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Abstract Let f, g : X → Y be continuous mappings. We say that f is topologically
equivalent to g if there exist homeomorphisms � : X → X and � : Y → Y such that
� ◦ f ◦ � = g. Moreover, we say that f is topologically semi-equivalent to g if there exist
open, dense subsets U, V ⊂ X and homeomorphisms � : U → V and � : Y → Y such
that � ◦ f ◦ �|U = g|U . Let X, Y be smooth irreducible affine complex varieties. We show
that every algebraic family F : M × X � (m, x) �→ F(m, x) = fm(x) ∈ Y of polynomial
mappings contains only a finite number of topologically non-equivalent proper mappings
and only a finite number of topologically non-semi-equivalent generically-finite mappings.
In particular there are only a finite number of classes of topologically non-equivalent proper
polynomial mappings f : C

n → C
m of a bounded (algebraic) degree. The same is true

for a number of classes of topologically non-semi-equivalent generically-finite polynomial
mappings f : Cn → C

m of a bounded (algebraic) degree.

Mathematics Subject Classification 14 D 99 · 14 R 99 · 51 M 99

1 Introduction

Let f, g : X → Y be continuous mappings. We say that f is topologically equivalent to g
if there exist homeomorphisms � : X → X and � : Y → Y such that � ◦ f ◦ � = g.
Moreover,we say that f is topologically semi-equivalent to g if there exist open, dense subsets
U, V ⊂ X and homeomorphisms� : U → V and� : Y → Y such that� ◦ f ◦�|U = g|U .

In the case X = C
n and Y = C René Thom stated a Conjecture that there are only finitely

many topological types of polynomials f : X → Y of bounded degree. This Conjecture
was confirmed by Fukuda [2]. Also a more general problem was considered: how many
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134 Z. Jelonek

topological types are there in the family P(n,m, k) of polynomial mapping f : C
n →

C
m of degree bounded by k? Aoki and Noguchi [1] showed that there are only a finite

number of topologically non-equivalent mappings in the family P(2, 2, k). Finally Nakai [8]
showed that each familiy P(n,m, k), where n,m, k > 3, contains infinitely many different
topological types even if we consider only generically-finite mappings. Hence the General
Thom Conjecture is not true even for generically-finite mappings. However, we show in
this paper that there are only a finite number of classes of topologically semi-equivalent
generically-finite polynomial mappings f : C

n → C
m of a bounded (algebraic) degree.

As a by product of our considerations we give a simple proof of the following interesting
fact: for every n,m and k there are only a finite number of topological types of proper
polynomial mappings f : Cn → C

m of (algebraic) degree bounded by k. Hence we can say
that ThomConjecture is true for proper polynomialmappings.We showalso that if n ≤ m and
�n(d1, ..., dm) denotes the family of all polynomial mappings F = ( f1, ..., fm) : Cn → C

m

of a multi-degree bounded by (d1, ..., dm), then any two general member of this family are
topologically equivalent.

In fact we prove more: if X, Y are smooth affine irreducible varieties, then every algebraic
familyF of polynomial mappings from X to Y contains only a finite number of topologically
non-semi-equivalent (non-equivalent) generically-finite (proper) mappings. Moreover, if a
family F is irreducible, then two generic members of F are in the same equivalence class.

Let us recall here, that a mapping f : X → Y is generically finite, if for general x ∈ X the
set f −1( f (x)) is finite.Our proof goes as follows. LetM be a smooth affine irreducible variety
and letF be a family of polynomialmappings induced be a regularmapping F : M×X → Y,

i.e., F := { fm : X � x �→ F(m, x) ∈ Y, m ∈ M}. Let us recall that if f : X → Z is a
generically finite polynomial mapping of affine varieties, then the bifurcation set B( f ) of f
is the set {z ∈ Z : z ∈ Sing(Z) or # f −1(z) 	= μ( f )}, where μ( f ) is the topological degree
of f. The set B( f ) is always closed in Z . We show that there exists a Zariski open, dense
subset U of M such that

(1) for every m ∈ U we have μ( fm) = μ(F), where we treat fm as a mapping fm : X →
Zm := fm(X),

(2) for every m1,m2 ∈ U the pairs ( fm1(X), B( fm1)) and ( fm2(X), B( fm2)) are equiv-
alent via a homeomorphism, i.e., there is a homeomorphism � : Y → Y such that
�( fm1(X)) = fm2(X) and �(B( fm1)) = B( fm2).

