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Abstract We prove that under a symmetry assumption all cocycles on Hopf ∗-algebras arise
from generating functionals. This extends earlier results of R. Vergnioux and D. Kyed and
has two quantum group applications: all quantum Lévy processes with symmetric gener-
ating functionals decompose into a maximal Gaussian and purely non-Gaussian part and
the Haagerup property for discrete quantum groups is characterized by the existence of an
arbitrary proper cocycle.
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The correspondence between (real) conditionally positive definite functions on a discrete
group � and cocycles for orthogonal representations of � on real Hilbert spaces plays a
key role in the functional-analytic geometric group theory, allowing a transition between
analytic and geometric data (see for example the dictionary in the beginning of Chap-
ter 2 in [1]). Perhaps less well-known, but equally important, is its role in the algebraic
approach to Lévy processes on groups and Lévy-Khintchine decomposition. When we pass
to the quantum context, replacing classical groups by their quantum counterparts, the rela-
tion between the two corresponding notions, i.e. generating functionals and cocycles on
Pol(G), where G is a compact quantum group, becomes somewhat more involved, but its
importance does not diminish. This was first recognized by Schürmann [13,14], who in
particular used the GNS construction leading from a generating functional to a cocycle as
a key step in the reconstruction theorem for quantum Lévy processes. He also noted the
connection between the possibility of attributing a generating functional to a given cocycle
and the extraction of a maximal Gaussian part of a given quantum Lévy process. It was
soon realized that in general given a cocycle the corresponding generating functional need
not exist [15,16]. Almost twenty years later D. Kyed, basing his result on the unpublished
notes by R. Vergnioux, showed that real cocycles always arise from generating function-
als. Reality is now understood as a specific interaction with the antipode S of Pol(G). In
Kyed’s paper this was used to study Kazhdan’s Property (T) for discrete quantum groups;
recently the same construction was employed to the analysis of the Haagerup property in
[3].

In this work we extend the results of Vergnioux and Kyed to the situation where the
reality condition is in addition twisted by what we call an admissible bijection. A pri-
mary motivating example arises from a scaling action on the algebra of functions on a
non-Kac compact quantum group, where the new reality condition can be viewed as related
to the unitary antipode of Pol(G). We show that in fact for any Hopf ∗-algebra A and an
admissible bijection α : A → A there is a one-to-one correspondence between α-real cocy-
cles on A and S ◦ α-invariant generating functionals on A. The difficult part is the one
where we associate a functional to a given cocycle, the other direction follows from Schür-
mann’s GNS construction. It deserves to be noted that the construction, although purely
algebraic, is more involved than the one of Vergnioux–Kyed. The result turns out to have
some important applications: it enables us to show that any quantum Lévy process whose
generating functional is S ◦ α-invariant allows the extraction of its maximal Gaussian part
and that the Haagerup property for a discrete quantum group is characterised by the exis-
tence of a proper (not necessarily real) cocycle. The latter result strengthens Theorem 7.23
in [3].

The plan of the article is as follows: in Sect. 1 we describe the notation and terminol-
ogy, in particular developing the concept of the admissible bijection, quoting known results
regarding the correspondence between cocycles and generating functionals and presenting
a homological viewpoint on the problem studied in the paper. In Sect. 2 we prove the main
result and in Sect. 3 establish two applications mentioned above.

All the inner products in the article are linear on the right.
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1 Notations and preliminaries

Let A be a Hopf ∗-algebra [8]. We will denote its coproduct by �, the counit by ε and the
antipode by S, and very often employ Sweedler’s notation: if a ∈ A then

�(a) = a(1) ⊗ a(2).

This requires certain care: so for example, as the interaction of the coproductwith the antipode
involves a tensor flip � : A ⊗ A → A ⊗ A, we have (Sa)(1) = S(a(2)), (Sa)(2) = S(a(1)).
The defining antipode relation in Sweedler’s notation takes the following form:

S(a(1))a(2) = ε(a)1 = a(1)S(a(2)), a ∈ A. (1.1)

Occasionally we will also need a triple version of the Sweedler notation: �(2)(a) = a(1) ⊗
a(2) ⊗ a(3), where a ∈ A and �(2) := (id ⊗ �) ◦ � = (� ⊗ id) ◦ �. The adjoint map of A
will be denoted simply by ∗, so that we have for example a relation S ◦∗ ◦S◦∗ = id. We will
further denote the ideal Ker(ε) by K1.

