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Abstract Let f,g : X — Y be continuous mappings. We say that f is topologically
equivalent to g if there exist homeomorphisms ® : X — X and ¥ : ¥ — Y such that
Vo f o ® = g. Moreover, we say that f is topologically semi-equivalent to g if there exist
open, dense subsets U, V C X and homeomorphisms ® : U — V and ¥ : Y — Y such
that Wo f o ®|y = g|y. Let X, Y be smooth irreducible affine complex varieties. We show
that every algebraic family F : M x X > (m, x) — F(m, x) = f,(x) € Y of polynomial
mappings contains only a finite number of topologically non-equivalent proper mappings
and only a finite number of topologically non-semi-equivalent generically-finite mappings.
In particular there are only a finite number of classes of topologically non-equivalent proper
polynomial mappings f : C" — C™ of a bounded (algebraic) degree. The same is true
for a number of classes of topologically non-semi-equivalent generically-finite polynomial
mappings f : C" — C™ of a bounded (algebraic) degree.

Mathematics Subject Classification 14D 99-14R 99 -51 M 99

1 Introduction

Let f, g : X — Y be continuous mappings. We say that f is topologically equivalent to g
if there exist homeomorphisms ® : X — Xand W : ¥ — Y suchthat Wo fo ® = g.
Moreover, we say that f is topologically semi-equivalent to g if there exist open, dense subsets
U,V C X and homeomorphisms ® : U — Vand V¥ : Y — Y suchthat Wo fo®|y = gly.

In the case X = C" and Y = C René Thom stated a Conjecture that there are only finitely
many topological types of polynomials f : X — Y of bounded degree. This Conjecture
was confirmed by Fukuda [2]. Also a more general problem was considered: how many
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134 7. Jelonek

topological types are there in the family P(n,m, k) of polynomial mapping f : C" —
C™ of degree bounded by k? Aoki and Noguchi [1] showed that there are only a finite
number of topologically non-equivalent mappings in the family P (2, 2, k). Finally Nakai [8]
showed that each familiy P (n, m, k), where n, m, k > 3, contains infinitely many different
topological types even if we consider only generically-finite mappings. Hence the General
Thom Conjecture is not true even for generically-finite mappings. However, we show in
this paper that there are only a finite number of classes of topologically semi-equivalent
generically-finite polynomial mappings f : C" — C™ of a bounded (algebraic) degree.
As a by product of our considerations we give a simple proof of the following interesting
fact: for every n, m and k there are only a finite number of topological types of proper
polynomial mappings f : C* — C™ of (algebraic) degree bounded by k. Hence we can say
that Thom Conjecture is true for proper polynomial mappings. We show also thatifn < m and
Q,(d1, ..., dy) denotes the family of all polynomial mappings F = (f1, ..., f) : C" — C"
of a multi-degree bounded by (dy, ..., d;,), then any two general member of this family are
topologically equivalent.

In fact we prove more: if X, Y are smooth affine irreducible varieties, then every algebraic
family F of polynomial mappings from X to ¥ contains only a finite number of topologically
non-semi-equivalent (non-equivalent) generically-finite (proper) mappings. Moreover, if a
family F is irreducible, then two generic members of F are in the same equivalence class.

Let us recall here, that a mapping f : X — Y is generically finite, if for general x € X the
set f -1 f(x)) is finite. Our proof goes as follows. Let M be a smooth affine irreducible variety
and let F be a family of polynomial mappings induced be a regular mapping F : M x X — Y,
ie, Fi={fm:X>x+— F@m,x) €Y, m €¢ M}. Letusrecall thatif f : X — Zisa
generically finite polynomial mapping of affine varieties, then the bifurcation set B(f) of f
istheset {z € Z : z € Sing(Z) or #71(z) # n(f)}, where u(f) is the topological degree
of f. The set B(f) is always closed in Z. We show that there exists a Zariski open, dense
subset U of M such that

(1) for every m € U we have u(f,) = n(F), where we treat f;, as a mapping f;,;, : X —
Zm = fm (X)7