In particular the group G = π1( fm(X)\B( fm)) does not depend on m ∈ U. Using
elementary facts from the theory of topological coverings, we show that the number of
topological semi-types (types) of generically-finite (proper) mappings in the family F|U is
bounded by the number of subgroups ofG of indexμ(F), hence it is finite. Thenwe conclude
the proof by induction. Finally, the case of arbitrary M can be easily reduced to the smooth,
irreducible, affine case.

Remark 1.1 In this paper we use the term “polynomial mapping” for every regular mapping
f : X → Y of affine varieties.

2 Bifurcation set

Let X, Z be affine irreducible varieties of the same dimension and assume that X is smooth.
Let f : X → Z be a dominant polynomial mapping. It is well known that there is a Zariski
open non-empty subset U of Z such that for every x1, x2 ∈ U the fibers f −1(x1), f −1(x2)
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On semi-equivalence of generically-finite polynomial mappings 135

have the same numberμ( f ) of points.We say thatμ( f ) is the topological degree of f.Recall
the following (see [5,6]).

Definition 2.1 Let X, Z be as above and let f : X → Z be a dominant polynomial mapping.
We say that f is finite at a point z ∈ Z if there exists an open neighborhoodU of z such that
the mapping f| f −1(U ) : f −1(U ) → U is proper.

It is well-known that the set S f of points at which the mapping f is not finite is either
empty or it is a hypersurface (see [5,6]). We say that S f is the set of non-properness of f.

Definition 2.2 Let X be a smooth affine n-dimensional variety and let Z be an affine variety
of the same dimension. Let f : X → Z be a generically finite dominant polynomial mapping
of geometric degree μ( f ). The bifurcation set of f is

B( f ) = {z ∈ Z : z ∈ Sing(Z) or # f −1(z) 	= μ( f )}.
Remark 2.3 The same definition makes sense for those continuous mapping f : X → Z ,
for which we can define the topological degree μ( f ) and singularities of Z . In particular
if Z1, Z2 are affine algebraic varieties, f : X → Z1 is a dominant polynomial mapping
and � : Z1 → Z2 is a homeomorphism which preserves singularities, then we can define
B(� ◦ f ) as �(B( f )). Moreover, the mapping � ◦ f behaves topologically as an analytic
covering. We will use this facts in the proof of Theorem 3.5.

We have the following theorem (see also [7]).

Theorem 2.4 Let X, Z be affine irreducible complex varieties of the same dimension and
suppose X is smooth. Let f : X → Z be a polynomial dominant mapping. Then the set B( f )
is closed and B( f ) = K0 ∪ S f ∪ Sing(Z).

Proof Let us note that outside the set S f ∪ Sing(Z) the mapping f is a (ramified) analytic
covering of degree μ( f ). By Lemma 2.5 below, if z /∈ Sing(Z) we have # f −1(z) ≤ μ( f ).
Moreover, since f is an analytic covering outside S f ∪ Sing(Z) we see that for y /∈ S f ∪
Sing(Z) the fiber f −1(z) has exactly μ( f ) points counted with multiplicity. Take X0 :=
X\ f −1(Sing(Z) ∪ S f ). If z ∈ K0( f|X0), the set of critical values of f|X0 , then # f −1(z) <

μ( f ).
Now let z ∈ S f \Sing(Z). There are two possibilities:

(a) # f −1(z) = ∞.

(b) # f −1(z) < ∞.

In case (b) we can assume that f −1(z) 	= ∅. LetU be an affine neighborhood of z disjoint
from Sing(z) over which the mapping f has finite fibers. Let V = f −1(U ). By the Zariski
Main Theorem in the version given by Grothendieck (see [3]), there exists a normal variety
V and a finite mapping f : V → U such that

(1) V ⊂ V ,
(2) f |V = f.

