(mod Sk(n, d)).

2 The endomorphism ring of the tensor identity

The endomorphism ring of the tensor identity in a suspended tensor category was considered
in [38] and shown to be graded-commutative. Any homomorphism of graded rings from
a positively graded and graded-commutative ring R to the graded centre of a triangulated
category is shown to give rise to a theory of support varieties (see [4,8,9,12]). This is called
a central ring action of the graded ring R on the triangulated category A.

This section is devoted to showing that there is a homomorphism of graded rings from
the graded endomorphism ring of the tensor identity e in a triangulated tensor category C to
the graded centre of a triangulated category A on which C is acting. Hence it gives rise to a
central ring action on A.

Let C = (C,⊗, e, a, l, r, T , λ, ρ) be a triangulated tensor category acting on a tri-
angulated category A = (A,Σ). Consider the graded endomorphism ring End∗

C(e) =
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402 A. B. Buan et al.

�p∈Z HomC(e, T p(e)) of the tensor identity in C, which clearly is a naturally Z-graded
ring with multiplication given as follows: If h : e → T p(e) and h′ : e → T q(e), then

h · h′ = T q(h)◦h′ : e → T p+q(e).

Recall that the graded centre Z∗(A) of A is defined as the graded ring which in degree
p in Z consists of all natural transformations z : idA → Σ p such that Σz = (−1)pzΣ
(see [16]). We want to define a homomorphism of graded rings from End∗

C(e) to Z∗(A).
To this end we need to study the induced isomorphisms x ∗ Σ p(a) → Σ p(x ∗ a) and
T p(x) ∗ a → Σ p(x ∗ a) for all integers p. Let λ′

0 and ρ′
0 be the identity transformation of

the functor − ∗ −: C × A → A. For p > 0 let

λ′
p = Σ p−1(λ′)◦Σ p−2(λ′)◦ · · · ◦Σ(λ′)◦λ′ : − ∗Σ p(−) → Σ p(− ∗ −)

and

ρ′
p = Σ p−1(ρ′)◦Σ p−2(ρ′)◦ · · · ◦Σ(ρ′)◦ρ′ : T p(−) ∗ − → Σ p(− ∗ −).

In particular,

(λ′
p)

−1 : Σ p(− ∗ Σ−p(−)) → − ∗ Σ pΣ−p(−) � − ∗ −
when (λ′

p)
−1 is starting in Σ p(− ∗ Σ−p(−)), and therefore

Σ−p((λ′
p)

−1) : − ∗Σ−p(−) → Σ−p(− ∗ −)

for p > 0. Let λ′−p = Σ−p((λ′
p)

−1) for p > 0. Similarly let

ρ′−p = Σ−p((ρ′
p)

−1) : T−p(−) ∗ − → Σ−p(− ∗ −)

for p > 0. With these definitions it is easy to check that

Σ p(l′)◦λ′
p = l′ : e ∗ Σ p(−) → Σ p(−) (1)

and
Σq(λ′

p)◦ρ′
q = (−1)pqΣ p(ρ′

q)◦λ′
p : T q(−) ∗ Σ p(−) → Σ p+q(− ∗ −) (2)

for all integers p and q . This last relation corresponds to the diagram

T q(x) ∗ Σ p(a)

λ′
p

ρ′
q

Σq(x ∗ Σ p(a))

Σq (λ′
p)

Σ p(T q(x) ∗ a)
Σ p(ρ′

q )

Σ p+q(x ∗ a)

being commutative up to the sign (−1)pq .
Let h : e → T p(e) be a degree p element in End∗

C(e). Then consider the following
composition of natural transformations of functors

idA
l′−1−−→ e ∗ − h∗1−−→ T p(e) ∗ − ρ′

p−→ Σ p(e ∗ −)
Σ p(l′)−−−→ Σ p(−),

which we denote by ϕA(h). We show that ϕA gives rise to a homomorphism of graded rings
ϕA : End∗

C(e) → Z∗(A).

Proposition 2.1 The map ϕA : End∗
C(e) → Z∗(A) is a homomorphism of graded rings.
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Support varieties: an axiomatic approach 403

Proof We need to show that ΣϕA(h) = (−1)pϕA(h)Σ for h : e → T p(e). Consider the
following diagram

Σ
Σ(l′−1)

Σ(e ∗ −)
Σ(h∗1)

λ′−1

Σ(T p(e) ∗ −)
Σ(ρ′

p)

λ′−1

Σ(Σ p(e ∗ −))
Σ p+1(l′)

Σ p(λ′−1)

ΣΣ p(−)

Σ
l′−1

e ∗ Σ(−)
h∗1

T p(e) ∗ Σ(−)
ρ′
p

Σ p(e ∗ Σ(−))
Σ(l′)

Σ pΣ(−)

The leftmost and the rightmost squares commute due to (1). The second square commutes
since λ′ is a morphism of functors. The third square commutes up to the sign (−1)p by
(2). Hence it follows that ϕA(h) is in Z∗(A). It is straightforward to check that ϕA is a
homomorphism of graded rings. �
Let

Hom∗
A(a, b) = �p∈Z HomA(a,Σ p(b))

for any objects a and b in A, and let End∗
A(a) = Hom∗

A(a, a). The homomorphism set
Hom∗

A(a, b) is endowedwith a left and a rightmodule structure fromEnd∗
A(b) and End∗

A(a),
respectively. For each object a in A the evaluation at a induces a homomorphism of graded
rings γa : Z∗(A) → End∗

A(a) given by γa(η) = ηa : a → Σ p(a) for η : idA → Σ p

in Z∗(A). Then Hom∗
A(a, b) has a left and a right Z∗(A)-module structure via the ring

homomorphisms γb and γa respectively. For completeness we recall the following.

Proposition 2.2 The action of Z∗(A) on the right and on the left of Hom∗
A(a, b) for a and b

in A satisfies, for η : idA → Σ p in Z∗(A) and f : a → Σqb in Hom∗
A(a, b), the following

equality

η · f = (−1)pq f · η.

Proof Let η : idA → Σ p be in Z∗(A) and f : a → Σq(b) in Hom∗
A(a, b). Since η is a

natural transformation of functors, the following diagram commutes

a
f

ηa

Σq(b)

ηΣq (b)

Σ p(a)
Σ p( f )

Σ pΣq(b)

As ηΣq (b) = (−1)pqΣq(ηb), the claim follows. �
Using that a tensor triangulated category C acts on itself, we obtain the following immediate
corollary.

Corollary 2.3 (a) The composition

End∗
C(e)

ϕC−→ Z∗(C)
γe−→ End∗

C(e)

of homomorphisms of graded rings is the identity.
(b) The graded endomorphism ring End∗

C(e) is graded-commutative.

Proof The proof of (a) is a direct computation. The claim in (b) is then an immediate conse-
quence of Proposition 2.2. �
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Remark 2.4 (1) The triangulated tensor category C with an action on A can be viewed as a
categorification of a central ring action, namely, a homomorphism of graded rings from a
graded-commutative ring R to Z∗(A).

(2) The above gives rise to a homomorphism of graded rings ϕa : End∗
C(e) → End∗

A(a)

for any object a inA by letting ϕa = γaϕA. For h : e → T p(e), the morphism ϕa(h) is given
as

a
l′−1−−→ e ∗ a

h∗1−−→ T p(e) ∗ a
ρ′
p−→ Σ p(e ∗ a)

Σ p(l′)−−−→ Σ p(a).

(3) Suppose that idempotents split in C and in A. Then, if End0C(e) decomposes as a ring,
then the categories C andA also decompose as categories. Hence we can always assume that
C and A are indecomposable as categories and therefore that End∗

C(e) is indecomposable as
a ring.

(4) The statement in (b) was first shown in [38, Theorem 1.7]. As pointed out in that
paper, we obtain the graded-commutativity of the following graded rings (using the notation
of Sect. 1 and Examples 1.2–1.7):

(i) Let G be a finite group, and let k be a field. Then

End∗
D(kG)(k) = �p∈Z HomD(kG)(k, k[p]) � �p�0 Ext

p
kG(k, k),

is the group cohomology ring of G. Also

End∗
ModkG(k) = �p∈ZHomkG(k,Ω−p

kG (k)) � ̂Ext
∗
kG(k, k),

is the Tate cohomology ring of G.
(ii) Let H be a Hopf algebra over a field k. Then

End∗
D(H)(k) = �p∈Z HomD(H)(k, k[p]) � �p�0 Ext

p
H (k, k),

is the cohomology ring of k over H . Also

End∗
ModH (k) = �p∈ZHomH (k,Ω−p

H (k)) � ̂Ext
∗
H (k, k),

is the Tate cohomology ring of k over H .
(iii) Let Λ be an algebra over a field k. Then

End∗
D(Λe)(Λ) = �p∈Z HomD(Λe)(Λ,Λ[p]) � �p�0 Ext

p
Λe (Λ,Λ),

is the Hochschild cohomology ring of Λ over k. Also, if Λ is selfinjective,

End∗
B(Λ) = �p∈ZHomΛe (Λ,Ω

−p
Λe (Λ)) � ̂Ext

∗
Λe (Λ,Λ),

is the Tate cohomology ring of Λ over Λe.