(2) for every mi, mo € U the pairs (fp,(X), B(fn,)) and (fim,(X), B(fm,)) are equiv-
alent via a homeomorphism, i.e., there is a homeomorphism W : Y — Y such that

Y (fin (X)) = fin, (X) and W(B(fin,)) = B(fim,)-

In particular the group G = 71 (fn (X)\B(fm)) does not depend on m € U. Using
elementary facts from the theory of topological coverings, we show that the number of
topological semi-types (types) of generically-finite (proper) mappings in the family Fy is
bounded by the number of subgroups of G of index i (F), hence it is finite. Then we conclude
the proof by induction. Finally, the case of arbitrary M can be easily reduced to the smooth,
irreducible, affine case.

Remark 1.1 In this paper we use the term “polynomial mapping” for every regular mapping
f : X — Y of affine varieties.

2 Bifurcation set
Let X, Z be affine irreducible varieties of the same dimension and assume that X is smooth.

Let f : X — Z be a dominant polynomial mapping. It is well known that there is a Zariski
open non-empty subset U of Z such that for every x1, x, € U the fibers f~!(x1), f~'(x2)
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On semi-equivalence of generically-finite polynomial mappings 135

have the same number 1 ( f) of points. We say that () is the topological degree of f. Recall
the following (see [5,6]).

Definition 2.1 Let X, Z be as above and let f : X — Z be a dominant polynomial mapping.
We say that f is finite at a point z € Z if there exists an open neighborhood U of z such that
the mapping f s-1(y) =Y (U) — U is proper.

It is well-known that the set S of points at which the mapping f is not finite is either
empty or it is a hypersurface (see [5,6]). We say that S is the set of non-properness of f.

Definition 2.2 Let X be a smooth affine n-dimensional variety and let Z be an affine variety
of the same dimension. Let /' : X — Z be a generically finite dominant polynomial mapping
of geometric degree w(f). The bifurcation set of f is

B(f)={z€Z:z€Sing(Z)or #f71(2) # u(f)}.

Remark 2.3 The same definition makes sense for those continuous mapping f : X — Z,
for which we can define the topological degree w(f) and singularities of Z. In particular
if Z1, Z, are affine algebraic varieties, f : X — Z; is a dominant polynomial mapping
and ® : Z; — Z; is a homeomorphism which preserves singularities, then we can define
B(® o f) as ®(B(f)). Moreover, the mapping ® o f behaves topologically as an analytic
covering. We will use this facts in the proof of Theorem 3.5.

We have the following theorem (see also [7]).

Theorem 2.4 Let X, Z be affine irreducible complex varieties of the same dimension and
suppose X is smooth. Let f : X — Z be a polynomial dominant mapping. Then the set B( f)
is closed and B(f) = Ko U Sy U Sing(Z).

Proof Let us note that outside the set Sy U Sing(Z) the mapping f is a (ramified) analytic
covering of degree 1 (f). By Lemma 2.5 below, if z ¢ Sing(Z) we have #f 7 12) < u(f).
Moreover, since f is an analytic covering outside Sy U Sing(Z) we see that for y ¢ Sy U
Sing(Z) the fiber £~!(z) has exactly w(f) points counted with multiplicity. Take Xo :=
X\f~1(Sing(Z) U S). If z € Ko(fix,). the set of critical values of fix,, then #f~1(z) <
wn(f).

Now let z € Sy\Sing(Z). There are two possibilities:

(@) #f7'(z) = o0
(b) #f£71(2) < 0.