Since z ∈ f (V \V ), it follows from Lemma 2.5 below that # f −1(z) < μ( f ). Conse-
quently, if z ∈ S f , we have # f −1(z) < μ( f ). Finally, we have B( f ) = K0( f|X0) ∪ S f ∪
Sing(Z). However, the set K0( f|X0) is closed in Z\(S f ∪ Sing(Z)). Hence B( f ) is closed
in Z . �
Lemma 2.5 Let X, Z be affine normal varieties of the same dimension. Let f : X → Z be
a finite mapping. Then for every z ∈ Z we have # f −1(z) ≤ μ( f ).
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136 Z. Jelonek

Proof Let # f −1(z) = {x1, . . . , xr }. We can choose a function h ∈ C[X ] which separates all
xi (in particular we can take as h the equation of a general hyperplane section). Since f is
finite, the minimal equation of h over the field C(Z) is of the form:

T s + a1( f )T
s−1 + · · · + as( f ) ∈ f ∗

C[Z ][T ],
where s ≤ μ( f ). If we substitute f = z into this equation we get the desired result. �

3 Main result

We start with the following:

Lemma 3.1 Let f : Xk → Y l be a dominant polynomial mapping of affine irreducible
varieties. There exists a Zariski open non-empty subset U ⊂ Y such that for any y ∈ U we
have Sing( f −1(y)) = f −1(y) ∩ Sing(X).

Proof We can assume that Y is smooth. Since there exists a mapping π : Y l → C
l which is

generically etale, we can assume that Y = C
l . Let us recall that if Z is an algebraic variety,

then a point z ∈ Z is smooth if and only if the local ring Oz(Z) is regular, or equivalently
dimC m/m2 = dim Z , where m denotes the maximal ideal of Oz(Z).

Let y = (y1, ..., yl) ∈ C
l be a sufficiently generic point. Then by Sard’s Theorem the fiber

Z = f −1(y) is smooth outside Sing(X) and dim Z = dim X−l = k−l.Note that the generic
(scheme-theoretic) fiber F of f is reduced. Indeed, this fiber F = Spec(C(Y ) ⊗C[Y ] C[X ])
is the spectrum of a localization ofC[X ] and so a domain. Since we are in characteristic zero,
the reduced C(Y )-algebra C(Y ) ⊗C[Y ] C[X ] is necessarily geometrically reduced (i.e. stays
reduced after extending to an algebraic closure of C(Y )). Since the property of fibres being
geometrically reduced is open on the base, i.e. on Y , thus the fibres over an open subset of Y
will be reduced. Consequently, there is a Zariski open, non-empty subset U ⊂ Y such that
for y ∈ U the fiber f −1(y) is reduced. Hence we can assume that Z is reduced. It is enough
to show that every point z ∈ Z ∩ Sing(X) is singular on Z .

Assume that z ∈ Z ∩ Sing(X) is smooth on Z . Let f : X → C
l be given as f =

( f1, ..., fl), where fi ∈ C[X ]. Then Oz(Z) = Oz(X)/( f1 − y1, ..., fl − yl). In particular
if m′ denotes the maximal ideal of Oz(Z) and m denotes the maximal ideal of Oz(X) then
m′ = m/( f1 − y1, ..., fl − yl). Let αi denote the class of the polynomial fi − yi in m/m2.

Let us note that
m′/m′2 = m/(m2 + (α1, ..., αl)). (1)

Since the point z is smooth on Z we have dimC m′/m′2 = dim Z = dim X − l. Take
a basis β1, ..., βk−l of the space m′/m′2 and let βi ∈ m/m2 correspond to βi under the
correspondence (1). Note that the vectors β1, ..., βk−l , α1, ..., αl generate the space m/m2.

This means that dimC m/m2 ≤ k − l + l = k = dim X. Hence the point z is smooth on X , a
contradiction. �

We have:

Lemma 3.2 Let X, Y be smooth complex irreducible algebraic varieties and f : X → Y
a regular dominant mapping. Let N ⊂ W ⊂ X be closed subvarieties of X. Then there
exists a non-empty Zariski open subset U ⊂ Y such that for every y1, y2 ∈ U the triples
( f −1(y1),W ∩ f −1(y1), N ∩ f −1(y1)) and ( f −1(y2),W ∩ f −1(y2), N ∩ f −1(y2)) are
homeomorphic.
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On semi-equivalence of generically-finite polynomial mappings 137

Proof Let X1 be an algebraic completion of X and let Y be a smooth algebraic completion
of Y. Take X ′

1 := graph( f ) ⊂ X1 × Y and let X2 be a desingularization of X ′
1.

We can assume that X ⊂ X2. We have an induced mapping f : X2 → Y such that
f |X = f. Let Z = X2\X. Denote by N ,W the closures of N and W in X2. Let R =
{N ∩ Z ,W ∩ Z , N ,W , Z}, a collection of algebraic subvarieties of X2. There is a Whitney
stratification S of X2 which is compatible with R.

