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Abstract
For q > 1 we consider expansions in base q with digits set {0, 1, q}. Let Uq be the set of
points which have a unique q-expansion. For k = 2, 3, . . . ,ℵ0 let Bk be the set of bases
q > 1 for which there exists x having precisely k different q-expansions, and for q ∈ Bk let
U (k)
q be the set of all such x’s which have exactly k different q-expansions. In this paper we

show that

Bℵ0 = [2,∞) and Bk = (qc,∞) for any k ≥ 2,

where qc ≈ 2.32472 is the appropriate root of x3 − 3x2 + 2x − 1 = 0. Moreover, we show
that for any integer k ≥ 2 and any q ∈ Bk the Hausdorff dimensions of U (k)

q and Uq are the
same, i.e.,

dimH U (k)
q = dimH Uq for any k ≥ 2.

Finally, we conclude that the set of points having a continuum of q-expansions has full
Hausdorff dimension.

Keywords Unique expansion · Multiple expansion · Countable expansion · Hausdorff
dimension
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1 Introduction

Expansions in non-integer bases were pioneered by Rényi [18] and Parry [16]. Unlike integer
base expansions, for a given β ∈ (1, 2), it is well-known that typically a real number x ∈
Iβ := [0, 1/(β − 1)] has a continuum of β-expansions with digits set {0, 1} (cf. [2,19]),
i.e., for Lebesuge almost every x ∈ Iβ there exist a continuum of zero-one sequences (xi )
such that x = ∑∞

i=1 xi/β
i . However, there still exist x ∈ Iβ having a unique β-expansion

(cf. [5,10,13]). Denote by Uβ the set of all x ∈ Iβ with a unique β-expansion. De Vries and
Komornik [3] investigated the topological properties of Uβ . Komornik et al. [12] considered
the Hausdorff dimension of Uβ , and concluded that the dimension function β �→ dimH Uβ
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behaves like a Devil’s staircase. Interestingly, for any k = 2, 3, . . . or ℵ0 Erdős et al. [6,7]
showed that there exist β ∈ (1, 2) and x ∈ Iβ such that x has precisely k different β-
expansions. For more information on expansions in non-integer bases we refer to [1,21,23],
and the surveys [4,11,20].

In this paper we consider expansions with digits set {0, 1, q}. Given q > 1, the infinite
sequence (di ) is called a q-expansion of x , if

x = ((di ))q :=
∞∑

i=1

di
qi

, di ∈ {0, 1, q} for all i ≥ 1.

We emphasize that the digits set {0, 1, q} also depends on the base q .
For q > 1 let Eq be the set of points which have a q-expansion. Then Eq is the attractor

of the iterated function system (IFS)

φd(x) = x + d

q
, d ∈ {0, 1, q} .

So, Eq is the non-empty compact set satisfying Eq = ⋃
d∈{0,1,q} φd(Eq) (cf. [8]). Observe

that φ0(Eq) ∩ φ1(Eq) 
= ∅ for any q > 1. Then Eq is a self-similar set with overlaps. Ngai
and Wang [15] gave the Hausdorff dimension of Eq :

dimH Eq = log q∗

log q
for any q > q∗, (1.1)

where q∗ = (3+√
5)/2. Yao and Li [22] considered all possible IFSs generating the set Eq .

Zou et al. [24] considered the set of points in Eq which have a unique q-expansion. In this
paper, we investigate the set of points in Eq having multiple q-expansions.

For k = 1, 2, . . . ,ℵ0 or 2ℵ0 , let

Bk := {
q ∈ (1,∞) : ∃ x ∈ Eq with precisely k different q-expansions

}
.

Accordingly, for q ∈ Bk let

U (k)
q := {

x ∈ Eq : x has precisely k different q-expansions
}
.

For simplicity, we write Uq := U (1)
q for the set of x ∈ Eq having a unique q-expansion, and

denote by U ′
q the set of all q-expansions corresponding to elements of Uq .

In this paper we will describe the sizes of the sets Bk and U (k)
q . Our first result is on the

set Bk for k = 1, 2, . . . ,ℵ0 or 2ℵ0 . Clearly, when k = 1 we have B1 = (1,∞), since 0
always has a unique q-expansion for any q > 1. When k = 2, 3, . . . ,ℵ0 or 2ℵ0 we have the
following

Theorem 1 Let qc ≈ 2.32472 be the appropriate root of x3 − 3x2 + 2x − 1 = 0. Then

B2ℵ0 = (1,∞), Bℵ0 = [2,∞), Bk = (qc,∞) for any k ≥ 2.

By Theorem 1 it follows that for q ∈ [2, qc], any x ∈ Eq can only have a unique q-
expansion, countably infinitely many q-expansions, or a continuum of q-expansions.

