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Abstract Let X be a compact nonsingular real algebraic variety.Weprove that if a continuous
map from X into the unit p-sphere is homotopic to a continuous rational map, then, under
certain assumptions, it can be approximated in the compact-open topology by continuous
rational maps. As a byproduct, we also obtain some results on approximation of smooth
submanifolds by nonsingular subvarieties.
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1 Introduction and main results

Throughout this paper the term real algebraic variety designates a locally ringed space
isomorphic to an algebraic subset of R

n , for some n, endowed with the Zariski topology and
the sheaf of real-valued regular functions (such an object is called an affine real algebraic
variety in [3]). Nonsingular varieties are assumed to be of pure dimension. The class of
real algebraic varieties is identical with the class of quasi-projective real varieties, cf. [3,
Proposition 3.2.10,Theorem 3.4.4]. Morphisms of real algebraic varieties are called regular
maps. Each real algebraic variety carries also the Euclidean topology, which is induced by
the usual metric on R. Unless explicitly stated otherwise, all topological notions relating to
real algebraic varieties refer to the Euclidean topology.

The author was partially supported by NCN grant 2011/01/B/ST1/01289.

B Wojciech Kucharz
Wojciech.Kucharz@im.uj.edu.pl

1 Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University,
Łojasiewicza 6, 30-348 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-016-1639-4&domain=pdf


1202 W. Kucharz

Let X and Y be real algebraic varieties. Amap f : X → Y is said to be continuous rational
if it is continuous and there exists a Zariski open and dense subvariety U of X such that the
restriction f |U : U → Y is a regular map. Let X ( f ) denote the union of all such U . The
complement P( f ) = X\X ( f ) of X ( f ) is called the irregularity locus of f . Thus P( f ) is the
smallest Zariski closed subvariety of X for which the restriction f |X\P( f ) : X\P( f ) → Y
is a regular map. If f (P( f )) �= Y , we say that f is a nice map. There exist continuous
rational maps that are not nice, cf. [18, Example 2.2 (ii)]. Continuous rational maps have
only recently become the object of serious investigation, cf. [11,17–20].

The space C(X, Y ) of all continuous maps from X to Y will always be endowed with the
compact-open topology. There are the following inclusions

C(X, Y ) ⊇ R0(X, Y ) ⊇ R0(X, Y ) ⊇ R(X, Y ),

where R0(X, Y ) is the set of all continuous rational maps, R0(X, Y ) consists of the nice
maps in R0(X, Y ), andR(X, Y ) is the set of regular maps. By definition, a continuous map
from X into Y can be approximated by continuous rational maps if it belongs to the closure
of R0(X, Y ) in C(X, Y ). Approximation by nice continuous rational maps or regular maps
is defined in the analogous way.

Henceforth we assume that the variety X is compact and nonsingular, and concentrate our
attention on maps with values in the unit p-sphere

S
p = {(u0, . . . , u p) ∈ R

p+1 | u20 + · · · + u2p = 1}.
Any continuous map h : X → S

p has a neighborhood in C(X, S
p) consisting entirely of

maps homotopic to h. The following two natural questions are of interest:

(Q1) If h is homotopic to a regular map, can it be approximated by regular maps?
(Q2) If h is homotopic to a continuous rational map, can it be approximated by continuous

rational maps?

If dim X < p, then the answer to either of these questions is “yes” since R
p is biregularly

isomorphic to S
p with one point removed.

Assume then that dim X ≥ p. The answer to (Q1) is affirmative for p ∈ {1, 2, 4}, cf. [4]
or [3]. The answer to (Q2) is affirmative for dim X ≤ p+1 or p ∈ {1, 2, 4}, cf. [19]. Nothing
is known about (Q1) and (Q2) in other cases. Actually, the setsR(X, S

1) andR0(X, S
1) have

equal closures in C(X, S
1), cf. [18]. Furthermore, the set R0(X, S

p) is dense in C(X, S
p) if

dim X = p, cf. [19]. On the other hand, the closure of R(S1 × S
1, S

2) in C(S1 × S
1, S

2)

coincides with the set of all continuous null homotopic maps, and hence is different from
C(S1×S

1, S
2), cf. [5, Theorem 2.4]; [7, Proposition 2.2]. If dim X = p+1, then the closures

ofR0(X, S
p) andR0(X, S

p) in C(X, S
p) are identical, cf. [19]. No continuous rational map

is known that is not homotopic to a nice continuous rational map. Similarly, no continuous
rational map is known that cannot be approximated by nice continuous rational maps. In the
present paper we obtain new results, related to (Q1) and (Q2), on nice continuous rational
maps. All results announced in this section are proved in Sect. 2.