The main motivating examples we have in mind are those of Hopf ∗-algebras coming
from compact quantum groups. Let then G be a compact quantum group in the sense
of Woronowicz [18,19]—note it is defined implicitly, in terms of its algebra of con-
tinuous functions, a unital C∗-algebra C(G), equipped with a coproduct � : C(G) →
C(G) ⊗sp C(G), where ⊗sp denotes the spatial tensor product of C∗-algebras. A unitary
matrix U = (ui j )

n
i, j=1 ∈ Mn(C(G)) is called a (finite-dimensional) unitary representation

of G if �(ui j ) = ∑n
k=1 uik ⊗ ukj , i, j = 1, . . . , n; each of the elements ui j is called a coef-

ficient of U . The linear span of all coefficients of finite dimensional unitary representations
of G is a dense unital ∗-subalgebra of C(G), which turns out to have the structure of a Hopf
∗-algebra with the coproduct inherited from C(G). There are natural notions of irreducibility
and unitary equivalence for unitary representations of G; if we denote by Irr(G) the set of
all equivalence classes of irreducible representations of G and for each β ∈ Irr(G) choose a
representative Uβ ∈ Mnβ (Pol(G)) then {uβ

i j : β ∈ Irr(G), i, j = 1, . . . , nβ} forms a linear
basis of Pol(G). The Hopf ∗-algebra Pol(G) admits a scaling automorphism group, i.e. a
one-parameter group of automorphisms (τt )t∈R which is ‘locally implemented’, i.e. for each
β ∈ Irr(G) there exists a positive invertible matrix Qβ ∈ Mnβ such that we have

(τt ⊗ idMnβ
)(Uβ) = (Qβ)i tUβ(Qβ)−i t .

The above formula (or the implementation in terms of so-called Woronowicz characters)
implies that we can in fact replace t above by any number z ∈ C and still obtain a bijective
homomorphism τz : Pol(G) → Pol(G), such that τz(a∗) = (τz̄(a))∗ for all a ∈ Pol(G). Each
τz commutes with the antipode and also intertwines the coproduct: (τz ⊗ τz) ◦ � = � ◦ τz ;
moreover τz ◦ τw = τz+w for all z, w ∈ C.

We can assume, at the cost of possibly choosing another representative ofβ, that thematrix
Qβ is diagonal: this means that there exist strictly positive numbers q1(β), . . . , qnβ (β) such
that for each z ∈ C and i, j = 1, . . . , nβ we have

τz(u
β
i j ) =

(
qi (β)

q j (β)

)i z

uβ
i j .

The unitary antipode R ofG is a ∗-preserving involutive anti-automorphismof Pol(G) defined
as R = S ◦ τ i

2
; in the basis chosen above one obtains thus
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R
(

uβ
i j

)
=

(
q j (β)

qi (β)

) 1
2 (

uβ
j i

)∗
.

All these facts can be located in [19], see also [8] (note that we follow rather a convention
used for example in [3,9] then this of [19]—in the latter article one has R = S ◦τ− i

2
). Finally

observe that the scaling automorphisms are non-trivial if and only ifG is not of the Kac type,
that is if the Haar state ofG is not tracial. In particular they trivialise when we study classical
compact groups G.

Finally let us recall that the Hopf ∗-algebras arising as Pol(G) for a certain compact
quantum group G have intrinsic characterization, as CQG-algebras [4].

Admissible bijections

The following definition plays a crucial role in this article.

Definition 1.1 Let A be a Hopf ∗-algebra. A map α : A → A is called an admissible
bijection if it satisfies the following conditions:

(i) α is a homomorphism;
(ii) α ◦∗ ◦α◦∗ = id;
(iii) (α ⊗ α) ◦ � = � ◦ α;
(iv) the linear map (id + α) : A → A is a bijection;
(v) the linear map (id ⊗ id + α ⊗ α) : A ⊗ A → A ⊗ A is a bijection.