When k = 1, the following theorem for the univoque set Uq = U (1)
q was proven in [24].

Theorem 1.1 (i) If q ∈ (1, qc], then Uq = {0, q/(q − 1)}.
(ii) If q ∈ (qc, q∗), then Uq contains a continuum of points.
(iii) If q ∈ [q∗,∞), then dimH Uq = log qc/ log q.
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Our second result complementsTheorem1.1, and shows that there is no difference between
the Hausdorff dimensions of U (k)

q and Uq .

Theorem 2 (i) dimH Uq > 0 if and only if q > qc.

(ii) For any integer k ≥ 2 and any q ∈ Bk we have dimH U (k)
q = dimH Uq .

As a result of Theorem 2 it follows that qc is indeed the critical base, in the sense that U (k)
q

has positive Hausdorff dimension if q > qc, while U (k)
q has zero Hausdorff dimension if q ≤

qc. In fact, by Theorems 1 and 1.1 (i) it follows that for q ≤ qc the set Uq = {0, q/(q − 1)}
and U (k)

q = ∅ for any integer k ≥ 2.

Our final result focuses on the sizes of U (ℵ0)
q and U (2ℵ0 )

q .

Theorem 3 (i) Let q ∈ Bℵ0\(qc, q∗). Then U (ℵ0)
q is countably infinite.

(ii) For any q > 1 we have dimH U (2ℵ0 )
q = dimH Eq .

Remark 1.2 In Lemma 5.5 we prove a stronger result of Theorem 3 (ii), and show that the

Hausdorff measures of U (2ℵ0 )
q and Eq are the same for any q > 1, i.e.,

Hs
(

U
(
2ℵ0 )

q

)

= Hs(Eq) ∈ (0,∞),

where s = dimH Eq .

The rest of the paper is arranged as follows. In Sect. 2 we recall some properties of unique
q-expansions. The proof of Theorem 1 for the sets Bk will be presented in Sect. 3, and the
proofs of Theorems 2 and 3 for the sets U (k)

q will be given in Sects. 4 and 5, respectively.
Finally, in Sect. 6 we give some examples and end the paper with some questions.

2 Unique expansions

In this section we recall some properties of the univoque set Uq from [24]. Recall that

qc ≈ 2.32472 and q∗ = 3 + √
5

2
≈ 2.61803, (2.1)

where qc is the appropriate root of the equation x3 − 3x2 + 2x − 1 = 0. Note that for
q ∈ (1, q∗] the attractor Eq = [0, q/(q − 1)] is an interval. However, for q > q∗ the
attractor Eq is a Cantor set which contains neither interior nor isolated points.

Given q > 1, let {0, 1, q}N be the set of all infinite sequences (di ) over the alphabet
{0, 1, q}. By a word c we mean a finite string of digits c = c1 . . . cn with each digit ci ∈
{0, 1, q}. For twowords c = c1 . . . cm andd = d1 . . . dn ,wedenote by cd = c1 . . . cmd1 . . . dn
their concatenation. For a positive integer k wewrite ck = c · · · c for the k-fold concatenation
of c with itself. Furthermore, we write c∞ = cc · · · the infinite periodic sequence with
periodic block c. Throughout the paper we will use lexicographical ordering ≺,�,� and
� between sequences. More precisely, for two sequences (ci ), (di ) ∈ {0, 1, q}N we say
(ci ) ≺ (di ) or (di ) � (ci ) if there exists an integer n ≥ 1 such that c1 . . . cn−1 = d1 . . . dn−1

and cn < dn . Furthermore, we say (ci ) � (di ) if (ci ) ≺ (di ) or (ci ) = (di ).
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Recall that Uq is the set of points in Eq with a unique q-expansion, and U ′
q is the set of

corresponding q-expansions. Then

U ′
q =

{
(di ) ∈ {0, 1, q}N : ((di ))q ∈ Uq

}
.

The following lexicographical characterization of U ′
q for q > q∗ was established in [24,

Lemma 3.1].

Lemma 2.1 Let q > q∗. Then (di ) ∈ U ′
q if and only if

{
(dn+i ) ≺ q0∞ if dn = 0,
(dn+i ) � 1∞ if dn = 1.

To describe U ′
q for q ∈ (1, q∗] we need the following notation. Let

α(q) = (αi (q))

be the quasi-greedy q-expansion of q − 1, i.e., the lexicographically largest q-expansion
of q − 1 with infinitely many non-zero digits. We emphasize that α(q) is well-defined for
q ∈ (1, q∗]. By (2.1) and a direct calculation one can verify that

α(qc) = qc1
∞, α(q∗) = (q∗)∞. (2.2)

Note by Theorem 1.1 that for q ∈ (1, qc] we have Uq = {0, q/(q − 1)}, and then U ′
q =

{0∞, q∞}. So, it suffices to consider U ′
q for q ∈ (qc, q∗]. The following lemma was obtained

in [24, Lemmas 3.1 and 3.2].