For any smooth strata Si ∈ S let Bi be the set of critical values of the mapping f |Si and
denote B = ⋃

Bi . Take X3 = X2\ f −1
(B). The restriction of the stratification S to X3 gives

aWhitney stratification which is compatible with the familyR′ := R∩X3.We have a proper
mapping f ′ := f |X3

: X3 → Y\B which is a submersion on each stratum. By the Thom first
isotopy theorem there is a trivialization of f ′ which preserves the strata. It is an easy observa-
tion that this trivialization gives a trivialization of themapping f : X\ f −1(B) → Y\B := U.

In particular the fibers f −1(y1) and f −1(y2) are homeomorphic via a stratum preserving
homeomorphism. This means that the triples ( f −1(y1),W ∩ f −1(y1), N ∩ f −1(y1)) and
( f −1(y2),W ∩ f −1(y2), N ∩ f −1(y2)) are homeomorphic. �

We also need the following:

Definition 3.3 Let X, Y be smooth affine varieties. By a family of regular mappings
FM (X, Y, F) := F we mean a regular mapping F : M × X → Y , where M is an algebraic
variety. The members of a family F are the mappings fm : X � x → F(m, x) ∈ Y. Let

G : M × X � (m, x) �→ (m, F(m, x)) ∈ Z = G(M × X) ⊂ M × Y.

If G is generically finite, then by the topological degree μ(F) we mean the number μ(G).
Otherwise we put μ(F) = 0.

Later we will sometimes identify the mapping fm with the mapping G(m, ·) = (m, fm) :
X → m × Y. The following lemma is important:

Lemma 3.4 Let X, Y be smooth affine complex varieties. Let M be a smooth affine irre-
ducible variety and let F be the family induced by a mapping F : M × X → Y, i.e.,
F = { fm : X � x �→ F(m, x) ∈ Y, m ∈ M}. Assume thatμ(F) > 0. Take Z = G(M × X)

and put Zm = (m × Y ) ∩ Z .

Then

(1) There is an open non-empty subset U1 ⊂ M such that for every m ∈ U1 we have
μ( fm) = μ(F);

(2) There is a non-empty open subset U2 ⊂ U1 such that for every m ∈ U2 we have
fm(X) = Zm := (m × Y ) ∩ Z and B( fm) = B(G)m := (m × Y ) ∩ B(G);

(3) There is a non-empty open subset U3 ⊂ U2 such that for every m1,m2 ∈ U3 the pairs
( fm1(X), B( fm1)) and ( fm2(X), B( fm2)) are equivalent bymeans of a homeomorphism,
i.e., there is a homeomorphism � : Y → Y such that �( fm1(X)) = fm2(X) and
�(B( fm1)) = B( fm2).

Proof (1) Take G : M × X � (m, x) �→ (m, F(m, x)) ∈ Z . The mapping G : M × X �
(m, x) �→ (m, F(m, x)) ∈ Z has a constant number of points in the fibers outside the
bifurcation set B(G) ⊂ Z . Take U = Z\B(G). By Theorem 2.4 the set U is open. Let
π : Z � (m, y) �→ m ∈ M be the projection. We show that the constructible set π(U ) is
dense in M. Indeed, assume that π(U ) = N is a proper subset of M. Since U is dense
in Z , we have π(Z) ⊂ N , i.e., Z ⊂ N × Y. This is a contradiction. In particular the set
π(U ) is dense in M and it contains a Zariski open, non-empty subsetU1 ⊂ M.Of course
μ( fm) = μ(F) for m ∈ U1.
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138 Z. Jelonek

(2) Consider the projection π : Z � (m, y) �→ m ∈ M. As we know from (1), the mapping
π is dominant. By a well known result, after shrinking U1 we can assume that every
fiber Zm of π (m ∈ U2 ⊂ U1) is of pure dimension d = dim Z − dim M = dim X.

However, Zm = fm(X) ∪ B(G)m . Generically the dimension of B(G)m is less than d.

Hence if we possibly shrinkU2, we get Zm = fm(X) form ∈ U2.Moreover, by Lemma
3.1 (after shrinking U2 if necessary), we can assume that Sing(Zm) = Sing(Z)m :=
(m × Y ) ∩ Sing(Z). Now it is easy to see that B( fm) = B(G)m .