It is not difficult to see that if an admissible bijection is ∗-preserving (in other words it
is an automorphism of the Hopf ∗-algebra A), it must be an identity map—indeed, if α is
∗-preserving then (ii) above implies that it is an order two automorphism, so A decomposes
into eigenspaces of α corresponding respectively to eigenvalues 1 and −1. If the second of
these is non-trivial, then condition (iv) cannot hold.

Given an admissible bijection α : A → A we define an α-twisted antipode Sα via the
formula

Sα = S ◦ α.

Proposition 1.2 Let G be a compact quantum group, t ∈ R. Then the map τi t : Pol(G) →
Pol(G) is an admissible bijection. In particular the unitary antipode R = S ◦ τ i

2
is an

α-twisted antipode for α = τ i
2
.

Proof Let t ∈ R. The discussion in the beginning of this section shows that the first three
conditions are satisfied; for the second remark just that we have

τi t ◦∗ ◦τi t◦∗ =∗ ◦τi t ◦ τi t◦∗ = id.

Further note that in the basis {uβ
i j : β ∈ Irr(G), i, j = 1, . . . , nβ} of Pol(G) the linear map

id + τi t is a diagonal operator with respective eigenvalues 1 +
(

qi (β)
q j (β)

)−t �= 0. Similarly in

the basis {uβ
i j ⊗uβ ′

kl : β, β ′ ∈ Irr(G), i, j = 1, . . . , nβ, k, l = 1, . . . , nβ ′ } of Pol(G)⊗Pol(G)

the map id ⊗ id + τi t ⊗ τi t is diagonal with non-zero eigenvalues 1 +
(

qi (β)qk (β ′)
q j (β)ql (β

′)

)−t �= 0.

This shows that (iv)–(v) of Definition (1.1) also hold. 	
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Remark 1.3 The comment after Definition 1.1 shows that to find non-trivial admissible bijec-
tions one needs to deform the ∗-structure ofA. The construction in Proposition 1.2, of course
providing new examples only in the non-Kac case, suggests the following example. Let
N ∈ N, N ≥ 2 and consider the unitary group U (N ) with (Ui j )

N
i, j=1 denoting the stan-

dard generators of Pol(U (N )). Further consider a tuple (q1, . . . , qN ) of strictly positive
real numbers. An identification of A := Pol(U (N )) as the universal commutative algebra
generated by 2N 2 variables {Ui j , U∗

kl : i, j, k, l = 1, . . . N } satisfying the unitarity relations∑n
k=1 UikU∗

jk = ∑n
k=1 UkiU∗

k j = δi j I for each i, j = 1, . . . , n allows us to define a bijective
homomorphism α on A via the homomorphic extension of the formulas

α(Ui j ) = qi q
−1
j Ui j , α(U∗

kl) = qlq
−1
k U∗

kl , i, j, k, l = 1, . . . N .

An explicit, long calculation shows that α is indeed an admissible bijection, different from
the identity map if not all of the numbers qi coincide.

We will now collect some basic properties of admissible bijections and related twisted
antipodes.

Proposition 1.4 Let α : A → A be an admissible bijection. Then

(i) α is a bijection, α−1 =∗ ◦α◦∗ is an admissible bijection;
(ii) α(1) = 1 (so also Sα(1) = 1);

(iii) ε ◦ α = ε (so also ε ◦ Sα = ε);
(iv) α ◦ S = S ◦ α (so that Sα = α ◦ S);
(v) Sα ◦∗ ◦Sα◦∗ = id and Sα is an anti-homomorphism;

(vi) (Sα ⊗ Sα) ◦ � ◦ � = � ◦ Sα;
(vii) the twisted antipode relation holds:

Sα(a(1))α(a(2)) = ε(a)1 = α(a(1))Sα(a(2)), a ∈ A. (1.2)

Proof All the above follow easily from the definitions. For example to show (iii) we use
Definition 1.1 (iii), the fact that α is a bijection and the uniqueness of a counit on a Hopf
algebra; to show (iv) we use again Definition 1.1 (iii), the fact that α is a homomorphic
bijection, property (ii) and the uniqueness of an antipode on a Hopf algebra. To obtain (vii)
we apply the homomorphism α to the defining antipode relation and use the fact that as
α ‘commutes’ with the coproduct we have in Sweedler’s notation α(a(1)) = α(a)(1) and
α(a(2)) = α(a)(2). 	