In case (b) we can assume that £ ~!(z) # @. Let U be an affine neighborhood of z disjoint
from Sing(z) over which the mapping f has finite fibers. Let V = f~!(U). By the Zariski

Main Theorem in the veisiog given by Grothendieck (see [3]), there exists a normal variety
V and a finite mapping f : V — U such that

) vcV,
@ fiv=1r

Since z € f(V\V), it follows from Lemma 2.5 below that # f ~!(z) < u(f). Conse-
quently, if z € Sy, we have #(2) < w(fh). Finally, we have B(f) = Ko(fx,) U Sy U

Sing(Z). However, the set Ko(fx,) is closed in Z\(Sy U Sing(Z)). Hence B(f) is closed
in Z. m]

Lemma 2.5 Let X, Z be affine normal varieties of the same dimension. Let f : X — Z be
a finite mapping. Then for every z € Z we have #f~1(z) < u(f).
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136 7. Jelonek

Proof Let#f~1(z) = {x1, ..., x,}. We can choose a function 4 € C[X] which separates all
x; (in particular we can take as i the equation of a general hyperplane section). Since f is
finite, the minimal equation of / over the field C(Z) is of the form:

T +ai(HT '+ +a,(f) € fFCLZIIT],

where s < w(f). If we substitute f = z into this equation we get the desired result. m}

3 Main result

We start with the following:

Lemma 3.1 Ler f : X* — Y'! be a dominant polynomial mapping of affine irreducible
varieties. There exists a Zariski open non-empty subset U C Y such that for any y € U we
have Sing(f~!(y)) = f~'(y) N Sing(X).

Proof We can assume that ¥ is smooth. Since there exists a mapping 7 : Y — C! which is
generically etale, we can assume that ¥ = C’. Let us recall that if Z is an algebraic variety,
then a point z € Z is smooth if and only if the local ring O,(Z) is regular, or equivalently
dimc m/m? = dim Z, where m denotes the maximal ideal of O, (Z).

Lety = (y1, ..., y1) € C! be a sufficiently generic point. Then by Sard’s Theorem the fiber
Z = f~1(y)is smooth outside Sing(X) and dim Z = dim X —I = k—1. Note that the generic
(scheme-theoretic) fiber F of f is reduced. Indeed, this fiber F = Spec(C(Y) ®cry) CI[X])
is the spectrum of a localization of C[X] and so a domain. Since we are in characteristic zero,
the reduced C(Y)-algebra C(Y) ®c(y) C[X] is necessarily geometrically reduced (i.e. stays
reduced after extending to an algebraic closure of C(Y)). Since the property of fibres being
geometrically reduced is open on the base, i.e. on Y, thus the fibres over an open subset of Y
will be reduced. Consequently, there is a Zariski open, non-empty subset U C Y such that
for y € U the fiber f~!(y) is reduced. Hence we can assume that Z is reduced. It is enough
to show that every point z € Z N Sing(X) is singular on Z.

Assume that z € Z N Sing(X) is smooth on Z. Let f : X — C' be given as f =
(f1, s f1), where f; € C[X]. Then O,(Z) = O,(X)/(f1 — y1, ---, f1 — y1). In particular
if m’ denotes the maximal ideal of O,(Z) and m denotes the maximal ideal of O,(X) then
w' =m/(fi — ¥1, ..., fi — y1). Let ; denote the class of the polynomial f; — y; in m/m?.
Let us note that

m'/m? = m/m? + (@1, ..., ). (1

Since the point z is smooth on Z we have dimc m’/m’ 2 = dimZ = dimX — [. Take
a basis By, ..., Br—; of the space m’/m’2 and let B; € m/m2 correspond to B; under the

correspondence (1). Note that the vectors E, woey Bk—1, a1, ..., a; generate the space m/mz.

This means that dim¢ m/m2 <k —1+1 =k = dim X. Hence the point z is smooth on X, a

contradiction. ]
‘We have:

Lemma 3.2 Let X, Y be smooth complex irreducible algebraic varieties and f : X — Y
a regular dominant mapping. Let N C W C X be closed subvarieties of X. Then there
exists a non-empty Zariski open subset U C Y such that for every y1, y» € U the triples

Mo, W 7 o0, N0 7N o) and (F7HG), W T 2), N 0T (n) are
homeomorphic.
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On semi-equivalence of generically-finite polynomial mappings 137

Proof Let X| be an algebraic completion of X and let Y be a smooth algebraic completion
of Y. Take X| := graph(f) C X; x Y and let X be a desingularization of X/.