Theorem 1.1 Let X be a compact nonsingular real algebraic variety and let p be an integer
satisfying dim X + 3 ≤ 2p. For a continuous map h : X → S

p, the following conditions are
equivalent:

(a) h can be approximated by nice continuous rational maps.
(b) h is homotopic to a nice continuous rational map.
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Continuous rational maps into spheres 1203

Our next result requires some preparation.
For any k-dimensional compact smooth (of class C∞) manifold K , let [K ] denote its

fundamental class in the homology group Hk(K ; Z/2). If T is a topological space and K is
a subspace of T , we denote by [K ]T the homology class in Hk(T ; Z/2) represented by K ,
that is, [K ]T = i∗([K ]), where i : K ↪→ T is the inclusion map.

Let X be a nonsingular real algebraic variety. We denote by Ak(X) the subgroup of
Hk(X; Z/2) generated by all homology classes of the form [Z ]X , where Z is a k-dimensional
nonsingular Zariski locally closed subvariety of X that is compact and orientable as a smooth
manifold. Here Z is not assumed to be Zariski closed in X .

For any positive integer p, let sp be the unique generator of the cohomology group
H p(Sp; Z/2) ∼= Z/2.

Recall that a smooth manifold is said to be spin if it is orientable and its second Stiefel–
Whitney class vanishes.

Theorem 1.2 Let X be a compact nonsingular real algebraic variety of dimension p + 2,
where p ≥ 5. Assume that X is a spin manifold. For a continuous map h : X → S

p, the
following conditions are equivalent:

(a) h can be approximated by nice continuous rational maps.
(b) h is homotopic to a nice continuous rational map.
(c) The homology class Poincaré dual to the cohomology class h∗(sp) belongs to A2(X).

Denote by
ρ : H∗(−; Z) → H∗(−; Z/2)

the reduction modulo 2 homomorphism.

Corollary 1.3 Let X be a compact nonsingular real algebraic variety of dimension p + 2,
where p ≥ 5. Assume that X is a spinmanifold. Then the following conditions are equivalent:

(a) Each continuous map from X into S
p can be approximated by nice continuous rational

maps.
(b) Each continuous map from X into S

p is homotopic to a nice continuous rational map.
(c) A2(X) = ρ(H2(X; Z)).

In some cases, condition (c) in Corollary 1.3 can easily be verified.

Example 1.4 Let X = C1 × · · ·×Cp+2, where each Ci is a compact connected nonsingular
real algebraic curve, 1 ≤ i ≤ p + 2. If p ≥ 5, then the set R0(X, S

p) of nice continuous
rational maps is dense in C(X, S

p). Indeed, A2(X) = H2(X; Z/2) and hence the assertion
follows from Corollary 1.3.

If X is as in Example 1.4, then in general there exist continuous maps from X into S
p that

cannot be approximated by regular maps, cf. [7].
According to [19], for any positive integers n and p, the setR0(S

n, S
p) of nice continuous

rational maps is dense in C(Sn, S
p). In this paper we obtain other density results. As in

[3,10], given a compact nonsingular real algebraic variety X , we denote by H alg
k (X; Z/2)

the subgroup of Hk(X; Z/2) generated by all homology classes represented by k-dimensional
Zariski closed (possibly singular) subvarieties of X . It easily follows that

Ak(X) ⊆ H alg
k (X; Z/2).
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If k ≤ d and
H alg
k (X; Z/2) = Hk(X; Z/2)

then the Künneth formula implies that

H alg
k (X × S

d ; Z/2) = Hk(X × S
d ; Z/2).

Conversely, the latter equality implies the former (with no restriction on k and d) since

π∗(Hk(X × S
d ; Z/2)) = Hk(X; Z/2),

where π : X ×S
d → X is the canonical projecion, and H alg

k (−; Z/2) is functorial for regular
maps between compact real algebraic varieties, cf. [10, 5.12] or [2, p. 53].

Theorem 1.5 Let X be a compact nonsingular real algebraic variety of dimension n. Let d
and p be positive integers satisfying n + 1 ≤ p and n + 2d + 1 ≤ 2p. If

H alg
i (X; Z/2) = Hi (X; Z/2)

for every integer i with 0 ≤ i ≤ n + d − p, then the set R0(X × S
d , S

p) of nice continuous
rational maps is dense in C(X × S

d , S
p).

It is worthwhile to record the following observation.

Example 1.6 Let d , n and p be positive integers satisfying one of the following two condi-
tions:

(i) n + d ≥ 7 and p = n + d − 2;
(ii) n + 1 ≤ p and n + 2d + 1 ≤ 2p.

In view of Corollary 1.3 and Theorem 1.5, the set R0(S
n × S

d , S
p) of nice continuous

rational maps is dense in C(Sn × S
d , S

p). Furthermore, by [19, Corollary 1.3,Theorem 1.7],
R0(S

n × S
d , S

p) is dense in C(Sn × S
d , S

p) if n + d − p ≤ 1. It would be interesting to
decide whether or not this density assertion holds with no restrictions on d , n and p.

We have one more density result.

Theorem 1.7 Let X be a compact nonsingular real algebraic variety of dimension p, where
p ≥ 5. If

H alg
2 (X; Z/2) = H2(X; Z/2)

and X is a spin manifold, then the set R0(X × S
2, S

p) of nice continuous rational maps is
dense in C(X × S

2, S
p).

