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Abstract
The aim of this paper is to investigate a new link between integrable systems and minimal
surface theory. The dressing operation uses the associated family of flat connections of a
harmonic map to construct new harmonic maps. Since a minimal surface in 3-space is a
Willmore surface, its conformal Gauss map is harmonic and a dressing on the conformal
Gauss map can be defined. We study the induced transformation on minimal surfaces in
the simplest case, the simple factor dressing, and show that the well-known López–Ros
deformation of minimal surfaces is a special case of this transformation. We express the
simple factor dressing and the López–Ros deformation explicitly in terms of the minimal
surface and its conjugate surface. In particular, we can control periods and end behaviour of
the simple factor dressing. This allows to construct new examples of doubly-periodicminimal
surfaces arising as simple factor dressings of Scherk’s first surface.

1 Introduction

Minimal surfaces, that is, surfaces with vanishingmean curvature, first implicitly appeared as
solutions to the Euler-Lagrange equation of the area functional in [42] by Lagrange. The clas-
sical theory flourished through contributions of leading mathematicians including, amongst
others, Catalan, Bonnet, Serre, Riemann, Weierstrass, Enneper, Schwarz and Plateau. By
now, the class of minimal surfaces belongs to the best investigated and understood classes in
surface theory. One of the reasons for the success of its theory is the link to Complex Anal-
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ysis: since a minimal conformal immersion f : M → R
3 from a Riemann surface M into

3-space is a harmonic map, minimal surfaces are exactly the real parts holomorphic curves
� : M → C3 into complex 3-space. Due to the conformality of f , the holomorphic map
� is a null curve with respect to the standard symmetric bilinear form on C3. A particularly
important aspect of this approach is that the Enneper–Weierstrass representation formula,
see [27,73], allows to construct all holomorphic null curves, and thus all minimal surfaces,
from the Weierstrass data (g, ω) where g is a meromorphic function and ω a holomorphic
1-form. For details on the use of the holomorphic null curve and the associated Enneper–
Weierstrass representation as well as historical background we refer the reader to standard
works on minimal surfaces, such as [19,38,47,50,55,58].

For the purposes of this paper, it is however useful to point out two obvious ways to
construct new minimal surfaces from a given minimal surface f : M → R

3 and its holo-
morphic null curve �: firstly, multiplying � by e−iθ , θ ∈ R, one obtains the associated
family of minimal surfaces fcos θ,sin θ = Re (e−iθ�) as the real parts of the holomorphic null
curves e−iθ�. The associated family of minimal surfaces was introduced by Bonnet [14], in
the study of surfaces parametrised by a curvilinear coordinate. An interesting feature of the
associated family is that it is an isometric deformation of minimal surfaces which preserves
the Gauss map. The converse was shown by Schwarz [66]: if two simply-connected minimal
surfaces are isometric, then, by a suitable rigid motion, they belong to the same associated
family.

The second transformation, the so-called Goursat transformation [30], is given by any
orthogonal matrix A ∈ O(3,C): since A preserves the standard symmetric bilinear form
on C3, the holomorphic map A� is a null curve, and Re (A�) is a minimal surface in R

3.
As pointed out by Pérez and Ros [58], an interesting special case is known as the López–
Ros deformation. To show that any complete, embedded genus zero minimal surface with
finite total curvature is a catenoid or a plane, López and Ros [48] used a deformation of the
Weierstrass data which preserves completeness and finite total curvature. This López–Ros
deformation has been later used in various aspects ofminimal surface theory, e.g., in the study
of properness of complete embedded minimal surfaces [51], the discussion of symmetries of
embedded genus k-helicoids [1], and in an approach to the Calabi–Yau problem [28].

On the other hand, by the Ruh–Vilms theorem the Gauss map of a minimal surface is a
harmonic map N : M → S2 from a Riemann surface M into the 2-sphere [63]. Harmonic
maps from Riemann surfaces into compact Lie groups and symmetric spaces, or more gen-
erally, between Riemannian manifolds, have been extensively studied in the past. Harmonic
maps are critical points of the energy functional and include a wide range of examples such
as geodesics, minimal surfaces, Gauss maps of surfaces with constant mean curvature and
classical solutions to non-linear sigmamodels in the physics of elementary particles. Surveys
on the remarkable progress in this topic may be found in [23,24,31,36,56].

One of the big breakthroughs in the theory of harmonic maps was the observation from
theoretical physicists that a harmonic map equation is an integrable system [53,60,67]: The
harmonicity condition of amap from aRiemann surface into a suitable space can be expressed
as a Maurer–Cartan equation. This equation allows to introduce the spectral parameter to
obtain the associated family of connections. The condition for the map to be harmonic is then
expressed by the condition that every connection in the family is a flat connection. This way,
the harmonic map equation can be formulated as a Lax equation with parameter. Starting
with the work of Uhlenbeck [71] integrable systems methods have been highly successful
in the geometric study of harmonic maps from Riemann surfaces into suitable spaces, e.g.,
[3,5,21,37,70,72]. In particular, the theory can be used to describe themoduli spaces of surface
classes which are given in terms of a harmonicity condition, such as constant mean curvature
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Simple factor dressing and the López–Ros deformation 1017

surfaces in R
3 or S3, e.g., [10,32,59], minimal surfaces in S2 × R, e.g., [33], Hamiltonian

Stationary Lagrangians, e.g., [35,46], and Willmore surfaces, e.g., [4,11,34,64], and related
surface classes such as isothermic surfaces, e.g., [2,6,18].

We recall the methods of integrable systems which are relevant for our paper: given a
C∗-family of flat connections dλ of the appropriate form, one can construct a harmonic map
from it. In particular, the associated family dλ of flat connections of a harmonic map gives
an element of the associated family of harmonic maps by, up to a gauge by a dμ-parallel
endomorphism, using the family dμλ for some fixed μ ∈ C∗. The dressing operation was
introduced by Uhlenbeck and Terng [70,71]: as pointed out to us by Burstall, in the case
of a harmonic map N : M → S2 the dressing is given by a gauge d̂λ = rλ · dλ of dλ

by a λ-dependent dressing matrix rλ [9]. The dressing of N is then the harmonic map N̂
that has d̂λ as its associated family of flat connections. In general, it is hard to find explicit
dressing matrices and compute the resulting harmonic map. However, if rλ has a simple pole
μ ∈ C∗ and is given by a dμ-parallel bundle, then the so-called simple factor dressing can
be computed explicitly, e.g., [9,20,70].

Parallel bundles of the associated family of flat connections also play an important role
in Hitchin’s classification of harmonic tori in terms of spectral data [37], and in applications
of his methods to constant mean curvature and Willmore tori, e.g., [59,64]. The holonomy
representation of the family dλ with respect to a chosen base point on the torus is abelian
and hence has simultaneous eigenlines. From the corresponding eigenvalues one can define
the spectral curve �, a hyperelliptic curve over CP1 (which is independent of the chosen
base point), together with a holomorphic line bundle over �, given by the eigenlines of the
holonomy (these depend on the base point, and sweep out a subtorus of the Jacobian of the
spectral curve). Conversely, the spectral data can be used to construct the harmonic tori in
terms of theta-functions on the spectral curve�. This idea can be extended to a more general
notion [68] of a spectral curve for conformal tori f : T 2 → S4. Geometrically, this multiplier
spectral curve arises as a desingularisation of the set of all Darboux transforms of f where
one uses a generalisation of the notion of Darboux transforms for isothermic surfaces to
conformal surfaces [13].

As mentioned above, by the Ruh–Vilms theorem the Gauss map of a minimal immersion
f : M → R

3 is harmonic, and thus, the various operations discussed above can be applied to
its Gauss map. However, as opposed to the case of an immersion with constant non-vanishing
mean curvature, the Gauss map does not uniquely determine the minimal surface. Thus,
although the associated family and the dressing operation for the harmonic Gauss map of a
minimal surface can be defined [22], the investigation of minimal surfaces with these dressed
harmonic Gauss maps complicates. On the other hand, Meeks, Pérez and Ros [49,52], use
algebro-geometric solutions to the KdV equation to show that the only properly embedded
minimal planar domains with infinite topology are the Riemannminimal examples. The same
Lamé potentials appear in the study of the spectral curve of an Euclidean minimal torus with
two planar ends and translational periods [12]. This indicates that applying integrable system
methods may lead to a further development of minimal surface theory. Conversely, getting a
better understanding of the special case of minimal surfaces may also give insights into the
more general methods from integrable systems.

The aim of our paper is to provide further evidence that concepts on minimal surfaces
may in fact be special cases of the harmonic map theory: the López–Ros deformation is a
special case of a simple factor dressing of a minimal surface.

To avoid the issue that a minimal surface is not uniquely determined by its Gauss map,
we will work with the conformal Gauss map which determines a minimal surface in 3-space
uniquely. Since minimal surfaces are Willmore the conformal Gauss map is harmonic, too.
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Wewill briefly recall the construction of the associated families dλ and d S
λ of flat connections

for both the harmonic Gauss map N and the conformal Gauss map S of a minimal surface
in our setup. Both are closely related: parallel sections of d S

λ can be expressed in terms of
parallel sections ofdλ and generalisations f p,q , p, q ∈ S3, of the associated family ofminimal
surfaces fcos θ,sin θ . It turns out that this new family f p,q , the right-associated family, is in
fact a family of minimal surfaces in 4-space which contains the classical associated family.
In view of this natural appearance of minimal surfaces in 4-space, we will develop our theory
more generally for minimal surfaces in 4-space and restrict to the case of minimal surfaces
in 3-space when appropriate. As in the case of a harmonic map N : M → S2 one can
define the associated family of harmonic maps of the harmonic conformal Gauss map of a
Willmore surface [8]. In the case of a minimal surface, we show that the harmonic maps in
the associated family of the conformal Gauss map are indeed the conformal Gauss maps of
the associated family of minimal surfaces.

Moreover, due to the harmonicity of the conformal Gauss map of a Willmore surface, a
dressing operation onWillmore surfaces can be defined [4]. In particular, for the most simple
dressing operation given by a dressing matrix with a simple pole, the so-called simple factor
dressing, the new harmonic map can be computed explicitly and is the conformal Gauss map
of a new Willmore surface in the 4-sphere [4,43].

In the case of a minimal surface f : M → R
4 ⊂ S4 we only consider simple factor

dressings which preserve the Euclidean structure and show that in this case, the simple factor
dressing of the conformal Gauss map of f is indeed the conformal Gauss map of a minimal
surface in 4-space. In fact, the simple factor dressing can be given explicitly in terms of the
minimal surface f , its conjugate and the parameters (μ, m, n)whereμ ∈ C\{0} is the pole of
the simple factor dressing, and m, n ∈ S3 determine the d S

μ-stable bundle which is needed in
the definition of the dressing matrix. Even for surfaces in 3-space, the simple factor dressing
will in general give surfaces in 4-space. However, for n = m, the simple factor dressing of
a minimal surface f : M → R

3 will be in 3-space and the Gauss map of a simple factor
dressing is the simple factor dressing of the Gauss map of f . In the simplest case when
n = m = 1 and μ ∈ R the simple factor dressing is the minimal surface

f μ =
⎛
⎝

f1
f2 cosh s − f ∗

3 sinh s
f3 cosh s + f ∗

2 sinh s

⎞
⎠ (1)

where s = − ln |μ| and fl , f ∗
l are the coordinate functions of f and a conjugate f ∗ of f .

In this case, we see immediately that f μ is a Goursat transformation of f with holomorphic
null curve Lμ� where � = f + i f ∗ is the holomorphic null curve of f and

Lμ =
⎛
⎝
1 0 0
0 cosh s i sinh s
0 −i sinh s cosh s

⎞
⎠ ∈ O(3,C).

Indeed, we prove more generally that every simple factor dressing of a minimal surface
f : M → R

4 with parameters (μ, m, n) is a Goursat transformation. In particular, we
show that this implies that the simple factor dressing preserves completeness. If the Goursat
transform is single-valued on M then finite total curvature is preserved, too.

In the case when m = n ∈ S3, the orthogonal matrix of the Goursat transformation is
given as Rm,mLμR−1

m,m ∈ O(3,C) where the rotation matrix Rm,m in 3-space is given by
m ∈ S3 ⊂ R

4: decomposing m = (cos θ, q sin θ) with q ∈ R
3, ||q|| = 1, the matrix Rm,m

is the rotation along the axis given by q about the angle 2θ . In other words, the simple factor
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dressing in R
3 with parameters (μ, m, m) is obtained from the simple factor dressing (1)

with parameter μ applied to the (inverse of the) rotation given by m.
The López–Ros deformation of a minimal surface f : M → R

3 is usually given in terms
of the Weierstrass data. We recall an explicit form of the López–Ros deformation in terms
of the minimal surface and its conjugate surface: the López–Ros deformation fσ of f with
parameter σ ∈ R, σ > 0, is indeed given by

fσ =
⎛
⎜⎝

f1 cosh s − f ∗
2 sinh s

f2 cosh s + f ∗
1 sinh s

f3

⎞
⎟⎠

where s = ln σ . In other words, since

fσ = Re (Rm,m LμR−1
m,m�)

withμ = − 1
σ
and m = 1

2 (1,−1,−1,−1) ∈ S3, the Lopez–Ros deformation with parameter
σ is the simple factor dressing of f with parameters (μ, m, m).