Lemma 2.2 Let q ∈ (qc, q∗]. Then
Aq ⊆ U ′

q ⊆ Bq ,

where Aq is the set of sequences (di ) ∈ {0, 1, q}N satisfying

⎧
⎨

⎩

(dn+i ) ≺ 1α(q) if dn = 0,
1∞ ≺ (dn+i ) ≺ α(q) if dn = 1,
(dn+i ) � 0q∞ if dn = q,

(2.3)

and Bq is the set of sequences (di ) ∈ {0, 1, q}N satisfying the first two inequalities in (2.3).

For q > 1 let � : {0, 1, q}N → {0, 1, 2}N be defined by

�((di )) = (d ′
i ),

where d ′
i = di if di ∈ {0, 1}, and d ′

i = 2 if di = q . Clearly, � is bijective and strictly
increasing. The following lemma was given in [24, Lemma 3.2].

Lemma 2.3 The map q → �(α(q)) is strictly increasing in (1, q∗].

By (2.2) and Lemma 2.3 it follows that for any q ∈ (qc, q∗) we have q1∞ ≺ α(q) ≺ q∞.
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3 Proof of Theorem 1

In this section we will investigate the set Bk of bases q > 1 in which there exists x ∈ Eq

having k different q-expansions. Excluding the trivial case for k = 1 that B1 = (1,∞) we
consider Bk for k = 2, 3, . . . ,ℵ0 or 2ℵ0 .

The following lemma was established in [24, Theorem 4.1] and [9, Theorem 1.1].

Lemma 3.1 Let q ∈ (1, 2).

(i) If q ∈ (1, 2), then any x ∈ Eq has either a unique q-expansion, or a continuum of
q-expansions.

(ii) If q = 2, then any x ∈ Eq can only have a unique q-expansion, countably infinitely
many q-expansions, or a continuum of q-expansions.

For q > 1 we recall that φd(x) = (x + d)/q for d ∈ {0, 1, q}. Let
Sq := (

φ0(Eq) ∩ φ1(Eq)
) ∪ (

φ1(Eq) ∩ φq(Eq)
)
. (3.1)

Then Sq is associated with the switch region, since any x ∈ Sq has at least two q-expansions.
More precisely, any x ∈ φ0(Eq) ∩ φ1(Eq) has at least two q-expansions: one begins with
the digit 0 and one begins with the digit 1. Accordingly, any x ∈ φ1(Eq) ∩ φq(Eq) also
has at least two q-expansions: one starts with the digit 1 and one starts with the digit q . We
point out that the union in (3.1) is disjoint if q > 2. In particular, for q > q∗ the intersection
φ1(Eq) ∩ φq(Eq) = ∅.

For x ∈ Eq let �(x) be the set of all q-expansions of x , i.e.,

�(x) :=
{
(di ) ∈ {0, 1, q}N : ((di ))q = x

}
,

and denote its cardinality by |�(x)|.
We recall from [1] that a point x ∈ Sq is called a q-null infinite point if x has an expansion

(di ) ∈ {0, 1, q}N such that whenever

xn := (dn+1dn+2 . . .)q ∈ Sq ,

one of the following quantities is infinity, and the other two are finite:
∣
∣
∣�(φ−1

0 (xn))
∣
∣
∣ ,

∣
∣
∣�(φ−1

1 (xn))
∣
∣
∣ and

∣
∣
∣�(φ−1

q (xn))
∣
∣
∣ .

Then any q-null infinite point has countably infinitely many q-expansions.
First we consider the setBℵ0 , which is based on the following characterization (cf. [1,23]).

Lemma 3.2 q ∈ Bℵ0 if and only if Sq contains a q-null infinite point.

Lemma 3.3 Bℵ0 = [2,∞).

Proof By Lemma 3.1 we have Bℵ0 ⊆ [2,∞) and 2 ∈ Bℵ0 . So, it suffices to prove (2,∞) ⊆
Bℵ0 .

Take q ∈ (2,∞). Note that 0 = (0∞)q and q/(q − 1) ∈ (q∞)q belong to Uq . We claim
that

x = (0q∞)q
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is a q-null infinite point. Note that (10∞)q = (0q0∞)q . Then by the words substitution
10 ∼ 0q it follows that all expansions 1k0q∞, k ≥ 0, are q-expansions of x , i.e.,

∞⋃

k=0

{
1k0q∞}

⊆ �(x).

This implies that |�(x)| = ∞. Furthermore, since q > 2, the union in (3.1) is disjoint. This
implies

x = (0q∞)q = (10q∞)q ∈ φ0(Eq) ∩ φ1(Eq)\φq(Eq).

