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Abstract
We relate certain abelian invariants of a knot, namely the Alexander polynomial, the Blanch-
field form, and the Arf invariant, to intersection data of aWhitney tower in the 4-ball bounded
by the knot. We also give a new 3-dimensional algorithm for computing these invariants.
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1 Introduction

We show that intersection data in Whitney towers determines abelian invariants of knots,
particularly the Blanchfield form, the Alexander polynomial, and the Arf invariant.

Briefly speaking, aWhitney tower traces an iterated attempt to alter an immersed disc in a
4-manifold to an embedded disc by Whitney moves. Whitney towers naturally approximate
an embedded disc. In particular, since the work of Cochran et al. [5], Whitney towers in
4-space have been commonly used to measure the degree to which a knot fails to be slice.

Our main result algorithmically computes the Blanchfield form and the Alexander poly-
nomial of a knot using intersection data from an order two twisted Whitney tower in the
4-disc bounded by the knot. This relates two incarnations of the Arf invariant of a knot using
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a 4-dimensional argument—one characterizing the Arf invariant in terms of Whitney towers,
the other in terms of the Alexander polynomial.

1.1 Intersection data from order two towers and abelian invariants

The Seifert pairing provides a well-known method to compute a presentation for the Alexan-
der module of a knot [23]. As a bonus, one easily computes the Alexander polynomial and
the Arf invariant. The Seifert pairing also gives rise to a formula for the Blanchfield form of
the knot [12,15]. See also [10].

This paper takes a different approach, replacing the Seifert surfacewith aWhitney tower in
the 4-disc. This approach promises many advantages, among these that higher orderWhitney
towers may present modules corresponding to nilpotent and solvable covers of the knot.

Every knot K ⊂ S3 bounds an order two Whitney tower in D4, as we demonstrate in
Sect. 2. Recall that this means K is the boundary of an immersed (order 0) disc, D0 � D4,
with d = 2k self-intersections occurring in oppositely signed pairs. ImmersedWhitney discs
(of order 1), D1

1 ∪ · · · ∪ Dk
1 , arise from each of k cancelling pairs of intersection points.

Furthermore, (order two) discs pair order one intersections, which are intersections between
order 0 and order 1 discs. That is, an order twoWhitney tower is built from immersedWhitney
discs which pair all intersections of order less than 2 in the tower.

In a neighbourhood of each intersection point, two local discs, called sheets, intersect
transversely. We will see that an order 2 Whitney tower can be improved as follows:

(i) π1(D4\νD0) ∼= Z;
(ii) D0 ∩ int D j

1 = ∅ for each j ; that is, the tower has no order 1 intersections and thus has
no order 2 discs.

(iii) For each disc, D j
1 , we can choose one of the two associated double points. This double

point comeswith an immersed disc A j
1 in D4\νD0 bounded by a loop leaving the double

point along one sheet of the intersection and returning to the double point along the other
sheet; A j

i is called an accessory disc.

We remark that we do not impose any framing conditions on the D j
1 nor on the A j

1. Experts
will know how to construct such aWhitney tower, but we include a complete proof in Sect. 2.

Definition 1.1 An order two Whitney tower equipped with accessory discs, namely D0 ∪( ⋃
j D

j
1

) ∪ ( ⋃
j A

j
1

)
, is an order two presentation tower for K if the conditions above are

satisfied.

We will view such a tower as a geometric analogue of a presentation matrix for the
Alexander module, one which packages the abelian invariants we study.

Now we describe such a presentation matrix, arising from the intersection data of the
discs in a presentation tower. Define W := D4\νD0 to be the exterior of the order zero
disc. The intersection pairing of transverse 2-chains in W takes values in the group ring
Z[π1(W )] = Z[Z] ∼= Z[t, t−1]. Let e2i−1 = Di

1 and e2i = Ai
1. Let � = (λi j ) be the d × d

matrix overZ[t, t−1]whose (i, j)-entry, λi j , is theZ[t, t−1]-valued intersection of ei and e j .
To define the diagonal entry λi i , which is the intersection of ei and a push-off of ei , we need
a section of the normal bundle of the (Whitney or accessory) disc, along which the push-off
is taken. For this purpose we use an extension of theWhitney framing and accessory framing
of the boundary of the disc. A detailed description is given in Sects. 3 and 4.3. For now we
remark that the twisting information of the order one Whitney discs and accessory discs is
reflected in these diagonal matrix entries.
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Now let E = (εi j ) be the d × d matrix given by

εi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

the sign of p if i = j and ei is an accessory disc based at a double point p,

1 if one of ei and e j is an accessory disc for a double point p

and the other is a Whitney disc with p on the boundary,

0 otherwise.

Define � := z�+ E where z := (1− t)(1− t−1). We say that two polynomials in Z[t, t−1]
are equal up to norms and units if they agree in the quotient of Z[t, t−1] by the multiplicative
subgroup

{±tk f (t) f (t−1) | k ∈ Z, f (t) ∈ Z[t, t−1], | f (1)| = 1}.
In the following theorem we show that the matrix � presents the Blanchfield pairing (see

Definition 10.1) up to Witt equivalence, and thus determines the Alexander polynomial up
to norms and units.

Theorem 1.2 The matrix � is a presentation matrix for a linking form Witt equivalent to the
Blanchfield form of K . The determinant of � equals the Alexander polynomial of K , �K (t),
up to norms and units.

A variation on the above theorem arises by replacing the Whitney discs with additional
accessory discs in the following way. Recall that theWhitney disc e2i−1 = Di

1 joins two self-
intersection points of D0, say pi and qi , and the corresponding accessory disc e2i = Ai

1 is
based at one of these, say pi . Let e2i−1 be an accessory disc for the other intersection point qi .
Replace an arbitrary sub-collection of the Whitney discs by accessory discs as above. We
obtain an intersection matrix via the same prescription given above and the conclusions of
Theorem 1.2 still hold. In particular, Theorem 1.2 holds even when all the order one discs
are accessory discs. More precisely, let ei be an accessory disc for the i th double point of
D0, i = 1, . . . , d . Let � = (λi j ) where �i j is the Z[Z]-intersection number of ei and e j .
Let E be the d × d diagonal matrix whose i th diagonal entry is the sign of the i th double
point. Define 	 = z� + E .

Theorem 1.3 The matrix 	 is a presentation matrix for a linking form Witt equivalent to the
Blanchfield form of K . The determinant of 	 equals �K (t), the Alexander polynomial of K ,
up to norms and units.

An algorithm to compute abelian invariants

Here is a special case of the type of tower used to determine the matrix 	 in Theorem 1.3.
Construct an immersed disc bounded by a knot K as follows. Start with a collection of
crossings on a planar diagram of K such that changing these crossings gives the trivial knot.
The associated homotopy traces out a level preserving immersed annulus in S1× I ↪→ S3× I
bounded by K = K × {0} ⊂ S3 × {0}, and a trivial knot in S3 × {1}, whose intersections
correspond to the crossing changes. Cap off S3 × I by gluing a copy of D4 to S3 × {1} and
cap off the annulus along its unknotted boundary component to obtain an immersed disc D0

in D4, which K bounds. Choose an accessory disc for each self-intersection of D0. Define
	 as in Theorem 1.3.

The next result enables us, in this special case, to compute abelian invariants from the
intersection data of the immersed tower without the indeterminacy from Witt equivalence
and norms.
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Theorem 1.4 The matrix 	 is a presentation matrix for the Blanchfield form of K . In par-
ticular, the determinant of 	 equals �K (t) up multiplication by a unit ±tk .

In addition, we show that for a special choice of accessory discs, the computation of
the intersection data (and consequently of the abelian invariants) is algorithmic from a knot
diagram, providing a new 3-dimensional procedure to compute the Alexander polynomial
and the Blanchfield form of a knot. We describe the algorithm in Sect. 7.2, and we work
through a detailed example in Sect. 7.3.

1.2 Whitney towers and the Arf invariant

Recall that we used theWhitney framing to compute theZ[t, t−1]-valued intersection number
of an order one Whitney disc Di

1 with itself. In general, an extension of the Whitney framing
to Di

1 may have zeros; the Whitney framing extends to a non-vanishing section on Di
1 if and

only if it agrees with the unique framing of the normal bundle of Di
1. Following common

convention, we call such aWhitney disc framed. AWhitney tower is framed if all theWhitney
discs in the tower are framed.

The generic number of zeroes, counted with sign, of an extension of the Whitney framing
to the normal bundle of the Whitney disc is called the twisting coefficient. If a given Whitney
disc is not framed, by interior twisting we can alter the twisting coefficient by any multiple
of 2, and whence if the twisting coefficient were even, we could arrange that the Whitney
disc be framed. This motivates the following definition.

Definition 1.5 AWhitney disc is essentially twisted if its twisting coefficient is odd.

We recall the definition of the Arf invariant of a knot, in terms of a Seifert matrix, in
Definition 8.2. The following theorem follows from work of Matsumoto, Kirby, Freedman
and Quinn [8,17], [9, Section 10.8]. See also [7, Lemma 10].

Theorem 1.6 (Freedman, Kirby, Matsumoto, Quinn) The Arf invariant Arf(K ) vanishes if
and only if K is the boundary of framed Whitney tower of order two in D4.

In fact, Schneiderman [21] also showed that the Arf invariant is the only obstruction for a
knot to bound a framed (asymmetric)Whitney tower of any given order: a knot which bounds
a framed order two Whitney tower in D4 bounds a framed order n Whitney tower for all n.

Levine showed that the Arf invariant of a knot, defined in terms of the Seifert form
(recalled in Definition 8.2), can be computed in terms of the Alexander polynomial �K (t)
[14, Sections 3.4 and 3.5]. He used the fact that the Alexander polynomial can be computed
as det(tV − V T ), where V is a Seifert matrix for K .

Theorem 1.7 (Levine) The Arf invariant Arf(K ) of a knot K satisfies:

Arf(K ) =
{
0 if �K (−1) = ±1 mod 8,

1 if �K (−1) = ±3 mod 8.

The absolute value of the Alexander polynomial evaluated at −1 is also the order of the
homology of the twofold branched cover of K , which is aZ(2)-homology circle. In particular,
�K (−1) is always an odd number. The Arf invariant measures, up to a unit, whether�K (−1)
is a square modulo 8.

By combining the two previous theorems, the following is known.
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Theorem 1.8 (Freedman, Kirby, Levine, Matsumoto, Quinn) A knot K bounds a framed
Whitey tower of order two if and only if �K (−1) ≡ ±1 mod 8.

However the only previously knownproof of this result (to the authors) proceeds bypassing
via the Seifert form definition of the Arf invariant. We give a new, direct, 4-dimensional
proof that the Whitney tower and Alexander polynomial interpretations of the Arf invariant
are equivalent. More precisely, we show the following.

Theorem 1.9 Suppose K bounds an order two Whitney tower where n of the order one
Whitney discs are essentially twisted. Then

�K (−1) ≡
{

±1 mod 8 if n ≡ 0 mod 2,

±3 mod 8 if n ≡ 1 mod 2.

If an order 2Whitney tower has an even number of essentially twistedWhitney discs, then
it can be modified by geometric moves to a framed order 2 tower. This follows easily from
[6, Theorem 2.15]; for the convenience of the reader we sketch the procedure in Lemma 2.4.
However note that we do not need this step: the Alexander polynomial conclusion can be
drawn if we have an order two Whitney tower with an even number of essentially twisted
discs.

Motivation

In future work, we hope to describe all nilpotent invariants of links (roughly, invariants
carried by duality and the homology of a nilpotent cover) from the intersection theory of an
asymmetric Whitney tower for the link.