Cocycles and generating functionals

In this subsection we discuss quickly the generating functionals and cocycles for represen-
tations of Hopf ∗-algebras and basic relations between these notions.

Definition 1.5 Let A be a Hopf ∗-algebra. A generating functional on A is a functional
L : A → C which is conditionally positive, hermitian and vanishes at 1:

L(a∗a) ≥ 0, a ∈ K1,

L(b∗) = L(b), b ∈ A,

L(1) = 0.

The importance of generating functionals lies in the fact that they generate convolution
semigroups of states (see [11,14] for the topological, analytic context), and thus further
classify quantum Lévy processes up to stochastic equivalence (see [14]).
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Let D be a pre-Hilbert space. By a representation of A on D we will always mean a
unital ∗-homomorphism from A to L†(D), the ∗-algebra of operators on D which admit
(pre-)adjoints defined on D and leaving D invariant. Note that if A is a CQG algebra each
such representation is bounded operator valued, and hence extends automatically to a unital
∗-homomorphism from A to B(H), where H is the Hilbert space completion of D.

Definition 1.6 Let A be a Hopf ∗-algebra, and let D be a pre-Hilbert space. A linear map
η : A → D is said to be a (nondegenerate) cocycle (for a representation π of A on D) if it
satisfies the equation:

η(ab) = π(a)η(b) + η(a)ε(b), a, b ∈ A (1.3)

and the image η(A) is dense in D.

Usually non-degeneracy is not a part of the defining condition for cocycles, but for us it is
convenient to include it, as we will work only with the cocycles which have this property (in
any case a degenerate cocycle η can be always viewed as a non-degenerate one by restricting
the representation π to the invariant subspace η(A)). Note also that as for each cocycle
η(1) = 0, we have η(A) = η(K1).

Definition 1.7 Let L : A → C be a generating functional and let η : A → D be a cocycle.
We say that η yields the coboundary of L if

L(ab) = ε(a)L(b) + L(a)ε(b) + 〈η(a∗), η(b)〉, a, b ∈ A (1.4)

(equivalently, L(ab) = 〈η(a∗), η(b)〉 for a, b ∈ K1).

We say that two cocycles η1 : A → D1, η2 : A → D2 are unitarily equivalent if there
exists a unitary operator U : H1 → H2, where H1,H2 denote the respective Hilbert space
completions, such that for all a ∈ A we have η2(a) = Uη1(a). It is easy to see that if
two cocycles yield the coboundary of the same generating functional then they are unitarily
equivalent. Moreover if η : A → D is a cocycle and L : A → C is a functional satisfying
(1.4) then L is a generating functional if and only if it is hermitian. The following result
forms a part of the Schürmann Reconstruction Theorem and can be shown via a GNS-type
construction.

Proposition 1.8 ([14]) Let L : A → C be a generating functional. Then there exists a
cocycle η : A → D which yields the coboundary of L.

Thus it is natural to ask the following question, which goes back to [13].

Question 1.1 Given a cocycle η does it admit a generating functional L for which it yields
the coboundary?

In general it is known that the answer to this question is negative, even for cocycles with
respect to trivial representations (i.e. for a multiple of the counit)—see Example 2.1 in [16].
The construction in [16] can be modified to yield counterexamples for a C QG-algebra. The
answer to Question 1.1 is positive for all cocycles on C[Fn], where Fn is the free group on n
generators, and on the so-called Brown–Glockner–von Waldenfels ∗-bialgebra U〈n〉 [13].

The terminology used above (i.e. the cocycle, the coboundary) is related to the homological
viewpoint on the relation (1.4), which we discuss next.
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Lemma 1.9 Ifη : A → D is a cocycle then there exists a unique linear mapϕ : K1⊗AK1 →
C such that

ϕ(a ⊗ b) = 〈η(a∗), η(b)〉, a, b ∈ K1. (1.5)

Proof Denote the representation for which η is a cocycle by π . It is clear by linearity that
the map ϕ̃ : K1 ⊗ K1 → C,

ϕ̃(a ⊗ b) = 〈η(a∗), η(b)〉, a, b ∈ K1 (1.6)

is well-defined. To get ϕ, we show that for a, c ∈ K1, b ∈ A, we have

ϕ̃(ab ⊗ c) = 〈η(b∗a∗), η(c)〉 = 〈π(b)∗η(a∗), η(c)〉
= 〈η(a∗), π(b)η(c)〉 = 〈η(a∗), η(bc)〉
= ϕ̃(a ⊗ bc).