Then φ−1
0 (x) = (q∞)q ∈ Uq , φ

−1
1 (x) = x and φ−1

q (x) /∈ Eq , i.e.,

|�(φ−1
0 (x))| = 1, |�(φ−1

1 (x))| = ∞, |�(φ−1
q (x))| = 0.

By iteration it follows that x is a q-null infinite point. Hence, by Lemma 3.2 we have
q ∈ Bℵ0 , and therefore (2,∞) ⊆ Bℵ0 . ��

Now we turn to describe the set Bk . By Lemma 3.1 it follows that Bk ⊆ (2,∞) for any
k ≥ 2. First we consider B2 and need the following

Lemma 3.4 Let q > 2. Then q ∈ B2 if and only if either

(0(ai ))q = (1(bi ))q for some (ai ), (bi ) ∈ U ′
q ,

or

(1(ci ))q = (q(di ))q for some (ci ), (di ) ∈ U ′
q .

Proof First we prove the necessary condition. Take q ∈ B2. Suppose x ∈ Eq has two different
q-expansions, say

((ai ))q = x = ((bi ))q .

Then there exists a least integer k ≥ 1 such that ak 
= bk . Then

(akak+1 . . .)q = (bkbk+1 . . .)q ∈ Sq and (ak+i ), (bk+i ) ∈ U ′
q . (3.2)

Since q > 2, it gives that the union in (3.1) is disjoint. Then the necessity follows by (3.2).
To prove the sufficiency, without loss of generality, we assume (0(ai ))q = (1(bi ))q with

(ai ), (bi ) ∈ U ′
q . Note by q > 2 that the union in (3.1) is disjoint. Then

(0(ai ))q = (1(bi )) ∈ φ0(Eq) ∩ φ1(Eq)\φq(Eq).

This implies that x has exactly two different q-expansions. So, q ∈ B2. ��
Recall from (2.2) that qc ≈ 2.32472 and q∗ = (3 + √

5)/2 admit the quasi-greedy
expansions α(qc) = qc1∞ and α(q∗) = (q∗)∞. In the following lemma we describe the set
B2.

Lemma 3.5 B2 = (qc,∞).

Proof Firstwe show thatB2 ⊆ (qc,∞). ByLemma3.1 it suffices to prove that anyq ∈ (2, qc]
is not contained in B2. Take q ∈ (2, qc]. By Theorem 1.1 we have U ′

q = {(0∞), (q∞)}. Then
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by Lemma 3.4 it follows that if q ∈ B2 ∩ (2, qc] then q must satisfy one of the following
equations

(0q∞)q = (10∞)q or (1q∞)q = (q0∞)q .

This is impossible since neither equation has a solution in (2, qc]. Hence, B2 ⊆ (qc,∞).
Now we turn to prove (qc,∞) ⊆ B2. By Lemmas 2.1 and 3.4, one can verify that for any

q > q∗ the number

x = (0q0∞)q = (10∞)q

has precisely two different q-expansions. This implies that (q∗,∞) ⊆ B2.
For q ∈ (qc, q∗], one has by (2.2) that α(qc) = qc1∞ and α(q∗) = (q∗)∞. Then by

Lemma 2.3 there exists an integer m ≥ 0 such that

α(q) � q1mq0∞.

Hence, by Lemmas 2.2 and 3.4 one can verify that

y = (0q(1m+1q)∞)q = (10(1m+1q)∞)q

has precisely two different q-expansions. So, (qc, q∗] ⊆ B2, and the proof is complete. ��
Lemma 3.6 Bk = (qc,∞) for any k ≥ 3.

Proof First we prove Bk ⊆ B2 for any k ≥ 3. By Lemma 3.1 it follows that Bk ⊆ (2,∞).
Take q ∈ Bk with k ≥ 3. Suppose x ∈ Eq has exactly k different q-expansions. Since q > 2,
the union in (3.1) is disjoint. This implies that there exists a word d1 . . . dn such that

φ−1
d1

◦ · · · ◦ φ−1
dn

(x)

has exactly two different q-expansions. So, q ∈ B2. Hence, Bk ⊆ B2 for any k ≥ 3.
Now we prove B2 ⊆ Bk for any k ≥ 3. Note by Lemma 3.5 that B2 = (qc,∞). Then it

suffices to prove (qc,∞) ⊆ Bk . First we prove (q∗,∞) ⊆ Bk . Take q ∈ (q∗,∞). We claim
that for any k ≥ 1,

xk = (0qk−1(1q)∞)q

has precisely k different q-expansions. We will prove this by induction on k.
For k = 1 one can easily check by using Lemma 2.1 that x1 = (0(1q)∞)q ∈ Uq . Suppose

xk has exactly k different q-expansions. Now we consider xk+1, which can be written as

xk+1 = (0qk(1q)∞)q = (10qk−1(1q)∞)q .