(3) We have fm(X) = Zm and B( fm) = B(G)m for m ∈ U2. Now apply Lemma 3.2 with
X = U2 × Y, W = (U2 × Y ) ∩ Z , N = (U2 × Y ) ∩ B(G) and f : U1 × Y � (m, y) �→
m ∈ U1.

�
Now we are ready to prove our main result:

Theorem 3.5 Let X, Y be smooth affine irreducible varieties. Every algebraic family F of
polynomial mappings from X to Y contains only a finite number of topologically non-semi-
equivalent (non-equivalent) generically-finite (proper) mappings.

Proof The proof is by induction on dim M. We can assume that M is affine, irreducible
and smooth. Indeed, M can be covered by a finite number of affine subsets Mi , and we
can consider the families F|Mi separately. For the same reason we can assume that M is
irreducible. Finally dim M\Reg(M) < dim M and we can use induction to reduce the
general case to the smooth one.

Assume thatM is smooth and affine. Ifμ(F) = 0, thenF does not contain any generically-
finitemapping.Hencewe can assume thatμ(F) = k > 0.ByLemma3.4 there is a non-empty
open subset U ⊂ M such that for every m1,m2 ∈ U we have

(1) μ( fm1) = μ( fm2) = k,
(2) The pairs ( fm1(X), B( fm1)) and ( fm2(X), B( fm2)) are equivalent bymeans of a homeo-

morphism, i.e., there is a homeomorphism � : Y → Y such that �( fm1(X)) = fm2(X)

and �(B( fm1)) = B( fm2).

Fix a pair Q = fm0(X), B = B( fm0) for some m0 ∈ U3. For m ∈ U3 the mapping
fm : X → Y is topologically equivalent to the continuous mapping f ′

m = �m ◦ fm with
f ′
m(X) = Q and B( f ′

m) = B (Lemma3.4). Everymapping f ′
m induces a topological covering

f ′
m : X\ f ′

m
−1

(B) = Pf ′
m

→ R = Q\B. Take a point a ∈ R and let a f ′
m

∈ f ′
m

−1
(a). We

have an induced homomorphism

f∗ : π1(Pf ′
m
, a f ′

m
) → π1(R, a).

Denote H f = f∗(π1(Pf , a f )) and G = π1(R, a). Hence [G : H f ] = k. It is well known
that the fundamental group of a smooth algebraic variety is finitely generated. In particular
the group G := π1(Q\B, a) is finitely generated. Let us recall the following result of M.
Hall (see [4]):

Lemma 3.6 Let G be a finitely generated group and let k be a natural number. Then there
are only a finite number of subgroups H ⊂ G such that [G : H ] = k.

By Lemma 3.6 there are only a finite number of subgroups H1, ..., Hr ⊂ G with index
k. Choose generically-finite (proper) mappings fi = f ′

mi
= �i ◦ fmi : X → Y such that

H fi = Hi (of course only if such a mapping fi does exist). We show that every generically-
finite (proper) mapping f ′

m (m ∈ U ) is semi-equivalent (equivalent) to one of mappings
fi .
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On semi-equivalence of generically-finite polynomial mappings 139

Indeed, let H f ′
m

= H fi (here f ′
m = �m ◦ fm). We show that f ′

m := f is equivalent to
fi . Let us consider two coverings f : (Pf , a f ) → (R, a) and fi : (Pfi , a fi ) → (R, a).

Since f∗(π1(Pf , a f )) = fi ∗(π1(Pfi , a fi )) we can lift the covering f to a homeomorphism
φ : Pf → Pfi such that following diagram commutes:

(Pfi , a fi )

(Pf , a f ) (R, a)

fi

f

φ

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

Hence for generically-finite mappings we have

(�i )
−1 ◦ �m ◦ fm ◦ φ−1|U = fmi |U ,

where V = X\ f −1
m (B( fm)) andU = X\ f −1

mi
(B( fmi )). Hence fm is semi-equivalent to fmi .