Of particular interest are the postulated “higher order Arf invariants” of Conant et al. [6,7].
They askwhether a link bounds an asymmetric framedWhitney tower in the 4-ball, and define
an obstruction theory involving an algebra of labelled uni-trivalent trees. They show that
Milnor’s link invariants and the Arf invariant are obstructions to building towers. Additional
non-trivial trees in their algebra do not correspond to any known invariants, and may obstruct
higher order framed Whitney towers for certain links. The main examples of these links are
iterated Bing doubles of knots with non-vanishing Arf invariant. Conant, Schneiderman and
Teichner call these invariants the higher order Arf invariants, and these invariants live either
inZ2 or 0. If the higher order Arf invariants were trivial, one would need to add new relations
to the tree algebra. We recommend [6,7] for further reading. It is with this problem in mind
that we put such emphasis on giving a new proof of the long-known relationship between
Whitney towers and the Arf invariant.

Organisation of the paper

Section 2 constructs a presentation tower for the knot, that is an order two immersedWhitney
tower with the special attributes described in Definition 1.1. Section 3 gives the statement
of our main technical theorems, Theorems 3.1 and 3.2, on the structure of the intersection
form of the exterior W of an immersed disc D0 � D4, and the relation of this intersection
form to the combinatorics of Whitney and accessory disc intersections. Section 4 is devoted
to the proof of the technical theorems. Section 4.1 shows that π2(W ) is a free module.
Section 4.2 constructs the spheres we use to compute the intersection form. Section 4.3
gives the precise definitions of Whitney and accessory framings. Sections 4.4 through 4.9
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compute the intersections of the spheres, proving Theorems 3.1 and 3.2. Section 5 computes
the homology of ∂W . Section 6 collates the results of the previous two sections, proving
Theorems 1.2, 1.3 and 1.4, apart from the Blanchfield form assertions. Section 7 gives some
example computations. Section 8 recalls, for completeness, the usual definition of the Arf
invariant in terms of the Seifert form. Section 9 proves Theorem 1.9 relating the Alexander
polynomial at−1 to themodulo two count of the number of twistedWhitney discs. Section 10
considers the Blanchfield form and completes the proof of Theorems 1.3 and 1.2.

2 Construction of an order two presentation tower for a knot

We begin with a properly immersed disc D′
0 in D4 with boundary a knot K ⊂ S3 which has

an algebraically vanishing count of self-intersection points. This can always be arranged by
adding local cusp singularities to D′

0 [13, p. 72]. Such a disc induces the zero framing on its
boundary K . In the next two subsections, we will show how to find a new immersed disc D0,
regularly homotopic to D′

0, the complement of which has infinite cyclic fundamental group.
We will then show how to find order one Whitney discs D1

1, . . . , D
k
1 , that are potentially

twisted, in the exterior of D0. Here D0 has d = 2k double points. In our results relating knot
invariants toWhitney towers, we will use intersection data from the order oneWhitney discs,
together with data from additional discs called accessory discs. This will construct an order
two presentation tower for K , as promised.

For a double point p of D0, a double point loop is a loop on D0 that leaves p along one
sheet and returns along the other, avoiding all other intersection points. An accessory disc
(see [9, Section 3.1]) is a disc in D4\νD0 whose boundary is a push-off of a double point loop
to the boundary ∂+ := ∂(cl(νD0))\νK of a neighbourhood of D0. By a judicious choice, the
push-off can be arranged to be trivial in π1(D4\νD0) ∼= Z. It therefore bounds an accessory
disc in D4\νD0. (See Lemma 2.2 below.)

For each Whitney disc Di
1, pick one of the two intersections paired by Di

1, and produce
an accessory disc Ai

1 for this intersection as above.

2.1 Fixing the fundamental group

Lemma 2.1 A properly immersed disc D′
0 in D4 with boundary a knot K ⊂ S3 is regularly

homotopic to a disc D0 for which π1(D4\νD0) ∼= Z. Moreover, new double points support
order 1 framed Whitney discs.

Proof The idea is to use finger moves, as introduced by Casson [3]. A finger move kills a
commutator of the form [g, gw], where g is a meridian of D′

0,w is the curve the finger pushes
along, and gw means wgw−1.

Apply fingermoves tomake any pair ofmeridional loops commute. Sincemeridional loops
(finitely) generate the fundamental group, the fundamental groupπ1(D4\νD0) corresponding
to the new immersed disc D0 is the abelianisation of π1(D4\νD′

0) which is Z. ��
DefineW := D4\νD0 to be the exterior of the immersed disc D0 produced by Lemma 2.1.

A consequence of Lemma 2.1 is the existence of an accessory disc.

Lemma 2.2 Each double point of D0 has an accessory disc in W.

Proof Choose a push-off of a double point loop. By winding the push-off around a meridian
to D0 if necessary, arrange that the push-off is null-homotopic in W . Here we use that
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π1(W ) ∼= Z. A null-homotopy in general position gives us an accessory disc as required.
Here we do not impose any framing condition on the accessory disc. ��

The same argument applies to the Whitney disc case, showing that any pair of double
points with opposite sign admit a (potentially twisted) order one Whitney disc in W .

2.2 Arranging D0 ∩ D1 = ∅

A Whitney tower of order one is a properly immersed disc D0 together with Whitney discs
D1 = D1

1 ∪· · ·∪ Dk
1 which pair up all the double points of D0. TheWhitney discs are said to

have order one (since they pair self-intersections of the order zero disc.) We impose nothing
about the framing of theWhitney discs. We remark that we can indeed arrange eachWhitney
disc to be framed, by applying boundary twists, and in this case the tower is called a framed
Whitney tower of order one.

In an order one Whitney tower, since a Whitney disc pairs double points of opposite
signs, D0 automatically has vanishing algebraic self intersection. Conversely, when D0 is an
immersed disc in D4 with algebraic self-intersection zero then, since D4 is simply connected,
there exist Whitney discs which pair up all the double points.

Furthermore, for any given order one Whitney tower, we can modify the tower so that the
interiors of the order one Whitney discs are disjoint from the order zero disc D0, as required
in the definition of an order 2 presentation tower (Definition 1.1). For the convenience of the
reader, we explain the procedure in the next lemma, which is well known to the experts.

This is a special case of a general result of Conant et al. c.f. [7, Proof of Lemma 10]. How-
ever, note that Conant et al. do not need to actually cancel intersection points geometrically;
in their situation it is enough to pair them up with Whitney discs which admit higher order
intersections only. For this reason we spell out the details in our special case. If one wishes
to simply show the existence of an order two presentation tower, rather than promoting a
given order one Whitney tower, one can choose Whitney discs in the exterior of D0, as in the
remark just after the proof of Lemma 2.2.

Everything in 4-manifold topology seems to comes at a price, and in this case we can
arrange the desired disjointness D0 ∩ D1 = ∅ at the cost of allowing twisted Whitney discs.

Lemma 2.3 Let D0 ∪ D1 be an order one Whitney tower, where D1 = D1
1 ∪ · · · ∪ Dn

1 . After
performing boundary twists on D1, there is a regular homotopy of D0 to an immersed disc
D′
0 which supports an order 2 tower D′

0 ∪ D′
1 where D′

0 ∩ int D′
1 = ∅.

Proof Aboundary twist [9, Section 1.3] of an order oneWhitney disc Di
1 adds an intersection

point Di
1 ∩ D0. Perform boundary twists until all such intersection points occur algebraically

zero times. The Di
1 may now be twisted (essentially or otherwise). Pair up the intersection

points in D0 ∩ Di
1 and find Whitney discs D2 for each pair. These always exist by simple

connectivity of D4. However we may have that D1 ∩ D2 and D0 ∩ D2 are nonempty. Push
the intersections D1 ∩ D2 off D2 over the D1 part of its boundary by a finger move. This
creates new D1 ∩ D1 intersections but we do not mind. Push the intersections D0 ∩ D2 off
the D0 part of the boundary. This creates new D0 ∩ D0 intersections. These have to be paired
up with a new order 1 Whitney disc D j

1 . This is always possible, since the new intersections

came from a finger move (note that the new disc D j
1 is framed). One has to be careful that

the new Whitney arcs for the new D j
1 do not intersect the Whitney arcs for D2. This can

easily be arranged by pushing the boundary arc (see [20, Figures 6, 7 and 8]), but means
that the new D j

1 intersects the old Di
1 (the order one disc whose intersections with D0 are
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being paired up by D2). However new D1 ∩ D1 intersections are allowed. We have now
arranged that D2 is disjoint from everything. Therefore we can use it to perform the Whitney
move. Push Di

1 across D2. Any self-intersections of D2 result in more D1∩D1 intersections,
but again these are permitted. We have now decreased the number of intersection points in
D0 ∩ D1 by two, at the cost of new intersection points in D0 ∩ D0, D1 ∩ D1, potentially
twisting a D1 disc, and a new D1 Whitney disc which is disjoint from D0. These are all
within our budget. By repeating this process we can therefore arrange that D1 ∩ D0 = ∅
as claimed. All the operations apart from the boundary twists are regular homotopies on the
original discs, together with introducing new order 1 Whitney discs to pair up new D0 ∩ D0

intersections. ��
We quickly indicate how to see the following statement, since the argument of the proof of

Lemma 2.3 is pertinent. We do not need the following lemma but include it for completeness,
since it is closely related to Theorem 1.9.

Lemma 2.4 Let D0 ∪ D1 be an order two Whitney tower with an even number of essentially
twisted Whitney discs and D0 ∩ int D1 = ∅. Then there is a regular homotopy of D0 to a
new immersed disc D′

0 which supports a framed Whitey tower of order two D′
0 ∪ D′

1 with
D′
0 ∩ D′

1 = ∅.
Proof For each pair of essentially twisted Whitney discs, perform interior twists so that one
has twisting coefficient+ 1 and the other has twisting coefficient− 1. Then perform boundary
twists so that both are framed. This introduces a pair of D1 ∩ D0 intersections. The proof of
[6, Theorem 2.15] enables us to perform regular homotopies so that these arise on the same
order 1 Whitney disc. We may then pair them up with an order 2 Whitney disc D2. Now we
apply the argument of the proof of Lemma 2.3 to trade the D0 ∩ D1 intersections for higher
order D1 ∩ D1 intersections and potentially new D0 ∩ D0 intersections which are paired by
new framed order 1 discs. This produces an order 2 framed Whitney tower as claimed. ��

3 The intersection form of an immersed disc exterior in the 4-ball

In this section we give the detailed description of the matrices � and 	 from the introduc-
tion (Theorems 1.2 and 1.3 respectively), in terms of intersection data of the Whitney and
accessory discs, and we state our main technical results, that relate these matrices to the
intersection pairing of an immersed disc exterior.

Suppose that a knot K bounds an order two presentation tower as constructed in Sect. 2,
where the order zero disc D0 has d = 2k self-intersection points. We may assume by
Lemma 2.1 that π1(D4\νD0) ∼= Z. Consider the free module Z[Z]d , with basis elements
e2i−1, i = 1, . . . , k corresponding to order one Whitney discs D1

1, . . . , D
k
1 pairing up the

double points, and with the basis elements e2i , i = 1, . . . , k corresponding to accessory discs
A1
1, . . . , A

k
1 (see [9, Section 3.1] and Lemma 2.2) for half of the self-intersections of D0, the

double point with a positive sign for each pair which is paired up by one of the Di
1.

The matrix � described below is hermitian, that is � = �T , and defines a pairing
� : Z[Z]d × Z[Z]d → Z[Z]. Here the overline denotes the involution on the group ring
Z[Z] defined by extending t → t−1 linearly. We abuse notation and conflate the matrix and
the pairing which it determines on Z[Z]d .