We can assume that X C X,. We have an induced mapping f : X» — Y such that
?|X = f. Let Z = X,\X. Denote by N, W the closures of N and W in X;. Let R =
(NNZ,WNZ,N,W, Z}, acollection of algebraic subvarieties of X;. There is a Whitney
stratification S of X, which is compatible with R.

For any smooth strata S; € S let B; be the set of critical values of the mapping ﬂ 5, and

denote B = W Take X3 = X» \7_1 (B). The restriction of the stratification S to X3 gives
a Whitney stratification which is compatible with the family R’ := R N X3. We have a proper
mapping f = 7| x; X3 — Y\ B which is a submersion on each stratum. By the Thom first
isotopy theorem there is a trivialization of f which preserves the strata. It is an easy observa-
tion that this trivialization gives a trivialization of the mapping f : X\ f~'(B) — Y\B := U.
In particular the fibers f~!(y;) and f~'(y;) are homeomorphic via a stratum preserving
homeomorphism. This means that the triples (f~'(y1), W N f~1(y1), N N £~ (y1)) and
(f~ ), WN £~ (), NN f~1(y2)) are homeomorphic. O

We also need the following:

Definition 3.3 Let X, Y be smooth affine varieties. By a family of regular mappings
Fu(X,Y, F) := F we mean a regular mapping F' : M x X — Y, where M is an algebraic
variety. The members of a family F are the mappings f,, : X > x — F(m,x) € Y. Let

G:MxX>@m,x)r> (m,Fm,x))e Z=GM x X)CM xY.

If G is generically finite, then by the topological degree 1 (F) we mean the number u(G).
Otherwise we put u(F) = 0.

Later we will sometimes identify the mapping f,,, with the mapping G (m, -) = (m, f,) :
X — m x Y. The following lemma is important:

Lemma 3.4 Let X, Y be smooth affine complex varieties. Let M be a smooth affine irre-
ducible variety and let F be the family induced by a mapping F : M x X — Y, ie.,
F=A{fm:X2x+ F(m,x) €Y, m e M}. Assume that u(F) > 0. Take Z = G(M x X)
andput Z,, = (m x Y)N Z.

Then

(1) There is an open non-empty subset Uy C M such that for every m € Uy we have
w(fm) = n(F);

(2) There is a non-empty open subset Uy C U such that for every m € Uz we have
(X)) =2Zy :=(m xY)NZand B(fin) = B(G);, :== (m x Y)N B(G);

(3) There is a non-empty open subset Uy C U, such that for every my, my € Uj the pairs
(fin; (XD, B(fim,)) and (fin, (X), B(fm,)) are equivalent by means of a homeomorphism,
i.e., there is a homeomorphism V : Y — Y such that V(fi,, (X)) = fim,(X) and
W(B(fn) = B(finy)-

Proof (1) Take G : M x X > (m,x) — (m, F(m, x)) € Z. The mapping G : M x X >
(m, x) — (m, F(m, x)) € Z has a constant number of points in the fibers outside the
bifurcation set B(G) C Z. Take U = Z\B(G). By Theorem 2.4 the set U is open. Let
w:Z > (m,y) — m € M be the projection. We show that the constructible set 7 (U) is
dense in M. Indeed, assume that w(U) = N is a proper subset of M. Since U is dense
in Z, we have 7(Z) C N,i.e., Z C N x Y. This is a contradiction. In particular the set
w(U) is dense in M and it contains a Zariski open, non-empty subset U C M. Of course
w(fm) = u(F) form € U;.
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138 7. Jelonek

(2) Consider the projection  : Z 3 (m, y) — m € M. As we know from (1), the mapping
7 is dominant. By a well known result, after shrinking U; we can assume that every
fiber Z,, of 1 (m € Uy C Uy) is of pure dimension d = dim Z — dim M = dim X.
However, Z,, = fin(X) U B(G),,. Generically the dimension of B(G),, is less than d.
Hence if we possibly shrink U, we get Z,,, = f,,,(X) form € U,. Moreover, by Lemma
3.1 (after shrinking U if necessary), we can assume that Sing(Z,,) = Sing(Z2),, =
(m x Y)N Sing(Z). Now it is easy to see that B(f,) = B(G),.