	

We can naturally view C as an A-bimodule with both actions given by the counit. Then

the coboundary of a functional ω : A → C is the map ∂ω : A ⊗ A → C defined as
∂ω(a ⊗ b) = −ω(ab) + ε(a)ω(b) + ω(a)ε(b), a, b ∈ A. Consider the exact sequence

0 → H2(A,C) → K1 ⊗A K1 → K1 → H1(A,C) → 0

stated for group algebras in [12, Lemma5.6], but holdingmore generally for unital ∗-algebras
with a character, as shown in [5] (recall that K1 ⊗A K1 denotes the tensor product of A-
modules overA). Earlier remarks and simple observations imply that a functional L : A → C

for which η yields the coboundary exists if and only if ϕ vanishes on the kernel of the
multiplication map from K1 ⊗A K1 → K1. The exactness of the displayed sequence means
that one can interpret this in terms of H2(A,C). Furthermore L is determined by ϕ up to a
linear functional on H1(A,C).

Finally note that given a cocycle η : A → D the map ϕ̃ : K1 ⊗ K1 → C defined by (1.6)
is a 2-cocycle, since for any a, b, c ∈ K1

∂ϕ̃(a ⊗ b ⊗ c) = ε(a)〈η(b∗), η(c)〉−〈
η
(
(ab)∗

)
, η(c)

〉+〈η(a∗), η(bc)〉−〈η(a∗), η(b)〉ε(c)
= −〈π(b)∗η(a∗)η(c)〉 + 〈η(a∗), π(b)η(c)〉 = 0.

2 Main result

Asmentioned in the introduction, in the article [10] Kyed, following the unpublished notes of
Vergnioux, showed that Question 1.1 has a positive answer if the cocycle η is real, i.e. when
it satisfies a certain symmetry relation with respect to the antipode (see Definition 4.1 in [10],
but note a difference resulting from another convention for scalar products). In this main
section we extend this result, considering an α-twisted reality condition (see Theorem 2.8).
Throughout the Sect. we fix a Hopf ∗-algebra A and an admissible bijection α : A → A
and write γ := (id + α) : A → A.

The first lemma generalizes Lemma 4.8 in [10] (due to Vergnioux).

Lemma 2.1 Let η : A → D be a cocycle for a representation π . Then the following
equalities hold for all a ∈ A:

(i) η(Sα(a)) = −π(Sα(a(1)))η(α(a(2))),

(ii) η(α(a)) = −π(α(a(1)))η(Sα(a(2))),
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(iii) η(Sα(a)∗) = −π(Sα(a(2)))
∗η(α(a(1))

∗),
(iv) η(α(a)∗) = −π(α(a(2)))

∗η(Sα(a(1))
∗),

Proof It suffices to apply η (or η◦∗) to the twisted antipode relations (1.2) and use the fact
that η(1) = 0 together with the counit relation. 	

Definition 2.2 We say that a generating functional L : A → C is Sα-invariant if L ◦ Sα = L .

The next lemma establishes the algebraic property of the cocycle associated to an Sα-
invariant generating functional (for α = id it is the reality condition of Kyed, mentioned
above).

Lemma 2.3 Let L : A → C be an Sα-invariant generating functional and assume that
η : A → D is a cocycle which yields the coboundary of L. Then for any a, b ∈ A

〈η(a), η(b)〉 = 〈η(Sα(b)∗), η(Sα(a∗))〉.
Proof Choose a, b ∈ A and compute

ε(a)L(b) + L(a)ε(b) + 〈η(a), η(b)〉 = L(a∗b) = L(Sα(a∗b)) = L(Sα(b)Sα(a∗))
= ε(Sα(b))L(Sα(a∗)) + L(Sα(b))ε(Sα(a∗)) + 〈η(Sα(b)∗), η(Sα(a∗))〉
= ε(b)L(a) + L(b)ε(a) + 〈η(Sα(b)∗), η(Sα(a∗))〉.