In topology, one often achieves stabilization effects by making use of the suspension.
For problems involving continuous rational maps, the following construction can serve as a
substitute for the suspension.

For any positive integer p, let

σp : S
p × S

1 → S
p+1

be a continuous map such that for some nonempty open subset Up of S
p+1, the restriction

σUp : σ−1
p (Up) → Up of σp is a smooth diffeomorphism. We denote by 1 the identity map

of S
1.
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Continuous rational maps into spheres 1205

Theorem 1.8 Let X be a compact nonsingular real algebraic variety and let p be a positive
integer. For any continuous map h : X → S

p, the following conditions are equivalent:

(a) The map σp ◦(h×1) : X×S
1 → S

p+1 can be approximated by nice continuous rational
maps.

(b) The map σp ◦ (h×1) : X ×S
1 → S

p+1 is homotopic to a nice continuous rational map.

In Sect. 2 we derive the results stated above from certain results concerning approximation
of smooth submanifolds by nonsingular subvarieties. Approximation of smooth submani-
folds, being of independent interest, is further investigated in Sect. 3.

2 Weak algebraic approximation of smooth submanifolds

For any smoothmanifolds (with possibly nonempty boundary) N and P , letC∞(N , P) denote
the space of all smooth maps from N into P endowed with the C∞ topology, cf. [13]. The
source manifold will always be assumed to be compact, and hence the weak C∞ topology
coincides with the strong one.

Let X be a nonsingular real algebraic variety. A compact smooth submanifold M of X
is said to admit a weak algebraic approximation in X if each neighborhood of the inclusion
map M ↪→ X in the space C∞(M, X) contains a smooth embedding e : M → X such that
e(M) is a nonsingular Zariski locally closed subvariety of X . If e can be chosen so that
e(M) is a nonsingular Zariski closed subvariety of X , then M is said to admit an algebraic
approximation in X .

Weak algebraic approximation will be essential for the proofs of Theorems 1.1, 1.2, 1.5,
1.7 and 1.8. It is also of independent interest, cf. [1, Theorems A and F]. In order to avoid
unnecessary restrictions, we do not assume that the ambient variety X is compact. Our criteria
for weak algebraic approximation are presented in Propositions 2.3 and 2.6.

For any real algebraic variety V , let Reg(V ) denote its locus of nonsingular points in
dimension dim V .

Lemma 2.1 Let X be a nonsingular real algebraic variety and let M be a compact smooth
submanifold of X. Assume that there exists a Zariski closed subvariety A of X such that
M ∩ Reg(A) = ∅ and

M ∪ Reg(A) = ∂P,

where P is a compact smoothmanifold with boundary ∂P, embedded in X with trivial normal
bundle and satisfying P ∩ A = Reg(A). If S = A\Reg(A), then M ⊆ X\S and M admits an
algebraic approximation in X\S. In particular, M admits a weak algebraic approximation
in X.

Proof According to Hironaka’s theorem on resolution of singularities [12] (cf. also [16] for
a very readable exposition), we can assume that X is a Zariski open subvariety of a com-
pact nonsingular real algebraic variety X ′. Note that either A = ∅ or Reg(A) is a compact
smooth submanifold of X . If A′ is a Zariski closure of A in X ′, then A = A′ ∩ X and
Reg(A) = Reg(A′). Consequently, we can assume without loss of generality that X is
compact. Then it follows directly from the proof of Proposition 2.7 in [19] that M admits
an algebraic approximation in X\S. Hence, M admits a weak algebraic approximation
in X . ��
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Lemma 2.2 Let X be a nonsingular real algebraic variety and let M be a compact smooth
submanifold of X. Assume that there exists a nonsingular Zariski locally closed subvariety Z
of X such that M ∩ Z = ∅ and

M ∪ Z = ∂Q,

where Q is a compact smooth manifold with boundary ∂Q, embedded in X with trivial
normal bundle. If 2 dim M + 1 ≤ dim X, then M admits a weak algebraic approximation in
X.

Proof Note that Z is a compact smooth submanifold of X . Either Z = ∅ or dim Z = dim M .
If A is the Zariski closure of Z in X , then

Z = Reg(A).

Furthermore, S := A\Z is a Zariski closed subvariety of X with dim S < dim M . In par-
ticular, S has a finite stratification into smooth submanifolds of X of dimension at most
dim S.

Assume that 2 dim M + 1 ≤ dim X and let f : Q ↪→ X be the inclusion map. Since
dim Q = dim M + 1, we get

dim Q + dim S < dim X.

In view of the transversality theorem, there exists a smooth map g : Q → X , arbitrarily close
to f in the space C∞(Q, X), such that

g|Reg(A) = f |Reg(A) and g(Q) ∩ S = ∅.