(3) We have f,(X) = Z,, and B(f;,) = B(G),, for m € U,. Now apply Lemma 3.2 with
X=UxY, W=UyxY)NZ,N=Uy;xY)NB(G)and f:U; xY > (m,y) —
m € Uj.

[m}

Now we are ready to prove our main result:

Theorem 3.5 Let X, Y be smooth affine irreducible varieties. Every algebraic family F of
polynomial mappings from X to Y contains only a finite number of topologically non-semi-
equivalent (non-equivalent) generically-finite (proper) mappings.

Proof The proof is by induction on dim M. We can assume that M is affine, irreducible
and smooth. Indeed, M can be covered by a finite number of affine subsets M;, and we
can consider the families 7|y, separately. For the same reason we can assume that M is
irreducible. Finally dim M\Reg(M) < dim M and we can use induction to reduce the
general case to the smooth one.

Assume that M is smooth and affine. If ;«(F) = 0, then F does not contain any generically-
finite mapping. Hence we can assume that u(F) = k > 0. By Lemma 3.4 there is a non-empty
open subset U C M such that for every m, my € U we have

D) w(fm) = n(fm) =k,

(2) The pairs (fi, (X), B(fm,)) and ( fin, (X), B( fn,)) are equivalent by means of a homeo-
morphism, i.e., there is a homeomorphism W : Y — Y such that W ( f,,,, (X)) = fin, (X)
and W(B(fin,)) = B(fm,)-

Fix a pair Q = f,y(X), B = B(fn,) for some mo € Uz. For m € U; the mapping
fm + X — Y is topologically equivalent to the continuous mapping f,, = ¥, o f;, with
f1(X) = Qand B(f,,) = B(Lemma3.4). Every mapping f,, induces a topological covering
fi i X\f,7'(B) = P;y — R = Q\B.Take apointa € R and letay < f;~'(a). We
have an induced homomorphism

fe imi(Py,ap) — mi(R, a).

Denote Hy = fi(m1(Pr,ayr)) and G = m(R, a). Hence [G : Hy] = k. It is well known
that the fundamental group of a smooth algebraic variety is finitely generated. In particular
the group G := m1(Q\B, a) is finitely generated. Let us recall the following result of M.
Hall (see [4]):

Lemma 3.6 Let G be a finitely generated group and let k be a natural number. Then there
are only a finite number of subgroups H C G such that |G : H] = k.

By Lemma 3.6 there are only a finite number of subgroups Hji, ..., H- C G with index
k. Choose generically-finite (proper) mappings f; = f,:h_ = W; 0 fin; : X — Y such that
Hy. = H; (of course only if such a mapping f; does exist). We show that every generically-
finite (proper) mapping f,, (m € U) is semi-equivalent (equivalent) to one of mappings

fi-
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On semi-equivalence of generically-finite polynomial mappings 139

Indeed, let Hy = Hy, (here f, = Wy o f,;). We show that f, := f is equivalent to
fi- Let us consider two coverings f : (Pr,ar) — (R,a) and f; : (Pr,ayp) — (R,a).
Since fi(m1(Pr,ay)) = fi, (w1 (Pf,ar)) we can lift the covering f to a homeomorphism

¢ : Py — Py, such that following diagram commutes:

(Py,af)

(Py,ar) » (R,a)

Hence for generically-finite mappings we have

W) oW, 0 fuod Ny = fulu,

where V = X\ £, (B(fn)) and U = X\ £, 1 (B(f,)). Hence f,, is semi-equivalent to f,, .