	

This motivates the following definition.

Definition 2.4 We say that a cocycle η : A → D is α-real if

〈η(a), η(b)〉 = 〈η(Sα(b)∗), η(Sα(a∗))〉, a, b ∈ A. (2.1)

In particular when α = id we recover the notion of a real cocycle introduced by Vergnioux
and Kyed.

Lemma 2.5 Let L : A → C be an Sα-invariant generating functional and assume that
η : A → D is a cocycle which yields the coboundary of L. Then for any a ∈ A

L(γ (a)) = −〈η(Sα(a(1))
∗), η(α(a(2)))〉 = −〈η(α(a(1))

∗), η(Sα(a(2)))〉. (2.2)

Proof Let a ∈ A and apply L to the twisted antipode relation (1.2). This yields

L(Sα(a(1))α(a(2))) = 0 = L(α(a(1))Sα(a(2)))

and further via (1.4)

0 = ε(Sα(a(1)))L(α(a(2))) + L(Sα(a(1)))ε(α(a(2))) + 〈η(Sα(a(1))
∗), η(α(a(2)))〉,

0 = ε(α(a(1)))L(Sα(a(2))) + L(α(a(1)))ε(Sα(a(2))) + 〈η(α(a(1))
∗), η(Sα(a(2)))〉.

Using the counit relation and the fact that both L and ε are invariant under Sα yields

0 = L(α(a)) + L(a) + 〈η(Sα(a(1))
∗), η(α(a(2)))〉,

0 = L(a) + L(α(a)) + 〈η(α(a(1))
∗), η(Sα(a(2)))〉,

which ends the proof. 	

In fact the equality of the two formulas appearing above is a general fact.
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Lemma 2.6 Let η : A → D be a cocycle. Then for any a ∈ A
〈η(Sα(a(1))

∗), η(α(a(2)))〉 = 〈η(α(a(1))
∗), η(Sα(a(2)))〉.

Proof Say that η is a cocycle for a representation π . It suffices to pick a ∈ A and use
consecutively relations (ii) and (iii) of Lemma 2.1:

〈η(Sα(a(1))
∗), η(α(a(2)))〉 = −〈η(Sα(a(1))

∗), π(α(a(2)))η(Sα(a(3)))〉
= −〈π(α(a(2)))

∗η(Sα(a(1))
∗), η(Sα(a(3)))〉 = 〈η(α(a(1))

∗), η(Sα(a(2)))〉.
	


Theorem 2.7 LetA be a Hopf ∗-algebra, α : A → A be an admissible bijection and let η be
an α-real cocycle on A. Then the formula (2.2) defines an Sα-invariant generating functional
L such that η yields the coboundary of L.

Proof Note first that both expressions on the right hand side of (2.2) coincide due to Lemma
2.6.

We divide the proof into several parts. First we show that L is hermitian. To that end fix
a in A and put b = γ −1(a). Then a∗ = γ (b)∗ = b∗ + α(b)∗ = γ (c), where c = α(b)∗ =
α−1(b∗). This means in particular that α(c(1))

∗ = b(1) and c∗
(2) = α(b(2)). Thus

L(a∗) = L(γ (c)) = −〈η(α(c(1))
∗), η(Sα(c(2)))〉 = −〈η(b(1)), η(Sα(c(2)))〉

= −〈η(Sα(Sα(b(1))
∗)∗), η(Sα(c(2)))〉 = −〈η(c∗

(2)), η(Sα(b(1))
∗)〉

= −〈η(α(b(2))), η(Sα(b(1))
∗)〉 = −〈η(Sα(b(1))∗), η(α(b(2)))〉 = L(a),

where we first used the second equality in (2.2), then Proposition 1.4 (v), then the fact that
η is α-real and finally the first equality in (2.2).