If g is sufficiently close to f , then it is a smooth embedding isotopic to f . In particular,
P := g(Q) is a compact smooth manifold with boundary

∂P = g(M) ∪ Reg(A),

embedded in X with trivial normal bundle. By construction,

g(M) ∩ Reg(A) = ∅ and P ∩ A = Reg(A).

Hence, according to Lemma 2.1, the smooth submanifold g(M) of X admits a weak
algebraic approximation in X . Consequently, M admits a weak algebraic approximation in
X . ��
Proposition 2.3 Let X be a nonsingular real algebraic variety and let M be a compact
smooth submanifold of X. Assume that there exists a nonsingular Zariski locally closed
subvariety Z of X such that

(M × {0}) ∪ (Z × {1}) = ∂B,

where B is a compact smooth manifold with boundary ∂B, embedded in X × R with trivial
normal bundle. If 2 dim M + 3 ≤ dim X, then M admits a weak algebraic approximation
in X.

Proof Note that Z is a compact smooth submanifold of X . Either Z = ∅ or dim Z = dim M .
Assume that 2 dim M + 3 ≤ dim X . We can find a small smooth isotopy which transforms
M onto a smooth submanifold M ′ of X with M ′ ∩ Z = ∅. Thus there exists a smooth
diffeotopy ϕ : X ×R → X such that ϕ0 is the identity map and ϕ1(M) = M ′. Here, as usual,
ϕt (x) = ϕ(x, t) for t in R and x in X . The map

� : X × R → X × R, �(x, t) = (ϕ(x, 1 − t), t)
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Continuous rational maps into spheres 1207

is a smooth diffeomorphism. If B ′ = �(B), then

(M ′ × {0}) ∪ (Z × {1}) = ∂B ′.

Therefore, replacing M by M ′ and B by B ′, we can assume that

M ∩ Z = ∅.

Let f = ( f1, f2) : B ↪→ X × R be the inclusion map. Since 2 dim B + 1 ≤ dim X ,
the smooth map f1 : B → X can be approximated in the space C∞(B, X) by a smooth
embedding g1 : B → X . Furthermore, g1 can be chosen so that g1|∂B = f1|∂B . Note that

g1(x, 0) = f1(x, 0) = x for all x in M,

g1(x, 1) = f1(x, 1) = x for all x in Z .

By construction, Q := g1(B) is a compact smooth submanifold of X with boundary

∂Q = M ∪ Z .

In view of Lemma 2.2, it suffices to prove that the normal bundle ν to Q in X is trivial. This
can be done as follows. The smooth embedding

g : B → X × R, g(x, t) = (g1(x, t), 0)

is homotopic to f . Since 2 dim Q + 2 ≤ dim(X × R), the smooth embeddings f and g are
isotopic, cf. [23, Theorem 6] or [13, p. 183, Exercise 10]. Consequently, the normal bundle
to g(B) in X × R is trivial, the normal bundle to f (B) = B in X × R being trivial. Since
g(B) = Q × {0}, it follows that the normal bundle ν is stably trivial. Now,

rankν = dim X − dim Q ≥ dim Q + 1,

and hence ν is trivial, cf. [15, p. 100]. ��
Proof of Theorem 1.1 It suffices to prove that (b) implies (a). Suppose that (b) holds. We can
assume that the map h is smooth. By Sard’s theorem, h is transverse to some point y in S

p .
Then M := h−1(y) is a compact smooth submanifold of X . According to [18, Theorem 2.4],
there exists a nonsingular Zariski locally closed subvariety Z of X such that

(M × {0}) ∪ (Z × {1}) = ∂B,

where B is a compact smooth manifold with boundary ∂B, embedded in X × R with trivial
normal bundle. In view of Proposition 2.3, M admits a weak algebraic approximation in X ,
which in turn implies that h can be approximated by nice continuous rational maps, cf. [19,
Theorem 1.2]. ��

The proof of Theorem 1.2 requires more preparation.

Lemma 2.4 Let N be a smooth spin manifold. Let P be a compact orientable smooth sub-
manifold of N , with possibly nonempty boundary. Assume that 2 dim P + 1 ≤ dim N and
dim P ≤ 3. Then the normal bundle to P in N is trivial.

Proof For any smooth manifold M , let τM denote its tangent bundle. The restriction τN |P
is isomorphic to the direct sum τP ⊕ ν. Since P is orientable and dim P ≤ 3, it follows that
P is a spin manifold. Consequently, the i th Stiefel–Whitney class of ν is equal to zero for
i = 1, 2. Denote by D the double of P and regard P as a submanifold of D. If r : D → P is
the standard retraction, then the i th Stiefel–Whitney class of the pullback vector bundle r∗ν
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on D is zero for i = 1, 2. This implies that r∗ν is stably trivial, cf. [6, Lemma 1.2]. Actually,
r∗ν is trivial since rankr∗ν > dim D, cf. [15, p. 100]. Hence the vector bundle ν is trivial,
being isomorphic to (r∗ν)|P . ��

For any k-dimensional compact oriented smooth manifold K , let �K � denote its fun-
damental class in the homology group Hk(K ; Z). If T is a topological space and K is a
subspace of T , we denote by �K �T the homology class in Hk(T ; Z) represented by K , that
is, �K �T = i∗(�K �), where i : K ↪→ T is the inclusion map.