3 Support varieties

Throughout this section C = (C,⊗, e, a, l, r, T , λ, ρ) is a triangulated tensor category acting
on a small triangulated category A = (A,Σ). Let H be a positively graded and graded-
commutative ring with a homomorphism of graded rings H → End∗

C(e). As mentioned
earlier this gives rise to a theory of support varieties in Spec H , where Spec H is the set of
all homogeneous prime ideals in H . We begin this section by pointing out the standard prop-
erties of these support varieties. We then give realizability results for closed homogeneous
subvarieties of varieties of given objects and possible generators for A.
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In order to obtain our results, further assumptions are needed. So the following are our
standing assumptions.

Assumption 3.1 For C, A and H the following holds:

(1) C = (C,⊗, e, a, l, r, T , λ, ρ) is a triangulated tensor category acting on a small trian-
gulated category A = (A,Σ).

(2) H is a positively graded-commutativeNoetherian ringwith a homomorphismof graded
rings H → End∗

C(e).
(3) The left H -module Hom∗

A(a, b) is finitely generated for all objects a, b in A.

If the graded ring H has a non-trivial idempotent f in degree zero, and for some object a in
A we have both f ∗ 1a and (1H − f ) ∗ 1a non-zero, then assuming that idempotents split in
A, one can show that the categoryA decomposes. Hence, in this case, we can assume that the
graded ring H has only trivial idempotents in degree zero. We sometimes assume a stronger
condition, namely that H0 is a local ring.

In general the graded endomorphism ring End∗
C(e) need not be a positively graded ring

making Spec End∗
C(e) a more difficult object to handle than Spec H . One could use the

positive part End�0
C (e) of End∗

C(e) instead of some graded-commutative ring H . However,

there are situationswhere assumingfinite generation over H or over End�0
C (e), are equivalent,

which we now demonstrate.
Having C acting onA gives rise to a functor from C to the endofunctors ofA. A necessary

condition related for this functor to have a right adjoint, is as pointed out in [26], that each
functor − ∗ a : C → A has a right adjoint, that is, there is a functor A → C for each object
a in A, denoted F ′′(a,−) and an isomorphism

HomA(x ∗ a, b) → HomC(x, F ′′(a, b)),

natural in all three variables. Having such a right adjoint induces an isomorphism
Hom∗

A(a, b) � Hom∗
C(e, F ′′(a, b)) of End∗

C(e)-modules. In some situations there are objects
a and b in A such that e is in the thick triangulated subcategory generated by F ′′(a, b) in
C. Therefore, if Hom∗

A(a, b) is finitely generated for some positively graded commutative

Noetherian ring H , then End�0
C (e) (also End∗

C(e)) is Noetherian too. A further discussion on
such functors F ′′, called function objects, can be found in Sect. 5. A classical isomorphism,
which gives rise to such a function object, is the adjunction isomorphism

HomΛ(B ⊗Λ M, N ) � HomΛe (B,Homk(M, N ))

for a k-algebra Λ, where B is a Λe-module, and M and N are Λ-modules.
Now we give the definition of the support variety of a pair of objects (a, b) in A.

Definition 3.2 For a pair of objects a and b in A, the support variety V (a, b) of (a, b) with
respect to H is given by

V (a, b) = {p ∈ Spec H | Hom∗
A(a, b)p �= (0)} = Supp(Hom∗

A(a, b)).

Proposition 2.2 implies that the annihilator AnnH Hom∗
A(a, b) of Hom∗

A(a, b) as an H -
module for any objects a and b in A, is independent of viewing Hom∗

A(a, b) as a left or as a
right H -module. We denote this annihilator by A(a, b). For a graded ideal I in H we denote
by V (I ) = Supp(H/I ).

The following properties of the support variety are standard and straightforward to verify,
and we leave the proofs to the reader.
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Proposition 3.3 The support variety V (−,−) has the following properties:

(a) Let a1 → a2 → a3 → Σ(a1) be a triangle in A. Let a be an object in A.

(i) V (a, ar ) ⊆ V (a, as) ∪ V (a, at ) whenever {r , s, t} = {1, 2, 3}.
(ii) V (ar , a) ⊆ V (as, a) ∪ V (at , a) whenever {r , s, t} = {1, 2, 3}.

(b) V (a, b) = V (Σ i (a),Σ j (b)) for any pair of objects (a, b) in A and integers i and j
in Z.

(c) Let {ai }ri=1 and {b j }sj=1 be two finite sets of objects in A. Then

V (�r
i=1ai ,�s

j=1b j ) = ∪r ,s
i, j=1V (ai , b j ).

Since the action of H on Hom∗
A(a, b) factors through the action of H on both Hom∗

A(a, a)

and Hom∗
A(b, b) for any pair of objects a and b in A, the following result is immediate.

Proposition 3.4 Let a and b be objects in A.

(a) V (a, b) ⊆ V (a, a) ∩ V (b, b).
(b) V (a, a) = ∪x∈AV (a, x) = ∪x∈AV (x, a).

Having these properties at hand we define the support variety of an object a in A to be
V (a) = V (a, a). The properties above give the following behaviour.

Proposition 3.5 The support variety V (−) has the following properties:

(a) If a1 → a2 → a3 → Σ(a1) is an exact triangle in A, then V (ar ) ⊆ V (as) ∪ V (at )
whenever {r , s, t} = {1, 2, 3}.

(b) V (a) = V (Σ i (a)) for all objects a in A and i in Z.
(c) V (�n

i=1ai ) = ∪n
i=1V (ai ).

Our next aim is to show that any closed homogeneous subvariety of the variety of an
object a in A occurs as a variety of an object in A. In doing so the construction of Koszul
objects is crucial (see [24, §6]). Any morphism h : e → T p(e) induces for any object a in A
a morphism

h ∗ 1a : e ∗ a → T p(e) ∗ a

which we can identify with

h · 1a : a � e ∗ a
h∗1a−−→ T p(e) ∗ a � Σ p(e ∗ a) � Σ p(a).

Complete this morphism to a triangle

a
h·1a−−→ Σ p(a) → a//h → Σ(a)

inA. An immediate consequence of the above construction is that the Koszul object a//h is in
the thick subcategory generated by a in A for all homogeneous elements h in H . Moreover,
as we also note below, V (a//h) ⊆ V (a).

Using the triangle a
h·1a−−→ Σ p(a) → a//h → Σ(a) we have the following.

Proposition 3.6 Let h : e → T p(e) be in C. Then the following assertions hold.

(a) If h is in A(a, a), then Σ(a) � Σ p(a) � a//h.
(b) If {h1, h2, . . . , ht } is in A(a, a), then Σ t (a) is a direct summand of

(· · · ((a//h1)//h2) · · · )//ht .
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(c) V (a//h) ⊆ V (a).
(d) The element h2 is in A(a//h, a//h). In particular,

V (a//h) ⊆ V (〈h〉) ∩ V (a).

Proof (a) This follows immediately from the triangle we constructed above.
(b) Repeated use of (a) shows this.
(c) We have the triangle Σ p(a) → a//h → Σ(a) → Σ p+1(a) in A. By Proposition 3.5

we infer that V (a//h) ⊆ V (Σ p(a)) ∪ V (Σ(a)) = V (a).

(d) From the triangle a
h·1a−−→ Σ p(a) → a//h → Σ(a) in A we get the exact sequence

Hom∗
A(b, a)

HomA(b,(h·1a))−−−−−−−−−→ Hom∗
A(b,Σ p(a))

→ Hom∗
A(b, a//h) → Hom∗

A(b,Σ(a))

for all objects b in A. A straightforward calculation shows that the map

HomA(b, (h · 1a)) : Hom∗
A(b, a) → Hom∗

A(b,Σ p(a))

is given by multiplication by h from the left (up to sign). Since Hom∗
A(b,Σ p(a)) =

Hom∗
A(b, a), we obtain the exact sequence

0 → Hom∗
A(b, a)/h · Hom∗

A(b, a) → Hom∗
A(b, a//h) → Ker(h · −|Hom∗

A(b,a)) → 0,

so that h2 · Hom∗
A(b, a//h) = (0) for all objects b in A. It follows that V (a//h) ⊆ V (〈h〉) ∩

V (a).