We investigate the periods of the simple factor dressings in terms of the periods of the
holomorphic null curve, and give conditions on the parameters (μ, m, n) for a simple factor
dressing to be single-valued. We discuss the end behaviour of the simple factor dressing
on minimal surfaces in 3-space with finite total curvature ends: the simple factor dressing
preserves planar ends for all parameters and, due to the special form of the Goursat transfor-
mation, catenoidal ends if the parameters of the simple factor dressings are chosen so that
the simple factor dressing is single-valued.

We conclude the paper by demonstrating our results for various well-known minimal
surfaces, including the catenoid, Richmond surfaces and Scherk’s first surface. In particular,
the simple factor dressings of the catenoid which are again periodic are reparametrisations of
the catenoid if they are surfaces in 3-space. This immediately follows from our result that the
simple factor dressing of a catenoidal end is catenoidal, provided the simple factor dressing is
single-valued. Since planar ends are preserved for any parameters, all simple factor dressings
of surfaces with one planar end have one planar end, too.

Using our closing conditions, we show that the López–Ros deformation of Scherk’s first
surface gives doubly-periodicminimal surfaces.Moreover, for any rational number q > 0we
show that the simple factor dressing (1) with parameter μ = − 1√

q is doubly-periodic, thus
we obtain a family of new examples of doubly-periodic (non-embedded) minimal surfaces.

The authors would like to thank Wayne Rossman and Nick Schmitt for directing their
attention towards the López–Ros deformation and the Goursat transformation. Parts of this
research were conducted while the first author was visiting the Department of Mathematics
at the University of Tsukuba and the OCAMI at Osaka University. The first author would
like to thank the members of both institutions for their hospitality during her stay, and the
University of Leicester for granting her study leave.

2 Minimal surfaces

We first recall some basic facts on minimal surfaces in Euclidean space which will be needed
in the following whilst setting up our notation. Although we are mostly interested in minimal
surfaces inR3, some of our transforms will be surfaces in R4. Therefore, we will study more
generally minimal immersions inR4 and specialise to the case of minimal surfaces in 3-space
when appropriate.

123
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2.1 Minimal surfaces inR4

Let f : M → R
4 be a conformal (branched) immersion from a Riemann surface M into

4-space. If f is minimal, then f is harmonic, i.e.,

d ∗ d f = 0

where we put ∗ω(X) = ω(JT M X) for a 1-form ω ∈ �1(T M), X ∈ T M . Here, JT M is the
complex structure of the Riemann surface M , thus, ∗ is the negative Hodge star operator.
In particular, ∗d f is closed if f is harmonic and there exists a conjugate surface f ∗ on the
universal cover M̃ of M , given up to translation by

d f ∗ = − ∗ d f .

Note that f ∗ is minimal, and so is the associated family (when lifting f to the universal cover
M̃), e.g. [25],

fcos θ,sin θ = f cos θ + f ∗ sin θ, θ ∈ R.

We say that a minimal surface f : M̃ → R
4 is single-valued on M if f ◦ π−1 : M → R

4

is well-defined where π : M̃ → M is the canonical projection of the universal cover M̃ to
M . In this case, we will identify f and f ◦ π−1 and write, in abuse of notation, from now on
f : M → R

4.
Wemodel Euclidean 4-space by the quaternionsR4 = H, and the Euclidean 3-space inR4

by the imaginary quaternions R3 = ImH. The conformality of an immersion f : M → R
4

gives [7, p. 10] the left and right normal N , R : M → S2 = {n ∈ ImH | n2 = −1} of f by

∗ d f = Nd f = −d f R. (2)

Then the mean curvature vector H of f : M → R
4 satisfies [7, p. 39]

H̄d f = 1

2
(∗d R + Rd R), or, equivalently, d f H̄ = −1

2
(∗d N + Nd N ).

Since H is normal we have NH = HR. We put H = −RH̄ and denote by

(d R)′ = 1

2
(d R − R ∗ d R), (d R)′′ = 1

2
(d R + R ∗ d R)

the (1, 0) and (0, 1)-part of d R with respect to the complex structure R. Then the equation
of the mean curvature vector becomes

Hd f = (d R)′. (3)

Similarly, there is also an equation for the mean curvature vector in terms of the left
normal:

d f H = 1

2
(d N − N ∗ d N ) = (d N )′. (4)

Note that f : M → R
4 is minimal if and only if

(d R)′ = 0, or, equivalently, (d N )′ = 0.

In other words, if f is minimal then

∗d R = −Rd R = d R R
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Simple factor dressing and the López–Ros deformation 1021

and ∗d N = −Nd N = d N N for the left and right normal of f . Thus, both N and R are
quaternionic holomorphic sections [29]with respect to the induced quaternionic holomorphic
structures on the trivialH bundleH = M ×H. Note also that a map R : M → S2 is harmonic
if and only if

d(d R)′ = 0 or, equivalently, d(d R)′′ = 0. (5)

In particular, both the left and right normal N and R of a minimal surface are conformal and
harmonic.

Next, we observe that a conjugate surface f ∗ of a minimal surface f has the same left
and right normal as f since

∗d f ∗ = − ∗ (∗d f ) = d f = ∗d f R = −d f ∗ R,

and similarly ∗d f ∗ = Nd f ∗. Since f is harmonic and ∗d f = −d f ∗, the map

� = f + i f ∗ : M̃ → C4

is a holomorphic curve in C4, that is, ∗d� = i d�. Here we use “i ” to denote the complex
structure of the complexification C4 = R

4 + i R4 to avoid confusion with the imaginary
quaternion i . If f : M → R

4 is a minimal conformal immersion, then the holomorphic
curve

� = (
�0,�1,�2,�3

) : M̃ → C4

is a null curve in C4, i.e., d�0⊗d�0+d�1⊗d�1+d�2⊗d�2+d�3⊗d�3 = 0. In fact,
every holomorphic null curve � : M̃ → C3 gives rise to a conformal minimal immersion
by setting f = Re (�) : M̃ → R

3. Note that the holomorphic null curve of the associated
family fcos θ,sin θ of a minimal surface f is given by �cos θ,sin θ = e−i θ� where � is the
holomorphic null curve of f .

The Weierstrass data of f is given by the meromorphic functions

g1 = d�3

d�1 − i d�2
, g2 = d�0

d�1 − i d�2

and the holomorphic 1-form

ω = d�1 − i d�2.

Conversely, let g1, g2 : M → C ∪ {∞} be meromorphic functions and ω a holomorphic
1-form. Assume that if m is the maximum order of poles of g1, g2, and g2

1 + g2
2 at p ∈ M

then ω has a zero at p of order at least m. Then (g1, g2, ω) gives rise [39] to a holomorphic
null curve �, and thus a minimal surface f = Re (�) : M̃ → R

4, via

� =
∫ (

g2ω,
1

2
(1 − g2

1 − g2
2)ω,

i
2
(1 + g2

1 + g2
2)ω, g1ω

)
.

Our choice of Enneper–Weierstrass representation is so that it specialises to the standard
Enneper–Weierstrass representation in R

3 whenever f : M̃ → H is a minimal surface with
Re ( f ) = 0. We allow f to be branched which happens when the order of ω at p is bigger
than the maximum order of poles of g1, g2, and g2

1 + g2
2 at p ∈ M . Note that f is in general

only defined on the universal cover M̃ of M .
The Gauss map G : M → Gr2(R4) of f is a map into the Grassmannian of oriented two

planes in R
4. In our case, it is locally given by ϕdz = d� where the two-plane G(p) in

R
4 is spanned by Re ϕ, Im ϕ at p since d� = d f + i d f ∗ = d f − i ∗ d f . But Gr2(R4) =
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CP1 ×CP1 and the Gauss map G can be identified [57] with the two meromorphic functions
G1, G2 : M → C:

G1 = ϕ3 − i ϕ0

ϕ1 − i ϕ2
= g1 − i g2, G2 = ϕ3 + i ϕ0

ϕ1 − i ϕ2
= g1 + i g2.

Indeed, stereographic projections of G1 and G2 give the left and right normals N and R by

N = 1

1 + |G1|2 (2Re G1, 2 Im G1, |G1|2 − 1),

R = 1

1 + |G2|2 (2Re G2, 2 Im G2, |G2|2 − 1).

To verify this, we note that � can be expressed in terms of G1, G2, ω as

d� = ϕdz = ω

2

(
i (G1 − G2), 1 − G1G2, i (1 + G1G2), G1 + G2

)
.

Since ϕ = fx − i fy in the conformal coordinate z = x + iy, we obtain fx =
1
2 (ϕ + ϕ̄), fy = i

2 (ϕ − ϕ̄), and it is a straight forward computation to verify that
N = 1

1+|G1|2 (2Re G1, 2 Im G1, |G1|2 − 1) and R = 1
1+|G2|2 (2Re G2, 2 Im G2, |G2|2 − 1)

satisfy N fx = − fx R = fy which are the defining equations (2) of the left and right normal
of f .

Finally we recall the following result due to Chern and Osserman:

Theorem 2.1 ([17,54]) Let f : M → R
4 be a complete (branched) minimal immersion with

holomorphic null curve � : M → C4.
Then f has finite total curvature if and only if M is conformally equivalent to a compact

Riemann surface M̄ punctured at finitely many points p1, . . . , pr such that d� extends
meromorphically into punctures pi .

2.2 Minimal surfaces inR3

We identify the Euclidean 3-space with the imaginary quaternions R3 = ImH. If f : M →
R
3 is conformal then the left and right normal coincide and are given by the Gauss map

N : M → S2 of f . In this case, the function H given in (4) is real-valued, and indeed, H
is the mean curvature function of f . For a minimal immersion in R

3, the Gauss map is thus
both harmonic and conformal, that is,

∗d N = −Nd N , and d(d N )′ = 0,

where as before (d N )′ = 1
2 (d N − N ∗ d N ) is the (1, 0)-part of d N with respect to the

complex structure N .
The holomorphic null curve

� = f + i f ∗ : M̃ → C3

gives the Weierstrass data (g, ω) of f as

ω = d�1 − i d�2 and g = d�3

d�1 − i d�2
,

where �l are the coordinates of � = (�1,�2,�3).
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Simple factor dressing and the López–Ros deformation 1023

Conversely, a meromorphic g and a holomorphic 1-form ω, such that if g has a pole of
order m at p then ω has a zero of order at least 2m, give a minimal surface f : M̃ → R

3 as
f = Re (�) where � is given by the Enneper–Weierstrass representation [27,73],

� =
∫ (

1

2
(1 − g2)ω,

i
2
(1 + g2)ω, gω

)
.

For convenience, we also will occasionally use in the case of a surface in R3 the Weierstrass
data (g, dh) given in terms of the height differential dh = gω. Written in terms of (g, dh)

the Enneper–Weierstrass representation becomes

� =
∫ (

1

2

(
1

g
− g

)
,
i
2

(
1

g
+ g

)
, 1

)
dh. (6)

The Gaussian curvature of f is given in terms of the Weierstrass data [41] as

K = −
(

2

|g| + 1
|g|

)4 ∣∣∣∣
d log g

dh

∣∣∣∣
2

.

and the Gauss map is given by g via stereographic projection

N = 1

|g|2 + 1
(2Re g, 2 Im g, |g|2 − 1). (7)

Note that if we consider a minimal surface f : M → R
3 as a surface in 4-space, that is

f : M → H with Re ( f ) = 0, then its Weierstrass data in R
4 is under our choices given by

(g1 = g, g2 = 0, ω) and its holomorphic null curve
∫ (

0, 1
2 (1 − g2)ω, i

2 (1 + g2)ω, gω
)
in

C4 is given by the embedding of the curve � into C4. Moreover, we see that in this case the
Gauss map G = (G1, G2) : M → S2 × S2 takes values in the diagonal of S2 × S2 and
is given by G1 = G2 = g which is by [39,69] the condition for the Enneper–Weierstrass
representation to take values in 3-space.

As before, complete minimal immersions of finite total curvature can be characterised by
the holomorphic null curve �:

Theorem 2.2 ([57]) Let f : M → R
3 be a complete (branched) minimal immersion with

holomorphic null curve � : M → C3.
Then f has finite total curvature if and only if M is conformally equivalent to a compact

Riemann surface M̄ punctured at finitely many points p1, . . . , pr such that d� extends
meromorphically into punctures pi .

We will now give a description of embedded finite total curvature ends in terms of the
holomorphic null curve. Although the result seems to be known for vertical ends, we include
the argument for completeness.

Theorem 2.3 Let f : M → R
3 be a minimal surface with complete end at p. Let z be a

conformal coordinate of M at the end p which is defined on a punctured disc D∗ = D\{0}
and is centered at p.

Then the following statements are equivalent:

(i) f has an embedded finite total curvature end at p.
(ii) d� has order −2 at z = 0 and resz=0 d� is real.