In the second step we show that η yields the coboundary of L . Consider first an auxiliary
functional L ′ = L ◦ γ . Let a, b ∈ A. Then applying the second equality in (2.2) and the fact
that α is a homomorphism we obtain

L ′(ab) = −〈η(
α(b(1))

∗α(a(1))
∗), η

(
Sα(b(2))Sα(a(2)

)〉,
which, whenwe declare that η is a cocycle for a representationπ , and use the cocycle property
(1.3) leads to

L ′(ab) = − 〈
η
(
α(a(1))

∗), π
(
α(b(1))Sα(b(2))

)
η
(
Sα(a(2))

)〉

− 〈
η
(
α(a(1))

∗), π
(
α(b(1))

)
η
(
Sα(b(2))

)〉
ε(a(2))

− ε(a(1))
〈
η
(
α(b(1))

∗), π
(
Sα(b(2))

)
η
(
Sα(a(2))

)〉

− ε(a(1))ε(a(2))
〈
η
(
α(b(1))

∗), η
(
Sα(b(2))

)〉
.

Further via the twisted antipode relation (1.2), Lemma 2.1 (ii) and (iii) and the counit relation
used in the first equality we obtain

L ′(ab) = − ε(b)
〈
η
(
α(a(1))

∗), η
(
Sα(a(2))

)〉 + 〈
η
(
α(a)∗

)
, η

(
α(b)

)〉 + 〈
η
(
Sα(b)∗

)
, η

(
Sα(a)

)〉

− ε(a)
〈
η
(
α(b(1))

∗), η
(
Sα(b(2))

)〉 = L ′(a)ε(b) + 〈
η
(
α(a)∗

)
, η

(
α(b)

)〉

+ 〈
η
(
Sα(b)∗

)
, η

(
Sα(a)

)〉 + ε(a)L ′(b)

which in the end via the α-reality of η means that

L ′(ab) = ε(a)L ′(b) + L ′(a)ε(b) + 〈
η
(
α(a)∗

)
, η

(
α(b)

)〉 + 〈
η(a∗), η(b)

〉
.
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Therefore, using the language of Sect. 1, we obtain

∂L ′(a ⊗ b) = ε(a)L ′(b) − L ′(ab) + L ′(a)ε(b) = −〈η(a∗), η(b)〉 − 〈
η
(
α(a)∗

)
, η

(
α(b)

)〉

= −(
ϕ̃ ◦ (id ⊗ id + α ⊗ α)

)
(a ⊗ b),

for all a, b ∈ A, i.e.

∂L ′ = −ϕ̃ ◦ (id ⊗ id + α ⊗ α).

Denote by d : A ⊗ A → A the (linear) boundary operator,

d(a ⊗ b) = ε(a)b − ab + aε(b), a, b ∈ A.

We then have for any linear functional ω : A → C the equality ∂ω = ω ◦ d . Since α is an
ε-preserving homomorphism, we have also α ◦ d = d ◦ (α ⊗ α). Thus

(∂L) ◦ (id ⊗ id + α ⊗ α) = L ◦ d ◦ (id ⊗ id + α ⊗ α)

= L ◦ (id + α) ◦ d = ∂
(
L ◦ (id + α)

)

= −ϕ̃ ◦ (id ⊗ id + α ⊗ α).

Using finally the last defining property of the admissible bijection α we obtain the desired
equality

∂L = −ϕ̃,

equivalent to the fact that η yields the coboundary of L . As explained after Definition 1.7
together with the fact that L is hermitian it implies that L is a generating functional.

It remains to show that L is Sα invariant. Once again fix a inA and put b = γ −1(a). Then
Sα(a) = γ (Sα(b)) as α commutes with Sα and

L(Sα(a)) = −〈η(Sα(Sα(b(2)))
∗), η(α(Sα(b(1))))〉

= −〈η(Sα(Sα(b(2)))
∗), η(Sα(α(b(1))))〉 =

= −〈η(α(b(1))
∗), η(Sα(b(2)))〉 = L(a),

where we first used the first equality in (2.2) and Proposition 1.4 (vi), then the fact that α

commutes with Sα , then α-reality of η and finally the second equality in (2.2). Note that this
last result, i.e. the Sα-invariance for the functional L given by (2.2) in the case of α = id is
Proposition 7.22 of [3]. 	


The following theorem explains the title of the paper.