If we impose the following extra condition on the action of C on A,

(4) The functor − ∗ a : C → A is an exact functor for all objects a in A. In this case the
action is said to be compatible with the triangulation in C,

then we get an additional way of viewing a//h. Given the morphism h : e → T p(e) in C,
complete it to a triangle

e
h−→ T p(e) → e//h → T (e)

in C. Here e//h is unique up to a non-unique isomorphism. For any object a in A we get a
commutative diagram in A, where the upper and the lower rows are triangles in A.

e ∗ a
h∗1a

l′

T p(e) ∗ a

ρ′
p

(e//h) ∗ a

�

T (e) ∗ a

ρ′

Σ p(e ∗ a)

Σ p(l′)

Σ(e ∗ a)

Σ(l′)

a
h·1a

Σ p(a) a//h Σ(a)

Since the two first vertical maps are isomorphisms, it follows that (e//h) ∗ a � a//h.
Computing the support variety of a//h is the key to ourmain result in this section. The proof

is similar to the analogous result in [19, Proposition 4.3]. Next we show that the inclusion in
(d) above actually is an equality.
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Proposition 3.7 Let h : e → T p(e) be in H. Then for any object a in A

V (a//h) = V (〈h〉) ∩ V (a).

Proof Choose aprime idealp inSpec H lyingover 〈h, A(a, a)〉. Suppose that∩b∈AA(b, a//h)

is not contained in p. Then (Hom∗
A(b, a//h))p = (0) for all objects b in A. From the short

exact sequence in the proof of the previous result, we infer that

Hom∗
A(b, a)p = h · Hom∗

A(b, a)p.

SinceHom∗
A(b, a)p is a finitely generated Hp-module and h is in pHp, theNakayamaLemma

implies that Hom∗
A(b, a)p = (0). As Hom∗

A(b, a) is a finitely generated H -module, the ideal
A(b, a) is not contained in p for all objects b in A. In particular, A(a, a) is not contained
in p. This is a contradiction by the choice of p, hence ∩b∈AA(b, a//h) = A(a//h, a//h) is
contained in p. It follows that V (〈h〉) ∩ V (a) ⊆ V (a//h). This completes the proof using the
previous result. �

Our main result of this section now follows directly from the above.

Theorem 3.8 (a) Let a be an object in A. Then any closed homogeneous subvariety of
V (a) occurs as the variety of some object in A.

(b) Suppose that A has a generator g in the sense that A = Thick(g). Then any closed
homogeneous subvariety of V (g) occurs as the variety of some object in A.

4 Complexity and perfect and periodic objects

Throughout this section we keep the setup from the previous section. Thus we fix a tri-
angulated tensor category C acting on a triangulated category A and a ring H satisfying
Assumption 3.1.

In this context we define the class of perfect objects as the objects with support variety
contained in V (H+) with H+ = 〈√0H0 , H�1〉, where √

0H0 is the nilradical of H0. We
introduce a notion of complexity of objects in A, and we characterize the perfect objects as
those being of complexity 0. We also define and characterize periodic objects in terms of
complexity when H0 is a local ring.

First we discuss the concept of complexity of objects in A. Condition (2) is equivalent to
R = H0 being a (commutative) Noetherian ring and H being a finitely generated (graded-
commutative) graded algebra over R (as for commutative graded rings). It follows from
this that each graded part Hi of H is a finitely generated R-module. Condition (3) says
that any Hom∗

A(a, b) is a finitely generated H -module for all objects a and b in A, hence
HomA(a,Σ i (b)) is a finitely generated R-module for all objects a and b in A and all i in
Z. For a finitely generated S-module M , denote by mingenS(M) the minimal number of
generators as an S-module. Then we define the complexity of an object in A as follows.

Definition 4.1 The complexity cx(a) of an object a in A is given by

min{s ∈ N0 | ∀ b ∈ A, ∃ rb ∈ R;
mingenR

(

HomA(a,Σn(b))
)

� rb|n|s−1,∀ |n| � 0},
if such rb and s exist for all objects b in A. Otherwise we set cx(a) = ∞.

Note that since (3) Hom∗
A(a, b) is a finitely generated H -module for all objects a and b inA

and (2) H is graded-commutative and Noetherian, we have that the complexity is bounded
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by the polynomial growth of the graded parts of H as R-modules, which is finite. In addition,
since Hom∗

A(a, b) is a finitely generated End∗
A(a)-module, the complexity of a is bounded,

and therefore equal to

min{s ∈ N0 | ∃ r ∈ R;mingenR
(

HomA(a,Σn(a))
)

� r |n|s−1,∀ |n| � 0}.
We collect some elementary properties of the complexity of objects next, where we leave

the proofs to the reader.

Proposition 4.2 (a) cx(a) = cx(Σ i (a)) for all objects a in A and all integers i .
(b) cx(a � b) = max{cx(a), cx(b)} for all objects a and b in A.
(c) If a1 → a2 → a3 → Σ(a1) is a triangle in A, then

cx(a2) � max{cx(a1), cx(a3)}.
One of the focal points in this section is the following notion of a perfect object.

Definition 4.3 An object a in A is a perfect object if V (a) ⊆ V (H+).

Now we characterize the perfect objects as those of complexity zero.

Proposition 4.4 Let a be in A. Then the following are equivalent.

(a) a is perfect object in A.
(b) cx(a) = 0.
(c) ∀ b ∈ A, ∃ nb ∈ N such that HomA(a,Σ i (b)) = (0) for |i | � nb.
(d) ∀ b ∈ A, ∃mb ∈ N such that HomA(b,Σ i (a)) = (0) for |i | � mb.

Proof (b) implies (c): assume that cx(a) = 0. This means that for all b in A there exists rb
in R such that mingenR (HomA(a,Σn(b))) � rb|n|−1 for all n with |n| � 0. This implies
in turn that for all b inA there exists nb in N such that mingenR HomA(a,Σn(b)) = (0) for
all n such that |n| � nb, which is the statement of (c).

(c) implies (b): it follows immediately from the definition that cx(a) = 0.
(c) implies (d): suppose that (c) holds. In particular, HomA(a,Σ i (a)) = (0) for all i

such that |i | � na for some integer na . Fix an object b in A. Since Hom∗
A(b, a) is a finitely

generated module over Hom∗
A(a, a), say generated in degrees r1 < r2 < · · · < rt as a

module over Hom∗
A(a, a), then we have that HomA(b,Σ i (a)) = (0) for i < r1 − na and

for i > rt + na . The number mb = max{|r1 − na |, |rt + n1|} + 1 depends only on b (when
a is fixed), and this number makes (d) hold true.

(d) implies (a): suppose that for allb inA there existsmb inN such thatHomA(b,Σ i (a)) =
(0) for all i with |i | � mb. In particular, HomA(a,Σ i (a)) = (0) for all i with |i | � ma .
Then H�ma is in A(a, a). Since

√
H�ma = H+, it follows that V (a) ⊆ V (H+) and a is a

perfect object.
(a) implies (c): suppose that a is a perfect object inA. Then H+ ⊆ √

A(a, a). Since H is
a finitely generated algebra over R, we infer that H�N ⊆ A(a, a) for some integer N and
Hom∗

A(a, a) is a finitely generated H/H�N -module. Hence HomA(a,Σ i (a)) = (0) for all
i with |i | � na for some integer na . Since Hom∗

A(a, b) is a finitely generated module over
Hom∗

A(a, a) for all objects b in A, it follows that there exists for all b in A an integer nb
such that HomA(a,Σ i (b)) = (0) for all i with |i | � nb. Hence we have proved (c). This
completes the proof of the proposition. �
Remark 4.5 If the triangulated category A has a generator g in the sense that A = Thick(g),
all of the above can be reformulated in terms of g instead of for all objects b in A.

123



410 A. B. Buan et al.

We denote the full subcategory of A consisting of the perfect objects by Aperf . The
subcategoryAperf is a thick subcategory ofA, so we can form the Verdier quotientA/Aperf .
Using this quotient we can define periodic objects as follows.

Definition 4.6 An object a in A is periodic of period n if a is not perfect and a � Σn(a) in
A/Aperf for some positive integer n, where n is smallest possible.

We have the following characterization of periodic objects.

Proposition 4.7 Assume that R = H0 is a local ring. Let a be an object in A. Then a is a
periodic object if and only if cx(a) = 1.

Proof Suppose that a is a periodic object inA, say a � Σn(a) inA/Aperf for some non-zero
integer n. This means that there exist exact triangles inA of the form a′ → a → p → Σ(a′)
and a′ → Σn(a) → p′ → Σ(a′) for some perfect objects p and p′. It follows that for
|i | � 0 we have that HomA(a,Σ i (a)) � HomA(a,Σ i+n(a)) and hence that cx(a) � 1.
Since a is not perfect, that is, cx(a) � 1, we infer that cx(a) = 1.