In the case of proper mappings we show additionally that the mapping ¢ can be extended
to a continuous mapping ® on the whole of X. Indeed, take a point x € f~'(B) and let
y = f(x). The set fi_l(y) = {by1, ..., by} is finite. Take small open disjoint neighborhoods
Wi (r) of b;, such that W; () shrinks to b; as r tends to 0. We can choose an open neighborhood
V (r) of y so small that ff] V(r)) C U‘;Zl Wi; (r). Now take a small connected neighborhood
P, (r) of x such that f(P,(r)) C V(r). The set Py (r)\f_l(B) is still connected and it is
transformed by ¢ into one particular set W;,(r). We take ®(x) = b;,. It is easy to see that
the mapping ® so defined is a continuous extension of ¢. In fact ¢ (P, (r)\ f ~1(B)) shrinks
to b;, if r goes to 0. Moreover, we still have f = f; o ®.

In a similar way the mapping A determined by ¢! is continuous. It is easy to see that
Ao®d = ®o A = identity, hence ® is a homeomorphism. Consequently, the mapping
fio®=Y;0 fy, oPisequalto f = W¥,, o f,,. Finally, we get

(\Iji)_] oWy 0 fino (I)_] = fmi-

This means that the family |y contains only a finite number of topologically non-semi-
equivalent (non-equivalent) generically-finite (proper) mappings. In fact, the number of
topological semi-types (types) of generically-finite (proper) mappings in Fjy is bounded
by the number of subgroups of G of index w(F).

Let T = M\U. Hence dim T < dim M. By the induction the family |7 also contains
only a finite number of topologically non-semi-equivalent (non-equivalent) generically-finite
(proper) mappings. Consequently so does F. O

Corollary 3.7 There is only a finite number of topologically non-semi-equivalent (non-
equivalent) generically-finite (proper) polynomial mappings f : C* — C™ of a bounded
algebraic degree. O
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140 7. Jelonek

4 Families of proper mappings

In this section we slightly extend our previous result in the case of irreducible families of
proper (or generically-finite) mappings. First we prove a following lemma:

Lemma 4.1 LetY = R" andlet Z C Y be alinear subspace of Y. Fixe > 0 and take n < €.
Let B(0, n) be a ball of radius n. Lety : I >t +— y(t) € B(0,n) N Z be a smooth path.
Then there exists a continuous family of diffeomorphisms ®, : Y — Y, t € [0, 1] such that

(1) ®;(y () =y(©0)and ®,(z) =z for |zl > €.
(2) ®p = identity.
3) ¥ (2)=12.

Proof Let v, = y(0) — y(¢) € TR". We construct a family of diffeomorphisms &,, which
are interpolation between translation x — x + v, and identity.

Leto : Y — [0, 1] be a differentiable function such that 0 = 1 on B(0, ) and 0 = 0
outside B(0, €). Define a vector field V (x) = o (x)v,. Integrating this vector field we get
desired diffeomeorphisms ®,, for any ¢. O

Corollary 4.2 Let Y be a smooth manifold and Z be a smooth submanifold. For every
point a € Z and every open neighborhood V, of the point a, there is an open connected
neighborhood U, of the point a, such that:

@) Uq C Va,
M) ify: I >t— y@) € U, N Z is a smooth path, then there is a continuous family of
diffeomorphism ¥, : Y — Y, t € [0, 1] such that

M Yy (@) =y (),
2) Y (x) = x for x ¢ V, and ¥y = identity,

3) vi(2)=Z.
Now we are in a position to prove:

Theorem 4.3 Let X, Y be smooth affine irreducible varieties. Let F : M x X — Y be an
algebraic family of proper polynomial mappings from X to Y. Assume that M is an irreducible
variety. Then there exists a Zariski open dense subset U C M such that for every m, m’ € U
mappings fm and f,, are topologically equivalent.