If resz=0 d� = 0 then the end is planar, otherwise, it is catenoidal.
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1024 K. Leschke, K. Moriya

Here, � = (�1,�2,�3) is the holomorphic null curve of f and ordz=0 d� is the minimum
of ordz=0 d�i for i = 1, 2, 3.

Proof We first assume that the end is vertical. By [38] an embedded complete finite total
curvature vertical end has logarithmic growth α ∈ R satisfying resz=0 d� = −(0, 0, 2πα).
The end is planar if α = 0 and catenoidal otherwise.

Moreover, if f has a catenoidal end then the Gauss map g of f has a simple pole or zero,
and the height differential dh has a simple pole. If f has a planar end then g has a pole
or zero of order m > 1 and dh has a zero of order m − 2. In both cases, (6) shows that
ordz=0 d� = −2.

If the end is not vertical, we can apply a rotationR ∈ SO(3,R) on f to obtain a minimal
surface f̃ = R f with a vertical end. Then the holomorphic null curve of f̃ is �̃ = R� and
thus, ordz=0 d� = ordz=0 d�̃ = −2. Moreover, the residues at z = 0 vanish at a planar end,
whereas resz=0 d� = R−1 resz=0 d�̃ is real for a catenoidal end.

Conversely, we will show that if ordz=0 d� = −2 and resz=0 d� is real, then we can
assume f has an embedded vertical end at p and its Gauss map g has a pole or zero of order
m ≥ 1 and ordz=0 dh = m − 2 holds for the height differential. From this we conclude that
the end has finite total curvature.

If resz=0 d� = (0, 0, 0) then we can rotate the end so that we have a vertical end without
changing the order and the residues of d� at the end. In particular, we can assume that the
Gauss map g has a pole or zero at p of order m ≥ 1. Since the residue of d� at z = 0
vanishes, we see that dh cannot have a simple pole. But then ordz=0 d� = −2 implies that
dh is holomorphic with ordz=0 dh = m − 2, m ≥ 2, so that with the Enneper–Weierstrass
representation (6)

d� =
⎛
⎜⎝

c−2
z2

+ b0 + . . .

i c−2
z2

+ c0 + . . .

am−2zm−2 + am−1zm−1 + . . .

⎞
⎟⎠ dz, c−2, am−2 = 0. (8)

After possible translation, we thus have

�(z) =
⎛
⎜⎝

− c−2
z + . . .

−i c−2
z + . . .

am−2
m−1 zm−1 + . . .

⎞
⎟⎠ .

Consider the set Cr = {z ∈ D∗ | || f (z)|| = r} where f = Re (�). Since the end is at
z = 0, we have that z ∈ Cr tends to 0 for r → ∞. In particular, the asymptotic behaviour of
ψr = f

r : Cr → S2 is governed by

ψr ∼ |z|
|c−2|

⎛
⎝
Re (− c−2

z )

Im
( c−2

z

)
0

⎞
⎠ .

From [40]we know thatψr converges to a horizontal circlewithmultiplicitywhen r → ∞
and that the end is embedded if the multiplicity is one. From the above asymptotic behaviour
we see that the multiplicity of limr→∞ ψr is indeed one. Hence, the end is embedded but
then (8) shows that p is a planar end.

If the order of d� = −2 and resz=0 d� = 0 is real then we can rotate the end so that
resz=0 d� = −(0, 0, 2πα) for some α ∈ R∗ = R\{0}. Then the order of dh is either −1 or
−2.
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We first show that the end is vertical by contradiction: if g has neither a zero nor a pole
at the end, then ordz=0 gdh = ordz=0

dh
g = ordz=0 dh. Using ordz=0 d� = −2 and the

Enneper–Weierstrass representation (6), the order of dh at the end is −2. We write

dh =
(

a−2

z2
− α

z
+ a0 + a1z + . . .

)
dz, g = b0 + b1z + . . .

where a−2, b0 = 0. Since

gdh =
(

a−2b0
z2

+ −αb0 + a−2b1
z

+ ...

)
dz,

dh

g
=

(
a−2

b0z2
− αb0 + a−2b1

b20z
+ ...

)
dz

and resz=0 d�1 = resz=0 d�2 = 0, we have

(−αb0 + a−2b1) + αb0 + a−2b1
b20

= 0, (−αb0 + a−2b1) − αb0 + a−2b1
b20

= 0.

Hence αb0 = 0 which contradicts α = 0 and b0 = 0. Therefore, g has a zero or a pole at the
end, but then the end has vertical normal, the zero or pole of g is simple and dh has a simple
pole at z = 0, that is, the holomorphic null curve � can be written as

d� =
⎛
⎜⎝

c−2
z2

+ b0 + . . .

i c−2
z2

+ c0 + . . .

a−1
z + a0 + . . .

⎞
⎟⎠ dz, c−2, a−1 = 0.

Since resz=0 d� = (0, 0,−2πα)we have a−1 = −2πα ∈ R and, after possibly translation,

f = Re� =
⎛
⎜⎝

−Re
( c−2

z + . . .
)

Im
( c−2

z + . . .
)

a−1 log |z| + Re (a0z) + . . .)

⎞
⎟⎠ .

Let as before Cr = {z ∈ D∗ | || f (z)|| = r} then the asymptotic behaviour of ψr = f
r :

Cr → S2 is determined by

ψr ∼ 1√( |c−2|
|z|

)2 + (a−1 log |z|)2

⎛
⎜⎝

−Re (
c−2

z )

Im
( c−2

z

)

a−1 log |z|

⎞
⎟⎠ .

Since themultiplicity does not dependon |z|we see that in the limit r → ∞ themultiplicity
is again 1, and the end is embedded by [40]. Following the arguments in the proof of [38,
Prop. 2.1], f is a graph over (the exterior of a bounded domain of) the ( f1, f2) plane with
asymptotic behaviour

f3( f1, f2) = α log R + β + R−2(γ1 f1 + γ2 f2) + O(R−2)

for R =
√

f 21 + f 22 , and the end has finite total curvature [65] . ��

The López–Ros deformation of a minimal surface f : M → R
3 with Weierstrass data

(g, ω) is [48] the minimal surface fr : M̃ → R
3 given by the new Weierstrass data (rg, ω

r )

with r ∈ R∗. Obviously this can be extended to a deformation fσ with complex parameter
σ ∈ C∗ = C\{0} by using the Weierstrass data (σ g, ω

σ
).
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1026 K. Leschke, K. Moriya

Since any matrix in O(3,C) = {A ∈ GL(3,C) | At = A−1} preserves the standard sym-
metric bilinear form on C3, we obtain new minimal surfaces via the Goursat transformation
[30]: if f : M → R

3 is minimal with holomorphic null curve � = f + i f ∗ then A� is
again a holomorphic null curve and Re (A�) is a minimal surface in R

3.
As pointed out by Pérez and Ros [58], the López–Ros deformation is a special case of the

Goursat transformation:

Theorem 2.4 The López–Ros deformation fσ with complex parameter σ = es+i t ∈ C∗ is
given by

fσ =
⎛
⎝
cos t ( f1 cosh s − f ∗

2 sinh s) − sin t ( f2 cosh s + f ∗
1 sinh s)

sin t ( f1 cosh s − f ∗
2 sinh s) + cos t( f2 cosh s + f ∗

1 sinh s)
f3

⎞
⎠ .

Proof Let � = f + i f ∗ be the holomorphic null curve of f . Putting

f̃ =
⎛
⎝
cos t − sin t 0
sin t cos t 0
0 0 1

⎞
⎠

⎛
⎝

f1 cosh s − f ∗
2 sinh s

f2 cosh s + f ∗
1 sinh s

f3

⎞
⎠ ,

a straightforward computation shows that f̃ = Re (Lσ �)where the holomorphic mapLσ �,

Lσ =
⎛
⎜⎝

1
2

(
σ + 1

σ

) i
2

(
σ − 1

σ

)
0

− i
2

(
σ − 1

σ

) 1
2

(
σ + 1

σ

)
0

0 0 1

⎞
⎟⎠ ∈ O(3,C),

is a null curve in C3. Thus, f̃ is a Goursat transformation of f . Indeed, if (g, ω) denotes the
Weierstrass data of f then the Weierstrass data of f̃ computes to

ω̃ = d�̃1 − i d�̃2 = ω

σ

and

g̃ = d�̃3

d�̃1 − i d�̃2
= σ g.

This shows that f̃ = fσ is the López–Ros deformation of f with parameter σ ∈ C∗. ��

2.3 Willmore surfaces

Using the one-point compactification ofR4 we consider a conformal immersion f : M → R
4

as a conformal immersion into the 4-sphere. We identify the 4-sphere S4 = HP
1 with

the quaternionic projective line where the oriented Möbius transformations are given by
GL(2,H). In particular, a map f : M → HP

1 can be identified with a line subbundle
L ⊂ H

2 = M × H
2 of the trivial H2 bundle over M whose fibers at p ∈ M are given by

L p = f (p).

For an immersion f : M → R
4 the line bundle L is given by

L = ψH, where ψ =
(

f
1

)
,
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Simple factor dressing and the López–Ros deformation 1027

when choosing the point at infinity as∞ =
(
1
0

)
H ∈ HP

1. OrientedMöbius transformations

on R
4 = H are given by

v �→ (av + b)(cv + d)−1 with

(
a b
c d

)
∈ GL(2,H).

In particular, the group of oriented Möbius transformations acts on the line bundle L given
by an immersion f : M → R

4 via L �→ BL, B ∈ GL(2,H). Every pair of unit quaternions
m, n ∈ S3 gives an element Rm,n ∈ SO(4,R) by

v ∈ H �→ Rm,nv = mvn−1 ∈ H,

and conversely, every element of the special orthogonal group arises this way [16]. The
corresponding action on the line bundle L of an immersion f : M → R

4 is given by

L �→
(

m 0
0 n

)
L, m, n ∈ S3.

Definition 2.5 ([7, p. 27]). The conformal Gauss map of a conformal immersion f : M → S4

is the unique complex structure S on H2 such that S and d S stabilise the line bundle L of f
and its Hopf field A is a 1-form with values in L .

Here, the Hopf field A of S is the 1-form given by

A = 1

4
(∗d S + Sd S) = 1

2
(∗d S)′

where (d S)′ = 1
2 (d S − S ∗ d S) is the (1, 0)-part of the derivative of S with respect to the

complex structure S.

In affine coordinates, the conformal Gauss map of a conformal immersion f : M → R
4

is given by the complex structure, see [7, p. 42],

S = G

(
N 0

−H −R

)
G−1, G =

(
1 f
0 1

)
(9)

on the trivial bundle H2 where N , R are the left and right normal of f and H = −RH̄ with
mean curvature vector H. Thus, we see that Sψ = −ψ R and

(d S)ψ = ψ(−d R + Hd f ).

Therefore, S and d S indeed stabilise the line bundle L = ψH of f . In affine coordinates, the
Hopf field computes [7, Prop 12, p. 42] to

2 ∗ A = G

(
0 0
ω τ

)
G−1 (10)

with 2ω = d H + H ∗ d f H + R ∗ d H − H ∗ d N satisfying

∗ω = −ωN + (d R)′′ H

and

τ = (d R)′′ = 1

2
(d R + R ∗ d R).

Thus, A is indeed a 1-form with values in L . Note that the Hopf field A is holomorphic [7,
p. 68] with im A ⊂ L . In particular, if A ≡ 0, the Hopf field A gives the line bundle L
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1028 K. Leschke, K. Moriya

by holomorphically extending im A into the isolated zeros of A. Therefore, when fixing the
point at ∞, the immersion f : M → R

4 is uniquely determined by A.

Corollary 2.6 A conformal immersion f : M → R
4 is minimal if and only if the Hopf field

A of the conformal Gauss map S of f satisfies

2 ∗ A = G

(
0 0
0 d R

)
G−1 (11)

with G =
(
1 f
0 1

)
.

In particular, if f : M → R
4 is minimal then ∗d R = −Rd R and thus d f ∧ d R = 0 by

type arguments. Therefore, the Hopf field is harmonic, that is, d ∗ A = 0.

Theorem 2.7 ([26,62]) Let f : M → S4 be a conformal immersion with conformal Gauss
map S and Hopf field A. Then f is Willmore if and only if S is harmonic, that is, if and only
if

d ∗ A = 0.

From this characterisation of Willmore surfaces and the fact that the conformal Gauss
map of a minimal surface is harmonic we see:

Corollary 2.8 Every minimal immersion in R
4 is a Willmore surface in R

4.

3 Harmonic maps and their associated families of flat connections

It is well-known [71] that a harmonic map gives rise to a family of flat connections. There
are various transformations on harmonic maps whose new harmonic maps are build from
parallel sections of the associated family of flat connections: e.g., the associated family, the
simple factor dressing [70] and Darboux transforms [9,15]. In this paper, we investigate the
links between the first two transformations, when applied to the left and right normals and
to the conformal Gauss map of a minimal surface f : M → R

4. For the resulting Darboux
transforms and their relation to the dressing we refer to [44].

3.1 The harmonic right normal and its associated family

We equip H with the complex structure I which is given by the right multiplication by
the unit quaternion i . This way, we identify C

2 = (H, I ). It is worthwhile to point out
that this complex structure I differs from the complex structure i we used before. We will
use the symbol C = spanR{1, I } to indicate that we use the complex structure I whereas
C = spanR{1, i }.