Conversely, suppose that cx(a) = 1 and let R = H0 be a local ring with maximal ideal
m. Let H = H ⊗R R/m, which is a homomorphic image of H and hence Noetherian.
Let X = Hom∗

A(a, a) ⊗R R/m, which is a finitely generated H -module and consequently
Noetherian, since Hom∗

A(a, a) is a finitely generated H -module. Denote the inclusion map

H+ ↪→ H by ν, and H+ = Im(ν ⊗R 1R/m) = H
�1 ⊂ H . Consider the H -submodule

(0 :X H+) = {x ∈ X | H+x = (0)}
of X , which is a finitely generated H -module. Since H+ · (0 :X H+) = (0), the module
(0 :X H+) is a finitely generated R/m-module as H/H+ � R/m. This implies that (0 :X
H+) only lives in a finite number of degrees. Hence there exists an integer w such that
(0 :X H+)i = (0) for i � w. Since H is positively graded and Hom∗

A(a, a) is a finitely
generated H -module, HomA(a,Σ i (a)) = (0) for i � 0. Therefore, since cx(a) = 1, we
infer that HomA(a,Σ i (a)) �= (0) for infinitely many i � 0. This implies that X�w �= (0),
and the set of associated primes AssH X�w is a finite set consisting of graded prime ideals.
The union of these primes is the set of homogeneous zero-divisors on X�w . If H+ ⊆ p for
some graded prime in AssH X�w, it follows that H+ annihilates some non-zero element of
X�w , which is a contradiction by the choice of w. We conclude that H+ is not contained
in any of the prime ideals in AssH X�w. The Prime Avoidance Lemma implies that there

exists a homogeneous X�w-regular element h′ in H+, that is, Xi
h′−→ Xi+|h′| is an (R/m)-

monomorphism for i � w. This gives rise to the following commutative diagram

Hom�w

A (a, a)
h

Hom�w+|h|
A (a, a)

0 Hom�w

A (a, a) ⊗R R/m
h′

Hom�w+|h′|
A (a, a) ⊗R R/m

0 0

where h is an inverse image of h′ in H . Since cx(a) = 1, there is a positive integer ra and
epimorphisms of R-modules Rra → HomA(a,Σn(a)) for n with |n| � 0. This shows that
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the dimension of the R/m-vectorspaces Homi
A(a, a)⊗R R/m are bounded by ra for |i | � 0.

Hence the induced maps

Homi
A(a, a) ⊗R R/m

h′−→ Homi+|h′|
A (a, a) ⊗R R/m

are isomorphisms for |i | � 0. Since each graded piece Homi
A(a, a) is a finitely generated

R-module, it follows from the commutative diagram above that the map Homi
A(a, a)

h−→
Homi+|h|

A (a, a) is an epimorphism for all |i | � 0. Let Mt = Hom�N+(t−1)|h|
A (a, a) for

integers t and N . Consider the map Mt
h·−−−→ Mt+1. We have the commutative diagram

0

Ker(h2 · −)

0 Ker(h · −) Mt
h·−

h2·−

Mt+1

h·−

0

Mt+2

0 0

for some N � 0. Since Mt is a finitely generated H -module for all t and H is Noetherian,

there exists an integer L such that Mt
h·−−−→ Mt+1 is an isomorphism for all t � L . Using

the triangle a
h·−−−→ Σ |h|(a) → a//h → Σ(a) and the long exact sequence induced from

it, it follows that Homi
A(a, a//h) = (0) for |i | � 0. Since a//h is in the thick subcategory

generated by a, we infer that Homi
A(a//h, a//h) = (0) for |i | � 0 and cx(a//h) = 0. It then

follows that a//h is a perfect object and that a is a periodic object in A. �

5 Function objects

Let us begin with explaining one example of a function object. Let C be the triangulated
tensor category (D−(Λe),− ⊗L

Λ −,Λ) for a finite dimensional k-algebra Λ where k is a
field, and let A = D−(modΛ). Then C acts on A, and we have that

HomA(B ⊗L

Λ A,C) � HomA(A,RHomΛ(B,C))

for all objects A and C inA and B in C. ThenRHomΛ(−,−) : Cop ×A → A is called a left
function object for the action of C on A. This section is devoted to recalling the definition
of and giving some elementary properties of such function objects. In the next section we
discuss the theory of support when the action of C on A has a left function object.

Throughout this section let C = (C,⊗, e, a, l, r, T , λ, ρ) be a triangulated tensor category
acting on a small triangulated category A = (A,Σ). First we give the definition of a left
function object for an action of C on A.
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Definition 5.1 (a) A left function object F ′ for the action of C onA is a functor F ′ : Cop ×
A → A such that

(i) F ′(x,−) : A → A is a covariant functor for each object x in C.
(ii) F ′(−, a) : C → A is a contravariant functor for each object a in A.
(iii) there is an isomorphism

HomA(x ∗ a, b) → HomA(a, F ′(x, b))

natural in all three variables.

(b) A left function object F ′ : Cop × A → A is compatible

(i) with the triangulation of C if for each triangle x
u−→ y

v−→ z
w−→ T (x) in C and each

object a in A, then

F ′(T (x), a)
−F ′(w,1)−−−−−→ F ′(z, a)

F ′(v,1)−−−−→ F ′(y, a)
F ′(u,1)−−−−→ F ′(x, a)

is a triangle in A.

(ii) with the triangulation of A if for each triangle a
u−→ b

v−→ c
w−→ Σ(a) in A and

each object x in C, then

F ′(x, a)
F ′(1,u)−−−−→ F ′(x, b) F ′(1,v)−−−−→ F ′(x, c) F ′(1,w)−−−−→ F ′(x,Σ(a))

is a triangle in A.

In Sect. 3 we briefly discussed one occurrence of a right function object in connection with
the assumptions of the setup for support varieties via the action of the graded endomorphism
ring End∗

C(e). Next we give the precise definition of these function objects.

Definition 5.2 (a) A right function object F ′′ for the action of C on A is a functor
F ′′ : Aop × A → C such that

(i) F ′′(a,−) : A → C is a covariant functor for each object a in A.
(ii) F ′′(−, a) : Aop → C is a contravariant functor for each object a in A.
(iii) there is an isomorphism

HomA(x ∗ a, b) → HomC(x, F ′′(a, b))

natural in all three variables.

(b) A right function object F ′′ : Aop × A → C is compatible with the triangulation of A

(i) if for each triangle x
u−→ y

v−→ z
w−→ Σ(x) in A and each object a in A, then

F ′′(T (x), a)
−F ′′(w,1)−−−−−−→ F ′′(z, a)

F ′′(v,1)−−−−→ F ′′(y, a)
F ′′(u,1)−−−−→ F ′′(x, a)

is a triangle in C.

(ii) and if for each triangle a
u−→ b

v−→ c
w−→ Σ(a) in A and each object x in A, then

F ′′(x, a)
F ′′(1,u)−−−−→ F ′′(x, b) F ′′(1,v)−−−−→ F ′′(x, c) F ′′(1,w)−−−−−→ F ′′(x,Σ(a))

is a triangle in C.

If the action of C on A has a left or a right function object, then each of them is unique up to
isomorphism as stated next.
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Proposition 5.3 (a) If the action of C on A has a left function object, then it is unique up
to isomorphism.

(b) If the action of C onA has a right function object, then it is unique up to isomorphism.

The tensor category C acting on itself, may have both a left and a right function object.
They need not be isomorphic. However, the occasions when they are isomorphic can be
characterized as follows.Recall that the tensor product−⊗− inC is symmetric if x⊗y � y⊗x
via a natural isomorphism in both x and y.

Proposition 5.4 Suppose that C acting on itself has a left and a right function object. Then
the tensor product in C is symmetric if and only if the left and the right function objects for
C are isomorphic.

Next we point out how a left function object respects the triangulated and the tensor structure
in C. The following proposition only deals with left function objects, so we leave it to the
reader to formulate the corresponding results for right function objects.

Proposition 5.5 Let F ′ be a left function object for the action of C on A.

(a) There is a natural isomorphism F ′(x,Σ(a)) � Σ(F ′(x, a)) for all objects x in C and
a in A.

(b) There is a natural isomorphism F ′(T (x), a) � F ′(x,Σ−1(a)) for all objects x in C

and a in A.
(c) There is a natural isomorphism F ′(y ⊗ x, a) � F ′(x, F ′(y, a)) for all objects x and

y in C, and a in A.
(d) There is a natural isomorphism a � F ′(e, a) for all objects a in A.

6 Support varieties for actions with a function object

This section is devoted to studying support varieties in a small triangulated category A

having a triangulated tensor category C acting on A with a left function object. We indicate
how this restricts what we can expect to classify, and how we obtain some control on the
homomorphisms between one object and shifts of another object in A.

Throughout we keep the Assumption 3.1 and add for this section the following.

Assumption 6.1 For C and A the following holds:

(4) There exists a left function object F ′ : Cop × A → A for the action of C on A.
(5) The functor − ∗ a : C → A is an exact functor for all objects a in A.