Let X be a nonsingular real algebraic variety. We say that a homology class u in Hk(X; Z)

is A-distinguished if it is of the form

u = �Z�X ,

where Z is a k-dimensional nonsingular Zariski locally closed subvariety of X that is compact
and oriented as a smooth manifold.

Recall that ρ : H∗(−; Z) → H∗(−; Z/2) denotes the reductionmodulo 2 homomorphism.

Lemma 2.5 Let X be a nonsingular real algebraic variety of dimension at least 5. Assume
that X is a spin manifold. For a homology class u in H2(X; Z), the following conditions are
equivalent:

(a) u is A-distinguished.
(b) ρ(u) belongs to A2(X).

Proof We first prove two preliminary facts. ��
Assertion A1 If v1 and v2 are A-distinguished homology classes in H2(X; Z), then their sum
v1 + v2 is A-distinguished too.

By assumption, vi := �Zi �X , where Zi is a 2-dimensional nonsingular Zariski locally
closed subvariety of X that is compact and oriented as a smooth manifold, i = 1, 2. Let Ai

be the Zariski closure of Zi in X . Then

Zi = Reg(Ai )

and dim Ai = 2. Furthermore, Si := Ai\Zi is a Zariski closed subvariety of X with dim Si ≤
1. In particular, Ai has a finite stratification into smooth submanifolds of X of dimension at
most 2. Similarly, Si has a finite stratification into smooth submanifolds of X of dimension
at most 1. According to Lemma 2.4, the normal bundle to Zi in X is trivial. In view of the
transversality theorem, there exists a 2-dimensional compact smooth submanifold Mi of X
such that Mi ∩ A j = ∅ for j = 1, 2, and

Mi ∪ Reg(Ai ) = ∂Pi ,

where Pi is a compact smooth manifold with boundary ∂Pi , embedded in X with trivial
normal bundle and satisfying Pi ∩ Ai = Reg(Ai ). We can choose the Mi so that

M1 ∩ M2 = ∅.

By Lemma 2.1, the smooth submanifold Mi admits an algebraic approximation in X\Si .
Thus, there exists a small smooth isotopy transforming Mi onto a nonsingular Zariski closed
subvariety Z ′

i of X\Si with Z ′
i ∩ A j = ∅ for j = 1, 2. We can assume that

Z ′
1 ∩ Z ′

2 = ∅.
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Continuous rational maps into spheres 1209

If A′
i is the Zariski closure of Z

′
i in X , then Reg(A′

i ) = Z ′
i and A′

i\Z ′
i ⊆ Si . In particular,

Reg(A′
1 ∪ A′

2) = Z ′
1 ∪ Z ′

2.

Furthermore, �Z ′
i �X = �Zi �X if Z ′

i is suitably oriented. Consequently,

v1 + v2 = �Z1�X + �Z2�X = �Z ′
1 ∪ Z ′

2�X

is an A-distinguished homology class in H2(X; Z), as required.

Assertion A2 For each homology class v in H2(X; Z), the homology class 2v is of the form
2v = �V �X , where V is a nonsingular Zariski closed subvariety of X that is compact and
oriented as a smooth manifold. In particular, 2v is A-distinguished.

We have v = �M�X , where M is a 2-dimensional compact oriented smooth submanifold
of X, cf. [14,22] or [21, p. 294, Theorem 7.37]. By Lemma 2.4, the normal bundle to M in
X is trivial. Hence, there exists a 2-dimensional compact smooth submanifold M ′ of X such
that M ′ is isotopic to M , M ∩ M ′ = ∅, and

M ∪ M ′ = ∂P,

where P is a compact smoothmanifoldwith boundary ∂P , embedded in X with trivial normal
bundle. If M ′ is suitably oriented, then �M ′�X = �M�X . Furthermore, by Lemma 2.1 (with
Z = ∅), the smooth submanifold M ∪ M ′ of X admits an algebraic approximation in X .
In particular, M ∪ M ′ is isotopic to a nonsingular Zariski closed subvariety V of X . If V is
suitably oriented, then

�V �X = �M ∪ M ′�X = 2�M�X = 2v,

which proves Assertion A2.
If condition (b) holds, then u can be expressed as

u = w1 + · · · + wr + 2w,

where wk and w are homology classes in H2(X; Z), and each wk is A-distinguished,
1 ≤ k ≤ r . Thus, in view of Assertions A1 and A2, condition (a) is satisfied. On the other
hand, it is obvious that (a) implies (b).

Proposition 2.6 Let X be a nonsingular real algebraic variety of dimension at least 7 and let
M be a 2-dimensional compact orientable smooth submanifold of X. Assume that X is a spin
manifold. If the homology class [M]X belongs to A2(X), then M admits a weak algebraic
approximation in X.