With this at hand, the C∗-family of flat connections of a harmonic map R : M → S2 on
the trivial C2 bundle C2 = H over M can be written as, see for example [9,15],

dλ = d + (λ − 1)Q(1,0) + (λ−1 − 1)Q(0,1), (12)

where d is the trivial connection on H, λ ∈ C∗ = C\{0}, and Q = − 1
2 (∗d R)′′ = 1

4 (Rd R −
∗d R) is the Hopf field of R. Moreover,
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Simple factor dressing and the López–Ros deformation 1029

Q(1,0) = 1

2
(Q − I ∗ Q), Q(0,1) = 1

2
(Q + I ∗ Q)

are the (1, 0) and (0, 1)-parts of Q with respect to the complex structure I .
In the situation when R is the right normal of a minimal surface f : M → R

4 the map R
is conformal with ∗d R = −Rd R, so that 2 ∗ Q = d R and, using Rd R = −d R R,

Q(1,0) = −1

4
d R(I + R), Q(0,1) = 1

4
d R(I − R).

Recalling that I operates from the right we obtain dλ = d + αλ with

αλ = 1

2
d R(−R(a − 1) + b),

where a = λ+λ−1

2 , b = I λ−1−λ
2 . Since −Rd R = d R R and a2 + b2 = 1, we see

αλ ∧ αλ = 1

4
d R ∧ d R((a − 1)2 + b2) = 1

2
d R ∧ d R(1 − a).

On the other hand,

dαλ = 1

2
d R ∧ d R(a − 1),

andwe showed that dλ = d+αλ is flat for all λ ∈ C∗ in our special casewhen ∗d R = −Rd R.
The flatness of dλ for a general harmonic map R is obtained from (5), that is, from d ∗ Q = 0.

We first note that for μ = 1 the connection dμ = d is the trivial connection on H,
and all parallel sections are constants. Thus, we will from now on assume that μ = 1. Fix
μ ∈ C\{0, 1} and consider a dμ-parallel section β ∈ �(H), that is,

0 = dμβ = dβ + 1

2
d R(−Rβ(a − 1) + βb), (13)

where a = μ+μ−1

2 , b = i μ−1−μ
2 . Denoting by

m = 1

2
(Rβ(a − 1) − βb), (14)

we obtain with R2 = −1 and a2 + b2 = 1 that

Rm + m
b

a − 1
= 1

2
R(Rβ(a − 1) − βb) + 1

2
(Rβ(a − 1) − βb)

b

a − 1
= β.

We show that m is constant: since a2 + b2 = 1, Rd R = −d R R and dβ = d Rm by (13) we
have

2dm = d Rβ(a − 1) + Rdβ(a − 1) − dβb

= d Rβ(a − 1) − d R

(
Rm + m

b

a − 1

)
(a − 1) = 0.

In particular, we have seen that every dμ-parallel section is given by

β = Rm + m
b

a − 1
(15)

with m ∈ H. Note that β is a global parallel section of the trivial connection dμ which is
nowhere vanishing if m = 0: If R(p) = m b

1−a m−1 then
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1030 K. Leschke, K. Moriya

−1 = R2(p) = m
b2

(1 − a)2
m−1 = m

1 + a

1 − a
m−1,

where we used a2 + b2 = 1. Therefore −1 = 1+a
1−a which gives a contradiction.

Conversely, every β given by the equation (15) is dμ-parallel. Since

b

a − 1
= i(1 + μ)

1 − μ
(16)

we can summarise:

Lemma 3.1 Let f : M → R
4 be minimal and dλ the associated family of the right normal

R of f . For μ ∈ C\{0, 1} every (non-trivial) dμ-parallel section β ∈ �(H) is given by

β = Rm + m
i(1 + μ)

1 − μ
, m ∈ H∗ = H\{0}. (17)

In a similar way, the associated family of the left normal of a minimal surface can be
discussed.

Remark 3.2 Note that our choice of associated family differs from the associated family

d̂λ = d + (λ − 1)A(1,0)
R + (λ−1 − 1)A(0,1)

R (18)

used in [9,15] where AR = 1
2 (∗d R)′ = 1

4 (∗d R + Rd R). However, since

Q = 1

4
(Rd R − ∗d R) = 1

4

(
∗ d(−R) + (−R)d(−R)

)

we see that our family of flat connections dλ is the associated family in [9,15] of the harmonic
map −R. Indeed, both families are gauge equivalent [15]. We choose the dλ family since it
is closely related to the associated family of flat connections of the conformal Gauss map.

3.2 The conformal Gauss map and its associated family

Again, we identify C4 = (H2, I ) where I is given by right multiplication by the unit quater-
nion i . If the conformal Gauss map of a conformal immersion f : M → S4 is harmonic, that
is d ∗ A = 0, by the same arguments as in the case of harmonic maps into the 2-sphere, the
C∗-family of connections

d S
λ = d + (λ − 1)A(1,0) + (λ−1 − 1)A(0,1), λ ∈ C∗, (19)

is flat [43] on the trivial C4 bundle over M where as before

A(1,0) = 1

2
(A − I ∗ A) and A(0,1) = 1

2
(A + I ∗ A)

denote the (1, 0) and (0, 1) parts of A with respect to I .
We consider the case when S is the conformal Gauss map of a minimal immersion in R4.

We fix μ ∈ C∗ and compute all parallel sections of d S
μ. If μ = 1 then d S

μ = d is trivial, and
every constant section is parallel. Assume from now on that μ = 1, and let

e =
(
1
0

)
, ψ =

(
f
1

)
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and L = ψH the line bundle of f .Wedenote by H̃
2
the pull back of the trivialH2 bundle under

the canonical projection π : M̃ → M of the universal cover M̃ to M . Since eH ⊕ L = H
2

every d S
μ-parallel section ϕ ∈ �(H̃

2
) can be written as

ϕ = eα + ψβ

where

dα = −d f β (20)

and

dβ = 1

2
d R(Rβ(a − 1) − βb)

with a = μ+μ−1

2 , b = i μ−1−μ
2 . Here we used that ∗d R = −Rd R = d R R by the minimality

of f and thus from (11) we see

A(1,0)ψ = −1

4
ψd R(R + i), A(0,1)ψ = −1

4
ψd R(R − i).

In particular, β is a dμ-parallel section by (13), and by Lemma 3.1 it is given by

β = Rm + m
i(1 + μ)

1 − μ

with m ∈ H. If β = 0 is trivial, that is, m = 0, then (20) shows that α is constant. For m = 0,
we see that

α = − f ∗m − f m
i(1 + μ)

1 − μ
, (21)

is the general solution of (20) where f ∗ is a conjugate minimal surface of f , that is,

d f ∗ = − ∗ d f = d f R.

We summarise:

Proposition 3.3 Let f : M → R
4 be a minimal surface with conjugate surface f ∗ and

d S
λ the associated family of flat connections of the conformal Gauss map S of f . For μ ∈

C\{0, 1} every d S
μ-parallel section is either a constant section ϕ = en, n ∈ H, or is given by

ϕ = eα + ψβ ∈ �(H̃
2
) with

α = − f ∗m − f m
i(1 + μ)

1 − μ
, β = Rm + m

i(1 + μ)

1 − μ
, m ∈ H∗. (22)

4 The associated family of a minimal surface

Motivated by our observation (22) that parallel sections of the associated family of flat
connections of aminimal surface f : M → R

4 are given by a quaternionic linear combination
of f and its conjugate surface f ∗, we now discuss a generalisation of the associated family
of a minimal surface. This associated family is indeed given by the associated family of the
harmonic conformal Gauss map.
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4.1 The generalised associated family

Given a minimal surface f : M → R
4 with left and right normal N and R respectively, we

have seen that its conjugate surface f ∗ : M̃ → R
4 has the same left and right normals N

and R respectively since d f ∗ = − ∗ d f .
In particular, the associated family fcos θ,sin θ = f cos θ + f ∗ sin θ can easily be extended

to a family

f p,q = f p + f ∗q : M̃ → R
4

with p, q ∈ H, (p, q) = (0, 0). Since p + Rq is a quaternionic holomorphic section it has
only isolated zeros, and

d f p,q = d f (p + Rq), (23)

shows that f p,q is a branched conformal immersion. The right normal R of f gives, away
from the isolated zeros of p + Rq , via

Rp,q = (p + Rq)−1R(p + Rq) (24)

the right normal of f p,q whereas the left normal N of f is the left normal

Np,q = N

of f p,q . Thus, by (4)

d f p,q Hp,q = (d Np,q)′ = d N ′ = 0

and f p,q is a (branched) minimal immersion. Similarly, we have a family of (branched)
minimal immersions f p,q = p f + q f ∗, (p, q) = (0, 0), with right normal R p,q = R and
left normal N p,q = (p − q N )N (p − q N )−1.

Definition 4.1 Let f : M → R
4 be a minimal surface. The family of (branched) minimal

immersions

f p,q = f p + f ∗q : M̃ → R
4, p, q ∈ H, (p, q) = (0, 0), (25)

where f ∗ : M̃ → R
4 is a conjugate surface of f , is called the right associated family of f .

The family of (branched) minimal immersion

f p,q = p f + q f ∗ : M̃ → R
4, p, q ∈ H, (p, q) = (0, 0),

is called the left associated family of f .

Note that for p, q ∈ R, (p, q) = (0, 0), we obtain the usual associated family of a minimal
surface up to scaling. Moreover, f pn,qn = f p,qn is given by a scaling of f p,q and an isometry
on R

4 for n ∈ H∗.

Theorem 4.2 The right (left) associated family is a S3-family of minimal surfaces inR4 which
contains the classical associated family fcos θ,sin θ , θ ∈ R, of minimal surfaces.

The right (left) associated family preserves the conformal class, and a surface f p,q (or
f p,q ) is isometric to f if and only if it is an element of the classical associated family, up to
an isometry of R4.
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Proof It only remains to show that f p,q is isometric to f if and only if f p,q = fn cos θ,n sin θ

for some θ ∈ R and n ∈ S3. Assume first that f p,q is isometric to f . By multiplying with a
unit quaternion from the right we may assume that p ∈ R. Then |d f p,q | = |d f | implies by
(23)

p2 + |q|2 + 2pRe (Rq) = |p + Rq|2 = 1

and thus Re (Rq) is constant. Since the stereographic projection of R is a meromorphic
function, the right normal R can only take values in a plane if R is constant. In otherwords, if R
is not constant then Re (Rq) = Re (R Im q) = − < R, Im q > is constant only if Im q = 0.
But then the above equation gives p2 + q2 = 1 with q ∈ R and (p, q) = (cos θ, sin θ) for
some θ ∈ R. If R is constant then d f ∗ = −∗d f = d f R gives f p,q = f (p+ Rq) = f p+Rq,0

with constant p + Rq ∈ S3.
Conversely, f p,q = fn cos θ,n sin θ , n ∈ S3, then |p + Rq| = 1 and thus |d f p,q | = |d f | by

(23).
A similar argument shows the statement for the left associated family. ��

Remark 4.3 For any immersion f : M → R
3 = ImH in Euclidean 3-space, the left and

right normal coincide. A surface in the right associated family f p,q of a minimal surface
f : M → R

3 has left normal Np,q = N and right normal Rp,q = (p + Nq)−1N (p + Nq).
In particular, we have Np,q = Rp,q in general and thus, elements of the right associated
families of a minimal surface f : M → R

3 are not necessarily minimal in 3-space but are
minimal surfaces in R

4.

4.2 The associated family of the harmonic conformal Gauss map

We now give a derivation of the associated family of minimal surfaces in terms of the
associated family of harmonic maps. Recall that in the case of a constant mean curvature
surface f : M → R

3 the Gauss map N : M → S2 of f is by the Ruh–Vilms theorem [63]
harmonic and its associated family d̂λ of flat connections (18) gives rise to the associated
family of constant mean curvature surfaces: for μ ∈ C∗ the map N is harmonic with respect
to the quaternionic connection d̂μ for all μ ∈ S1, see e.g. [9] for details. Thus, for any d̂μ-
parallel section ϕ ∈ �(H) the map Nμ = ϕ−1Nϕ is harmonic with respect to d . Note that
ϕ is unique up to a right multiplication by a constant quaternion. This family Nλ, λ ∈ S1,
is called the associated family of N . The Sym–Bobenko formula [10] relies on the link (4)
between the differentials of f and N to obtain the constant mean curvature surface f by
differentiating a family ϕλ of parallel sections of dλ with respect to the parameter λ. This
way, one can obtain from the associated family Nλ of N a family of constant mean curvature
surfaces, the associated family of f .

In the case of a minimal surface f : M → R
4 with right normal R, we have seen in

Lemma 3.1 that every parallel section β ∈ �(H) of the associated family of flat connections
of R is, using (16), given by

β = Rm + m
b

a − 1
, m ∈ H∗,

where a = μ+μ−1

2 , b = i μ−1−μ
2 , and μ ∈ C\{0, 1}.

If μ ∈ S1, μ = 1, then a = Reμ, b = Imμ ∈ R, and β = (R + b
a−1 )m with m ∈ H∗.