In the presence of a left function object F ′ for the action ofConAwedenote the corresponding
natural adjunction isomorphism by

ϕ = ϕx,a,b : HomA(x ∗ a, b) → HomA(a, F ′(x, b))

for all objects a and b in A and all x in C.

Remark 6.2 (1) It is tempting to believe that having this adjunction implies that

V (x ∗ a, b) ⊆ V (a) ∩ V (b).

However this is in general not true as pointed out in [13]. But for x = e//h we do have
V (e//h ∗ a, b) ⊆ V (a) ∩ V (b).
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(2) When A is endowed with a theory of support varieties, the thick subcategories X of
A are sometimes given as XV = {X ∈ A | V (X) ⊆ V } for some homogeneous subvariety
V of Spec H . By the above remark one cannot expect that the subcategories XV are tensor
subcategories ofC. This is the case for thick subcategories of the stable category of a p-group.

Next we show that support varieties give us some control of the homomorphisms between
objects in A. To this end we first need to describe how a function object for the action acts
on objects in A.

Lemma 6.3 Let F ′ be a left function object for the action of C on A, which is compatible
with the triangulation in C. Let h : e → T p(e). Then F ′(e//h, a) is in Thick(a) for all a in
A.

Proof Let h : e → T p(e), and let a be in A. Then F ′(−, a) applied to the triangle e
h−→

T p(e) → e//h → T (e) in C gives rise to the triangle

F ′(T (e), a) → F ′(e//h, a) → F ′(T p(e), a) → F ′(e, a)

in A. Since F ′(e, a) � a and F ′(T p(e), a) � Σ−p(a) from Proposition 5.5, it follows
directly that F ′(e//h, a) is in Thick(a). �
The following lemma is the last preliminary result we need before proving the main results
of this section.

Lemma 6.4 Let F ′ be a left function object for the action of C onA. Fix an object c in C, and
let a and b be two objects in A. Let X be a thick subcategory of A such that c ∗ X ⊆ X and
F ′(c,X) ⊆ X. Then a morphism f : c ∗ a → b factors through an object in X if and only if
ϕ( f ) : a → F ′(c, b) factors through an object in X.

Proof This follows directly from the fact that ϕ is natural in all three variables and from the
assumptions. �
Our first main result proves that any morphism f : a → Σ i (b) inA factors through an object
c with variety contained in V (a) ∩ V (b) for any integer i .

Proposition 6.5 Assume that the functor − ∗ x : C → A is an exact functor for all objects
x in A. Let F ′ be a left function object for the action of C on A, and assume that it is
compatible with the triangulation in C. For all h : e → T p(e) assume that the following
diagram commutes for all b in A

F ′(T p(e), b)
F ′(h,b)

�

F ′(e, b)

F ′(e,Σ−p(b))

�

F ′(e, b)

�

Σ−p(b)
Σ−p(h·1b)

b

,

where the vertical isomorphisms are given in Proposition 5.5. In particular,

F ′(e//h, b) � Σ−p−1(b//h).

Let a and b be two objects in A. Then any morphism a → Σ i (b) factors through an object
with support variety contained in V (a) ∩ V (b), for any integer i .
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Proof Suppose that A(a, a) = 〈h1, h2, . . . , ht 〉 for some homogeneous elements h1, h2,
. . . , ht in H . Then by Proposition 3.6 (b) the object Σ t (a) is a direct summand of (e//h1 ⊗
· · · ⊗ e//ht ) ∗ a, recalling that e//h ∗ a′ � a′//h for all homogeneous elements h in H and
objects a′ in A. If a shift of a morphism f : a → Σ i (b) factors through an object with
variety in V (a)∩V (b), then also f has the same property. Therefore we can assume without
loss of generality that Σ t (a) is a. Consequently HomA(a,Σ i (b)) is a direct summand of
HomA((e//h1 ⊗ · · · ⊗ e//ht ) ∗ a,Σ i (b)) for all integers i . Furthermore, note that

HomA((e//h1 ⊗ · · · ⊗ e//ht ) ∗ a,Σ i (b)) � HomA(a, F ′(e//h1 ⊗ · · · ⊗ e//ht ,Σ
i (b))).

Hence by Lemma 6.4, we shall see that it is sufficient to show that

V (F ′(e//h1 ⊗ · · · ⊗ e//ht ,Σ
i (b))) ⊆ V (a) ∩ V (b).

Applying the last assumption multiple times we obtain that

F ′(e//h1 ⊗ · · · ⊗ e//ht , b) � Σ−pt−1(· · · (Σ−p1−1(b//h1)//h2) · · · )//ht .
Then we infer that

V (F ′(e//h1 ⊗ · · · ⊗ e//ht , b)) = V (〈h1, . . . , ht 〉) ∩ V (b) = V (a) ∩ V (b).

LetX = {x ∈ A | V (x) ⊆ V (a)∩V (b)}. Then with c = e//h1⊗· · ·⊗e//ht , the assumptions
of Lemma 6.4 are satisfied. Hence we conclude that any morphism f : a → Σ i (b) factors
through an object in X. This completes the proof. �

For the last result of this section we show that the support variety of an indecomposable
object inA is connected under additional assumptions. The proof is similar to the one of [11,
Theorem 3.1].

Proposition 6.6 We assume the following conditions:

(i) The functor − ∗ a : C → A is an exact functor for all objects a in A.
(ii) There exists a left function object F ′ for the action of C on A compatible with the

triangulation in C.
(iii) A is a Krull-Schmidt category and the idempotents split in A/Aperf .
(iv) The degree zero part H0 of H is a local artinian ring.
(v) For all h : e → T p(e) the following diagram commutes for all b in A

F ′(T p(e), b)
F ′(h,b)

�

F ′(e, b)

F ′(e,Σ−p(b))

�

F ′(e, b)

�

Σ−p(b)
Σ−p(h·1b)

b

,

where the vertical isomorphisms are given in Proposition 5.5.

Let a be a non-perfect object in A, such that V (a) = V1 ∪ V2 for some homogeneous
varieties V1 and V2 with V1 ∩V2 ⊆ V (H+). Then, in the Verdier quotientA/Aperf the object
a decomposes as a1 � a2 where V (ai ) = Vi for i = 1, 2.
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Proof When H0 is a local artinian ring, all perfect objects have the same variety given by
the ideal mgr = 〈rad H0, H�1〉, which is contained in the variety of any object in A.

Assume that V (a) = V1 ∪ V2 for some homogeneous varieties V1 = V (a1) and V2 =
V (a2) with V1 ∩ V2 ⊆ V (H+) and ai homogeneous ideals in H for i = 1, 2. Denote by
γ (U ) the polynomial growth of the minimal number of generators of the graded pieces of a
positively graded H -moduleU as a H0-module. The proof goes by induction on γ (H/a1)+
γ (H/a2). Note that we have cx(b) = γ (H/A(b, b)) for any object b inA. Furthermore, we
have γ (U/ rad(H0)U ) = γ (U ), whenU/ rad(H0)U is considered as a graded module over
H/ rad(H0)H . Hence we can think of H as a graded algebra over the field H0/ rad(H0).

Assume first that one of γ (H/ai ) is zero, say for i = 1. Since a is a non-perfect object,
observe that V (a) �= ∅. Then by Theorem 3.8 there exists a nonzero perfect object p ∈ A.
Then p � a � a in A/Aperf . As V1 is the variety of a perfect object, we have V (p) = V1.
Since V (a) = V1 ∪ V2 = V2, we have that V (a) = V2. Hence we can choose a1 = p and
a2 = a.

Assume that γ (H/ai ) > 0 for i = 1, 2. Since V1 ∩ V2 ⊆ V (H+), we infer that
γ (H/〈a1, a2〉) = 0. Then we can choose homogeneous elements η1 ∈ a1 and η2 ∈ a2
of degrees m and n, respectively, such that

γ (H/〈a2, η1〉) = γ (H/a2) − 1

and

γ (H/〈a1, η2〉) = γ (H/a1) − 1.

We have that Vi ⊆ V (〈ηi 〉) for i = 1, 2 and V (〈η1η2〉) = V (〈η1〉) ∪ V (〈η2〉), which
contains V1 ∪ V2 = V (a). This implies that η1η2 is in

√

AnnH (Hom∗
A(a, a)). Choosing

high enough powers of η1 and η2, we can without loss of generality assume that η1η2 is in
AnnH (Hom∗

A(a, a)). By Proposition 3.6 (a) we have that e//η1η2 ∗ a � Σ(a) � Σm+n(a).
By the octahedral axiom there is a triangle θ

e//η2 → e//η1η2 → T n(e//η1) → T (e//η2)

in C. Then

V (e//η2 ∗ a) = V (〈η2〉) ∩ V (a)

= (V1 ∩ V (〈η2〉)) ∪ V2.