In the case of proper mappings we show additionally that the mapping φ can be extended
to a continuous mapping � on the whole of X. Indeed, take a point x ∈ f −1(B) and let
y = f (x). The set f −1

i (y) = {b1, ..., bs} is finite. Take small open disjoint neighborhoods
Wi (r) of bi , such thatWi (r) shrinks to bi as r tends to 0.Wecan choose an open neighborhood
V (r)of y so small that f −1

i (V (r)) ⊂ ⋃s
j=1 Wi (r).Now take a small connected neighborhood

Px (r) of x such that f (Px (r)) ⊂ V (r). The set Px (r)\ f −1(B) is still connected and it is
transformed by φ into one particular set Wi0(r). We take �(x) = bi0 . It is easy to see that
the mapping � so defined is a continuous extension of φ. In fact φ(Px (r)\ f −1(B)) shrinks
to bi0 if r goes to 0. Moreover, we still have f = fi ◦ �.

In a similar way the mapping 	 determined by φ−1 is continuous. It is easy to see that
	 ◦ � = � ◦ 	 = identi t y, hence � is a homeomorphism. Consequently, the mapping
fi ◦ � = �i ◦ fmi ◦ � is equal to f = �m ◦ fm . Finally, we get

(�i )
−1 ◦ �m ◦ fm ◦ �−1 = fmi .

This means that the family F|U contains only a finite number of topologically non-semi-
equivalent (non-equivalent) generically-finite (proper) mappings. In fact, the number of
topological semi-types (types) of generically-finite (proper) mappings in F|U is bounded
by the number of subgroups of G of index μ(F).

Let T = M\U. Hence dim T < dim M. By the induction the family F|T also contains
only a finite number of topologically non-semi-equivalent (non-equivalent) generically-finite
(proper) mappings. Consequently so does F . �

Corollary 3.7 There is only a finite number of topologically non-semi-equivalent (non-
equivalent) generically-finite (proper) polynomial mappings f : C

n → C
m of a bounded

algebraic degree. �
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140 Z. Jelonek

4 Families of proper mappings

In this section we slightly extend our previous result in the case of irreducible families of
proper (or generically-finite) mappings. First we prove a following lemma:

Lemma 4.1 Let Y = R
n and let Z ⊂ Y be a linear subspace of Y. Fix ε > 0 and take η < ε.

Let B(0, η) be a ball of radius η. Let γ : I � t �→ γ (t) ∈ B(0, η) ∩ Z be a smooth path.
Then there exists a continuous family of diffeomorphisms �t : Y → Y , t ∈ [0, 1] such that

(1) �t (γ (t)) = γ (0) and �t (z) = z for ‖z‖ ≥ ε.

(2) �0 = identity.
(3) �t (Z) = Z .

Proof Let vt = γ (0) − γ (t) ∈ TRn . We construct a family of diffeomorphisms �t , which
are interpolation between translation x → x + vt and identity.

Let σ : Y → [0, 1] be a differentiable function such that σ = 1 on B(0, η) and σ = 0
outside B(0, ε). Define a vector field V (x) = σ(x)vt . Integrating this vector field we get
desired diffeomeorphisms �t , for any t . �
Corollary 4.2 Let Y be a smooth manifold and Z be a smooth submanifold. For every
point a ∈ Z and every open neighborhood Va of the point a, there is an open connected
neighborhood Ua of the point a, such that:

(a) Ua ⊂ Va,
(b) if γ : I � t �→ γ (t) ∈ Ua ∩ Z is a smooth path, then there is a continuous family of

diffeomorphism ψt : Y → Y , t ∈ [0, 1] such that

(1) ψt (γ (t)) = γ (0),
(2) ψt (x) = x for x /∈ Va and ψ0 = identity,
(3) ψt (Z) = Z .

Now we are in a position to prove:

Theorem 4.3 Let X, Y be smooth affine irreducible varieties. Let F : M × X → Y be an
algebraic family of proper polynomialmappings from X to Y.Assume that M is an irreducible
variety. Then there exists a Zariski open dense subset U ⊂ M such that for every m,m′ ∈ U
mappings fm and fm′ are topologically equivalent.

Proof We follow the proof of Theorem 3.5 and we use here the same notation. By Lemma
3.4 there is a non-empty open subset U ⊂ M such that for every m1,m2 ∈ U we have

(1) μ( fm1) = μ( fm2) = k,
(2) The pairs ( fm1(X), B( fm1)) and ( fm2(X), B( fm2)) are equivalent bymeans of a homeo-

morphism, i.e., there is a homeomorphism � : Y → Y such that �( fm1(X)) = fm2(X)

and �(B( fm1)) = B( fm2).