Thus, the associated family of harmonic maps is given by

Rμ = β−1Rβ = m−1Rm.
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1034 K. Leschke, K. Moriya

In particular, the harmonic map Rμ does not depend on the parameter μ. In the case of a
minimal surface, the equation (4) does not allow to reconstruct the minimal surface from the
harmonic Gauss map. In particular, there is no Sym–Bobenko formula to obtain a minimal
surface with right normal Rμ via differentiation of parallel sections with respect to the
parameter μ.

To obtain a non-trivial family of minimal surfaces with right normal Rμ for μ ∈ C∗, we
consider instead the harmonic conformal Gauss map S of f :

Theorem 4.4 Let f : M → R
4 be a minimal surface with conformal Gauss map S. Then,

up to Möbius transformation, the line bundle of a minimal surface fcos θ,sin θ , θ ∈ R, in the
associated family of f is given by

Lφ = φ−1L

where φ = (ϕ1, ϕ2) is an invertible endomorphism with dμ-parallel columns ϕ1, ϕ2, and
μ = cos(2θ) − i sin(2θ) ∈ S1. Moreover,

Sφ = φ−1Sφ

is the conformal Gauss map of fcos θ,sin θ .

Proof For μ ∈ S1 and invertible φ and φ̃ with dμ-parallel columns, we have φ̃ = φB with
B constant so that L φ̃ = B−1Lφ is given by a Möbius transformation. Thus, we can assume
without loss of generality that for μ = 1

φ = (e, ϕ)

where ϕ = eα + ψβ is a dμ-parallel section with nowhere vanishing β. Then

φ−1ψ = φ−1(−eα + ϕ)β−1 =
(−α

1

)
β−1,

so that Lφ is the line bundle of the (branched) conformal immersion fφ = −α : M → R
4.

By Proposition 3.3 and (16) we have

α = −
(

f ∗ + f
b

a − 1

)
m

since b
a−1 ∈ R for μ ∈ S1. Writing μ = cosϑ + i sin ϑ we see

b

a − 1
= sin ϑ

cosϑ − 1
= − cot

ϑ

2
.

We consider α up toMöbius transformations, and may thus assume without loss of generality
that m = − sin ϑ

2 so that

fφ = fcos θ,sin θ

for θ = −ϑ
2 . For μ = 1 we can choose φ as the identity matrix, and obtain fφ = f1,0 = f .

By definition Sφ leaves Lφ invariant. The final statement follows by a similar argument as
in [9]. In fact, this is a special case of a corresponding statement for (constrained) Willmore
surfaces f : M → R

4, see [4,8]. ��
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Simple factor dressing and the López–Ros deformation 1035

We also get an interpretation of the right associated family: If we consider φ = (e, ϕ)with
d S
μϕ = 0 for someμ ∈ C\{0, 1}, then the line bundle Lφ = φ−1L gives by the same argument

as above a member of the generalised associated family, up to Möbius transformation,

fφ = α(1 − a) = f ∗m(a − 1) + f mb = fmb,m(a−1).

Note however, that φ is not a d S
μ-parallel endomorphism since d S

μ is a complex but not a
quaternionic connection.

5 Simple factor dressing

As we have seen, the harmonic left and right normals and the harmonic conformal Gauss
map of a minimal surface give rise to families of flat connections. Conversely, if a family
of flat connections is of an appropriate form, it can be used to construct a harmonic map.
In particular, if dλ is the associated family of flat connections of a harmonic map, one can
gauge dλ with a λ-dependent dressing matrix rλ to obtain a new family of flat connections
d̆λ = rλ · dλ. If rλ satisfies appropriate reality and holomorphicity conditions, then d̆λ is the
associated family of a new harmonic map, a so-called dressing of the original harmonic map,
see [70,71].

5.1 Simple factor dressing of the left and right normals

We first consider the case when R : M → S2 is the harmonic right normal of a minimal
surface inR4 and choose the simplest possible dressing matrix: If dλ is the associated family
(12) of the harmonic map R then the simple factor dressing matrix rλ is obtained by choosing
μ ∈ C\{0, 1} and a parallel section β of the flat connection dμ of the associated family as

rλv =
{

v
1−μ̄−1

1−μ
λ−μ

λ−μ̄−1 , v ∈ βC

v, v ∈ (βC)⊥
.

In [9] it is shown that d̆λ = rλ · dλ is the associated family of a harmonic map R̆ : M → S2,
the simple factor dressing of R, and

R̆ = T̆ −1RT̆

where T̆ = 1
2 (−Rβ(a − 1)β−1 + βbβ−1) is given explicitly in terms of β and μ, where

a = μ+μ−1

2 , b = i μ−1−μ
2 . In our case, any dμ-parallel section β is given by Lemma 3.1 and

(16) as

β = (R + ρ)m, m ∈ H∗, ρ = m
b

a − 1
m−1.

Since β is nowhere vanishing, we see that

T̆ = 1

2
(−Rβ(a − 1) + βb)β−1 = −(R + ρ)−1,

and the simple factor dressing of R is

R̆ = (R + ρ)R(R + ρ)−1, ρ = m
i(1 + μ)

1 − μ
m−1, m ∈ H∗. (26)
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In particular, a simple factor dressing is determined by the choice μ ∈ C\{0, 1}, giving the
pole of the simple factor, and m ∈ H∗, giving the parallel bundle of dμ. A straight forward
computation shows that

d R̆ = (1 + ρ2)(R + ρ)−1d R(R + ρ)−1.

Since

ρ2 = (R + ρ − R)2 = (R + ρ)2 − R(R + ρ) − (R + ρ)R − 1

we see that

(R + ρ)−1(1 + ρ2)(R + ρ)−1 = 1 − (R + ρ)−1R − R(R + ρ)−1.

The right hand side of this equation commutes with R so that also

[(R + ρ)−1(1 + ρ2)(R + ρ)−1, R] = 0. (27)

Therefore,

(d R̆)′ = 1

2
(d R̆ − R̆ ∗ d R̆) = (1 + ρ2)(R + ρ)−1 1

2
(d R + R ∗ d R)(R + ρ)−1 = 0

which shows that R̆ is conformal and harmonic. Indeed, the simple factor dressing of the
right normal of a minimal surface in R4 is the right normal of a minimal surface:

Theorem 5.1 Let f : M → R
4 be a minimal surface with right normal R.

Then every simple factor dressing of R is the right normal Rp,q of a minimal surface f p,q

in the right associated family of f .

Proof Let μ ∈ C\{0, 1} be the pole of the simple factor dressing and put, as usual, a =
μ+μ−1

2 , b = i(μ−1−μ)
2 . Write ĉ = mcm−1 for c ∈ C where m ∈ H∗ determines the dμ-

parallel bundle of the simple factor dressing.
Consider the minimal surface

h = f b̂ + f ∗(â − 1)

in the associated family of f . From (24) we see that the right normal of h = fb̂,â−1 is given
by

Rh = (â − 1)−1(ρ + R)−1R(ρ + R)(â − 1), (28)

wherewe used that â = 1 sinceμ = 1. Now, â2+b̂2 = 1 gives 1+ρ2 = 1+ b̂2

(â−1)2
= − 2

â−1 .

In particular, we have seen already (27) that (R + ρ)−1 2
â−1 (R + ρ)−1 commutes with R so

that also

[R, (R + ρ)(â − 1)(R + ρ)] = 0.

Thus, the right normal

Rh = (ρ + R)R(ρ + R)−1 (29)

of the associated minimal surface h is (26) the dressing of R. ��
Remark 5.2 Note that the simple factor dressing of the harmonic right normal does not single
out a canonical minimal surface with this right normal: the element fb̂,â−1 is one example
of such a minimal surface but so is p fb̂,â−1 + q f ∗

b̂,â−1
for any p, q ∈ H∗.
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An analogue theorem holds for the left normal N of a minimal surface f : M → R
4:

Theorem 5.3 The simple factor dressing of N is the left normal N p,q of an element f p,q in
the left associated family of f .

As noted before, if f : M → R
3 is a minimal surface in R

3 then the left and right
associated families give in general minimal surfaces in R4. In particular:

Corollary 5.4 Let f : M → R
3 be a minimal surface with Gauss map N and assume that f

is not a plane. Let fb̂,â−1 be the minimal surface in the associated family of f whose right
normal Rb̂,â−1 is the simple factor dressing of N given by μ ∈ C\{0, 1}, m ∈ H∗, where

â = m μ+μ−1

2 m−1, b̂ = mi μ−1−μ
2 m−1.

Then fb̂,â−1 is a minimal surface in R
3 if and only if μ ∈ S1, μ = 1.

Proof If fb̂,â−1 is in 3-space then Nb̂,â−1 = Rb̂,â−1, that is by (29)

N = (ρ + N )N (ρ + N )−1

withρ = b̂
â−1 . But then [ρ, N ] = 0 and, sinceρ is constant,we see thatρ = mi 1+μ

1−μ
m−1 ∈ R.

In particular, i 1+μ
1−μ

∈ R which is equivalent to μ ∈ S1, μ = 1.

Conversely, for μ ∈ S1 we know â, b̂ ∈ R so that fb̂,â−1 = f b̂ + f ∗(â − 1) takes values

in R
3. ��

We will use Remark 5.2 to obtain a minimal surface in 3-space with a given simple factor
dressing as its Gauss map. This operation turns out to be the surface obtained by applying a
corresponding simple factor dressing on the conformal Gauss map.

5.2 Simple factor dressing of aminimal surface

The conformal Gauss map of a Willmore surface is harmonic and one can define a dressing
on it [4,61]. Since the conformal Gauss map determines a conformal immersion (if the Hopf
field is not zero), this induces a transformation, a dressing, on Willmore surfaces. (Actually,
Burstall and Quintino define more generally a dressing on constrained Willmore surfaces).

We will again only discuss the special case of simple factor dressing by choosing the
simplest possible dressing matrix. As before, the simple factor dressing of the conformal
Gauss map S of a Willmore surface f : M → S4 is given explicitly by parallel sections of a
connection d S

μ of the associated family of flat connections [43]: for μ ∈ C\{0, 1} let Wμ be a

d S
μ-stable, complex rank 2 bundle over M̃ with Wμ⊕Wμ j = H̃

2
. For two d S

μ-parallel sections

ϕ1, ϕ2 ∈ �(Wμ) with φ = (ϕ1, ϕ2) regular, define a conformal immersion f̂ : M̃ → S4 by

L̂ =
(

S + φ
b

a − 1
φ−1

)
L,

where b
a−1 is the leftmultiplication by the quaternion b

a−1 onH
2 and as usuala = μ+μ−1

2 , b =
i μ−1−μ

2 . Then the conformalGaussmap Ŝ of f̂ is the simple factor dressing of S. In particular,

Ŝ is harmonic, and f̂ is a Willmore surface. It is known that L̂ , and thus f̂ , is independent
of the choice of basis for Wμ [43]. We call the Willmore surface f̂ a simple factor dressing
of f . Note that b

a−1 ∈ R for μ ∈ S1 so that f̂ = f in this case.
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Note that this gives a conformal theory. However, in the case of a minimal surface f :
M → R

4 we are only interested in the Euclidean theory, that is, simple factor dressingswhich
are again surfaces in the same 4-space. Thus, we will restrict to simple factor dressings such
that S + φ b

a−1φ
−1 stabilises the point at infinity ∞ = eH. Because Se = eN by (9) where

N is the left normal of f , we have to restrict to φ with φ b
a−1φ

−1∞ = ∞. Since b
a−1 ∈ R if

and only if μ ∈ S1 we can assume that b
a−1 is not real as otherwise f̂ = f .

We recall that any d S
μ-parallel section ϕ = en, n ∈ H, is given by Proposition 3.3 and

(16) as ϕ = eα +ψβ where α = −( f ∗ + f ρ)m, β = (R +ρ)m with ρ = m i(1+μ)
1−μ

m−1 and

m ∈ H∗. In particular, for regular φ = (ϕ1, ϕ2) with two such d S
μ-parallel sections ϕ1, ϕ2 we

write

φ =
(

α1 α2

β1 β2

)
, φ−1 =

(
ζ1 ξ1
ζ2 ξ2

)

in the basis (e, ψ) where

α1 = f−m1
b

a−1 ,−m1
, α2 = f−m2

b
a−1 ,−m2

, m1, m2 ∈ H∗, (30)

are in the right associated family of f , and

β1 = Rm1 + m1
b

a − 1
, β2 = Rm2 + m2

b

a − 1
(31)

are nowhere vanishing parallel sections with respect to the connection dμ of the associated
family of connections of the right normal R. Assume that φ b

a−1φ
−1 fixes the point at infinity.

Then there exists η : M → H∗ with

b

a − 1

(
ζ1
ζ2

)
=

(
ζ1
ζ2

)
η.