By Lemma 2.1 we have qk(1q)∞ ∈ U ′
q . Moreover, by the induction hypothesis

(0qk−1(1q)∞)q = xk has exactly k different q-expansions. Then xk+1 has at least k + 1
different q-expansions. On the other hand, since q > q∗ > 2, the union in (3.1) is disjoint.
Then

xk+1 ∈ φ0(Eq) ∩ φ1(Eq)\φq(Eq).

This implies that xk+1 indeed has k + 1 different q-expansions. By induction this proves the
claim, and hence (q∗,∞) ⊆ Bk for all k ≥ 3.

It remains to prove (qc, q∗] ⊆ Bk . Take q ∈ (qc, q∗]. By (2.2) and Lemma 2.3 there exists
an integer m ≥ 0 such that

α(q) � q1mq0∞. (3.3)
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We claim that

yk = (0qk−1(1m+1q)∞)q

has exactly k different q-expansions. Again, this will be proven by induction on k.
If k = 1, then by using (3.3) in Lemma 2.2 it gives that y1 = (0(1m+1q)∞)q has a unique

q-expansion. Suppose yk has exactly k different q-expansions. Now we consider

yk+1 = (0qk(1m+1q)∞)q = (10qk−1(1m+1q)∞)q .

By (3.3) and Lemma 2.2 it yields that qk(1m+1q)∞ ∈ U ′
q . Furthermore, by the induction

hypothesis (0qk−1(1m+1q)∞)q = yk has exactly k different q-expansions. This implies that
yk+1 has at least k + 1 different q-expansions. On the other hand, note that q > qc > 2, and
therefore the union in (3.1) is disjoint. So, yk+1 ∈ φ0(Eq) ∩ φ1(Eq)\φq(Eq), which implies
that yk+1 indeed has k + 1 different q-expansions. By induction this proves the claim, and
then (qc, q∗] ⊆ Bk for all k ≥ 3. This completes the proof. ��

Proof of Theorem 1 By Lemmas 3.3, 3.5 and 3.6 it suffices to prove B2ℵ0 = (1,∞). This can
be verified by observing that

x = ((100)∞)q ∈ U (2ℵ0 )
q

for any q > 1, because by the word substitution 10 ∼ 0q one can show that x indeed has a
continuum of different q-expansions. ��

4 Proof of Theorem 2

For q > 1 and k ∈ N we recall that U (k)
q is the set of x ∈ [0, q/(q − 1)] having precisely k

different q-expansions. In this section we are going to investigate the Hausdorff dimension
of U (k)

q . First we show that qc ≈ 2.32472 is the critical base for Uq .

Lemma 4.1 Let q > 1. Then dimH Uq > 0 if and only if q > qc.

Proof The necessity follows from Theorem 1.1 (i). For the sufficiency we take q ∈ (qc,∞).
If q > q∗, then by Theorem 1.1 (iii) we have

dimH Uq = log qc
log q

> 0.

So it remains to prove dimH Uq > 0 for any q ∈ (qc, q∗].
Take q ∈ (qc, q∗]. Recall from (2.2) that α(qc) = qc1∞ and α(q∗) = (q∗)∞. Then by

Lemma 2.3 there exists an integer m ≥ 0 such that α(q) � q1mq0∞. Whence, by Lemma
2.2 one can verify that all sequences in

�′
m :=

∞∏

i=1

{
q1m+1, 1m+2}

excluding those ending with 1∞ belong to U ′
q . This implies that

dimH Uq ≥ dimH �m(q), (4.1)
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where �m(q) := {
((di ))q : (di ) ∈ �′

m

}
. Note that �m(q) is a self-similar set generated by

the IFS

f1(x) = x

qm+2 + (q1m+10∞)q , f2(x) = x

qm+2 + (1m+20∞)q ,

which satisfies the open set condition (cf. [8]). Therefore, by (4.1) we conclude that

dimH Uq ≥ dimH �m(q) = log 2

(m + 2) log q
> 0.

��
In the following we will consider the Hausdorff dimension of U (k)

q for any k ≥ 2, and

prove dimH U (k)
q = dimH Uq . The upper bound of dimH U (k)

q is easy.

Lemma 4.2 Let q > 1. Then dimH U (k)
q ≤ dimH Uq for any k ≥ 2.

Proof Recall that φd(x) = (x+d)/q for d ∈ {0, 1, q}. Then the lemma follows by observing
that for any k ≥ 2,

U (k)
q ⊆

∞⋃

n=1

⋃

d1···dn∈{0,1,q}n
φd1 ◦ · · · ◦ φdn (Uq),

and the countable stability of Hausdorff dimension. ��
For the lower bound of dimH U (k)

q we need more. By Lemmas 4.1 and 4.2 it follows that

dimH U (k)
q = 0 = dimH Uq for any q ≤ qc.