By induction e//η2 ∗ a � a1 � a2 where V (a1) = V1 ∩ V (〈η2〉) and V (a2) = V2. Similarly
we have V (T n(e//η1) ∗ a) = V1 ∪ (V2 ∩ V (〈η1〉)), so that T n(e//η1) ∗ a � a′

1 � a′
2 with

V (a′
1) = V1 and V (a′

2) = V2 ∩ V (〈η2〉). Note that both V (a1) ∩ V (a′
2) and V (a2) ∩ V (a′

1)

are contained in V (H+). Then the triangle θ ∗ a in A has the form

a1 � a2 → Σ(a) � Σm+n(a) → a′
1 � a′

2
ψ−→ Σ(a1) � Σ(a2).

By the above observations and Proposition 6.5 we have that ψ =
(

u1 0
0 u2

)

in A/Aperf . The

image of this triangle inA/Aperf is again a triangle. By the uniqueness of the cone, it follows
that we have two triangles in A/Aperf

ai → bi → a′
i → Σ(ai )

for i = 1, 2. Hence we have an isomorphism ϕ : Σ(a) � Σm+n(a) → b1 � b2 in A/Aperf .
Using that these triangles can be lifted back to A, it is easy to see that V (bi ) ⊆ Vi for
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i = 1, 2. Since V (a) = V1 ∪ V2 = V (b1 � b2) = V (b1) ∪ V (b2), we infer that V (bi ) = Vi
for i = 1, 2.

Consider the natural compositions f1 given by

Σ(a) → Σ(a) � Σm+n(a)
ϕ−→ b1 � b2

(

1 0
0 0

)

−−−→ b1 � b2
ϕ−1

−−→ Σ(a) � Σm+n(a) → Σ(a)

and f2 given by

Σ(a) → Σ(a) � Σm+n(a)
ϕ−→ b1 � b2

(

0 0
0 1

)

−−−→ b1 � b2
ϕ−1

−−→ Σ(a) � Σm+n(a) → Σ(a).

Using Proposition 6.5 we infer that f2 f1 = f1 f2 = 0 in A/Aperf , so that f1 and f2 are
orthogonal idempotents and their sum is the identity on Σ(a). The claim follows from this.

�

7 Complete intersections

This section is devoted to reviewing our theory in the setting of complete intersections.
Let A = k�x1, x2, . . . , xn� be the ring of formal power series in n indeterminants

{x1, x2, . . . , xn} over a field k. Let (R,m) be a complete intersection, where R =
A/(a1, . . . , at ) for a regular sequence {a1, . . . , at } in the square of the maximal ideal of
A. In [2,3] support varieties of finitely generated modules over R (and more general com-
plete intersections) were defined in terms of Spec R/m[χ1, . . . , χt ], where {χ1, . . . , χt } is
a set of cohomological operators on Ext∗R(M, M) of degree two for any finitely generated
R-module M . In our situation, the ring R[χ1, . . . , χt ] can be viewed as a graded subring of
the Hochschild cohomology ring HH∗(R) (see [33]).

The derived category C′ = Db(mod R ⊗k R) is a triangulated tensor category via the
derived tensor product − ⊗L

R −: C′ × C′ → C′, and it acts on the derived category A =
Db(mod R) via the derived tensor product − ⊗L

R −: C′ × A → A. The stalk complex R,
with R concentrated in degree zero, is the tensor identity. Then one can show that we have
the following commutative diagram

C′ × A
−⊗L

R−
A

C × A
−⊗R−

A

where C = Thick(R) inside C′ and − ⊗R − represents the total tensor product. Then C is a
triangulated tensor category with an action on A.

Consider S = End∗
C(R) = HH∗(R), which by our general theory is a graded-commutative

ring, where we note that S0 = R. The ring H = R[χ1, . . . , χt ] can be viewed as a graded
subring of S, and the action on Ext∗R(M, N ) for two finitely generated R-modules M and N
factor through the inclusion into S. Since Ext∗R(M, N ) is a finitely generated module over H
for all finitely generated R-modules M and N (see [23]), our Assumptions 3.1 and 6.1 are
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satisfied with left function object F ′ = RHomR(−,−). Hence we can apply all the results
obtained in the previous sections. In addition we point out the following.

Theorem 7.1 Let (R,m) be a complete intersection, where

R = k�x1, x2, . . . , xn�/(a1, a2, . . . , at )

for a field k and for a regular sequence {a1, a2, . . . , at } in the square of the maximal ideal
of the ring of formal power series k�x1, x2, . . . , xn� in n indeterminants {x1, x2, . . . , xn}.
(a) The perfect objects in Db(mod R) are the perfect complexes.
(b) Let b = (y1, y2, . . . , yt ) be an ideal in R generated by elements in m. Let

K (y1, y2, . . . , yt ) be the Koszul complex on the set of the generators {y1, y2, . . . , yt }
of b.
Then K (y1, y2, . . . , yt ) is a perfect complex and

V (K (y1, y2, . . . , yt )) = V (〈b, H�1〉).
(c) Let X be a perfect complex, then

V (X) = {〈p, H+〉 ∈ Spec H | p ∈ Spec R with Xp �= 0 in Db(mod Rp)}.
(d) View M in mod R as a stalk complex concentrated in degree 0, then

V ∗(M) = V (M) ∩ V (mH),

where V ∗(M) is the variety of M defined in [3].
(e) For any X in Db(mod R) we have that

V (X) ⊆ ∪p∈Spec RV (R/p).

Proof (a) The support variety of the stalk complex of R is V (H+), so that all perfect com-
plexes over R are perfect objects in Db(mod R).

Conversely, let X be a perfect object in Db(mod R). There exists a complex of projective
R-modules p(X) and a quasi-isomorphism p(X) → X such that p(X)i = (0) for i � 0.
Also, there is an integer n such that p(X) is exact to the left of p(X)n−1. By assumption

(0) = HomDb(mod R)(X , R/m[i]) � HomK−,b(mod R)(p(X), R/m[i])
for |i | � m. Let N = max{m, n}. Then HomK(R)(p(X), R/m[N + 2]) equals
Ext1R(Im f N+1, R/m). Hence Im f N+1 is projective, and by soft truncation p(X) is a perfect
complex.

(b) Let b = (y1, y2, . . . , yt ) be an ideal in R generated by elements in m. Consider

the triangles R
yi ·−−−→ R → Kyi → R[1] for i = 1, 2, . . . , t , where all {Kyi } are perfect

complexes. Then the Koszul complex K (y1, y2, . . . , yt ) is given by Ky1 ⊗R · · ·⊗R Kyt ⊗R R,
which clearly is a perfect complex. By Proposition 3.7 we infer that V (K (y1, . . . , yt )) =
V (〈y1, y2, . . . , yt 〉) ∩ V (R) = V (〈b, H�1〉).

(c)Let X be aperfect complex.Then
√

AnnH (Hom∗
Db(mod R)

(X , X)) contains H�1.Hence

we only need to find the variety of the ideal

a =
√

AnnR(Hom∗
Db(mod R)

(X , X)) =
√

∩i∈Z AnnR(HomDb(mod R)(X , X [i]))
in Spec R. SinceAnnR(HomDb(mod R)(X , X)) ⊆ AnnR(HomDb(mod R)(X , X [i])) for all inte-
gers i , we infer that

a =
√

AnnR(HomDb(mod R)(X , X)).
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Then a ⊆ p with p in Spec R if and only if

(0) �= HomDb(mod R)(X , X)p � HomDb(mod Rp)(Xp, Xp).

This is equivalent to that Xp �= (0) in Db(mod Rp). Hence the claim follows.
(d) Let M be in mod R. Recall that

V ∗(M) = SuppH/mH (Ext∗R(M, M) ⊗R R/m).

Let p be in V ∗(M) and q = ϕ∗(p). Then p is in V ∗(M) if and only if

(0) �= (Ext∗R(M, M)/mExt∗R(M, M))p

� Ext∗R(M, M)q/mExt∗R(M, M)q.

Hence, p is in V ∗(M) if and only if (0) �= Ext∗R(M, M)q � Hom∗
Db(mod R)

(M, M)q or
equivalently q is in V (M). Since mH ⊆ ϕ∗(p) for all p in Spec(H/mH), the claim follows.

(e) Let X be in Db(mod R). Then X can be filtered in a finite set of finitely generated
R-modules {Mi }mi=1, and each such R-module Mi can be filtered in a finite set of {R/pi j }mi

j=1
with pi j in Spec R. The claim follows from this and Proposition 3.5. �
We can reformulate (c) and (d) of the previous result as follows.

Proposition 7.2 Let (R,m) be a complete intersection, where

R = k�x1, x2, . . . , xn�/(a1, a2, . . . , at )

for a field k and for a regular sequence {a1, a2, . . . , at } in the square of the maximal ideal
of the ring of formal power series k�x1, x2, . . . , xn� in n indeterminants {x1, x2, . . . , xn}.