As before define W := D4\νD0. Choose a path from a chosen basepoint of each Di
i , and

of each A j
1, to the basepoint ofW . For each intersection point q involving Di

1, choose a path
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from q to the basepoint of Di
1, inside Di

1 and missing all double points. Similarly for the

Ai
1. For each intersection point in Di

1 ∩ D j
1 , D

i
1 ∩ A j

1 and Ai
1 ∩ A j

1, there is an associated
element ±t� of π1(W ) ∼= Z, defined by considering the usual concatenation of paths. By
summing over such intersection points we obtain an element p(t) of Z[Z]. Let prs(t) be
the polynomial associated to the pair (er , es). Note that prs(t) = psr (t). When i = j , we
abuse notation and use Di

1 ∩ Di
1 and Ai

1 ∩ Ai
1 for the double point set of the immersion. Here

there is an indeterminacy in prr (t), up to t = t−1, due to a lack of ordering of sheets at an
intersection point. However this will not affect the outcome of the computation, so we may
make any choice of ordering.

3.1 Precise description of thematrixÄ

The (r , s)-entry �rs corresponds to intersection data involving the discs associated to the
pair (er , es) as given below. The order of the pair matters since �rs = �sr . Define z :=
(1 − t)(1 − t−1).

• For r �= s and {r , s} �= {2i − 1, 2i}, �rs = zprs(t).
• For {r , s} = {2i − 1, 2i} for some i , �rs = zprs(t) + 1, where prs(t) is computed from

intersection points Di
1 ∩ Ai

1.
• When r = s = 2i − 1, �rs = zprr (t) + zprr (t) + zai where prr (t) = pss(t) arises

from the self intersection points of Di
1, and ai ∈ Z is the twisting of theWhitney framing

relative to the disc framing for Di
1.

• When r = s = 2i , �rs = zpss(t)+ zpss(t)+ zbi + 1 where pss(t) = prr (t) arises from
the self intersection points of Ai

1, and bi ∈ Z is the twisting of the accessory framing
relative to the disc framing for Ai

1.

The first and last cases only are relevant to 	 from Theorem 1.3. Precise definitions of
the Whitney and accessory framings are given in Sect. 4.3.

For practical purposes it is not always convenient to have the accessory disc correspond
to a double point with positive intersection sign. If we use a double point with negative sign,
then replace the +1 in �2i,2i entry in the last bullet point with a −1.

3.2 Structure of the intersection form ofW

The following is one of our main technical results.

Theorem 3.1 Suppose that D0 has d = 2k double points, and Di
1, for i = 1, . . . , k, are

order one Whitney discs pairing up the double points of D0, whose interiors are disjoint
from D0. Let Ai

1, for i = 1, . . . , k, be an accessory disc for the 2i -th double point, where the
double points are ordered so that even numbered points have positive sign. Then we have the
following:

(1) The homotopy group π2(W ) is a free Z[Z] module of rank d.
(2) There is a linearly independent set {Si } of immersed 2-spheres which generate a free

submodule F ofπ2(W )of rank d onwhich the equivariant intersection formλ : F×F →
Z[Z] can be written as z(X + (zY + zY

T
)) where X is a block diagonal sum of k copies

of the form
[
zai 1
1 1 + zbi

]
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with ai , bi ∈ Z, and Y is an upper triangular d × d matrix.
(3) The Si form a basis for π2(W ) ⊗Z[Z] Z.
(4) The coefficients ai , bi ∈ Z in the i th 2×2 block diagonals of X are the twisting numbers

of the i th Whitney disc Di
1 and the i th accessory disc Ai

1 respectively.
(5) The coefficients of Y are the Z[Z]-twisted intersection numbers and self-intersection

numbers of the Di
1 and the Ai

1.

Comparing the matrix � defined above with the matrix of the intersection form of W , we
have λ = z�.

The proof of this theorem will take the entire next section. In the course of the proof we
explicitly construct immersed 2-spheres Si which represent elements of π2(W ) and compute
the intersection form using these explicit elements and intersections between Whitney discs
and accessory discs.

It is quite possible that F = π2(W ), however we are only able to prove this in the special
case that D0 arises from crossing changes; see Lemma 6.2.

We have another version which only uses accessory discs, and which is used to deduce
Theorem 1.3. For the purpose of deducing Theorem 1.3 we give the explicit statement.

Theorem 3.2 Suppose that D0 has d double points and Ai are accessory discs (i = 1, . . . , d)

whose interiors are disjoint from D0. Then we have the following:

(1) The homotopy group π2(W ) is a free Z[Z] module of rank d.
(2) There is a linearly independent set {Si } of immersed 2-spheres which generate a free

submodule F ofπ2(W )of rank d onwhich the equivariant intersection formλ : F×F →
Z[Z] can be written as z(X + (zY + zY

T
)) where X is a diagonal matrix with entries

±1 + zbi , with bi ∈ Z, and Y is an upper triangular d × d matrix.
(3) The Si form a basis for π2(W ) ⊗Z[Z] Z.
(4) The coefficients bi ∈ Z in X are the twisting numbers of the i th accessory disc Ai , and

the ±1 is determined by the sign of the i th double point.
(5) The coefficients of Y are the Z[Z]-twisted intersection numbers and self-intersection

numbers of the Ai .

Compare this with the matrix 	 from the introduction to observe that λ = z	. Both sets
of spheres from the above two theorems arise from ambient surgery on a basis of H2(W ;Z)

comprising Clifford tori of the double points, as we will see in Sect. 4.2. Restricting the proof
of Theorem 3.1 to the accessory discs only gives the proof of Theorem 3.2. Therefore we
focus on Theorem 3.1.

4 Proofs of the intersection form Theorems 3.1 and 3.2

4.1 The second homotopy group ofW is a freemodule

In this subsection we prove the following.

Lemma 4.1 The homotopy group π2(W ) is a free Z[Z] module.
Proof Let R := Z[Z]. Since π1(W ) ∼= Z, we have H1(W ; R) = 0 and H2(W ; R) ∼=
π2(W ). We therefore need to show that H2(W ; R) is a free module, which follows from
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general arguments on 4-manifolds with fundamental group Z. The relative cohomology
group H2(W , ∂W ; R) can be computed using the universal coefficient spectral sequence

E p,q
2 = Ext pR(Hq(W , ∂W ; R), R) �⇒ Hn(W , ∂W ; R),

where the differential dr on E
p,q
r has degree (r , 1−r) (see e.g. [15, Theorem 2.3]). First, from

the long exact sequence of a pair and from H1(W ; R) = 0, it follows that H1(W , ∂W ; R) = 0.
From this and from H0(W , ∂W ; R) = 0, it follows that the only nontrivial term on the line
p+ q = 2 on the E2 page is E0,2

2 = HomR(H2(W , ∂W ; R), R). Since H1(W , ∂W ; R) = 0
and since R has homological dimension 2 (or since H0(W , ∂W ; R) = 0), the differentials
d0,2r at E0,2

r for r ≥ 2 are into trivial codomains and thus trivial. Therefore we deduce that

H2(W , ∂W ; R) ∼= HomR(H2(W , ∂W ; R), R).

This is a free module, since HomR(A, R) is free for any R-module A, by [11, Lemma 3.6]
or [2, Lemma 2.1]. Therefore H2(W , ∂W ; R) ∼= H2(W ; R) is free as claimed. ��

4.2 Construction of spheres in�2(W)

Weproceed to construct explicit elements ofπ2(W )whose intersection data can be computed
in terms of intersection and twisting data for the discs D1 and A1.

Consider the Clifford torus for a self-intersection point of D0. A neighbourhood of a self-
intersection point is homeomorphic toR4, in which the two intersecting sheets sit asR2×{0}
and {0} ×R

2. The Clifford torus T := S1 × S1 ⊂ R
2 ×R

2 ∼= R
4 is shown in a 5-still movie

diagram in Fig. 1. We may assume that T lies in ∂W . We will call the curves S1 × ∗ and
∗ × S1 (∗ ∈ S1), which are meridians of the two sheets, the standard basis curves of T .

We describe the basic construction of a sphere S2i using an accessory disc Ai
1 for the

double point p. The authors learnt this construction from Peter Teichner. We will postpone
detailed discussion of framing issues for later computations, for now contenting ourselves
with conveying the main idea of the construction. We may modify the construction later by
inserting interior or boundary twists into the procedure, in order to arrange that our spheres
have framed normal bundles.

Consider a double point loop α on D0, and consider the normal circle bundle to D0

restricted to α. This defines a torus in D4. The intersection of this torus with W = D4\νD0

defines N := (α × S1) ∩ ∂W , which is the image of the map of an annulus into W . The
boundary of N is the two generating curves on T for H1(T ;Z). The boundary of N is thus
a wedge S1 ∨ S1, since the standard basis curves of T intersect in a single point. The part of
N which lies in a D4 neighbourhood of the intersection point is shown in Fig. 2.

TT

T

TT

T
T

T

Fig. 1 A Clifford torus T in the neighbourhood of an intersection point of two planes in R
4 ∼= R

3 × R. One
of the planes lies in R

3 × {0}, while the other intersects each slice R3 × {pt} in a line
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NN

N

NN

N

N

N

Fig. 2 A Clifford torus T together with the part of the annulus N which lies in a D4 neighbourhood of the
double point

N

Ai
1 A+

A−

T

D

standard basis curve
standard basis curve

(1, 1)-curve

N \ νAi
1

attachattach

T

surgery
on N

Fig. 3 Surgery on N using A±, and the attaching of the resulting disc D to the Clifford torus T

We perform a two step ambient surgery process. First use two push-offs of the accessory
disc Ai

1, which we denote by A±, to surger N into a disc D = (N\νAi
1) ∪ A+ ∪ A−. The

boundary of this new disc D is a (1, 1) curve on T ; that is, it represents the sum of a meridian
and a longitude in H1(T ;Z) ∼= Z ⊕ Z. In Fig. 3, a schematic of the annulus N is shown,
before and after surgery on it has been performed using A+ and A− to convert N into the
disc D. We also show the attaching of this apparatus to the Clifford torus T in Fig. 3. Next,
use two push-offs of D to surger T into an immersed sphere S2i .

For Theorem 3.2 this describes the construction of our entire set of spheres {Si }. For
Theorem 3.1, this creates half of our spheres: use this construction to produce a sphere from
the Clifford torus of one double point in each pair which is paired up by a Whitney disc.
Recall that we use the double point with positive sign and recall that d = 2k. So we have
created spheres S2i for i = 1, . . . , k. For the other spheres, which will form the other half of
our set of spherical elements of H2(W ;Z[Z]), we will use the Whitney discs as below.

Let p1, p2 be two double points of D0 which have opposite intersection signs and which
are paired up by an order one Whitney disc Di

1. Let T1 and T2 be the Clifford tori for the
double points p1 and p2 respectively. Let α be the Whitney circle: a curve which goes from
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N1 N1

N1

N1

N1

T1
T1

T1

T1

T1 T2

T2

T2

T2

T2

time = ±ε time = ± ε
2 time = 0

Di
1

Fig. 4 A picture in R
4 ∼= R

3 × R of a model for two intersection points, paired up with a Whitney disc,
together with their Clifford tori T1 and T2 and the annuli N1 and N2. The last R coordinate is the time. The
future and the past are drawn in the same pictures, to avoid repetition. Note that this is only a model. In reality,
since the Whitney disc may not be embedded, all these surfaces may not be contained in one contractible open
neighbourhood

p1 to p2 on D0, changes sheets, and then returns to p1 on the opposite sheet to the sheet it
left on. Write α = α1 ∪ α2, dividing α into two Whitney arcs by cutting at p1 and p2.