Fix a pair (Q = fm0(X), B = B( fm0)) for some m0 ∈ U. For m ∈ U the mappings fm
and fm0 can be connected by a continuous path ft , f0 = fm0 , f1 = fm . Moreover we have
also a continuous family of homeomorphisms �t : Y → Y such that �t ( ft (X)) = f0(X)

and �(B( ft )) = B( f0). It is enough to prove that mappings Ft = �t ◦ ft are locally (in the
sense of parameter t) equivalent.

(1) First step of the proof. Let Ct ⊂ X denotes the preimage by Ft of the set B (in fact
Ct = f −1

t (B( ft )) and put Xt = X\Ct . Put Q′ := Q\B.Assume that for all mappings Ft
there is a point a ∈ (X\ ⋃

t∈I Ct ) such that for all t ∈ I we have Ft (a) = b.
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We have an induced homomorphism Gt ∗ : π1(Xt , a) → π1(Q′, b). We show that the
subgroup Ft ∗(π1(Xt , a)) ⊂ π1(Q′, b) does not depend on t.

Indeed let γ1, ..., γs be generators of the group π1(Xt0 , a). Let Ui be an open relatively
compact neighborhoods of γi such that Ui ∩ Ct0 = ∅. For sufficiently small number ε > 0
and t ∈ (t0 − ε, t0 + ε) we have Ui ∩ Ct = ∅. Let t ∈ (t0 − ε, t0 + ε). Note that the
loop Ft (γi ) is homotopic with the loop Ft0(γi ). In particular the group Ft0∗(π1(Xt0 , a)) is
contained in the group Ft ∗(π1(Xt , a)). Since they have the same (finite!) index in π1(Y ′, b)
they are equal. This means that the subgroupGt ∗(π1(Xt , a)) ⊂ π1(Y ′, b) is locally constant,
hence it is constant.

Let us consider two coverings Ft : (Xt , a) → (Q′, b) and F0 : (X0, a) → (Q′, b). Since
Ft ∗π1(Xt , a) = F0∗π1(X0, a) we can lift the covering Ft to a homeomorphism φt : Xt →
X0. As before we can extend the homeomorphism φt to the homeomorphism �t : X → X ,
such that F0 ◦ �t = Ft .

(2) The general case. Now we can prove Theorem 4.3. Since in general there is no a
point a ∈ (X\⋃

t∈I Ct ) such that for all t ∈ I we have Ft (a) = b, we have to modify our
construction.

First we prove that for every t0 ∈ I there exists ε > 0 and a family of homeomorphisms
�t : X → X , t ∈ (t0 − ε, t0 + ε) such that Ft = Ft0 ◦ �t for t ∈ (t0 − ε, t0 + ε).

Take a point a ∈ Xt0 and choose ε > 0 so small that a ∈ Xt for t ∈ (t0 − ε, t0 + ε).
Put γ (t) � t �→ Ft (a) ∈ Y ′. We can take ε so small that the hypothesis of Corollary 4.2
is satisfied. Applying Corollary 4.2 with Y ′ = Y\B and Z = Q\B we have a continuous
family of diffeomeorphisms ψt : Y → Y which preserves Q and B, t ∈ (t0 − ε, t0 + ε)

such that ψt (Ft (a)) = F0(a). Take Gt = ψt ◦ Ft . Arguing as in the first part of our proof all
Gt are topologically equivalent for t ∈ (t0 − ε, t0 + ε). Hence also all Ft are topologically
equivalent for t ∈ (t0 − ε, t0 + ε). Since Ft are locally topologically equivalent, they are
topologically equivalent for every t ∈ I . �
Corollary 4.4 Let n ≤ m and let �n(d1, ..., dm) denotes the family of all polynomial map-
pings F = ( f1, ..., fm) : Cn → C

m of a multi-degree bounded by (d1, ..., dm). Then any two
general members of this family are topologically equivalent.

Proof Indeed, it is enough to note that a generic mapping f ∈ �n(d1, ..., dm) is proper. �
Using the same method we can prove:

Theorem 4.5 Let X, Y be smooth affine irreducible varieties. Let F : M × X → Y be an
algebraic family of generically-finite polynomial mappings from X to Y. Assume that M is
an irreducible variety. Then there exists a Zariski open dense subset U ⊂ M such that for
every m,m′ ∈ U the mappings fm and fm′ are topologically semi-equivalent.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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