Since β1, β2 are nowhere vanishing so is ζ1 and the equation above shows that ζ2ζ
−1
1 com-

mutes with the complex number b
a−1 /∈ R. Therefore, we have ζ2 = qζ1 with q : M → C∗

and, because φφ−1 = Id and ζ1 is nowhere vanishing, we conclude β1 + β2q = 0.
Both β1 and β2 are dμ-parallel, and thus, q ∈ C∗ is constant.
If R is constant, that is, if f is the twistor projection of a holomorphic curve in CP3, then

f ∗ = f R + c with some c ∈ H, so that with (30) and (31) we obtain ϕ1 + ϕ2q = en with
n = −c(m2q + m1) and q ∈ C∗. In other words, en is a d S

μ-parallel section of Wμ and we

can replace φ in the definition of Ŝ by φ̃ = (en, ϕ2).
If R is not constant, we use again the explicit forms (31) to obtain from β1 + β2q = 0,

q ∈ C∗, that R(m1 + m2q) is constant, which implies that m1 = −m2q . But then (30) and
(31) show that ϕ1 = −ϕ2q which contradicts the assumption that φ is regular.

Thus, from now on we can restrict to regular endomorphism φ of the form

φ =
(

n α

0 β

)

in the basis (e, ψ) where n ∈ H∗ and ϕ = eα + ψβ, β nowhere vanishing, is a parallel
section of d S

μ to obtain all simple factor dressings in 4-space.

Theorem 5.5 Let f : M → R
4 be a minimal surface and f̂ : M̃ → R

4 a simple factor
dressing of f in 4-space.
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Simple factor dressing and the López–Ros deformation 1039

Then f̂ is a minimal surface, and f̂ is preserved when changing the parameters (μ, m, n)

to (μ, mz, nw) or (μ̄−1, mj, nj) for z, w ∈ C∗. For μ ∈ S1 the simple factor dressing f̂ = f
is trivial.

Proof Since ψβ ∈ �(L) is nowhere vanishing, the line bundle L̂ is spanned by

ϕ̂ =
(

S + φ
b

a − 1
φ−1

)
(ϕ − eα).

Since Se = eN and Sϕ = eNα − ψ Rβ by (9) we conclude

ϕ̂ =
(

Nα

−Rβ

)
+

(−Nα

0

)
+

(
α b

a−1
β b

a−1

)
+

(−n b
a−1n−1α

0

)
=

(
α b

a−1 − n b
a−1n−1α

−Rβ + β b
a−1

)

in the basis (e, ψ). Recalling (14), that is, −Rβ + β b
a−1 = −2m(a − 1)−1, we see that

f̂ = f −
(

α
b

a − 1
− n

b

a − 1
n−1α

)
a − 1

2
m−1.

We substitute α = − f m b
a−1 − f ∗m and use â2 + b̂2 = 1 for â = mam−1, b = mbm−1,

and ρ̃ = n b
a−1n−1, to obtain

f̂ = 1

2

(
− f (â − 1) + f ∗b̂ − ρ̃

(
f b̂ + f ∗(â − 1)

))
.

Thus,

f̂ = − ρ̃

2
h + 1

2
h∗ = h− ρ̃

2 , 12

is an element of the left associated family of the minimal surface

h = f b̂ + f ∗(â − 1) = fb̂,(â−1)

in the right associated family of f . In particular, f̂ is minimal. From the explicit formula
above we see that f̂ is preserved when changing (μ, m, n) to (μ, mz, nw) with z, w ∈ C∗.
Since μ̄−1+μ̄

2 = ā, i μ̄−μ̄−1

2 = b̄ and (mj)z̄(mj)−1 = mzm−1 for all z ∈ C, m ∈ H∗, we
obtain the same simple factor dressing for the parameters (μ, m, n) and (μ̄−1, mj, nj). The
final statement follows from the fact that b

a−1 ∈ R for μ ∈ S1. ��

Remark 5.6 Note that the last statements in the above corollary are special cases of more
general facts for simple factor dressings ofWillmore surfaces: since the simple factor dressing
is independent of the choice of basis of Wμ and the family of flat connections satisfies a
reality condition [9], the surface is preserved under the given changes of parameter. The last
statement holds for general simple factor dressings with μ ∈ S1.

In particular, we emphasise again that in contrast to the simple factor dressing of the right
and left normal, the simple factor dressing of the conformal Gauss map associates a unique
minimal surface:

Definition 5.7 The simple factor dressing of aminimal surface f : M → R
4 with parameters

(μ, m, n) is the minimal surface f̂ : M̃ → R
4 given by
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f̂ = − f
m(a − 1)m−1

2
+ f ∗ mbm−1

2
− n

b

a − 1
n−1

(
f

mbm−1

2
+ f ∗ m(a − 1)m−1

2

)

(32)

where m, n ∈ S3, μ ∈ C\{0, 1} and a = μ+μ−1

2 , b = i μ−1−μ
2 .

If m = n = 1 then we refer to f μ = f̂ as the simple factor dressing of f with parameter
μ.

The simple factor dressing with parameter μ of the rigid motion f̃ = n−1 f m of f is
given by

f̃ μ = −n−1 f m
a − 1

2
+ n−1 f ∗m

b

2
− b

a − 1

(
n−1 f m

b

2
+ n−1 f ∗m

a − 1

2

)
= n−1 f̂ m,

where f̂ is the simple factor dressing (32) of f with parameters (μ, m, n). Thus, all simple
factor dressings are build from rigid motions of the simple factor dressings with parameter
μ:

Proposition 5.8 Let f̂ be a simple factor dressing of a minimal surface f : M → R
4 with

parameters (μ, m, n). Then

f̂ = Rn,m((R−1
n,m( f ))μ)

where (R−1
n,m( f ))μ is the simple factor dressing of the rotated surface R−1

n,m( f ) = n−1 f m
with parameter μ.

Since the associated families of the left and right normals and the conformal Gauss maps
are related, we also have a correspondence between the resulting simple factor dressings:

Corollary 5.9 The simple factor dressing of a minimal immersion f : M → R
4 with param-

eters (μ, m, n) is a minimal immersion f̂ : M̃ → R
4.

The right and left normal of f̂ are given by simple factor dressings of the right and left
normal of f respectively. Moreover, f̂ is complete if and only if f is complete.

Proof The differential of the simple factor dressing f̂ with parameters (μ, m, n) is given by

d f̂ = −
(

N + n
b

a − 1
n−1

)
d f

2

(
R + m

b

a − 1
m−1

)
m(a − 1)m−1

where we used that d f ∗ = −∗d f and ∗d f = Nd f = −d f R. In particular, the right normal

R̂ = m(a − 1)−1m−1
(

R + m
b

a − 1
m−1

)−1

R

(
R + m

b

a − 1
m−1

)
m(a − 1)m−1

and left normal

N̂ =
(

N + n
b

a − 1
n−1

)
N

(
N + n

b

a − 1
n−1

)−1

of f̂ are by (28) and (29) the simple factor dressings of the right and left normal of f which
are given by the pole μ and the parallel sections Rm + m b

a−1 and Nn + n b
a−1 respectively.
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Finally, f̂ is branched at p if and only if (N (p)+n b
a−1n−1) = 0 or (R(p)+m b

a−1m−1) =
0. We already have seen that β = Rm + m b

a−1 is nowhere vanishing if m = 0. A similar
argument, as given before Lemma 3.1, gives the corresponding statement for the expression
in N , so that f and f̂ have the same conformal class, that is,

|d f̂ | = r |d f | (33)

with r : M → (0,∞). In particular, the simple factor dressing f̂ of a minimal immersion
has no branch points, and f̂ is complete if and only if f is complete. ��

From the explicit form (32) of the simple factor dressing of a minimal surface we imme-
diately see that the simple factor dressing commutes with the conjugation:

Corollary 5.10 Let f : M → R
4 be a minimal surface and f ∗ a conjugate surface of f . Then

a conjugate surface of the simple factor dressing of f is given by a simple factor dressing of
the conjugate surface f ∗.

Moreover, the choice of a different conjugate surface results in a translation of the simple
factor dressing in 4-space.

6 Simple factor dressing and the López–Ros deformation

Given a minimal surface f : M → R
4 in 4-space with Weierstrass data (g1, g2, ω) denote,

in analogy to the case of a minimal surface in R
3, by f σ the López–Ros deformation of f

with complex parameter σ ∈ C, that is, the minimal surface given by the Weierstrass data
(σ g1, σ g2,

ω
σ
). Similarly, the Goursat transformation is defined by Re (A( f + i f ∗)) where

A ∈ O(4,C) and f ∗ is a conjugate surface of f . In this section, we will show that the
López–Ros deformation is a special case of the simple factor dressing. Indeed, all simple
factor dressings are (special) Goursat transformations.

6.1 The López–Ros deformation inR4

Since by Proposition 5.8 any simple factor dressing is given in terms of the simple factor
dressing with parameter μ, we will first show that these simple factor dressings are Goursat
transformations.

Theorem 6.1 Let f : M → R
4 be a minimal surface in R

4. Then the simple factor dressing
with parameter μ of f = f0 + f1i + f2 j + f3k is given by

f μ =

⎛
⎜⎜⎝

f0
f1

cos t ( f2 cosh s − f ∗
3 sinh s) − sin t ( f3 cosh s + f ∗

2 sinh s)
sin t ( f2 cosh s − f ∗

3 sinh s) + cos t ( f3 cosh s + f ∗
2 sinh s)

⎞
⎟⎟⎠ (34)

where s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

. In particular, f μ is a Goursat transform of f whose
holomorphic null curve is

�μ = Lμ� (35)
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where � is the holomorphic null curve of f and

Lμ =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 coshw i sinhw

0 0 −i sinhw coshw

⎞
⎟⎟⎠ ∈ O(4,C).

with w = s + i t .

Proof Let μ ∈ C\{0, 1} and put, as usual, a = μ+μ−1

2 , b = i μ−1−μ
2 . The simple factor

dressing of f with parameter μ is given by

f μ = − f
a − 1

2
+ f ∗ b

2
− b

a − 1

(
f

b

2
+ f ∗ a − 1

2

)
= T1( f ) + T2( f ∗),

where

T1(v) = −v
a − 1

2
− b

a − 1
v

b

2
and T2(v) = v

b

2
− b

a − 1
v

a − 1

2
, v ∈ H.

Next, we observe for v ∈ C = spanR{1, i} that

T1(v) = −1

2

(
v(a − 1) + b

a − 1
vb

)
= v and T2(v) = 1

2

(
vb − b

a − 1
v(a − 1)

)
= 0,

where we used that a2 + b2 = 1. To compute T1(v), T2(v) for v ∈ C j = span{ j, k} we
recall that

μ̄ − 1

μ̄(1 − μ)
= es+i t

by definition of s and t . Thus, with a − 1 = (1−μ)2

2μ , b = i 1−μ2

2μ we have

|a − 1|2 + |b|2
2|a − 1| = cosh s,

Im (b(ā − 1))

|a − 1| = sinh s, and
a − 1

|a − 1| = −e−i t .

Therefore, since wv = vw̄ for every w ∈ C and v ∈ C j , we see

T1(v) = −1

2

(
v(a − 1) + b

a − 1
vb

)
= ve−i t cosh s

and

T2(v) = 1

2

(
vb − b

a − 1
v(a − 1)

)
= −vie−i t sinh s.

Decomposing f = ( f0 + f1i) + ( f2 j + f3k) and f ∗ = ( f ∗
0 + f ∗

1 i) + ( f ∗
2 j + f ∗

3 k), the
simple factor dressing of f with parameter μ is then given by

f μ = T1( f ) + T2( f ∗) = ( f0 + f1i) + ( f2 j + f3k)e−i t cosh s − ( f ∗
2 j + f ∗

3 k)ie−i t sinh s

which gives (34). The final statement follows by a straight forward computation of the
holomorphic null curve. ��

By Proposition 5.8 we immediately see that the general simple factor dressing is a Goursat
transformation, too.

Theorem 6.2 The simple factor dressing of a minimal surface f : M → R
4 is a Goursat

transformation of f .
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Proof Letμ ∈ C\{0, 1}, then by Proposition 5.8 the simple factor dressing f̂ with parameters
(μ, m, n) is given by

f̂ = Rn,m((R−1
n,m( f ))μ)

where Rn,m ∈ SO(4,R) is the map v �→ nvm−1 and (R−1
n,m( f ))μ is the simple factor

dressing of f̃ = n−1 f m with parameter μ. If � denotes the holomorphic null curve of f
then the null curve of R−1

n,m( f ) is R−1
n,m� since Rn,m is real. But then the holomorphic null

curve of the simple factor dressing ofR−1
n,m( f )with parameterμ is LμR−1

n,m� by (35). Thus,

the holomorphic null curve of the simple factor dressing f̂ with parameters (μ, m, n) is given
by

�̂ = Rn,mLμR−1
n,m�.

But Rn,mLμR−1
n,m ∈ O(4,C) so that f̂ is a Goursat transformation of f . ��

Note that the simple factor dressing is a special case of the Goursat transformation: its
matrix A ∈ O(4,C) has detA = 1 and special behaviour of the eigenspaces.