So, it suffices to consider q > qc. Let

F ′
q(1) :=

{
(di ) ∈ U ′

q : d1 = 1
}

be the follower set in U ′
q generated by the word 1, and let Fq(1) be the set of x ∈ Eq which

have a q-expansion in F ′
q(1), i.e., Fq(1) = {((di ))q : (di ) ∈ F ′

q(1)}.

Lemma 4.3 Let q > qc. Then dimH U (k)
q ≥ dimH Fq(1) for any k ≥ 1.

Proof For k ≥ 1 and q > qc let

�k
q :=

{
((di ))q : d1 . . . dk = 0qk−1, (dk+i ) ∈ F ′

q(1)
}

.

Then�k
q = φ0 ◦φk−1

q (Fq(1)), and therefore dimH �k
q = dimH Fq(1). So it suffices to prove

�k
q ⊆ U (k)

q . Arbitrarily take

xk =
(
0qk−1(ci )

)

q
∈ �k

q with (ci ) ∈ F ′
q(1).

We will prove by induction on k that xk has exactly k different q-expansions.
For k = 1, by Lemmas 2.1 and 2.2 it follows that x1 = (0(ci ))q ∈ Uq . Suppose xk =

(0qk−1(ci ))q has precisely k different q-expansions. Now we consider xk+1, which can be
expanded as

xk+1 =
(
0qk(ci )

)

q
= (10qk−1(ci ))q .
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By Lemmas 2.1 and 2.2 we have qk(ci ) ∈ U ′
q , and by the induction hypothesis it yields that

(0qk−1(ci ))q = xk has k different q-expansions. This implies that xk+1 has at least k + 1
different q-expansions. On the other hand, since q > qc > 2, it gives that the union in (3.1)
is disjoint. So, xk+1 ∈ φ0(Eq) ∩ φ1(Eq)\φq(Eq), which implies that xk+1 indeed has k + 1
different q-expansions.

By induction this proves xk ∈ U (k)
q for all k ≥ 1. Since xk was taken arbitrarily from �k

q ,

we conclude that �k
q ⊆ U (k)

q for any k ≥ 1. The proof is complete. ��
Lemma 4.4 Let q > qc. Then dimH Fq(1) ≥ dimH Uq .

Proof First we consider q > q∗. By Lemma 2.1 one can show that U ′
q is contained in an

irreducible sub-shift of finite type X ′
A over the states {0, 1, q} with adjacency matrix

A =
⎛

⎝
1 1 0
0 1 1
1 1 1

⎞

⎠ . (4.2)

Moreover, the complement set X ′
A\U ′

q contains all sequences ending with 1∞. This implies
that

dimH Uq = dimH XA(q), (4.3)

where XA(q) := {
((di ))q : (di ) ∈ X ′

A

}
. Note that XA(q) is a graph-directed set satisfying the

open set condition (cf. [24, Theorem 3.4]), and the sub-shift of finite type X ′
A is irreducible.

Then by (4.3) it follows that

dimH Uq = dimH XA(q) = dimH Fq(1).

Now we consider q ∈ (qc, q∗]. By Lemma 2.2 it follows that

U ′
q ⊆ {

q∞} ∪
∞⋃

k=0

{
qk0∞}

∪
∞⋃

k=0

∞⋃

m=0

{
qk0mF ′

q(1)
}

,

where

qk0mF ′
q(1) :=

{
(di ) : d1 . . . dk+m = qk0m, (dk+m+i ) ∈ F ′

q(1)
}

.

This implies that dimH Uq ≤ dimH Fq(1). ��
Proof of Theorem 2 The theorem follows directly by Lemmas 4.1–4.4. ��

5 Proof of Theorem 3

In this section we will consider the set U (ℵ0)
q which consists of all x ∈ Eq having countably

infinitely many q-expansions.

Lemma 5.1 For any q ∈ Bℵ0 the set U (ℵ0)
q contains infinitely many points.

Proof Let q ∈ Bℵ0 . By Theorem 1 we have q ∈ [2,∞). Then it suffices to show that for any
k ≥ 1,

zk := (0kq∞)q

is a q-null infinite points, and thus zk ∈ U (ℵ0)
q .
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If q > 2, then by the proof of Lemma 3.3 it yields that z1 = (0q∞)q is a q-null infinite
point. Moreover, note that zk = φk−1

0 (z1) /∈ Sq for any k ≥ 2. This implies that all of these

points zk, k ≥ 1, are q-null infinite points. So, {zk : k ≥ 1} ⊆ U (ℵ0)
q .