Define two annuli in a similar manner to above. Take the normal circle bundle to αi and
consider its intersection with ∂W . We obtain Ni := (αi × S1) ∩ ∂W . The boundary of
N1 is a standard basis curve on T1 which we shall call the meridian of T1, together with a
standard basis curve of T2 which we shall call the meridian of T2. The boundary of N2 are
other standard basis curves, which we shall call the longitudes of T1 and T2. A movie of two
Clifford tori, the annuli N1 and N2, and theWhitney disc Di

1 is shown in Fig. 4. In this figure,
the past and future pictures are drawn only once, since the situation is symmetric about the
zero time slice, time = 0.

Now we have a three step process. First use two push-offs N±
1 of N1 to perform surgery

on T1 and T2 to join them into one bigger torus

T12 := N−
1 ∪ N+

1 ∪ cl(T1\(S1 × D1)) ∪ cl(T2\(S1 × D1)).

Next use two push-offs (Di
1)± of the Whitney disc to convert N2 into a disc

C := cl(N2\(α2 × D1)) ∪ (Di
1)+ ∪ (Di

1)−.

Here we abuse notation and also denote the push-off of α2 onto N2 along Di
1 by α2.

Recall that the boundaryof N2 was a longitudeofT1 and a longitudeofT2. These longitudes
have been cut by the surgery which converted T1 ∪ T2 into T12. They can be joined by a pair
of arcs, α+

1 in N+
1 and α−

1 in N−
1 , to create a longer loop which is a longitude of T12, and

is also the boundary of C . The final step is to use two push-offs of C to perform surgery on
T12 and create the desired sphere S2i−1. The schematic arrangement of the constituent parts
of S2i−1 are shown in Fig. 5.

This completes our description of the spheres Si , for i = 1, . . . , 2k = d . Recall that we
called the submodule in π2(W ) they generate F . Next we will show that F and π2(W ) have
the same rank, which is equal to the number of double points of D0.

Lemma 4.2 Both H2(W ;Z[Z]) ∼= π2(W ) and its submodule F are free Z[Z]-modules of
rank d.

Together with Lemma 4.1, this proves (1) of Theorems 3.1 and 3.2.

123



532 J. C. Cha et al.

N+
1

N−
1

T1 T2

C

N2 \ (D1 × D1)

(Di
1)+

(Di
1)−

attach C to T12

cut
∂N2

Fig. 5 Schematic diagram of the construction of the discC from surgery on N2 using Di
1, and the construction

of T12 from the Clifford tori T1 and T2 and two parallel copies N±
1 of the annulus N1

Proof The fact that π1(W ) ∼= Z is crucial for this proof. By Lemma 4.1, H2(W ;Z[Z]) is a
free module, so is isomorphic to Z[Z]δ for some δ.

Claim H2(W ;Z[Z]) ⊗Z[Z] Z ∼= H2(W ;Z).

We use the universal coefficient spectral sequence for homology [25, Theorem 5.6.4]

E p,q
2 = TorRp (Hq(W ;Z[Z]),Z) �⇒ Hn(W ;Z)

to compute H2(W ;Z) from H∗(W ;Z[Z]). Here the differential dr has degree (−r , r − 1).
The only nontrivial E2 term on the line p + q = 2 is E2

2,0 = H2(W ;Z[Z]) ⊗Z[Z] Z, since
H1(W ;Z[Z]) = 0 and H0(W ;Z[Z]) ∼= Z admits a length one projective Z[Z] module

resolution Z[Z] t−1−−→ Z[Z] → Z. The differentials dr into Er
2,0 (r ≥ 2) have trivial domains

and thus are trivial, since H1(W ;Z[Z]) ∼= 0 and since Z[Z] has homological dimension two.
This completes the proof of the claim.

Therefore H2(W ;Z) ∼= Z[Z]δ ⊗Z[Z] Z ∼= Z
δ . Now we have a second claim:

Claim The second homology is H2(W ;Z) ∼= Z
d , generated by the spheres Si .

Note that the claim proves (3) of Theorems 3.1 and 3.2. Assuming the claim it follows
from Z

δ ∼= Z
d that δ = d . It also follows that the spheres generating F define linearly

independent elements of π2(W ) ∼= H2(W ;Z[Z]). To see this, note that each sphere Si
lifts to a nontrivial element of H2(W ;Z[Z]); let Z[Z]d → H2(W ;Z[Z]) ∼= Z[Z]d be the
homomorphism sending the i th basis to [Si ], and let P(t) be the associated square matrix
over Z[Z]. The claim implies that det P(1) = ±1. It follows that det P(t) �= 0, that is,
Z[Z]d → H2(W ;Z[Z]) is injective. So F has rank d .

It remains to prove the claim that H2(W ;Z) ∼= Z
d . Recall that ∂+ = cl(∂(νD0)\νK ).

Let ∂− = νK . We have:
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H2(W ;Z) ∼= H3(D
4,W ;Z) by the long exact sequence for (D4,W ),

∼= H3(νD0, ∂+;Z) by excision,

∼= H1(νD0, ∂−;Z) by duality,

∼= H1(D0, ∂D0;Z) ∼= H1(D0;Z) = Z
d , generated by the double point loops.

It follows that the Clifford tori, which are dual to the double point loops, form a basis
for H2(W ;Z). The Clifford tori, after a basis change, are homologous to the spheres Si ,
since the Si are obtained from surgery on (linear combinations of) the Clifford tori. This
completes the proof of the claim and therefore of Lemma 4.2. ��
Remark 4.3 In the case of accessory spheres only, the final basis change is not required. Also,
note that unfortunately we do not know that F = π2(W ), only that the two are both free
modules of the same rank and that the generators of F give a basis overZ. Therefore, choosing
a basis for π2(W ) and representing the generators of F as vectors, and then making these
vectors the columns of a matrix, yields a matrix P(t)which augments to be unimodular. This
matrix appeared in the proof of linear independence above and it will appear in the proofs in
Sects. 6, 9 and 10. In the special case that D0 arises from crossing changes, we will see in
Lemma 6.2 that F = π2(W ).

4.3 Definitions ofWhitney and accessory framings

In this section we recall the precise definition of the Whitney framing of the boundary
of a Whitney disc. Note that a normal bundle to a surface in 4-dimensional space has 2-
dimensional fibre. An orientation of the surface and an orientation of the ambient space
determines an orientation of the normal bundle. Thus a single nonvanishing vector field in
the normal bundle of a surface determines twononvanishing vector fields, up to homotopy, and
therefore a framing. The second vector is chosen so as to be consistent with the orientations.

Definition 4.4 (Whitney framing) Suppose that we have two surfaces, or two sheets of the
same surface, �1 and �2, intersecting in two points p and q of opposite signs. Let γi be an
arc on �i between p and q , such that γ1 ∪ γ2 bounds a Whitney disc D1. We will describe a
framing of νD1 |∂D1 . Choose a framing of νγ1⊂�1 , a nonvanishing vector field in the normal
bundle of γ1 in �1. This yields a nonvanishing vector field in νD1 |γ1 . Along γ2 we choose a
vector field in νD1 |γ2 ∩ ν�2 , which agrees at p and q with the vector field along γ1 which we
have already chosen (for this to be possible we need that p and q are of opposite signs.) Note
that the intersection νD1 |γ2 ∩ ν�2 is a 1-dimensional bundle. The resulting framing along
∂D1 = γ1 ∪ γ2 is the Whitney framing. The transport of the Whitney framing to ∂W along
D1 is depicted in Fig. 6.

Compare this framing to the disc framing, that is the unique framing of the normal bundle
to Di

1 restricted to ∂Di
1, in order to obtain the twisting coefficient ai ∈ Z of Di

1. Recall that
for the purposes of assigning an integer ai , the disc framing is considered to be the zero
framing. A Whitney disc is said to be framed if and only if it has coefficient 0; equivalently
a Whitney disc is framed if the Whitney framing and the disc framing coincide.

As remarked in the introduction, interior twists change the disc framing by ±2 relative to
the Whitney framing, so we can arrange that the twisting coefficient is either 1 or 0. Whether
or not this step is performed, the entries of λ (and therefore of the matrix �) do not change.

While the Whitney framing defined above is standard (see [22, pages 54–8] for a nice
exposition), a framing of the boundary of an accessory disc does not seem to be standard.
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Σ1

Σ2

Fig. 6 The Whitney framing of the normal bundle of a Whitney disc along the boundary. It is tangent to �1,
which appears in the picture as a plane, but normal to the �2, which is the surface that appears as a line in the
picture

Fig. 7 The accessory framing

However we will need a detailed understanding of this in order to compute the matrix of the
intersection form of W .

Definition 4.5 (Accessory framing) Consider the double point loop γ of an intersection point
p of D0, which bounds an accessory disc Ai

1. By restricting the normal bundle of D0 to γ , and
looking at W ∩ ∂(cl(νD0)|γ ), we obtain the image N of a map into W of an annulus. Define
the curve γ ′ := Ai

1 ∩ N . The boundary ∂N is the union of a longitude and a meridian of the
Clifford torus T of the double point p. Two points q1, q2 on ∂N , one on each component of
∂N ∼= S1 × S0, are identified, where the longitude and meridian of the Clifford torus meet.
Thus γ ′ is a simple closed curve; in fact γ ′ = ∂Ai

1.
Define the accessory framing (or N -tangential framing) of Ai

1 restricted to γ ′ = ∂Ai
1 to

be a framing of the normal bundle of γ ′ by a nonzero vector field in the tangent bundle to N ,
except with a slight modification in a neighbourhood of q = q1 = q2 that moves the vector
field away from the tangent bundle T N , as shown in Fig. 7; this modification is necessary in
order for the framing to be well defined at q .

More precisely, near anR2×R
2 neighbourhood of q = 0 inwhich the sheets areR2×0 and

0×R
2, we have T = S1×S1, N = (S1×R≥1×0)∪(0×R≥1×S1), Ai

1 = 0×R≥1×R≥1×0,
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and γ ′ = (0×1×R≥1×0)∪(0×R≥1×1×0). The framing is (1, 0, 0, 0) on 0×1×R≥2×0,
is (0, 0, 0, 1) on 0 × R≥2 × 1 × 0, and is of the form (cos θ, 0, 0, sin θ) with 0 ≤ θ ≤ π/2
on the remaining part. Specifically,

(cos(π t/4), 0, 0, sin(π t/4)) on

{
(0, 1, 2 − t, 0) t ∈ [0, 1]
(0, t, 1, 0) t ∈ [1, 2].

We remark that this is equal to the framing used by Casson [3] for the construction of a
Casson handle.

Compare the accessory framing to the disc framing of Ai
1, in order to compute the twisting

coefficient bi ∈ Z which occurs in the diagonal terms λ2i of λ. Recall that for the purposes
of assigning an integer bi , the disc framing is considered to be the zero framing.

4.4 Equivariant intersections of the spheres Si

Sections 4.4–4.9 describe the intersections amongst the spheres Si . Together these sections
prove (2), (4) and (5) of Theorem 3.1. Only the computations of Sects. 4.4, 4.7 and 4.9 are
required for the proof of (2), (4) and (5) of Theorem 3.2.

We begin with a lemma translating intersections with a Whitney or accessory disc into
the intersection numbers from the intersections with a sphere Si .

In the next lemma let� be a surface inW with a path from a basepoint of� to the basepoint
of W , for which π1(�) → π1(W ) is the trivial map. Recall that z := (1 − t)(1 − t−1).

Lemma 4.6 For each intersection point of � ∩ D j
1 (respectively � ∩ A j

1), there are four
resulting intersections of � ∩ S2 j−1 (respectively � ∩ S2 j ). If the Z[Z] intersection number
of the intersections of� with D j

1 (respectively A j
1) is p(t), then theZ[Z] intersection number

with S2 j−1 (respectively S2 j ) is z · p(t).
Proof We discuss the case of Whitney discs and odd indexed spheres first. Assume that there
is a single intersection point in � ∩ D j

1 and it has Z[Z] intersection number +1.