Proof Endowing M with an orientation, we get ρ(�M�X ) = [M]X . Now assume that [M]X
belongs to A2(X). According to Lemma 2.5, the homology class �M�X is A-distinguished.
Hence

�M�X = �Z�X ,

where Z is a 2-dimensional nonsingular Zariski locally closed subvariety of X that is compact
and oriented as a smooth manifold. Moving M by a small smooth isotopy, we can assume
that

M ∩ Z = ∅.

The inclusion maps i : M ↪→ X and j : Z ↪→ X represent the same class in the second
oriented bordism group �2(X) of X . Indeed, this claim holds since the canonical, Steenrod–
Thom, homomorphism

�2(X) → H2(X; Z)
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1210 W. Kucharz

is an isomorphism, cf. [22, p. 75, lines 9, 10] or [21, p. 294,Theorem 7.37]. Consequently,
there exists a continuous map F : B → X , where B is a compact orientable smooth manifold
with boundary ∂B = M ∪ Z , while F |M = i and F |Z = j . Since dim B = 3 and dim X ≥ 7,
we can assume that F is a smooth embedding. In particular, Q := F(B) ⊆ X is a compact
orientable smooth submanifold with boundary

∂Q = M ∪ Z .

According to Lemma 2.4, the normal bundle to Q in X is trivial. Hence, Lemma 2.2 implies
that M admits a weak algebraic approximation in X . ��

For any n-dimensional compact smooth manifold N and any integer p, let

DN : H p(N ; Z/2) → Hn−p(N ; Z/2)

denote the Poincaré duality isomorphism.

Lemma 2.7 Let X be a compact nonsingular real algebraic variety of dimension p + k,
where p ≥ 1 and k ≥ 0. Let f : X → S

p be a nice continuous rational map. Then
DX ( f ∗(sp)) = [Z ]X , where Z is a k-dimensional compact nonsingular Zariski locally
closed subvariety of X with trivial normal bundle. In particular, if X is orientable, then
DX ( f ∗(sp)) belongs to Ak(X).

Proof Since f (P( f )) is a proper compact subset of S
p , it follows from Sard’s theorem that

the regular map f |X\P( f ) : X\P( f ) → S
p is transverse to some point y in S

p\ f (P( f )).
Hence Z := f −1(y) is a compact nonsingular Zariski closed subvariety of X\P( f ). It is well
known that DX ( f ∗(sp)) = [Z ]X , cf. [10, Proposition 2.15]. Obviously, the normal bundle
to Z in X is trivial. If X is orientable, then so is Z . The proof is complete. ��
Proof of Theorem 1.2 Obviously, (a) implies (b), while according to Lemma 2.7, (b) implies
(c). It remains to prove that (c) implies (a). Assume that (c) is satisfied.We can assumewithout
loss of generality that h is a smooth map. By Sard’s theorem, h is transverse to some point y
in S

p . Then M := h−1(y) is a 2-dimensional compact orientable smooth submanifold of X
satisfying DX (h∗(sp)) = [M]X , cf. [10, Proposition 2.15]. In particular, the homology class
[M]X belongs to A2(X). Hence, according to Proposition 2.6, the submanifold M admits
a weak algebraic approximation in X, which implies that h can be approximated by nice
continuous rational maps, cf. [19, Theorem 1.2]. In other words, (a) holds. ��
Proof of Corollary 1.3 By [14,22] or [21, p. 294,Theorem 7.37], every homology class in
H2(X; Z) is of the form �M�X , where M is a 2-dimensional compact oriented smooth sub-
manifold of X . According to Lemma 2.4, the normal bundle to M in X is trivial, which
implies that �M�X = ρ(�M�X ) = DX (h∗(sp)) for some smooth map h : X → S

p , cf. [22,
Théorème II.2]. In view of Lemma 2.7, DX (h∗(sp)) belongs to A2(X), provided that h is
homotopic to a nice continuous rational map. Consequently, (b) implies (c). According to
Theorem 1.2, (c) implies (a). Obviously, (a) implies (b). ��

For any real algebraic variety X , letNk(X) denote the kth unoriented boridsm group of X .
A bordism class in Nk(X) is said to be algebraic if it can be represented by a regular map
from a k-dimensional compact nonsingular real algebraic variety into X , cf. [1,2].

Lemma 2.8 Let X be a compact nonsingular real algebraic variety and let k be a nonnegative
integer. Assume that

H alg
i (X; Z/2) = Hi (X; Z/2)

123
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for every integer i such that 0 ≤ i ≤ k and Nk−i (point) �= 0. Then each bordism class in
Nk(X) is algebraic.

Proof It suffices to repeat the argument used in the proof of Lemma 2.7.1 in [2]. ��
Proposition 2.9 Let X be a compact nonsingular real algebraic variety of dimension n. Let
k and d be nonnegative integers satisfying 2k + 1 ≤ n and k + 1 ≤ d. Assume that

H alg
i (X; Z/2) = Hi (X; Z/2)

for 0 ≤ i ≤ k. Then any k-dimensional compact smooth submanifold of X × S
d is smoothly

isotopic to a nonsingular Zariski locally closed subvariety of X × S
d .