Let ϕ : H → H/mH and ψ : H → R be the natural ring homomorphisms, and consider
the maps ϕ∗ : Spec(H/m) → Spec H and ψ∗ : Spec R → Spec H.

(a) If X is a perfect complex in Db(mod R), then

V (X) = ψ∗(VT (X)),

where VT (X) denotes the support of the perfect complex X in the sense of [29,39].
(b) If M in mod R is viewed as a stalk complex concentrated in degree 0, then

ϕ∗(V (M) ∩ V (mH)) = V ∗(M),

where V ∗(M) is the variety of M defined in [3].

8 Group rings over commutative Noetherian local rings

Here we apply our results to group rings of finite groups over commutative Noetherian local
rings.

For a finite groupG and a commutativeNoetherian local ring R we can form the group ring
RG. For a finitely generated RG-module M it is known that H∗(G, M) = Ext∗RG(R, M)

is Noetherian as a module over H = H∗(G, R) = Ext∗RG(R, R) [20,21,40]. Let C =
(Db(Proj RG),− ⊗R −, e = R) act on A = Db(mod RG). Then our Assumptions 3.1
and 6.1 are satisfied, as−⊗R M : C → A is an exact functor for all modules/stalk complexes
in A and F ′ = HomR(−,−) : C × A → A is a left function object for the action which
is compatible with the triangulation in C. Hence we can apply all of our results from the
previous sections. In addition we point out the following.
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Theorem 8.1 Let G be a finite group and let R be a commutative Noetherian local ring.

(a) The perfect objects in Db(mod RG) are the perfect complexes.
(b) Let X be a perfect complex in Db(mod RG), then

V (X) = {〈p, H�1〉 ∈ Spec H | p ∈ Spec R with Xp �= 0 in Db(mod RpG)}.
(c) If R = k is an algebraically closed field and M inmod RG is viewed as a stalk complex

concentrated in degree 0, then

V ∗(M) = V (M)

where V ∗(M) is the variety of M defined in [17].

Proof (a) As before we have that all perfect complexes in Db(mod RG) are perfect objects
in Db(mod RG).

Conversely, let X be a perfect object inDb(mod RG). There exists a complex of projective
R-modules p(X) and a quasi-isomorphism p(X) → X such that p(X)i = (0) for i � 0.
Also, there is an integer n such that p(X) is exact to the left of p(X)n−1. We want to show
that p(X) can be softly truncated to a perfect complex.

To this end we use the following observations. Given any finitely generated RG-module
M , there exists an R-epimorphism f : M → R/p for some p in Spec R. Then the map
˜f : M → R/pG given by ˜f (m) = ∑

g∈G f (gm)g−1 is an RG-homomorphism, with non-
zero image not contained in m(R/pG). Furthermore, if M occurs as a kernel 0 → M →
P → C → 0, where P → C is a projective cover, then there exists an RG-homomorphism
ϕ : M → R/pG which induces a non-zero element in Ext1RG(C, R/pG).

Using these observations the proof can be completed in a similar fashion as the proof of
Theorem 7.1 (a).

(b) The proof is similar to the proof of Theorem 7.1 (c).
(c) This is immediate as Hom∗

Db(mod RG)
(M, M) and Ext∗RG(M, M) are isomorphic as

H -modules. �

9 Finite dimensional algebras

Throughout this section let Λ be an indecomposable finite dimensional algebra over an
algebraically closed field k with Jacobson radical j. We consider the action of the triangulated
tensor category C = Db(B) on A = Db(modΛ), where B is the full subcategory of Λ-Λ-
bimodules which are projective as a left and as a right module. The section is devoted to
studying support varieties of objects in A.

A theory of support varieties for modΛ was introduced in [33] and further developed in
[19] using the Hochschild cohomology ring of Λ. To ensure the existence of a good theory
of support, two finiteness conditions Fg1 and Fg2 were introduced in [19], which in [34,
Proposition 5.7] are shown to be equivalent to the Fg condition:

(i) HH∗(Λ) is a Noetherian algebra,
(ii) Ext∗Λ(Λ/j,Λ/j) is a finitely generated HH∗(Λ)-module.

We show that our Assumption 3.1 is equivalent to the condition Fg. Furthermore, a perfect
object in Db(modΛ) is characterized as a perfect complex, and the support variety of X
in Db(modΛ) is shown to be contained in the union of the support varieties of homology
modules of X and in the union of the support varieties of stalk complexes of which X is
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built up. Also, the support variety of a module, as defined in [33], coincides with the support
variety when viewed as a complex concentrated in one degree.

Our usual Assumptions 3.1 and 6.1 translate into the following facts and requirements for
the setting of this section:

(1) C = (Db(B),− ⊗Λ −, e = Λ) is a triangulated tensor category acting on the triangu-
lated category A = Db(modΛ).

(2) H is a positively graded-commutativeNoetherian ringwith a homomorphismof graded
rings H → End∗

C(e) = HH∗(Λ).
(3) The left H -module Hom∗

Db(modΛ)
(a, b) is finitely generated for all objects a and b in

Db(modΛ).
(4) The functor − ∗ a : Db(B) → Db(modΛ) is an exact functor for all objects a in

Db(modΛ).
(5) There exists a left function object

F ′ = RHomΛ(−,−) : Db(B) × Db(modΛ) → Db(modΛ)

for the action of Db(B) on Db(modΛ).

We start by discussing the relationship between the condition (3) and Fg.

Proposition 9.1 Suppose Λ and H satisfy condition (2). Then the following are equivalent.

(i) Ext∗Λ(Λ/j,Λ/j) is a finitely generated H-module.
(ii) Ext∗Λ(M, N ) is a finitely generated H-module for all M and N in modΛ.
(iii) Hom∗

Db(modΛ)
(X , Y ) is a finitely generated H-module for all X and Y in Db(modΛ).

Proof The fact that (i) and (ii) are equivalent is proven in [19, Proposition 1.4].
Since Ext∗Λ(M, N ) � Hom∗

Db(modΛ)
(M, N ) as H -modules, we infer that (iii) implies

(ii). Now assume that (ii) is satisfied. Since any object in Db(modΛ) is isomorphic to a
bounded complex and H is a Noetherian ring, it follows by induction on the length of the
finite complexes that (iii) holds. �

Hence, it follows that Fg is equivalent to the Assumption 3.1. From now on we assume
that these conditions are satisfied for Λ and H and in addition that H0 is a (commutative)
local artinian algebra.

As we noted in the above proof, Ext∗Λ(M, N ) and Hom∗
Db(modΛ)

(M, N ) are isomorphic
as H -modules for all finitely generated Λ-modules M and N . Hence we have the following.

Proposition 9.2 Any module M in modΛ viewed as a stalk complex concentrated in degree
0 (any single degree) satisfies

VH (M) = V (M),

where VH (M) denotes the support variety of M defined in [19,33].

Since any object X in Db(modΛ) is quasi-isomorphic to a bounded complex, X is in
Thick(Λ/j). Using this, the following is an easy consequence of the general theory and [33,
Proposition 4.4].

Proposition 9.3 For any complex X in Db(modΛ) we have the following:

(a) V (X) = V (X ,Λ/j) = V (X , X) = V (Λ/j, X).
(b) V (X) ⊆ V (Λ/j) = Spec H.

123



422 A. B. Buan et al.

Next we show that the variety of an object in Db(modΛ) is contained in the union of
the varieties of its homology modules and in the union of the support varieties of the stalk
complexes from which it is built. Furthermore the dimension of the support variety and the
complexity of an object are shown to be equal, and periodic stalk complexes are characterized
as eventually Ω-periodic Λ-modules.

Proposition 9.4 Let X be in Db(modΛ). Then the following assertions hold.

(a) V (X) ⊆ ∪i∈ZV (Hi (X)).
(b) V (X) ⊆ ∪i∈ZV (Xi ).
(c) dim V (X) = cx(X).
(d) A module M in modΛ is a periodic object in Db(modΛ) if and only if M is an

eventually Ω-periodic Λ-module.