Consider the four copies of the Whitney disc D j
1 which occur in S2 j−1. First we use two

copies of D j
1 to surger an annulus N2 into a disc C . These copies of D j

1 are called (D j
1 )±.

Label so that going from (D j
1 )+ to (D j

1 )− along N2 involves traversing a meridian of D0 in
the positive sense.

Then we use two copies C± of C to surger the torus T12. Label so that going from C+
to C− along T12 involves traversing a meridian of D0 in the negative sense. Creating C+
and C− requires two copies of each of (D j

1 )±, which we call (D
j
1 )±±. Observe that C+ uses

(D j
1 )++ and (D j

1 )−+, whileC− uses (D j
1 )+− and (D j

1 )−−. If� intersects D j
1 in a point then

� intersects each of the (D j
1 )±± in a point.

In order for S2 j−1 to be oriented, we need to take the opposite orientations on (D j
1 )+−

and (D j
1 )−+. Choose the orientation of S2 j−1 to be such that the intersection signs for

� ∩ (D j
1 )ζξ is equal to ζ · ξ for ζ, ξ ∈ {+,−}.

We are given a choice of path from the basepoint of W to the basepoint of D j
1 .

Use the same path, perturbed slightly, with the basepoint of S2i−1 located on D j
++.

With respect to this choice of basepoint, the contributions from the intersections of �

with (D j
1 )++, (D j

1 )+−, (D j
1 )−−, (D j

1 )−+ are +1, −t−1, +1, −t respectively. The sum is
2 − t − t−1 = (1 − t)(1 − t−1) = z. See Fig. 8.
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Fig. 8 A schematic diagram of
four intersection points of a
sphere S2i−1 (or S2i ) with a
surface � arising from a single
intersection point of D1

i (or A1i )
with �

Σ

D0

D0

(Dj
1)++

(Dj
1)+−

(Dj
1)

(Dj
1)−+

−−

Add the contributions from multiple intersection points in D j
1 ∩ � to obtain the desired

result. If the initial Z[Z] intersection number of a point of intersection between D j
1 and � is

±t�, then the contribution to the intersection number of � with S2 j−1 is ±zt�.
The result for the intersection number of the sphere S2 j with a surface � in terms of

the intersection number of � with A j
1 is proved in the same way, with A j

1 replacing D j
1 , N

replacing N2, D replacing C , and with T replacing T12. ��

4.5 Intersection of Si with Sj for i �= j and {i, j} �= {2i − 1, 2i}

First we consider the intersections between the spheres S2i−1 and S2 j−1 for i �= j . The Z[Z]
intersections between the spheres S2i−1 and S2 j−1 for i �= j arise directly from intersections

between the order one Whitney discs Di
1 and D j

1 .

We investigate the contribution of a single intersection point between Di
1 and D j

1 with
associated element ±t�. Since S2i−1 contains 4 parallel copies of Di

1 and S2 j−1 contains 4

parallel copies of D j
1 , there are 16 intersection points in S2i−1∩ S2 j−1 arising from the single

intersection point in Di
1 ∩ D j

1 .

We apply Lemma 4.6 five times, once with � = Di
1 and D j

1 as the intersecting disc, and

then once with � as each of the four parallel copies of D j
1 in S2 j−1, and Di

1 the intersecting
disc. The resulting Z[Z]-intersection number is therefore ±z2t�.

The intersections of S2i−1 with S2 j for i �= j and the intersection of S2i with S2 j for
i �= j are computed in the same way, except that a sphere with even index S2i contains four
parallel copies of an accessory disc instead of a Whitney disc.

4.6 Intersection of S2i−1 and S2i

During the construction of S2i−1 and S2i wemust be careful tomake sure that the intersections
are transverse. There is one Clifford torus associated to one of the double points paired up by
Di
1, say T2, a parallel copy of which is also used as the Clifford torus T to surger using Ai

1
in the construction of S2i . We may assume that T2 and T are associated to a self-intersection
point of D0 of positive sign. We use a slightly bigger Clifford torus for T2 than for T . As a
result T is disjoint from S2i−1 but T2 intersects Ai

1 in a single point. Apply Lemma 4.6 to
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D

νγ⊂D

νγ⊂T

γ

T

Fig. 9 A 3-dimensional slice of a neighbourhood of a point of γ , with the surfaces T and D shown, together
with trivialisations of the tangent bundle T γ and of the normal bundles νγ⊂D and νγ⊂T . The vector field w
is in the 4th dimension and so is not visible in the picture

obtain a contribution of z to the off-diagonal entries of each 2×2 block of the matrix X from
Theorem 3.1.

4.7 Framing conditions for surgery

To understand the self intersection terms, first we need to give a description of the framing
conditions that must hold in order for surgery to be performed and the normal bundle of the
outcome to again be framed. One can still perform surgery without the framing condition,
but then it becomes tricky to verify that one is keeping track of intersection numbers and
framing conditions correctly.

Recall that a framing of a surface in a 4-manifold means a framing of its 2-dimensional
normal bundle, and a framing is specified by a single nonvanishing vector field in the normal
bundle. A second nonvanishing vector field can then be found using the orientation of the
normal bundle, which is itself inherited from the orientation of the surface and the orientation
of the ambient 4-manifold.

Let V be a 4-manifold, let T ⊂ V be an embedded torus with trivial normal bundle, with
an essential, simple closed curve γ ⊂ T , and let D � V be an immersed disc which we
want to use to perform surgery on T , so that ∂D = γ .

There is a unique framing of D inW , that is, trivialisation of the normal bundle νD , which
we call the disc framing. In addition, suppose we have the following data:

• A framing of T in W , which we call a surgery framing.
• A framing fγ⊂T of γ ⊂ T , that is, a trivialisation of the normal bundle νγ⊂T .
• A framing fγ⊂D of γ ⊂ D.

The various vector bundles on γ are shown in Fig. 9. Note that the framings of γ ⊂ T and
γ ⊂ D are uniquely determined up to negation, while that of T ⊂ W is not.

In order for the surgery to yield a framed 2-sphere, we require the following: there exists
a vector field w on γ such that

(F1) ( fγ⊂T ,w) is equivalent to the disc framing on γ .
(F2) ( fγ⊂D,w) is equivalent to the surgery framing on γ .

In order for the conditions (F1) and (F2) to hold we might have to make some modifications
of the original data. First we may need to boundary twist D around γ , introducing one
intersection in D∩T for each twist, until there exists aw satisfying (F1). Since it is constrained
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to a single dimension, up to homotopyw is determined up to sign, and the sign is determined
by the other choices of framing. Since γ is essential, we are then free to change the surgery
framing of T along γ , until (F2) holds. In the sequel this will always be done without further
comment.

We may then use the surgery framing to take two parallel copies of D and construct a
framed sphere S. The framing on S is obtained by taking the framing on νD on one copy of
D, its negative on the other copy of D, the framing of νT on T \(γ ×D1), and then smoothing
the corners by rotating between the two vector fields in a neighbourhood of γ × {±1}. The
rotation occurs in the 2-dimensional subbundle of T V |γ which is orthogonal to T γ and w.

4.8 Self intersection of S2i−1

First, we note that each self-intersection of the disc Di
1 gives rise to 16 self intersection

points of S2i−1, which means that we should count 32 intersection points between S2i−1 and
a push-off.

Given a self-intersection point p of Di
1 with double point loop t� and sign ±, the inter-

section number between Di
1 and a parallel push-off is ±(t� + t−�). We can only define the

double point loop up to the indeterminacy t� = t−�, since we have no canonical ordering
of sheets. Of course t� + t−� is independent of the choice here. Now apply the argument of
Sect. 4.5 to yield a coefficient of z2, noting that z = z. This accounts for the diagonal terms

of z(zY + zY
T
). There are indeed 32 terms for each ±t� summand of Y .

The potential twisting of the Whitney discs gives the crucial extra terms. We want the
sphere S2i−1 to be framed, in order to be able to compute the self intersection number
λ(S2i−1, S2i−1) by counting intersection points between S2i−1 and a parallel push-off. The
twisting occurs in the first step, during the construction of C from N2 and (Di

1)±.
Recall that we denote α1 = N1 ∩ ∂Di

1 and α2 = N2 ∩ ∂Di
1. The notation α1, α2 was

also used for the Whitney arcs which lie on D0, so we make a slight abuse to use the same
notation for their push-offs onto N1, N2 respectively.

Align the disc framing of Di
1 with the Whitney framing along α1. Note that, within the

homotopy class, we are free to adjust any framing on an interval. Then look at the disc framing
of Di

1 restricted to α2. The difference between this framing and Whitney framing, which is
also the surgery framing along N2, is the twisting coefficient ai . Introduce ai boundary twists
along α2. Twisting is described in [9, Section 1.3]. (With respect to the whole of the Whitney
disc, as originally pairing intersections of D0, this is an interior twist. However with respect
to the sub-disc whose boundary is (N1 ∩ ∂Di

1) ∪ (N2 ∩ ∂Di
1), this is a boundary twist. Only

the part of the Whitney disc that we use for surgery is relevant.) The boundary twist changes
the Whitney disc, and therefore the disc framing, so that it now coincides with the surgery
framing along N2. Strictly speaking, for these boundary twists, we should push N2 slightly
off ∂W .

TheWhitney framing along N1 differs from the surgery framing on T12 by a fixed rotation.
Both are normal to Di

1 along N1 ∩ ∂Di
1. Therefore in a neighbourhood of α1 we can arrange

the disc framing by a homotopy so that it lies in να1⊂N1 .
The disc framing of C is constructed from the disc framing of (Di

1)+, the negative of the
disc framing of (Di

1)− and the normal framing to N2. This latter is also the disc framing of
N2\(α2 × D1). The fact that we obtain the disc framing of C is guaranteed by the boundary
twists above. For the second surgery, converting T12 to S2i−1 using C±, the framings already
coincide as required by Sect. 4.7. Therefore no more boundary twisting is required.
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Now we consider the contribution of a boundary twist as above to the self intersection
number. Each boundary twist produces a single intersection point between N2 and Di

1. It
therefore produces two self-intersection points of C .

Two copies of N2 will be in the final sphere S2i−1. To compute the self intersection number
λ(S2i−1, S2i−1), first we compute the Wall self intersection μ(S2i−1) [24, Chapter 5], and
observe that λ(S2i−1, S2i−1) = μ(S2i−1) + μ(S2i−1). This works for two reasons. First, the
sphere S2i−1 is framed, as we just went to great lengths above to ensure. Thus there is no
extra term from the Euler characteristic of the normal bundle [24, Theorem 5.2 (iii)]. Second,
although the self-intersection μ(S2i−1) is only well-defined up to the indeterminacy a = a,
the sum μ(S2i−1) + μ(S2i−1) is well-defined and determines a unique element of Z[Z].

Label the two copies of N2 which occur in C± by (N2)±. The intersection numbers of
these with D j

1 are 1 and −t respectively, since the two intersections differ by a meridian
of D0. By Lemma 4.6, the contribution to the self intersection number from each boundary
twist is therefore (1 − t)z. Therefore the contribution to λ(S2i−1, S2i−1) is

(1 − t)z + (1 − t)z = (1 − t + 1 − t−1)z = z2.

All together the boundary twists therefore contribute ai z2 to λ(S2i−1, S2i−1).

4.9 Self intersection of S2i

There are three types of contributions to the self intersection of S2i . First, a self-intersection
of the disc Ai

1 with Z[Z]-intersection number p(t) contributes z(zp(t) + zp(t)), by the
analogous argument as for the spheres S2i−1 in Sect. 4.8.