Proof Let M be a k-dimensional compact smooth submanifold of X × S
d and let f =

( f1, f2) : M ↪→ X × S
d be the inclusion map. Since 2k + 1 ≤ n, the map f1 : M → X

is homotopic to a smooth embedding g1 : M → X , cf. [13, p. 55, Theorem 2.13]. The
assumtpion k + 1 ≤ d implies that the map f2 : M → S

d is homotopic to a constant map
g2 : M → S

d . By construction, the map g = (g1, g2) : M → X ×S
d is a smooth embedding

homotopic to f . Since 2k + 2 ≤ n + d , the maps f and g are isotopic, cf. [23, Theorem 6]
or [13, p. 183, Exercise 11]. Furthermore, g(M) = N × {y0}, where N = f1(M) and
{y0} = g2(M). In particular, the smooth submanifolds M and N × {y0} of X × S

d are
isotopic. By Lemma 2.8, the unoriented bordism class of the inclusion map N ↪→ X is
algebraic. Consequently, since R

d is biregularly isomorphic to S
d with one point removed, it

follows from [1, TheoremF] that the smooth submanifold N×{y0} is isotopic to a nonsingular
Zariski locally closed subvariety Z of X × S

d . Hence M is isotopic to Z , which completes
the proof. ��
Proof of Theorem 1.5 It suffices to prove that each smooth map h : X × S

d → S
p can be

approximated in C(X × S
d , S

p) by nice continuous rational maps. By Sard’s theorem, h is
transverse to some point y in S

p . Then M := h−1(y) is a compact smooth submanifold of
X×S

d with trivial normal bundle. Either M = ∅ or dim M = n+d− p. By Proposition 2.9,
the submanifold M is isotopic to a nonsingular Zariski localy closed subvariety Z of X ×S

d .
It follows that

(M × {0}) ∪ (Z × {1}) = ∂B,

where B is a compact smooth manifold with boundary ∂B, embedded in X × S
p × R with

trivial normal bundle. In view of Proposition 2.3, M admits a weak algebraic approximation
in X ×S

d , which in turn implies that h can be aproximated by nice continuous rational maps,
cf. [19, Theorem 1.2]. ��
Proof of Theorem 1.7 Each homology class in ρ(H2(X; Z)) is of the form [M]X for
some 2-dimensional compact orientable smooth submanifold M of X , cf. [14,22] or [21,
p. 294,Theorem 7.37]. By the Künneth formula, the group ρ(H2(X × S

2; Z/2)) is generated
by homology classes of the form [{x}×S

2]X×S2 and [M×{y}]X×S2 , where x ∈ X and y ∈ S
2.

According to Lemma 2.8, the unoriented bordism class of the inclusion map M ↪→ X is
algebraic (note that N1(point) = 0). Consequently, since R

2 is biregularly isomorphic to
S
2 with one point removed, it follows from [1, Theorem F] that the smooth submanifold
M ×{y} of X ×S

2 is isotopic to a nonsingular Zariski locally closed subvariety Z of X ×S
2.

In particular, [M × {y}]X×S2 = [Z ]X×S2 . Hence

ρ(H2(X × S
2; Z)) = A2(X × S

2),

which in view of Corollary 1.3 completes the proof. ��
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We conclude this section by proving the last theorem announced in Sect. 1. The proof
does not depend on the results developed above.

Proof of Theorem 1.8 Let Up be a nonempty open subset of S
p+1 for which the restriction

σUp : σ−1
p (Up) → Up of σp is a smooth diffeomorphism. We can assume that h is a smooth

map. By Sard’s theorem, the smooth map h × 1 : X × S
1 → S

p × S
1 is transverse to some

point (y0, v0) in σ−1
p (Up). In particular, M := h−1(y0) is a compact smooth submanifold of

X . If z0 = σp(y0, v0), then

(σp ◦ (h × 1))−1(z0) = M × {v0} ⊆ X × S
1.

Assume that (b) holds. According to [18, Theorem 2.4], there exists a nonsingular Zariski
locally closed subvariety Z of X × S

1 such that

(M × {v0} × {0}) ∪ (Z × {1}) = ∂P,

where P is a compact smoothmanifoldwith boundary ∂P , embedded in X×S
1×Rwith trivial

normal bundle. If F : P → X is the restriction of the canonical projection from X × S
1 × R

onto X , then F(x, v0, 0) = x for all x in M , and the restriction F |Z×{1} is a regular map.
Consequently, the unoriented bordism class of the inclusion map M ↪→ X is algebraic, and
hence M × {0} admits a weak algebraic approximation in X × R, cf. [1, Theorem F]. Since
R is biregularly isomorphic to S

1 with one point removed, it follows that M × {v0} admits a
weak algebraic approximation in X ×S

1. Thus, in view of [19, Theorem 1.2], the continuous
map σp ◦ (h ×1) can be approximated by nice continuous rational maps. In other words, (b)
implies (a). It is obvious that (a) implies (b). ��

3 Algebraic approximation of smooth submanifolds

Let X be a nonsingular real algebraic variety. A hard problem is to find a characterization
of these compact smooth submanifolds M of X which admit an algebraic approximation in
X . A complete solution is known only if codimX M = 1 or (dim X, dim M) = (3, 1), cf. [3,
Theorem 14.4.11] and [9]. Very little is known in other cases. As demonstrated in [1], the
problemof algebraic approximation ismore subtle than that ofweak algebraic approximation.
In this section, by modifying slightly Propositions 2.3 and 2.6, we obtain results on algebraic
approximation.