If q = 2, then by using the substitutions

0q ∼ 10, 0q∞ = 1∞ = q0∞,

one can also show that zk is a q-null infinite point. In fact, all of the q-expansions of zk =
(0kq∞)q are of the form

0kq∞, 0k−11∞, 0k−11m0q∞ and 0k−11m−1q0∞,

where m ≥ 1. Therefore, zk ∈ U (ℵ0)
q for any k ≥ 1. ��

ByLemma 5.1 it follows thatU (ℵ0)
q is at least countably infinite for any q ∈ Bℵ0 = [2,∞).

In the following lemma we show that U (ℵ0)
q is indeed countably infinite if q ≥ q∗.

Lemma 5.2 Let q ≥ q∗. Then U (ℵ0)
q is at most countable.

Proof Let x ∈ U (ℵ0)
q . Then x has a q-expansion (di ) such that

|�(xn)| = ∞ for infinitely many n ∈ N,

where xn := ((dn+i ))q . This implies that (di ) can not end in U ′
q .

Note by the proof of Lemma 4.4 that U ′
q ⊆ X ′

A, where X ′
A is a sub-shift of finite type

over the state {0, 1, q}with adjacency matrix A defined in (4.2). Moreover, X ′
A\U ′

q is at most

countable (cf. [24, Theorem 3.4]). Note that the expansion (di ) of x ∈ U (ℵ0)
q does not end in

U ′
q . Then it suffices to prove that the sequence (di ) must end in X ′

A.
Suppose on the contrary that (di ) does not end in X ′

A. Then by (4.2) the word 0q or 10
occurs infinitely many times in (di ). Using the word substitution 0q ∼ 10 this implies that
x = ((di ))q has a continuum of q-expansions, leading to a contradiction with x ∈ U (ℵ0)

q . ��

Furthermore, we can prove that U (ℵ0)
q is also countably infinite for q ∈ [2, qc].

Lemma 5.3 Let q ∈ [2, qc]. Then U (ℵ0)
q is at most countable.

Proof Take q ∈ [2, qc]. By Theorems 1 and 1.1 it follows that any x ∈ Eq with |�(x)| < ∞
must belong to Uq = {0, q/(q − 1)}. Suppose x ∈ U (ℵ0)

q . Then there exists a word d1 . . . dn
such that

φ−1
d1

◦ · · · ◦ φ−1
dn

(x) ∈ Uq .

This implies that the set U (ℵ0)
q is at most countable, since

U (ℵ0)
q ⊆

∞⋃

n=1

⋃

d1...dn∈{0,1,q}n
φd1 ◦ · · · ◦ φdn

(Uq
)
.

��
When q ∈ (qc, q∗), one might expect that U (ℵ0)

q is also countably infinite. Unfortunately,

we are not able to prove this. Instead, we show that the Hausdorff dimension of U (ℵ0)
q is

strictly smaller than dimH Eq = 1.
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Lemma 5.4 For q ∈ (qc, q∗) we have dimH U (ℵ0)
q ≤ dimH Uq < 1.

Proof Take q ∈ (qc, q∗). Note that

U (ℵ0)
q ⊆

∞⋃

n=1

⋃

d1...dn∈{0,1,q}n
φd1 ◦ · · · ◦ φdn (Uq).

By using the countable stability of Hausdorff dimension this implies that dimH U (ℵ0)
q ≤

dimH Uq . In the following it suffices to prove dimH Uq < 1.
Note that U ′

q ⊆ X ′
A, where X ′

A is the sub-shift of finite type over the state {0, 1, q} with
adjacency matrix A defined in (4.2). Then

Uq ⊆ XA(q) = {
((di ))q : (di ) ∈ X ′

A

}
.

Note that XA(q) is a graph-directed set (cf. [14]). This implies that

dimH Uq ≤ dimH XA(q) ≤ log qc
log q

< 1.

��
At the end of this section we investigate the set U (2ℵ0 )

q which consists of all points having

a continuum of q-expansions, and show that U (2ℵ0 )
q has full Hausdorff measure.

Lemma 5.5 For any q > 1 we have

HdimH Eq

(

U
(
2ℵ0 )

q

)

= HdimH Eq (Eq) ∈ (0,∞).

Proof Clearly, for q ∈ (1, q∗] we have Eq = [0, q/(q − 1)], and then HdimH Eq (Eq) ∈
(0,∞). Moreover, for q > q∗ we have by (1.1) that dimH Eq = log q∗/ log q , and the set
Eq has positive and finite Hausdorff measure (cf. [15]). Therefore,

0 < HdimH Eq (Eq) < ∞ for any q > 1. (5.1)

First we prove the lemma for q ≤ q∗. By Theorems 1 and 1.1 it follows that for any
q ∈ (1, q∗],

dimH U (k)
q = dimH Uq < 1 = dimH Eq for any k ≥ 2.