The twisting bi of the accessory framing (Fig. 7) with respect to the disc framing con-
tributes bi z2, by a similar argument to that in Sect. 4.8. We give the outline. Again we need
that the disc framing of D is constructed from the disc framings of N\(D1 × D1) and A+
together with the negative of the disc framing of A−. To achieve this perform bi boundary
twists of Ai

1 around Ai
1 ∩ N . These contribute bi z2 to λ(S2i , S2i ) as claimed.

In the construction of the spheres S2i−1, the first set of boundary twists was sufficient: after
this the second surgery, of T12 into a sphere, was automatically correctly framed. However,
for the spheres S2i constructed from the accessory discs, that we consider in this section, this
is not the case.

Claim The surgery framing of the (1, 1) curve on the Clifford torus T is +1 with respect to
the disc framing on D.

Given the claim, we perform a single boundary twist of D about its boundary, before
using it to surgery T into S2i . This gives rise to a contribution of 1− t to the self intersection
μ(S2i ), therefore a contribution of μ(S2i ) + μ(S2i ) = 1− t + 1− t−1 = z to λ(S2i , S2i ) as
desired.

Roughly, the +1 from the claim arises from the self linking of the (1, 1) curve on the
Clifford torus. This was previously observed in a different context in [8, Lemma 4]. Note
that if the sign of the associated double point of D0 were −1, then the difference in framings
would instead be −1.

The claim will follow from the observation of the next lemma. In order to state the lemma,
we describe a disc D′ in a D4 neighbourhood of a double point p of D0, whose boundary is
the (1, 1)-curve on the Clifford torus T i.e. the boundaries of D and D′ coincide. Recall that
the Clifford torus is T = S1 × S1 ⊂ R

2 ×R
2 ∼= R

4 ∼= D4. The meridian is S1 × {1} and the
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Fig. 10 The framing of the
normal bundle of D′ restricted to
∂D′, in a neighbourhood of the
intersection on T of the meridian
and longitude. The shaded
triangles are part of D′, and the
fact that the framing stays normal
to them means that it twists out of
the tangent bundle of T

D

T

(1, 1) curve

surgery push-off

Fig. 11 The (1, 1)-curve on the Clifford torus T and a push-off using the surgery framing. The linking number
in S3 is +1

longitude is {1} × S1. Take the union of the two discs D2 × {1} and {1} × D2 and add two
small triangles as shown in Fig. 10.

Lemma 4.7 There exists a 3-ball B in D4 whose boundary is the 2-sphere formed from the
union of the surgery disc D with the disc D′. Moreover there exists a framing for the normal
bundle of B which restricts to the disc framings of both D and D′.

Proof The 3-ball B is constructed from glueing together Ai
1 × [−1, 1] and α × D2—recall

that Ai
1 × {±1} ∼= A± and α × S1 = N . The normal bundle of B is one dimensional, so the

framing only depends on a choice of sign. The framing determines a nonvanishing vector
field in the normal bundle of D and D′, which therefore must restrict to the disc framings on
their common normal boundary. ��

By Lemma 4.7, we can compute the disc framing of D restricted to its boundary by
computing the disc framing of D′. The surgery framing is+1 with respect to the disc framing
of D′. The surgery framing is shown in Fig. 11, where we see that the linking number of the
two curves is +1.

To compute the framing of D′, isotope it in a collar neighbourhood of the boundary so that
a (smaller) collar neighbourhood lies in S3. The framing of D′ and the surgery framing agree
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along the meridian of T , are opposite along the longitude, and in a neighbourhood of the
intersection point of the longitude and the meridian of T there is a rotation. The arrangement
is as shown in Fig. 10. As the framing vector for D′ stays normal to the two small triangles we
see that it undertakes a single full −1 twist with respect to the surgery framing. We compute
that the framing of D′ induces a push-off which has linking number zero with the (1, 1) curve
of T . Thus the surgery framing is +1 with respect to the disc framing. This completes the
proof of the claim and therefore of the computation of the self-intersection of the spheres
S2i .

5 Homology of the boundary ofW

Proposition 5.1 The first homology H1(∂W ;Z[Z]) is isomorphic to H1(XK ;Z[Z]) ⊕
(Z[Z]/〈z〉)d . Consequently the order of H1(∂W ;Z[Z]) is (t − 1)2d�K (t).

Proof As before, let νD0 be a (closed) regular neighbourhood of the order zero disc D0 in D4.
Since D0 has d double points, νD0 is obtained by d self plumbings performed on a 2-handle
D2 ×D2. We haveW = cl(D4\νD0). Let ∂+ = ∂(νD0)∩W and ∂− = cl(∂(νD0)\∂+). Let
XK = cl(S3\∂−) be the exterior of the knot K . Then ∂W = ∂+ ∪ XK and ∂+ ∩ XK = ∂XK .

The left hand side of Fig. 12 is a surgery description of ∂(νD0) = ∂+ ∪ ∂− obtained from
a standard Kirby diagram of the plumbed handle. More precisely, by choosing double point
loops for self plumbings, a homeomorphism between ∂(νD0) and the 3-manifold given by
the surgery description is determined. For the purpose of this section, temporarily choose
double point loops whose push-offs along the accessory framing are trivial in π1(W ) = Z.
This can be done by wrapping part of a double point loop on a sheet near the double point,
around another sheet, if necessary. (The double point loops used here may be different from
those in other sections of the article.) Now, remove the solid torus ∂− and take the infinite
cyclic cover of ∂+. Note that the meridians of the zero-framed circles correspond to push-offs
of double point loops along the accessory framing, and so they are trivial in π1(W ) = Z. It
follows that the infinite cyclic cover is given by the surgery diagram in the right hand side of

0

0

∂−

covering
map

2 2 2 2

2 2 2 2

Fig. 12 The 3-manifold ∂+H and its infinite cyclic cover
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Fig. 12, which consists of d infinite chains lying in D2 ×R. Observe that the zero framing of
the surgery curve in the base corresponds to the±2 framing of the surgery curve in the cover.
The signs of the surgery coefficients in the cover and the signs of the clasps are determined
by the sign of the double points.

From the surgery description of the infinite cyclic cover, we obtain a presentation of
H1(∂+;Z[Z]) with d generators, say vi , and d defining relations ±(2 − t−1 − t)vi = 0. It
follows that H1(∂+;Z[Z]) = ⊕d

Z[Z]/(2 − t−1 − t).
Also, H1(∂XK ;Z[Z]) ∼= Z is generated by a longitude of K , which is zero in each

of H1(∂+;Z[Z]) and H1(XK ;Z[Z]). Therefore, by a Mayer-Vietoris argument for ∂W =
∂+∪XK , we obtain the following, fromwhich the promised conclusion follows immediately.

H1(∂W ;Z[Z]) ∼= H1(XK ;Z[Z]) ⊕ H1(∂+;Z[Z])
∼= H1(XK ;Z[Z]) ⊕ (Z[Z]/(2 − t−1 − t))d .

��

6 Proof of Alexander polynomial assertions of main theorems

We begin with a straightforward lemma.

Lemma 6.1 The relative homology H2(W , ∂W ;Z[Z]) is isomorphic to Z[Z]d .
Proof We have isomorphisms

H2(W , ∂W ;Z[Z]) ∼= H2(W ;Z[Z]) ∼= HomZ[Z](H2(W ;Z[Z]),Z[Z]) ∼= Z[Z]d .
The last isomorphism uses that H2(W ;Z[Z]) ∼= Z[Z]d . The second isomorphism uses the
universal coefficient spectral sequence

E2
p,q = ExtRp (Hq(W ;Z[Z]),Z[Z]) �⇒ Hn(W ;Z[Z])

as we shall now explain. Since H1(W ;Z[Z]),Z[Z]) = 0 and Z has a length one projective
resolution over Z[Z] (see the proof of Lemma 4.2), the only surviving E2 term on the line
p+ q = 2 is E0,2

2 = HomZ[Z](H2(W ;Z[Z]),Z[Z]). The differentials dr (r ≥ 2) defined on

E0,2
r are trivial since H1(W ;Z[Z]) = 0 andZ[Z] has homological dimension two. Therefore

the spectral sequence collapses and we have the isomorphism claimed. ��
We are ready to connect the pieces of the previous two sections to prove the Alexander

polynomial parts of the main theorems. The assertions relating to the Blanchfield form are
addressed later in Sect. 10. Theorem 1.4 also uses Lemma 6.2 below.

Proof of Alexander polynomial assertions of Theorems 1.2, 1.3 and 1.4 Since H1(W ;Z[Z]) ∼=
0 and H2(W ;Z[Z]) ∼= H2(W , ∂W ;Z[Z]) ∼= Z[Z]d , the long exact sequence of a pair yields

Z[Z]d �−→ Z[Z]d −→ H1(∂W ;Z[Z]) −→ 0

where � is the intersection form of W . Since H1(∂W ;Z[Z]) is a torsion module it follows
that � is injective. Indeed

H2(∂W ;Z[Z]) ∼= H1(∂W ;Z[Z]) ∼= Ext1
Z[Z](H0(∂W ;Z[Z]),Z[Z])

∼= Ext1
Z[Z](Z,Z[Z]) ∼= Z
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and any Z[Z]-module homomorphism from Z into a free Z[Z] module is trivial.
Represent λ as a matrix with respect to the basis for F ⊆ H2(W ;Z[Z]) defined in

Sect. 3, and with respect to a dual basis for F∗ ⊇ HomZ[Z](H2(W ;Z[Z]),Z[Z]) ∼=
H2(W , ∂W ;Z[Z]), so that we obtain a matrix for the intersection form of W restricted
to F . The presentation for H1(∂W ;Z[Z]) implies that

det(�) = ordZ[Z](H1(∂W ;Z[Z])) .= (t − 1)2d�K (t)

up to multiplication by a unit ±tm . Here we used Proposition 5.1. Up to multiplication by
a unit we have (t − 1)2

.= (1 − t)(1 − t−1) = z. For Theorem 1.2, the matrix � recording
intersection data of theWhitney tower satisfies λ = z�, with λ as in Theorem 3.1. Therefore,
since λ is a d × d matrix, we have

det(λ) = det(z�) = zd det� = (t − 1)2d det(�)

up to a unit in Z[Z]. Similarly, with λ as in Theorem 3.2, we have

det(λ) = det(z	) = zd det	 = (t − 1)2d det(	)

up to a unit in Z[Z].
Now suppose that F = π2(W ). Then � = λ so (t − 1)2d�K (t) = (t − 1)2d det(	), and

cancelling the (t − 1) factors yields det(�) = �K (t). Thus Alexander polynomial assertion
of Theorem 1.4 follows from Lemma 6.2 below.

In general, we have that F ⊆ H2(W ;Z[Z]) is a free module of the same rank. We have a
commutative diagram:

Z[Z]d �
Z[Z]d

P∗

F

P

λ
F∗

where P = P(t) is represented by a matrix which satisfies det(P(1)) = ±1.
Then we have

(t − 1)2d det(�) = det(λ) = det(P(t)) det(�) det(P(t)∗)
= det(P(t)) det(P(t−1)) det(�) = f (t) f (t−1)(t − 1)2d�K (t),

where f (t) := det(P(t)). From this we deduce that, modulo norms f (t) f (t−1)with f (1) =
±1, we have det(�) = �K (t) as claimed. For Theorem 1.3, replace � with 	 in the above
argument. As remarked above, Theorem 1.4 uses Lemma 6.2 below. ��

The next lemma completes the proof of the Alexander polynomial assertions of Theo-
rem 1.4, by showing that in a special case our spheres Si , which generate F , in fact give a
basis for π2(W ).