Proposition 3.1 Let X be a nonsingular real algebraic variety and let M be a compact
smooth submanifold of X. Assume that there exists a nonsingular Zariski closed subvariety
Z of X such that

(M × {0}) ∪ (Z × {1}) = ∂B,

where B is a compact smooth manifold with boundary ∂B, embedded in X × R with trivial
normal bundle. If 2 dim M + 3 ≤ dim X, then M admits an algebraic approximation in X.

Proof Arguing as in the proof of Proposition 2.3, we can assume that M ∩ Z = ∅ and

M ∪ Z = ∂Q,

where Q is a compact smooth manifold with boundary ∂Q, embedded in X with trivial
normal bundle. Hence, according to Lemma 2.1, M admits an algebraic approximation in X .

��
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It is now convenient to introduce some notation. Let X be a nonsingular real algebraic
variety. Denote by Bk(X) the subgroup of Hk(X; Z/2) generated by all homology classes of
the form [Z ]X , where Z is a k-dimensional nonsingular Zariski closed subvariety of X that
is compact and orientable as a smooth manifold. Obviously,

Bk(X) ⊆ Ak(X).

We say that a homology class u in Hk(X; Z) is B-distinguished if it is of the form

u = �Z�X ,

where Z is as above and endowed with an orientation.
The following is a counterpart of Lemma 2.5.

Lemma 3.2 Let X be a nonsingular real algebraic variety of dimension at least 5. Assume
that X is a spin manifold. For a homology class u in H2(X; Z), the following conditions are
equivalent:

(a) u is B-distinguished.
(b) ρ(u) belongs to B2(X).

Proof We begin with the following two observations. ��
Assertion B1 If v1 and v2 are B-distinguished homology classes in H2(X; Z), then their sum
v1 + v2 is B-distinguished too.

Assertion B2 For each homology class v in H2(X; Z), the homology class 2v is B-
distinguished.

The proof of Assertion B1 is completely analogous (but simpler) to that of Assertion A1,
while Assertion B2 is equivalent to Assertion A2 in the proof of Lemma 2.5.

If condition (b) holds, then u can be expressed as

u = w1 + · · · + wr + 2w,

where wk and w are homology classes in H2(X; Z), and each wk is B-distinguished,
1 ≤ k ≤ r . Thus, in view of Assertions B1 and B2, condition (a) is satisfied. It is obvious
that (a) implies (b).

Theorem 3.3 Let X be a nonsingular real algebraic variety of dimension at least 7 and let
M be a 2-dimensional compact orientable smooth submanifold of X. Assume that X is a
spin manifold. If the homology class [M]X belongs to B2(X), then M admits an algebraic
approximation in X.

Proof Endowing M with an orientation, we get ρ(�M�X ) = [M]X . Now assume that [M]X
belongs to B2(X). According to Lemma 3.2, the homology class �M�X is B-distinguished.
Hence

�M�X = �Z�X ,

where Z is a 2-dimensional nonsingular Zariski closed subvariety of X that is compact and
oriented as a smooth manifold. Arguing as in the proof of Proposition 2.6, we can assume
that M ∩ Z = ∅ and

M ∪ Z = ∂Q,

where Q is a compact smooth manifold with boundary ∂Q, embedded in X with trivial
normal bundle. Hence, according to Lemma 2.1, M admits an algebraic approximation in X .

��
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It is not known whether the assumptions in Theorem 3.3 can be relaxed. They certainly
cannot be relaxed too much. Indeed, for any integers n and k satisfying n − k ≥ 2 and
k ≥ 3, there exist an n-dimensional compact nonsingular real algebraic variety X and a
k-dimensional compact smooth submanifold M of X such that [M]X = 0 in Hk(X; Z/2)
and M does not admit an algebraic approximation in X , cf. [9, Proposition 1.2].

As a consequence of Theorem 3.3, we obtain the following.

Example 3.4 Let X = C1×· · ·×Cn , where eachCi is a compact connected nonsingular real
algebraic curve, 1 ≤ i ≤ n. If n ≥ 7, then each 2-dimensional compact orientable smooth
submanifold of X admits an algebraic approximation in X . Indeed, B2(X) = H2(X; Z/2)
and hence the assertion follows from Theorem 3.3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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