As before theLópez–Ros deformation can be given in terms of the surface and its conjugate
which immediately shows that it is a special case of the simple factor dressing:

Theorem 6.3 Let f : M → R
4 be a minimal surface in R

4 with conjugate surface f ∗ and
let σ = es+i t ∈ C∗. Then the López–Ros deformation f σ of f is given by

f σ =

⎛
⎜⎜⎝

f0
cos t ( f1 cosh s − f ∗

2 sinh s) − sin t ( f2 cosh s + f ∗
1 sinh s)

sin t ( f1 cosh s − f ∗
2 sinh s) + cos t ( f2 cosh s + f ∗

1 sinh s)
f3

⎞
⎟⎟⎠ (36)

where fl and f ∗
l are the coordinates of f = f0 + f1i + f2 j + f3k and f ∗ = f ∗

0 + f ∗
1 i +

f ∗
2 j + f ∗

3 k respectively.
In particular, the López–Ros deformation f σ of f with parameter σ = es+i t ∈ C∗, |σ | =

1, is the simple factor dressing f̂ of f with parameters (μ, m, m) where μ = 1−e−(s+i t)

1−es−i t ∈
C\{0, 1} and m = 1−i− j−k

2 ∈ S3.

From this we see again that the López–Ros deformation is a trivial rotation in the i j-plane
if σ ∈ S1 ⊂ C. Moreover, if σ ∈ R then μ = − 1

σ
.

Proof Let f σ be the Lopez–Ros deformation of f with parameter σ = es+i t ∈ C∗, |σ | = 1.
The first equation (36) is an analogue computation as in the proof of Theorem 2.4.

By assumption |σ | = 1 so that μ = 1−e−(s+i t)

1−es−i t ∈ C\{0, 1} is well defined. Put, as usual,
a = μ+μ−1

2 , b = i μ−1−μ
2 .

By Proposition 5.8, the simple factor dressing with parameters (μ, m, m) is f̂ =
Rm,m((R−1

m,m( f ))μ) where (R−1
m,m( f ))μ is the simple factor dressing of f̃ = R−1

m,m( f ) =
m−1 f m with parameter μ. Decomposing f = ( f0 + f1i) + ( f2 j + f3k) we have
f̃ = ( f0 + f3i) + ( f1 j + f2k) for m = 1−i− j−k

2 , and the simple factor dressing of f̃
with parameter μ is given by Theorem 6.1 as

f̃ μ = ( f0 + f3i) + ( f1 j + f2k)e−i t cosh s − ( f ∗
1 j + f ∗

2 k)ie−i t sinh s.
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Therefore, the simple factor dressing of f with parameters (μ, m, m)

f̂ = Rm,m f̃ μ = f0 + f3k + ( f1i + f2 j)e−kt cosh s − ( f ∗
1 i + f ∗

2 j)ke−kt sinh s = f σ

is indeed by (36) the López–Ros deformation of f . ��
Remark 6.4 In particular, with Proposition 5.8 we see that all simple factor dressings of a
minimal surface are given, up to rotations, by the López–Ros deformation applied to a rigid
motion of f .

If f : M → R
4 is a periodicminimal surface then the periods of the simple factor dressing

f μ with parameter μ are immediately given by the explicit formulation (34):

Corollary 6.5 If f : M → R
4 is a periodic minimal surface with translational periods

γ ∗ f = f + τ for γ ∈ π1(M), τ = (τ0, τ1, τ2, τ3), then the simple factor dressing f μ of f
with parameter μ is periodic with γ ∗ f μ = f μ + τμ where

τμ =

⎛
⎜⎜⎝

τ0
τ1

cos t (τ2 cosh s − τ ∗
3 sinh s) − sin t (τ3 cosh s + τ ∗

2 sinh s)
sin t (τ2 cosh s − τ ∗

3 sinh s) + cos t (τ3 cosh s + τ ∗
2 sinh s)

⎞
⎟⎟⎠ .

Here τ ∗ = (τ ∗
0 , τ ∗

1 , τ ∗
2 , τ ∗

3 ) denote the periods of a conjugate surface f ∗ of f , that is,

γ ∗ f ∗ = f ∗ + τ ∗, and s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

.
In particular, f μ is closed along γ ∈ π1(M), that is, γ ∗ f μ = f μ, if and only if

τ0 = τ1 = 0 and

(
τ2
τ3

)
=

(
τ ∗
3−τ ∗
2

)
tanh s.

From this, we can immediately compute the periods of all simple factor dressings by Propo-
sition 5.8.

In particular, assume that f : M → R
4 is single-valued on M , and that there exist

m, n ∈ H∗ such that all periods of the conjugate surface f ∗ can be rotated simultaneously
into the 1, i-plane, that is,

R−1
n,mτ ∗

γ ∈ span{1, i}
for all γ ∈ π1(M) where γ ∗ f ∗ = f ∗ + τ ∗

γ . Then all minimal surfaces in the complex
1-parameter family given by the simple factor dressings with parameters (μ, m, n), μ ∈
C\{0, 1}, are single-valued on M .

Finally, since a simple factor dressing of a finite total curvature minimal surface is given
by a Goursat transformation, it has again finite total curvature:

Theorem 6.6 If f : M → R
4 has finite total curvature and if the simple factor dressing

f̂ : M → R
4 of f with parameters (μ, m, n) is single-valued on M then f̂ has finite total

curvature.

Proof Since f has finite total curvature, we can assume by Theorem 2.1 that M =
M̄\{p1, . . . , pr } where M̄ is a Riemann surface punctured at finitely many pi . Moreover,
if � denotes the holomorphic null curve of f then we can assume that d� extends mero-
morphically into the pi . Since the simple factor dressing is a Goursat transformation, the
holomorphic null curve �̂ of f̂ is given by �̂ = A� with A ∈ O(4,C). Thus, d�̂ extends
meromorphically into the punctures pi . ��
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6.2 Simple factor dressing inR3

Given aminimal surface inR3 we now discuss when the simple factor dressing f̂ is aminimal
surface in 3-space. Considering a surface inR3 = ImH as a surface inHwith vanishing real
part, we immediately see with Theorem 6.1 that a simple factor dressing of f with parameter
μ ∈ C\{0, 1} gives a minimal surface

f μ =
⎛
⎝

f1
cos t ( f2 cosh s − f ∗

3 sinh s) − sin t ( f3 cosh s + f ∗
2 sinh s)

sin t ( f2 cosh s − f ∗
3 sinh s) + cos t ( f3 cosh s + f ∗

2 sinh s)

⎞
⎠ (37)

in R
3 where s = − ln |μ|, t = arg μ̄−1

μ̄(1−μ)
. Moreover, f j and f ∗

j are the coordinates of
f = i f1+ j f2+k f3 and f ∗ = i f ∗

1 + j f ∗
2 +k f ∗

3 respectively. Since any simple factor dressing
f̂ of f with parameters (μ, m, n) is given by a simple factor dressing with parameter μ and
an operation of Rn,m ∈ SO(4,R), we see from (34) that f̂ is in 3-space if Rn,m stabilises
C = spanR{1, i}. In particular:

Theorem 6.7 Let f : M → R
3 be minimal. The simple factor dressing f̂ with parameters

(μ, m, n) with m = nλ, λ ∈ C∗, is a minimal surface f̂ : M → R
3 in 3-space.

As before, we also obtain the periods of the simple factor dressing:

Corollary 6.8 If f : M → R
3 is a periodic minimal surface with γ ∗ f = f + τ for γ ∈

π1(M), τ = (τ1, τ2, τ3), then the simple factor dressing f μ of f with parameter μ is periodic
with γ ∗ f μ = f μ + τμ where

τμ =
⎛
⎝

τ1
cos t (τ2 cosh s − τ ∗

3 sinh s) − sin t (τ3 cosh s + τ ∗
2 sinh s)

sin t (τ2 cosh s − τ ∗
3 sinh s) + cos t (τ3 cosh s + τ ∗

2 sinh s)

⎞
⎠ .

Here τ ∗ = (τ ∗
1 , τ ∗

2 , τ ∗
3 ) denote the periods of a conjugate surface f ∗ of f , that is,

γ ∗ f ∗ = f ∗ + τ ∗, and s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

.

In particular, f μ is closed along γ if and only if τ1 = 0 and

(
τ2
τ3

)
=

(
τ ∗
3−τ ∗
2

)
tanh s.

We can also investigate the behaviour of simple factor dressings in R3 at ends:

Theorem 6.9 Let f : M → R
3 be a minimal surface on a punctured disc M = D\{p} and

f̂ : M̃ → R
3 its simple factor dressing with parameter (μ, m, m), m ∈ S3.

Then the following hold:

(i) If f has a planar end at p then f̂ : M → R
3 is single-valued on M and f̂ has a planar

end at p.
(ii) If f has a catenoidal end at p and f̂ : M → R

3 is single-valued on M then f̂ has a
catenoidal end at p.

Proof Let p be an complete, embedded, finite total curvature end of f . We can assume that
the end of f at p is vertical: if the end is not vertical, let n ∈ H∗ such that f̃ = R−1

n,n f has

vertical normal at p. Since Rm,m = Rn,n ◦ Rn−1m,n−1m and f̂ = Rm,m((R−1
m,m( f ))μ) by

Proposition 5.8, the simple factor dressing of f is up to rotation given by the simple factor
dressing of f̃ with parameters (μ, n−1m, n−1m).
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In a conformal coordinate z on the punctured disk D\{0}, we know from [38], see also
Theorem 2.3, that the holomorphic null curve� of f has ordz=0 d� = −2 and resz=0 d� =
−(0, 0, 2πα) where α ∈ R is the logarithmic growth.

By [38] the periods of the conjugate surface f ∗ around the end are given by resz=0 d�.
Therefore, if f has a planar end then f ∗ is single-valued on M , and if f has a catenoidal
end then the periods of f ∗ are given by −2παk. By Proposition 5.8 and Corollary 6.8, the
simple factor dressing is single-valued for all parameters if p is a planar end. Otherwise, it is
single-valued for parameters (μ, m, m) such that m−1km = ±i , that is, m = (1 ∓ j)λ with
λ ∈ C.

We know from Corollary 5.9 that the simple factor dressing preserves completeness,
that is, the end of f̂ at p is complete. Since the simple factor dressing f̂ is a Goursat
transformation, the holomorphic null curve of f̂ is given by �̂ = A� with A ∈ O(3,C)

and thus, ordz=0 d�̂ = −2. At a planar end we have resz=0 d�̂ = resz=0 d� = (0, 0, 0).
Therefore, f̂ has a planar end by Theorem 2.3.

From Proposition 5.8 and (35) we know that A = Rm,mLμR−1
m,m where

Lμ =
⎛
⎝
1 0 0
0 coshw i sinhw

0 −i sinhw coshw

⎞
⎠ , w = s + i t .

At a catenoidal end, a single-valued simple factor dressing has parameters (μ, m, m) with
m = (1 ∓ j)λ, λ ∈ C. Thus, R−1

m,m resz=0 d� is an eigenvector with eigenvalue 1 of the

matrix Lμ. But then resz=0 d�̂ = resz=0 d� is real, and the end of the simple factor dressing
is catenoidal by Theorem 2.3. ��

Again, we obtain from Theorem 6.3 the link to the López–Ros deformation:

Theorem 6.10 Let f : M → R
3 be a minimal surface in R

3 with conjugate surface f ∗. The
López–Ros deformation with complex parameter σ = es+i t ∈ C∗, |σ | = 1, is the simple

factor dressing of f with parameters (μ, m, m) where μ = 1−e−(s+i t)

1−es−i t ∈ C and m = 1−i− j−k
2 .

We obtain as a consequence of the last two theorems the following well-known result
[48]:

Corollary 6.11 Let f : M → R
3 be a minimal surface on a punctured disk M = D\{p} and

f σ : M̃ → R
3 a López–Ros deformation with parameter σ .

Then the following hold:

(i) If f has a planar end at p then f σ : M → R
3 is single-valued on M and f σ has a

planar end at p.
(ii) If f has a catenoidal end at p and f σ : M → R

3 is single-valued on M then f σ has a
catenoidal end at p.

Note that if f is aminimal surfacewith vertical catenoidal end at p, then the proof of Theorem
6.9 shows that the López–Ros deformation is single-valued since 2m = 1 − i − j − k =
(1− j)(1− i). In particular, the López–Ros deformation of f has a catenoidal end at p, too.

7 Examples

We conclude this paper by demonstrating some of our results for well-known examples of
minimal surfaces, including Richmond surfaces and the first Scherk surface. Further exam-
ples, such as the Riemann minimal examples and the Costa surface can be found in [45]. In
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particular, as we can control the periods and the end behaviour at punctures of simple factor
dressings by choosing appropriate parameters, we obtain simple factor dressings which are
minimal surfaces with one planar end and doubly-periodic surfaces respectively. Our first
example is the catenoid for which all computations can be done completely explicitly.

The images were implemented by using the software jReality and the jTEM library of TU
Berlin.

7.1 The catenoid

We consider the catenoid f : C → R
3 in the conformal parametrisation

f (x, y) = i x + j cosh x e−iy,

where z = x + iy is the standard conformal coordinate on C with ∗dz = idz. The left and
right normal of the catenoid are given by the Gauss map

R(x, y) = N (x, y) = 1

cosh x
(i sinh x − je−iy).