Let D0 � D4 be an immersed disc in the 4-ball with boundary a knot K ⊂ S3, where
D0 is produced as the track of a homotopy between K and the unknot, followed by a disc
bounding the unknot, where all self-intersection points of the homotopy occur at time 1/2,
corresponding to d crossing changes of the knot. More precisely, let f : S1 × I → S3 be
a homotopy with f (S1, {s}) isotopic to K for s < 1/2, isotopic to U for s > 1/2, and
f (S1, {1/2}) a singular knot with d double points. The track of the homotopy is the image
of g : S1 × I → S3 × I given by g(x, s) = ( f (x, s), s). Cap off S3 × {1} with a copy of D4

and cap off U ⊂ S3 × {1} with a standard slice disc for the unknot in this D4.
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Fig. 13 A 2-handle which we add
at each marked crossing of the
unknotted dotted circle. Altering
these crossings produces K . This
constructs a handle
decomposition of the exterior of
the immersed disc determined by
these crossing changes. The two
straight strands represent part of
the unknotted dotted circle

0

The Clifford tori for the double points can be surgered into 2-spheres Si , where i =
1, . . . , d , using accessory discs, just as in the construction of the spheres S2i in Sect. 4.2. As
usual define W := D4\νD0.

Lemma 6.2 The 2-spheres Si form a basis for π2(W ).

Proof We construct a handle decomposition for W . Start with a 0-handle and a single 1-
handle. Represent this by a Kirby diagram with a single dotted unknot. Perform an isotopy of
this unknot until it is represented by a diagram having a set of marked crossings (potentially a
proper subset of all the crossings) which, if changed, yield the knot K . At each such crossing,
add a single 0-framed 2-handle in the configuration shown in Fig. 13.

Detailed justification for this can be found in [16, Proposition 3.1], which we now sum-
marise. The exterior of an immersed disc constructed by a crossing change on a knot can be
understood in two steps as follows, which occur at the level sets 1/2 ± ε of the function F
given by projection to the I factor of S3 × I , restricted to the exterior of D0. Since we are
now passing fromU to K , we move in the direction of decreasing I factor. First, at 1/2+ ε,
remove a small vertical arc which connects the two strands of the crossing. One observes
that removing the neighbourhood of an arc as described does not change the diffeomorphism
type i.e. the diffeomorphism type of F−1([a, 1]) does not change when a crosses 1/2 + ε.
The crossing may be switched by sliding the arcs of the knot (the dotted circle) up and down
along the removed arc. Then replace the neighbourhood of the vertical arc. Replacing the arc
is equivalent to adding the 2-handle as shown in Fig. 13, since this figure shows the crossing
of the unknotted circle, that is before the sliding of the arcs (once the crossing is changed,
the 2-handle attaching circle bounds a disc in between crossing strands).

Note that π1(W ) ∼= Z, since there is a unique 1-handle and all 2-handles have no effect
on the fundamental group. A chain complex C∗(W ;Z[Z]) is given by (compare [16, Propo-
sition 4.4])

Z[Z]d = C2
0−→ Z[Z] = C1

t−1−−→ Z[Z] = C0.

From this we compute H2(W ;Z[Z]) ∼= Z[Z]d and we note that the set of 2-handles give
a basis. The Clifford torus can be seen as the core of each 2-handle, union the punctured
torus constructed by taking a disc bounded by the zero-framed component in Fig. 13, which
intersects the knot in two points, and tubing along the knot. The double point loop (after
suitable twisting) is null homotopic in the complement of the standard slice disc for the
unknot found in time s > 1/2, therefore the Clifford torus can be surgered to a sphere using
the procedure of Sect. 4.2. Since the core of the 2-handle is still used precisely once, this
therefore represents a basis element of π2(W ). ��
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D1 D1
A1 A1

41 31

knilnuknilnu

Fig. 14 Movies for twisted Whitney towers in S3 × I . Movies go top to bottom. Left 3 pictures: Whitney
tower cobounding the figure eight knot 41 ⊂ S3 ×{0}. Right 3 pictures: Whitney tower cobounding the trefoil
31 ⊂ S3 × {0}. Top picture: the knot, which will evolve via a homotopy to the unknot over time, tracing out
an immersed disc D0. Middle picture: double points of the immersion of D0, a collar S1 × I of the twisted
Whitney disc D1, and the accessory disc A1. Bottom picture. The interior boundary of the collar, together
with the knot after the crossing changes from the double points, form an unlink, which can be capped off by
two disjoint discs in S3 × {1}, to complete D0 and D1. Cap off S3 × I with a copy of D4 to obtain a Whitney
tower in D4

7 Examples and an algorithm for computation

7.1 UsingWhitney towers

We give some examples of computing the Alexander polynomial using Whitney tower data.
Movies depicting twisted order one Whitney towers with boundary knots the figure eight
knot 41 and the trefoil 31 are shown on the left and right of Fig. 14 respectively. The movies
are explained in the caption to the figure.
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We will simultaneously discuss both examples, indicating differences between the Whit-
ney towers for 31 and 41 when they arise. The only difference turns out to be one sign change.
It is a straightforward computation to see that π1(W ) ∼= Z. Since there is one Whitney disc
and one accessory disc, we have that H2(W ;Z[Z]) ∼= Z[Z]2, generated by the spheres S1
and S2, constructed from the Whitney and the accessory disc respectively, as in Sect. 4.2 i.e.
d = 2.

We apply the formula from Theorem 1.2. The Whitney and accessory discs are disjointly
embedded. Therefore we just need to compute the twisting coefficients a1 and b1. The acces-
sory disc is untwisted, so b1 = 0. The crossing change occurring during the top-to-bottom
evolution of the bottom right of each knot diagram, where the accessory disc is found in the
middle picture, changes a negative crossing to a positive crossing. It is therefore a positive
intersection point, so the self-intersection of S2 is 1. On the other hand, the Whitney disc D1

is twisted. The linking number of the boundary of D1 with the interior of the collar S1 × I
in the middle picture, is +1 for the figure eight knot,and −1 for the trefoil. Therefore the
twisting of the Whitney framing relative to the disc framing is a1 = −1 for the figure eight
and a1 = +1 for the trefoil. This yields the following intersection matrices �, using the
formulae given in the bullet points in Sect. 3. Recall that z = (1− t)(1− t−1) = 2− t − t−1.
For 41, we have

� =
[−z 1
1 1

]
,

whose determinant is −z − 1 = t + t−1 − 2 − 1 = t + t−1 − 3
.= �41(t). For 31, we have

the matrix

� =
[
z 1
1 1

]
,

whose determinant is z − 1 = 2 − t − t−1 − 1 = 1 − t − t−1 .= �31(t).

7.2 An algorithm for computation using accessory discs only

By using a natural choice of accessory discs, described below, the computation of the inter-
section data (and consequently the abelian invariants) can be formulated as an algorithm, that
we now describe.

• Fix a given set of crossing changes on a planar diagram of K which convert K to a trivial
knot; recall that such a set of crossings can be found on any knot diagram.

• Consider the planar diagram obtained by replacing all the crossings to be changed with
a singularity. This is the diagram at the level of the intersection points in a movie picture
of the immersed disc in D4 arising as the trace of a homotopy realising the crossing
changes. The sign of the crossing change determines the sign of the intersection point
of D0. For each intersection in the singular diagram, draw a double point loop which
leaves the crossing, follows along the knot agreeing with the given orientation, leaving
along one strand and returning to the crossing along the other strand.

• Push the loop slightly off the singular knot, and twist the loop around the singular knot
until the linking number with the singular knot is zero i.e. after the crossing change the
linking number with the resulting unknot is 0.

• Choose basing paths for each accessory loop.
• Now, replace the singular crossings with the outcome of each of the crossings changes,

and apply an ambient isotopy which takes the resulting unknot to the standard unknotU .
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• Under the isotopy, the union of double point loops becomes an oriented based link, say L .
The i th component of L will give rise to the i th accessory disc Ai .

• In the complement ofU , apply a homotopy of L , that is, crossing changes of L , dragging
the basing paths along, until L ∪ U becomes the trivial link. Here crossing changes
involving different components of L are allowed. For each crossing change on L , record
the sign of the crossing change and the element � ∈ Z = π1(S3\νU ) determined by
linking with U of the usual concatenation of paths in L with the basing paths.

• The number of twists of Li that we made away from the blackboard framing, plus twice
the signed count of self intersections of Li , determines the negative of the twisting of Ai .
With these considerations the intersection data can be completely recovered.

7.3 Examples using accessory discs only

Here is a detailed example of the above algorithm. Consider K = Wh−
n (J ), the negatively

clasped n-twisted Whitehead double of a knot J . Here negatively clasped means the signs of
the crossings are negative, and n-twisted means n full right handed twists; a negative right
handed twist, which appears if n < 0, is a left handed twist. We can change a single crossing
from a negative to a positive crossing in the clasp to make a homotopy to the unknot U .
Therefore d = 1 and ε1 = 1. The double point loop becomes a copy of the knot J , twisted
−n times around this unknot. Add n twists to the double point loop so that it is null homotopic
in the complement of U . The null homotopy of J produces the accessory disc A1. Every
double point of A1 has the trivial element of π1(S3\νU ) ∼= Z associated to it. Add local
cusps of the appropriate sign so that the signed count of double points of A1 vanishes. The
matrix 	 is then a 1×1 matrix with entry 1+ zb1, where b1 is the twisting coefficient. Since
we added n positive twists to the double point loop, the twisting coefficient is −n, and we
compute:

�K (t)
.= det(	) = 1 − nz = 1 − n(2 − t − t−1) = 1 − 2n + nt + nt−1.

8 The Seifert form and the Arf invariant

We are about to investigate the implications of Theorem 1.2 for the Arf invariant of a knot.
First, in this section, we briefly recall the usual definition of the Arf invariant of a knot in
terms of a Seifert form.

Definition 8.1 A quadratic enhancement of a symmetric bilinear form λ : M × M → Z2 on
a Z2 vector space M is a function q : M → Z2 such that

q(x) + q(y) + q(x + y) ≡ λ(x, y) mod 2

for all x, y ∈ M . A quadratic form is a symmetric bilinear formM, λ togetherwith a quadratic
enhancement q .

Let {e1, f1, e2, f2, . . . , en, fn} be a symplectic basis for M i.e. λ(ei , e j ) = 0, λ( fi , f j ) =
0 and λ(ei , f j ) = δi j for all i, j = 1, . . . , n. Then the Arf invariant of the quadratic form is

Arf(M, λ, q) :=
n∑

i=1

q(ei )q( fi ) mod 2.

See [19, Appendix] for the proof that this is well-defined.
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Definition 8.2 Wewill define a Z2-valued quadratic enhancement on the Z2-valued intersec-
tion form on the first homology of a Seifert surface F of the knot. Represent an element of
H1(F;Z2) by an oriented simple closed curve γ ⊂ F , and define a framing of its normal
bundle by choosing a framing of the normal bundle νF⊂S3 of F in S3. (Using the orientation
of S3 and γ this choice determines a framing of the normal bundle νγ⊂F , and therefore
a framing of νγ⊂S3 in the conventional sense). Every simple closed curve in S3 bounds a
closed oriented Seifert surface Gγ , and the unique (up to homotopy) framing of νγ⊂S3 which
extends to a framing of the normal bundle of Gγ is the zero framing of γ . We may therefore
compare the zero framing of γ with the framing defined above by the embedding of F , to
obtain an integer. This measures the number of full twists in the “band” of the Seifert surface
with core γ . The modulo 2 reduction of this integer defines a quadratic enhancement of the
Z2-intersection form on H1(F;Z2), as promised, that is a function q : H1(F;Z2) → Z2.
The Arf invariant of K is Arf(H1(F;Z2), λ, q).