Moreover, by Lemmas 5.2–5.4 we have dimH U (ℵ0)
q < 1. Observe that

Eq = U (2ℵ0 )
q ∪ U (ℵ0)

q ∪
∞⋃

k=1

U (k)
q for any q > 1. (5.2)

Therefore, by (5.1) and (5.2) we have HdimH Eq (U (2ℵ0 )
q ) = HdimH Eq (Eq) ∈ (0,∞).

Now we consider q > q∗. By Theorems 1.1 (iii), 2 and (1.1) it follows that

dimH U (k)
q = log qc

log q
<

log q∗

log q
= dimH Eq

for any k ≥ 1. Moreover, by Lemma 5.2 we have dimH U (ℵ0)
q = 0. Again, by (5.1) and (5.2)

it follows that HdimH Eq (U (2ℵ0 )
q ) = HdimH Eq (Eq) ∈ (0,∞). This completes the proof. ��

Proof of Theorem 3 The theorem follows by Lemmas 5.1–5.3 and 5.5. ��
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6 Examples and final remarks

In this section we consider some examples. The first example is an application of Theorems
1–3 to expansions with deleted digits set.

Example 6.1 Let q = 3. We consider q-expansions with digits set {0, 1, 3}. This is a special
case of expansions with deleted digits (cf. [17]). Then

E3 =
{ ∞∑

i=1

di
3i

: di ∈ {0, 1, 3}
}

.

By Theorems 1.1 and 2 we have

dimH U (k)
3 = dimH U3 = log qc

log 3
≈ 0.767877

for any k ≥ 2. This means that the set U (k)
3 consisting of all points in E3 with precisely k

different triadic expansions has the same Hausdorff dimension log qc/ log 3 for any integer
k ≥ 1. Moreover, by Theorem 3 it follows that U (ℵ0)

3 is countably infinite, and

dimH U (2ℵ0 )
3 = dimH E3 = log q∗

log 3
≈ 0.876036.

Theorem 1.1 gives a uniform formula for the Hausdorff dimension of Uq for q ∈ [q∗,∞).
Excluding the trivial case for q ∈ (1, qc] that Uq = {0, q/(q − 1)}, it would be interesting
to ask whether the Hausdorff dimension of Uq can be determined for q ∈ (qc, q∗). In the
following we give an example for which the Hausdorff dimension of Uq can be explicitly
calculated.

Example 6.2 Let q = 1 + √
2 ∈ (qc, q∗). Then

(q0∞)q = (1qq0∞)q and α(q) = (q1)∞.

Moreover, the quasi-greedy q-expansion of q − 1 with alphabet {0, q − 1, q} is q(q − 1)∞.
Therefore, by Lemmas 3.1 and 3.2 of [24] it follows that U ′

q is the set of sequences (di ) ∈
{0, 1, q}∞ satisfying

⎧
⎨

⎩

dn+1dn+2 · · · ≺ (1q)∞ if dn = 0,
1∞ < dn+1dn+2 · · · ≺ (q1)∞ if dn = 1,
dn+1dn+2 · · · � 01∞ if dn = q.

Let X ′
A be the sub-shift of finite type over the states

{00, 01, 11, 1q, q0, q1, qq}
with adjacency matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then one can verify that U ′
q ⊆ X ′

A, and X ′
A\U ′

q contains all sequences ending with 1∞ or
(1q)∞. This implies that

dimH Uq = dimH XA(q),

where XA(q) = {
((di ))q : (di ) ∈ X ′

A

}
. Note that XA(q) is a graph-directed set satisfying

the open set condition (cf. [14]). Then by Theorem 2 we have

dimH U (k)
q = dimH Uq = h(X ′

A)

log q
≈ 0.691404.

Furthermore, by the word substitution q00 ∼ 1qq and in a similar way as in the proof
of Lemma 5.2 one can show that U (ℵ0)

q is countably infinite. Finally, by Theorem 3 we have

dimH U (2ℵ0 )
q = dimH Eq = 1.

Question 1. Can we give a uniform formula for the Hausdorff dimension of Uq for q ∈
(qc, q∗)?

In beta expansions we know that the dimension function of the univoque set has a Devil’s
staircase behavior (cf. [12]).

Question 2. Does the dimension function D(q) := dimH Uq have a Devil’s staircase
behavior in the interval (qc, q∗)?

By Theorem 3 one has that U (ℵ0)
q is countable for any q ∈ B2\(qc, q∗). Moreover, in

Lemma 5.4 we show that dimH U (ℵ0)
q ≤ dimH Uq < 1 for any q ∈ (qc, q∗). In view of

Example 6.2 we ask the following
Question 3. Does there exist a q ∈ (qc, q∗) such that U (ℵ0)

q has positive Hausdorff dimen-
sion?
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