Proof (a) Here again, we use that any object in Db(modΛ) is isomorphic to a bounded
complex. If X is a stalk complex, the claim clearly holds. Suppose that the claim has been

shown for all complexes of length n − 1. Let X : · · · 0 → X1 d1−→ X2 d2−→ · · · dn−1−−→ Xn →
0 · · · be a complex of length n. Consider the triangle

H1(X) 0 Ker d1 0

X 0 X1 X2 Xn 0

Y 0 Ker d1 X1 X2 Xn 0

By Proposition 3.3 V (X) ⊆ V (H1(X)) ∪ V (Y ). It is easy to see that Y is isomorphic to

Z : · · · 0 → X2/ Im d1
d2−→ X3 d3−→ · · · dn−1−−→ Xn → 0 · · · , so that V (Y ) = V (Z) and by

induction

V (X) ⊆ V (H1(X)) ∪ (∪n
i=2V (Hi (Z)))

= ∪n
i=1V (Hi (X))

since Hi (Z) = Hi (X) for i = 2, 3, . . . , n.
(b) Use similar arguments as in the proof of (a).
(c) By assumption H0 is a local ring. Let r be the unique maximal ideal in H0. Since r

and rH are nilpotent ideals and therefore contained in any prime ideal, the dimensions

dim V (X) = dim H/AnnH Hom∗
Db(modΛ)

(X , X)

= dim
(

(H/rH)/AnnH/rH (Hom∗
Db(modΛ)

(X , X) ⊗H0 H/rH)
)

coincide. For this we observe that if η is in

AnnH/rH Hom∗
Db(modΛ)

(X , X) ⊗H0 H0/r,

the element η is in
√

AnnH Hom∗
Db(modΛ)

(X , X),
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and if η is in

AnnH Hom∗
Db(modΛ)

(X , X)

then η is in

AnnH/rH Hom∗
Db(modΛ)

(X , X) ⊗H0 H .

Now the claim follows from the fact that the Krull dimension of a finitely generated graded
algebra over a field equals the polynomial growth of that graded ring.

(d) By the assumptions on Λ, it must be a Gorenstein algebra [33]. Then
Db(modΛ)/Dperf (modΛ) is equivalent to CM(Λ), where CM(Λ) is the full subcategory
of the modΛ consisting of the maximal Cohen-Macaulay modules and CM(Λ) is CM(Λ)

modulo the ideal generated by the projective modules [15]. An equivalence

F : Db(modΛ)/Dperf (modΛ) → CM(Λ)

is given as follows. Given an object X in Db(modΛ), construct a projective resolution
p(X) → X of X . Then p(X)�t is quasi-isomorphic to a maximal Cohen-Macaulay module
M ′ for some t . Take a coresolution of M ′ in projective Λ-modules and splice it with p(X)�t

to get an acyclic complex X ′. Define F(X) to be the image of the differential starting in
degree 0 of X ′. How F acts on morphisms follows naturally. Moreover, for any module M
we have that Ωs

Λ(F(M)) is isomorphic to Ω t
Λ(M) for some positive integers s and t .

Assume that M � M[n] in Db(modΛ)/Dperf (modΛ) for some positive integer n. Then
since F is a triangle equivalence, F(M) � F(M[n]) � Ω−n

Λ (F(M)), and consequently
Ωn

Λ(F(M)) � F(M). Then by the above remarks it follows that Ω
n+p
Λ (M) � Ω

p
Λ(M) for

some positive integer p and M is eventually Ω-periodic.
Assume that M is eventually Ω-periodic. For any Λ-module N , it is easy to see that

N � Ω t (N )[t] inDb(modΛ)/Dperf (modΛ) for all positive integers t . Since by assumption
Ω

p+q
Λ (M) � Ω

q
Λ(M) for some positive integers p and q , we infer that M � M[n] in

Db(modΛ)/Dperf (modΛ) for some positive integer n, that is, M is periodic in Db(modΛ).
�

Remark 9.5 The inclusion in (a) is not an equality in general, as there exist perfect complexes
with homology whose support varieties are not contained in V (H+).

Now we show that the perfect objects in Db(modΛ) are exactly the perfect complexes in
Db(modΛ).

Proposition 9.6 Let X be in Db(modΛ). Then an object X is perfect if and only if X is
isomorphic to a perfect complex.

Proof Suppose that X is isomorphic to a perfect complex P . Since V (Λ) ⊆ V (H+), it
follows directly from Proposition 9.4 (b) that X is a perfect object.

Suppose that X in Db(modΛ) is perfect. Then HomDb(Λ)(X ,Λ/j[i]) = (0) for all i
such that |i | � N for some N . There exists a complex of projective modules pX and a
quasi-isomorphism pX → X such that (pX)i = (0) for i � 0. By assumption

(0) = HomDb(Λ)(pX ,Λ/j[i]) � HomK−,b(Λ)
(pX ,Λ/j[i])

for |i | � N . In particular, HomK−,b(Λ)(pX , D(Λop)[i]) = (0) when |i | � N , so that pX
is exact beyond N from degree zero. Then having HomK−,b(Λ)(pX ,Λ/j[i]) = (0) when
|i | � N implies that pX is split exact beyond degree N . Hence we can choose pX such that
(pX)i = (0) for |i | > N . This proves that X is isomorphic to the perfect complex pX . �

123



424 A. B. Buan et al.

To discuss properties of complexes with complexity d > 0 we need the following char-
acterization of the Koszul objects Λ//h for h : Λ → Λ[n] in the setting of this section when
n � 1.

Lemma 9.7 Let h : Λ → Λ[n] be in HomDb(B)(Λ,Λ[n]) for n � 1. Then there exists a
Λe-module Mh such that Λ//h is quasi-isomorphic to a shift of the complex

· · · 0 → Mh → P−n+2 → · · · → P−1 → P0 → 0 · · ·
with homology isomorphic to Λ in degrees 0 and n.

Proof Fix a minimal projective resolution P : · · · → P−n → P−n+1 → · · · → P−1 →
P0 → Λ → 0 of Λ over Λe.

As an object in Db(B) the stalk complex Λ is quasi-isomorphic to the truncated complex
Pt : · · · → P−n → P−n+1 → · · · → P−1 → P0 → 0 · · · . Then h is a map from Pt to Λ

in degree n, and Λ//h is given by

· · · → P−n−1 → P−n

(

h
d−n

)

−−−−→ Λ � P−n+1 (0 d−n+1)−−−−−→ P−n+2 · · · → P−1 → P0 → 0 · · · .

We have the following commutative diagram

· · · P−n Ωn
Λe (Λ) 0

· · · P−n

(

h
d−n

)

Λ � P−n+1 (0 d−n+1)
P−n+2 · · · P0 0

· · · 0 Mh P−n+2 · · · P0 0

where the maps are coming from the pushout diagram

0 Ωn
Λe (Λ)

h

P−n+1 Ωn−1
Λe (Λ) 0

0 Λ Mh Ωn−1
Λe (Λ) 0

Since the upper sequence is acyclic, Λ//h is quasi-isomorphic to the complex in the lower
row. It is clear from the above pushout diagram that the homology in degrees 0 and n are
isomorphic to Λ. �

Using this we show that Λ//h ⊗Λ X and Mh ⊗Λ X have the same varieties.

Lemma 9.8 Let X be in Db(modΛ), and let h : Λ → Λ[n] be in HomDb(B)(Λ,Λ[n]) for
n � 1. Then

V (Λ//h ⊗Λ X) = V (Mh ⊗Λ X).

Proof Let X : · · · 0 → X0 d0−→ X1 → · · · → Xt → 0 · · · be in Db(modΛ), and let
h : Λ → Λ[n] be in HomDb(B)(Λ,Λ[n]).

Recall that Λ//h : · · · 0 → Mh
βh−→ P−n+2 → · · · → P−1 → P0 → 0 · · · . Let

P : · · · 0 → P−n+1 → · · · → P0 → 0.
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Then

Mh ⊗Λ X
βh⊗idX−−−−→ P ⊗Λ X → Λ//h ⊗Λ X →

is a triangle with cone(βh ⊗ idX ) � Λ//h ⊗Λ X . Since P ⊗Λ X is a perfect complex, it
follows that V (Mh ⊗Λ X) = V (Λ//h ⊗Λ X). �
We end by showing how any object in Db(modΛ) can be reduced to a perfect complex by
tensoring with the special bimodules Mh introduced above.

Proposition 9.9 Let X be in Db(modΛ). Suppose that cx(X) = d.

(a) There exist d homogeneous elements h1, h2,…, hd in H such that Mh1 ⊗Λ · · · ⊗Λ

Mhd ⊗Λ X is isomorphic to a perfect complex.
(b) If Λ is selfinjective, then as an object in K−,b(modΛ) the complex Mh1 ⊗Λ · · · ⊗Λ

Mhd ⊗Λ X is isomorphic to a direct sum of a perfect complex and an acyclic complex.

Proof Suppose that cx(X) = d . Then there exist d homogeneous elements h1, h2, . . . , hd
in H�1 such that dim H/〈h1, h2, . . . , hd , A(X , X)〉 = 0. By Proposition 3.7 the variety
V (Λ//h1⊗Λ· · ·⊗ΛΛ//hd⊗ΛX) is equal to the variety of the ideal 〈h1, h2, . . . , hd , A(X , X)〉,
hence contained in V (H+). Using Lemma 9.8 the complex Mh1 ⊗Λ · · · ⊗Λ Mhd ⊗Λ X is
perfect. The claims in (a) and (b) follow from this. �
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