9 Proof of Arf Invariant Theorem 1.9

Proof of Theorem 1.9 Wesaw in theproof ofTheorem1.2 that det(�(t)) = �K (t) f (t) f (t−1)

for some f ∈ Z[t, t−1] with f (1) = ±1. Thus det(�(−1)) = �K (−1) f (−1)2. But
f (1) = ±1 implies that f (−1) is odd. Thus f (−1)2 ≡ ±1 mod 8, and so we have that
�K (−1) ≡ det(�(−1)) mod 8. Then observe that �(t) = λ(t)/z, so �(−1) = λ(−1)/4.
The form of λ in Theorem 3.1 implies that �(−1) reduces to the matrix A in Lemma 9.1
below, with X(−1) = B, Y (−1) = C , xi = 4ai and yi = 4bi . ��
Lemma 9.1 Let A be a d×d matrix overZ, with d = 2k, of the form B+4C+4CT where C

is upper triangular and B is a block diagonal sum of 2×2matrices Di of the form
[
xi 1
1 1+yi

]
,

where xi and yi are both a multiple of 4. Then det A ≡ (−1)k + ∑k
i=1 xi mod 8.

In particular,

(−1)k +
k∑

i=1

4ai ≡
{±1 if

∑k
i=1 ai ≡ 0 mod 2

±3 if
∑k

i=1 ai ≡ 1 mod 2.

The count on the right hand side is exactly the number of twisted Whitney discs modulo two.
This completes the proof of Theorem 1.9 modulo the proof of Lemma 9.1. ��

The idea for Lemma 9.1 and its proof come from [14, Section 3.5]. The argument in
this lemma is slightly simpler since the contributions from the accessory discs are always
odd, thus the Whitney disc terms decide the outcome modulo 8. In the Seifert surface case
considered by Levine, the twisting of both of a dual pair of generators determine whether
that dual pair contributes to the Arf invariant.

Proof of Lemma 9.1 Following Levine, we call an element of the matrix A special if it is odd:
these are the entries a(2i−1),(2i) = a(2i),(2i−1) and a(2i),(2i), for i = 1, . . . , k. The remaining
entries of A are even and these are called non-special.

The determinant is computed as a sum of terms, where each term is a product of elements,
one taken from each row and each column. Note that all the non-special terms are in fact a
multiple of 4. Thus in order for a summand of the determinant to contribute to the reduction
modulo 8 it must be a product of elements, at most one of which is non-special.
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We therefore need to look at the summand containing only special terms (there is precisely
one such summand) and the summands containing precisely one non-special term. The only
summand of the determinant which contains only special terms is

k∏

i=1

−a(2i−1),(2i)a(2i),(2i−1) = (−1)k
k∏

i=1

a2(2i−1),(2i).

Since a(2i−1),(2i) = 1 + 4ni for some ni ∈ Z, we have that a2(2i−1),(2i) ≡ 1 mod 8 so that

modulo 8 the contribution is (−1)k .
There is a summand with precisely one non-special term for each i = 1, . . . , k, of the

form:

a(2i−1),(2i−1)a(2i),(2i)

∏

1≤ j<i,i< j≤k

−a(2 j−1),(2 j)a(2 j),(2 j−1)

= (−1)k−1a(2i−1),(2i−1)a(2i),(2i)

∏

1≤ j<i,i< j≤k

a2(2 j−1),(2 j).

Let αi and βi be such that xi = 4αi and yi = 4βi . We also may write a(2i−1),(2i−1) =
4αi + 8mi , a(2i),(2i) = 1 + 4βi + 8�i and finally a(2 j−1),(2 j) = 1 + 4n j as above. Thus
modulo 8 we have that each summand

(−1)k−1a(2i−1),(2i−1)a(2i),(2i)

∏

1≤ j<i,i< j≤k

a2(2 j−1),(2 j) ≡ 4αi mod 8.

Combining the contributions to the determinant of the summand with all special terms and
the k summands with precisely one non-special term, we have that det A = (−1)k +∑k

i=1 xi
as claimed. ��

10 The Blanchfield form

In this section we show that the matrices � and 	 present a linking form in the Witt class
of the Blanchfield form of K , and that the form they present is isometric to the Blanchfield
form of K in the case that the immersed disc D0 arises from crossing changes on K . This
will prove the Blanchfield form statements of Theorems 1.2, 1.3 and 1.4.

Let R = Z[Z], and let Q = Q(Z) be its quotient field. A linking form is defined
to be a sesquilinear, hermitian, nonsingular form β : V × V → Q/R with V a finitely
generated torsion R-module. Suppose M is a 3-manifold over Z, that is, M is endowed
with a homomorphism π1(M) → Z. Suppose H1(M; R) is torsion over R and the map
H1(∂M; R) → H1(M; R) is the zero map. Then the Blanchfield form [1] of M is defined to
be the linking form

B‘ : H1(M; R) × H1(M; R) −→ Q/R,

whose adjoint B‘∗ coincides with the composition of isomorphisms

H1(M; R) −→ H1(M, ∂M; R) −→ H2(M; R)

−→ H1(M; Q/R) −→ HomR(H1(M; R), Q/R).

That is, B‘∗(y)(x) = B‘(x, y). Here the bar denotes the use of the involution on R to convert
from a right module to a left module. The morphisms above are given by the long exact
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sequence of the pair (M, ∂M), Poincaré duality, a Bockstein homomorphism and universal
coefficients, respectively. The proof that they are all isomorphisms can be found in [15].

TheBlanchfield formof an oriented knot K is defined to be that of the exterior XK endowed
with the homomorphism π1(M) → Z that sends a positive meridian to the generator t .

Definition 10.1 We say that an n × n hermitian matrix A = A(t) over R presents a linking
form β if β is isometric to the sesquilinear pairing

(Rn/A · Rn) × (Rn/A · Rn) −→ Q/R

given by ([x], [y]) → −yT · A−1 · x .
Lemma 10.2 Suppose W is a 4-manifold with π1(W ) = Z so that ∂W = M is over Z, and
� = �(t) is a matrix representing the R-valued intersection form on H2(W ; R). Then �

presents the Blanchfield form of M.

Proof First, H1(W ; R) = 0 since π1(W ) = Z. In addition, H2(W ; R) and H2(W , M; R) are
free R-modules of the same rank, by Lemmas 4.1 and 6.1. Since � represents H2(W ; R) →
H2(W , M; R), it follows that � is a presentation matrix for H1(M; R). Here we fix an
arbitrary basis for H2(W ; R) and use the dual basis for H2(W , M; R) as usual.

Let � be the composition

� : H2(W , M; R) −→ H2(W , M; Q)
∼=−→ H2(W ; Q) −→ H2(W ; Q/R)

∼=−−→
PD

H2(W , M; Q/R) −→ HomR(H2(W , M; R), Q/R).

It is known that B‘(∂x, ∂ y) = −�(x)(y) for any x, y ∈ H2(W , M; R); see for instance [4,
Lemma 3.3]. (Our sign convention is opposite to that of [4].)

Using bases for H2(W ;−) induced by our fixed basis and using the dual basis for
H2(W , M;−) once again, all the arrows but the second in the above definition of � are
represented by the identity matrix. The second arrow is the inverse of the intersection pair-
ing, and thus represented by �−1. It follows that

B‘(∂x, ∂ y) = −yT · �−1x = −yT · �
−1 · x .

��
Now consider the case of W = D4\νD0. Construct the following commutative diagram,

as explained below the diagram:

H2(W ; R)
�

H2(W , ∂W ; R)
∂

Lemma 6.1

H1(∂W ; R)

Proposition 5.1

0

H2(W ; R)∗ H1(XK ; R) ⊕ (R/〈z〉)d

H2(W ; R)
A

N

zI

∂|N
H1(XK ; R)

summand

0

.

The top row is a part of the long exact sequence for (W , ∂W ). Let N := z · H2(W ; R)∗.
Since H2(W ; R)∗ ∼= Rd , N ∼= Rd . Since ∂(N ) ⊂ z · H1(∂W ; R) ⊂ H1(XK ; R), ∂ induces
∂|N : N → H1(XK ; R). Since 1− t is an automorphism on H1(XK ; R), so is z = (1− t)(1−
t−1). It follows that ∂|N is surjective. Also, since H2(W ; R)∗/N ∼= (R/〈z〉)d , the image of
� lies in N . So there is A : H2(W ; R) → N making the diagram commute. Multiply our
(dual) basis for H2(W ; R)∗ by z to obtain a basis for N . With respect to this, the inclusion
N → H2(W ; R)∗ is (represented by) the diagonal matrix z I . So � = zA as matrices.
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Claim The matrix A presents the Blanchfield form B‘XK of K .

To prove the claim, first observe that the Blanchfield form B‘∂W of ∂W is given by

B‘∂W (∂u, ∂v) = −yT�
−1

x = −z−1vT A
−1

u

for u, v ∈ H2(W ; R)∗, by Lemma 10.2. Using that the bottom row of the above diagram is
exact, identify H1(XK ; R) with Rd/A · Rd = N/ Im{A}. Then, from the above description
of B‘∂W , it follows that

B‘XK : (Rd/A · Rd) × (Rd/A · Rd) −→ Q/R

is given by (x, y) → B‘∂W (x, y) = −yT (zA
−1

)x . Since z = (1 − t)(1 − t−1), it is
straightforward to see that the following diagram is commutative:

(Rd/A · Rd) × (Rd/A · Rd)

1−t 1−t

−zA
−1

Q/R

(Rd/A · Rd) × (Rd/A · Rd)
−A

−1
Q/R

Since 1− t is an automorphism on Rd/A ·Rd = H1(XK ; R), it follows that A presents B‘XK ,
as claimed above.

In the case that the submodule F generated by our 2-spheres is equal to H2(W ; R), for
example in the special case of an immersed disc arising from crossing changes on K , we have
� = λ = z	, that is, A = 	. This completes the proof of the Blanchfield form assertion of
Theorem 1.4.

In general, namelywhen F is not necessarily H2(W ; R), let P = P(t) be the squarematrix
representing the inclusion Rd ∼= F → H2(W ; R) ∼= Rd . The matrix P(1) is unimodular
over Z, since our spherical basis elements of F descend to a basis of H2(W ;Z).

Construct the following commutative diagram, as explained below:

H2(W ; R)
A

N
zI

P∗

H2(W ; R)∗

P∗

F
�

P

zF∗
z I

F∗

First, choosing the natural basis for zF∗ ⊂ F∗ as we did for N ⊂ H2(W ; R)∗, the inclusion
zF∗ ↪→ F∗ is the diagonal matrix z I . Since F → F∗ is the intersection matrix λ = z�
(or z	), the map F → zF∗ is represented by the matrix � as in the above diagram. Since
P∗ is R-linear, it takes N = z · H2(W ; R)∗ to zF∗, namely P∗ induces the middle vertical
arrow in the above diagram. Furthermore, with respect to our basis for zF∗, the induced
homomorphism N → zF∗ is represented by the same matrix P∗.

From the above diagram, it follows that� = PAP∗. By the following lemma,� presents
a linking form which is Witt equivalent to the Blanchfield form of XK . This completes the
proof of the Blanchfield form assertions of Theorems 1.2 and 1.3.

Lemma 10.3 (Ranicki) The two linking forms presented by hermitian matrices A(t) and
P(t)A(t)P(t−1)T are Witt equivalent, where det P(1) = ±1 and det A(t) �= 0.
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Proof This lemma appears on Ranicki [18, p. 268], in the proof of his Proposition 3.4.6 (ii).
To make the translation from Ranicki’s notation to ours without having to read too much of
[18], one needs to know that the boundary of a form is the linking form presented by a matrix
representing that form, and the fact that det P(1) = ±1 implies that P is an isomorphism
over Q(Z), that is P corresponds to an S-isomorphism, with S the nonzero polynomials in
Z[Z]. ��
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