A conjugate surface is the helicoid

f ∗(x, y) = iy + j i sinh x e−iy

and, identifying z = x + i y, we obtain the holomorphic null curve

�(z) = f (z) + i f ∗(z) =
⎛
⎝

z
cosh z

−i sinh z

⎞
⎠ : C → C3,

and the Weierstrass data g(z) = ez−i
ez+i and ω = − i

2e−z(ez + i )2dz. The right associated
family f p,q = f p + f ∗q is given (25) by

f p,q(x, y) = i(px + qy) + je−iy(p cosh x + iq sinh x), p, q ∈ H,

and the left associated family f p,q = p f + q f ∗ by

f p,q(x, y) = (px + qy)i + (p cosh x − qi sinh x) je−iy, p, q ∈ H,

see Figs. 1, 2.
The López–Ros deformation of the catenoid, see (Fig. 3), with parameter σ = es+i t ∈ C∗

is given, see Theorem 2.4, by

fσ (x, y) =
⎛
⎝
cos t(x cosh s − sinh x sin y sinh s) − sin t(cosh x cos y cosh s + y sinh s)
sin t(x cosh s − sinh x sin y sinh s) + cos t(cosh x cos y cosh s + y sinh s)

cosh x sin y

⎞
⎠ .

The periods of the simple factor dressing with parameter μ are given by Corollary 6.8:

Lemma 7.1 The simple factor dressing f̂ of the catenoid with parameters (μ, m, m) has
translational periods

f̂ (x, y + 2π) = f̂ (x, y) + π

(
i b̂ − b̂

â − 1
i(â − 1)

)
,

where â = m μ+μ−1

2 m−1, b̂ = mi μ−1−μ
2 m−1.
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Fig. 1 Elements f 2√
6
, 1√

6
+ i√

6
and f 1√

2
, 1
2
√
2
(1+i− j−k)

of the right associated family of the catenoid, orthog-

onally projected into R
3

Fig. 2 Elements f
2√
6
, 1√

6
+ i√

6 and f
1√
2
, 1
2
√
2
(1+i− j−k)

of the left associated family of the catenoid, orthog-
onally projected into R

3

Fig. 3 The López–Ros deformation of the catenoid with parameter σ = 2 and σ = 4

In particular, f̂ (x, y + 2π) = f̂ (x, y) if and only if m ∈ C∗ or m ∈ C∗ j or μ ∈ S1. In
this case, f̂ is a (reparametrised) catenoid.

Proof Since f̂ = Rm,m((R−1
m,m( f ))μ) is the simple factor dressing with parameters

(μ, m, m) it is enough to investigate the periods of the simple factor dressing f̃ μ with
parameter μ of the minimal surface f̃ = R−1

m,m f . Since f̃ (x, y + 2π) = f̃ (x, y) and

f̃ ∗(x, y +2π) = f̃ ∗(x, y)+2πm−1im we see by Corollary 6.8 that the simple factor dress-
ing f̃ μ has vanishing periods if and only if μ ∈ S1 or m−1im = ±i , that is, m ∈ C∗ or
m ∈ C∗ j . In the former case, the simple factor dressing of f is trivial. In the latter case we
see with Theorem 5.5 that f̂ is the simple factor dressing of f with parameter μ or μ̄−1. But
the simple factor dressing of f with parameter μ is by (37) given by

f μ(x, y) = i x + j cosh(x + s)e−i(y+t)
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Fig. 4 Simple factor dressing of the catenoid with parameters (− i
2 , 1

2 (1 + i − j − k))

Fig. 5 Simple factor dressing of the catenoidwith parameters (− i
2 , 1+k

2 ,
i− j
2 ), various orthogonal projections

to R3

where s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

. Thus, for m ∈ C∗ we see that f̂ = f μ is a reparametri-
sation of the catenoid. Using again Theorem 5.5 we obtain also the case m ∈ C∗ j .

In the case of general parameters (μ, m, m), m ∈ H∗, we obtain with (32) that

f̂ (x, y + 2π) = f̂ (x, y) + π

(
i b̂ − b̂

â − 1
i(â − 1)

)
.

��
Thus, in general the simple factor dressing of a catenoid will have translational periods.

Although the resulting surfaces resemble Catalan’s surface see (Fig. 4) the simple factor
dressing of a catenoid has by Corollary 5.9 no branch points.

If we allow the simple factor dressing to be a minimal surface in R
4 we obtain with

Corollary 6.5 further closed minimal surfaces: for example, when choosing m = 1+k
2 , n =

i− j
2 then the simple factor dressing with parameters (μ, m, n) gives a minimal immersion

into R
4 by

f̂ (x, y) = i x + k sin y cosh x + (sin y sinh x sinh s + j cos y cosh x cosh s)e− j t ,

where s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

. In particular, we immediately see that f̂ (x, y + 2π) =
f̂ (x, y) (Fig. 5).

7.2 Richmond surfaces

Wewill now consider examples [41], of Richmond surfaces which are minimal surfaces with
one planar end given by the Weierstrass data g(z) = zl+1, dh = zl−1dz, l ∈ N, that is,
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Fig. 6 Minimal surfaces with one planar end, l = 1 and l = 3

f (x, y) = Re�(z), z = x + iy ∈ C∗, where the holomorphic null curve � is given, see
(6), as

�(z) =
(
1

2

(
−1

z
− z2l+1

2l + 1

)
i
2

(
−1

z
+ z2l+1

2l + 1

)
,

zl

l

)
: C∗ → C3.

Here we identify as before z = x + i y. Indeed, by Theorem 2.3 the immersion f has a
planar end at the puncture z = 0 since ordz=0 d� = −2 and the residue of d� at z = 0
vanishes (Fig. 6).

Then the conjugate surface

f ∗(x, y) = Im�(z)

is single-valued on C∗, and so are the left and right associated family (Fig. 7).
We discuss the simple factor dressings of f with parameter μ in more detail for the case

l = 1, that is,

f (x, y) = − i x

2

(
1

x2 + y2
+ x2 − 3y2

3

)

− j y

2

(
1

x2 + y2
+ 3x2 − y2

3

)
+ kx, (x, y) = (0, 0),

with Gauss map, using (7),

N (x, y) = 1

1 + (x2 + y2)2
(2i(x2 − y2) + 4 j xy

+k((x2 + y2)2 − 1), (x, y) = (0, 0),

and conjugate minimal surface

f ∗(x, y) = iy

2

(
1

x2 + y2
+ y2 − 3x2

3

)

− j x

2

(
1

x2 + y2
+ 3y2 − x2

3

)
+ ky, (x, y) = (0, 0).
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Fig. 7 Elements f
1√
7
, 2√

7
+ j√

7
− k√

7 and f 1√
7
, 2√

7
+ j√

7
− k√

7

of the left and right associated family of a Rich-

mond surface, l = 1 and l = 3, orthogonally projected into R
3

The simple factor dressing f μ with parameter μ is given (37) by

f μ(x, y) = − i x

2

(
1

x2 + y2
+ x2 − 3y2

3

)

+
{
− j y

(
1

2

(
1

x2 + y2
+ 3x2 − y2

3

)
cosh s + sinh s

)

+kx

(
cosh s − 1

2

(
1

x2 + y2
+ 3y2 − x2

3

)
sinh s

)}
e−i t , (x, y) = (0, 0),

where s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

. From Theorem 6.9 we know that f μ is a minimal
surface with a planar end at the puncture (x, y) = (0, 0).

We recall that μ = 1−e−(s+i t)

1−es−i t so that ρ = i 1+μ
1−μ

= i 1+e2s−2es+i t

e2s−1
. Since Nμ = (N +

ρ)N (N + ρ)−1 and lim(x,y)→(0,0) N (x, y) = −k we therefore see that

lim
(x,y)→(0,0)

Nμ(x, y) = (k − ρ)k(ρ − k)−1 = 1

cosh(s)
(i sinh(s) − ke−i t ).

In particular, the end near the puncture (x, y) = (0, 0) is asymptotic to the plane spanned by
(i + k sinh se−i t ) and je−i t (Fig. 8).

By Theorem 2.4 the López–Ros deformation of f with parameter σ = es+i t ∈ C∗ is
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Fig. 8 Simple factor dressing of a Richmond surface, l = 1, with parameters μ = − i
2 and μ = − 1

2 + i
2

Fig. 9 López–Ros deformation of a Richmond surface, l = 1, with parameters σ = 2 and σ = 7

Fig. 10 Simple factor dressing of a Richmond surface, l = 1, with parameters (μ, m, m) with μ = − i
2 and

μ = − 1
2 + i

2 , m = 1
2 − k

fσ =

⎛
⎜⎜⎜⎜⎝

x cos t
(
− 1

x2+y2
e−s + 3y2−x2

3 es
)

− y sin t
(
− 1

x2+y2
e−s + y2−3x2

3 es
)

x sin t
(
− 1

x2+y2
e−s + 3y2−x2

3 es
)

+ y cos t
(
− 1

x2+y2
e−s + y2−3x2

3 es
)

x

⎞
⎟⎟⎟⎟⎠

.

fσ has a vertical planar end at the puncture z = x + iy = 0. From the holomorphic null
curves of f and fσ , σ = 1, we see that fσ is not a reparametrisation of f (Fig. 9).
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Fig. 11 Scherk’s first surface and its conjugate, Scherk’s fifth surface (parametrisation by height)

Fig. 12 López–Ros deformation of Scherk’s first surface with parameter σ = 0.6

Finally, we include some pictures of the simple factor dressing for more general parame-
ters. Note that the surfaces are single-valued for all parameters (μ, m, m), and have a planar
end at z = 0 (Fig. 10).

7.3 Scherk surfaces

Wewill now consider the first Scherk surface given by theWeierstrass data g(z) = z, ω(z) =
− 4

z4−1
dz, that is, f = Re� is the real part of the (multi-valued) holomorphic null curve

�(z) =
(
i log

z + i
z − i

, i log
z + 1

z − 1
, log

z2 + 1

z2 − 1

)
, z ∈ C\{±1,±i},

identifying again z = x + i y (Fig. 11).
Denoting by γp the positively oriented circle around p ∈ {±1,±i} the periods γ ∗

p � =
� + τp + i τ ∗

p of � are given by

τ±1 + i τ ∗±1 = 2π(0,±1,−i ), τ±i + i τ ∗±i = 2π(±1, 0, i ).

In particular, the doubly-periodic first Scherk surface has periods γ ∗
p f = f + τp and its

conjugate, the simply-periodic fifth Scherk surface, has periods γ ∗
p f ∗ = f ∗ + τ ∗

p .
Since τ ∗

p ∈ spanR{k}we see with Theorem 2.4 that the López–Ros deformation of f with
parameter σ is doubly-periodic (Figs. 12, 13) with
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Fig. 13 López–Ros deformation of Scherk’s first surface with parameter σ = 1.4

Fig. 14 Simple factor dressing with μ = − 1√
2
of Scherk’s first surface: fundamental domain for the lattice

� =< 2π
√
2 j, 2π(i −

√
2 j
4 ) >, larger piece of the surface, and side view

γ ∗
p fσ = fσ +

⎛
⎝
cos t − sin t 0
sin t cos t 0
0 0 1

⎞
⎠ τp cosh s.

Corollary 6.8 shows that the periods of the simple factor dressing with parameter μ are
given by

τ
μ
±1 = ±2πe±s

⎛
⎝

0
cos t
sin t

⎞
⎠ , τ

μ
±i = 2π

⎛
⎝

±1
− cos t sinh s
− sin t sinh s

⎞
⎠ ,

where s = − ln |μ|, t = arg μ̄−1
μ̄(1−μ)

; in particular, the periods cannot be simultaneously

closed. Moreover, since τ
μ
1 + τ

μ
−1 + τ

μ
i + τ

μ
−i = 0 and τ

μ
1 = −τ

μ
−1e2s we see that f μ is

doubly-periodic with respect to the integer lattice generated by bτ
μ
1 and τ

μ
i if s = ln

√
q

with q = a
b , a, b ∈ N.

In particular, for q ∈ N and μ = − 1√
q the simple factor dressing with parameter μ is

invariant under the integer lattice � =< τ
μ
1 , τ

μ
i > since q = a

b with a = q, b = 1, and thus
bτ

μ
1 = τ

μ
1 (Fig. 14).

However, as already indicated by the pictures above, in this case a simple factor dressing
is invariant under a smaller lattice: since τ

μ
1 = −qτ

μ
−1 with q ∈ N, we see that the simple

factor dressing is invariant under the integer lattice �̂ =< τ
μ
−1, τ

μ
i > (Fig. 15).
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Fig. 15 Simple factor dressing with μ = − 1√
2
of Scherk’s first surface: fundamental domain for the lattice

�̂ =< τ
μ
i , τ

μ
−1 >, translations by τ

μ
i = 2π(i −

√
2 j
4 ) and τ

μ
−1 = −π

√
2 j

Fig. 16 Elements f
1√
7
, 2√

7
+ j√

7
− k√

7 and f 1√
7
, 2√

7
+ j√

7
− k√

7

of the left and right associated family of Scherk’s

first surface, orthogonally projected into R
3

We conclude the example of Scherk’s first surface by providing the pictures for the left-
and right-associated family which give minimal surfaces in R

4 (Fig. 16).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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