Proof We follow the proof of Theorem 3.5 and we use here the same notation. By Lemma
3.4 there is a non-empty open subset U C M such that for every m, my € U we have

D) w(fm) = pn(fm) =k,

(2) The pairs (fy, (X), B(fm,)) and ( fi, (X), B( f,)) are equivalent by means of a homeo-
morphism, i.e., there is a homeomorphism ¥ : Y — Y such that W (fi,, (X)) = fm, (X)
and W(B(fm,)) = B(fin,)-

Fix a pair (Q = f5,(X), B = B(f,)) for some mg € U. Form € U the mappings f;,
and f,, can be connected by a continuous path f;, fo = fu,, fi = fn. Moreover we have
also a continuous family of homeomorphisms ¥; : ¥ — Y such that ¥, (f; (X)) = fo(X)
and W (B(f;)) = B(fo). It is enough to prove that mappings F; = W, o f; are locally (in the
sense of parameter t) equivalent.

(1) First step of the proof. Let C; C X denotes the preimage by F; of the set B (in fact
C = ffl(B(f,)) and put X, = X\C;. Put Q' := Q\B.Assume that for all mappings F;
there is a point @ € (X\ |J,c; C) such that for all r € I we have F,(a) = b.
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On semi-equivalence of generically-finite polynomial mappings 141

We have an induced homomorphism G, : 71(X;, a) — 71(Q’, b). We show that the
subgroup Fy, (m1(X;, a)) C m1(Q’, b) does not depend on 7.

Indeed let y1, ..., ys be generators of the group 71 (X;,, a). Let U; be an open relatively
compact neighborhoods of y; such that U; N C 1 = 9. For sufficiently small number € > 0
andr € (fp —€,10 +€) wehave U; N C; = ¥. Let t € (19 — €, ty + €). Note that the
loop F;(y;) is homotopic with the loop Fy,(y;). In particular the group Fy,, (71 (Xy,, a)) is
contained in the group Fy, (7 (X;, a)). Since they have the same (finite!) index in 71 (Y’, b)
they are equal. This means that the subgroup G, (71 (X;, a)) C 71 (Y’, b) is locally constant,
hence it is constant.

Let us consider two coverings F; : (X;,a) — (Q’, b) and Fy : (Xo,a) — (Q', b). Since
F 1 (Xy, a) = Fyem(Xo, a) we can lift the covering F; to a homeomorphism ¢; : X; —
Xo. As before we can extend the homeomorphism ¢, to the homeomorphism &, : X — X,
such that Fy o &; = F;.

(2) The general case. Now we can prove Theorem 4.3. Since in general there is no a
point a € (X\ Uze] C;) such that for all + € I we have F;(a) = b, we have to modify our
construction.

First we prove that for every #p € I there exists € > 0 and a family of homeomorphisms
P X - X, t € (to—€,tg+€)suchthat F; = Fyy 0o ®; fort € (fg — €, 10 + €).
Take a point a € X,, and choose € > 0 so small that a € X; fort € (fo — €,19 + €).
Put y(t) > t — F;(a) € Y'. We can take € so small that the hypothesis of Corollary 4.2
is satisfied. Applying Corollary 4.2 with ¥’ = Y\B and Z = Q\B we have a continuous
family of diffeomeorphisms ¥; : ¥ — Y which preserves Q and B, t € (t) — €, 1ty + €)
such that ¢, (F;(a)) = Fo(a). Take G; = v, o F;. Arguing as in the first part of our proof all
G, are topologically equivalent for t € (fo — €, to + €). Hence also all F; are topologically
equivalent for t € (fp — €, o + €). Since F; are locally topologically equivalent, they are
topologically equivalent for every ¢ € I. O

Corollary 4.4 Let n < m and let 2,(d, ..., dy,) denotes the family of all polynomial map-
pings F = (f1, ..., fm) : C" — C™ of a multi-degree bounded by (dy, ..., dy,). Then any two
general members of this family are topologically equivalent.

Proof Indeed, it is enough to note that a generic mapping f € Q,(d, ..., dy) is proper. O

Using the same method we can prove:

Theorem 4.5 Let X, Y be smooth affine irreducible varieties. Let F : M x X — Y be an
algebraic family of generically-finite polynomial mappings from X to Y. Assume that M is
an irreducible variety. Then there exists a Zariski open dense subset U C M such that for
everym, m’ € U the mappings f,, and f,, are topologically semi-equivalent.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
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