Theorem 2.8 Let A be a Hopf ∗-algebra and let α : A → A be an admissible bijection.
There exists a one-to-one correspondence, up to a unitary equivalence on the cocycle part,
between α-real cocycles η on A and Sα-invariant generating functionals L on A, so that
given an Sα-invariant L the corresponding α-real cocycle η yields its coboundary.

Proof This is a straightforward consequence of Theorem 2.7, Proposition 1.8 and comments
before it and Lemma 2.3. 	


We list here an immediate corollary, modelled on Corollary 4.9 in [2]. It shows that from
our point of view among the admissible bijections given by the scaling automorphism group
of a compact quantum group τ i

2
, the one leading to the symmetry under the unitary antipode

plays a distinguished role.
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Corollary 2.9 Let G be a compact quantum group and let t ∈ R\{ 12 }. Suppose that a cocycle
η : Pol(G) → D is τi t -real. Then it is τis -real for any s ∈ R.

Proof Assume that the cocycleη is as above. Then its associated (viaTheorem2.7) generating
functional L satisfies the formula

L ◦ S ◦ τi t = L .

Applying this formula twice yields L = L ◦ τ2i t−i . Then the same argument as in Corollary
4.9 in [2] (see also the proofs of Lemma 2.9 (2) in [17] and Proposition 3.5 in [7]) imply that
in fact L = L ◦ S ◦ τz for any z ∈ C. Fixing s ∈ R and applying Theorem 2.8 for η, L and
α = τis ends the proof (recall again that our convention for the scaling group is that of [3],
not of [19]). 	


In particular the above corollary reveals that if a cocycle is τi t -real for t �= 1
2 , then it is real

in the sense of Vergnioux and Kyed. Example 11.5 of [2] shows that the assumption t �= 1
2

is indeed necessary.

3 Applications

In this sectionwe discuss the applications of themain results of Sect. 2. Both concern quantum
groups: the first is related to decomposing quantum Lévy processes on a compact quantum
group, whereas the second treats a generalization of a theorem from [3] characterising the
Haagerup property for a discrete quantum group via the existence of a proper real cocycle
on its dual.

Throughout this Sect.we fix a compact quantum groupG and an admissible bijection
α : Pol(G) → Pol(G). As explained earlier, forA = Pol(G) we can view all representations
ofA as bounded operator valued, so that wewill also speak ofHilbert (rather than pre-Hilbert)
space valued cocycles. Given G we will write K2 := Lin{ab : a, b ∈ K1}.
3.1 Extracting maximal Gaussian parts of quantum Lévy processes

We need to introduce a few more notations and concepts. A quantum Lévy process on G

is a counterpart of a classical concept of a Lévy process on a compact group; we refer for
specific definitions to [14] and here only stress the fact that there is a natural one-to-one
correspondence between (stochastic equivalence classes of) quantum Lévy processes on G

and generating functionals on Pol(G). A generating functional L (and, by extension, its
associated quantum Lévy process) is called Gaussian if L(a∗a) = 0 for all a ∈ K2. This is
equivalent to the fact that the cocycle η associated to such L via Proposition 1.8 is a cocycle
with respect to the trivial representation of Pol(G):

η(ab) = ε(a)η(b) + η(a)ε(b), a, b ∈ Pol(G). (3.1)

In fact any map η : Pol(G) → H, where H is a Hilbert space, satisfying the equation (3.1) is
called a Gaussian cocycle.

Consider now any cocycle η : Pol(G) → H with an associated representation π :
Pol(G) → B(H). DefineR = η(K2) andG = ⋂

a∈Pol(G) Ker(π(a)−ε(a)IH). Then Chapter
5 of [14] (see also [13]) shows that the following facts hold: both subspaces R andG are left
invariant by operators in π(Pol(G)), H = R ⊕ G (in the Hilbert space sense – so R ⊥ G),
if we denote by PR and PG the respective orthogonal projections then ηR := PR ◦ η is a
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cocycle on Pol(G) and ηG = PG ◦ η is a Gaussian cocycle on Pol(G) (both with respect
to the respective restrictions of π ). We say that ηG is a maximal Gaussian part of η. If
G = {0} we say that η is purely non-Gaussian. In particular it is easy to see that ηR is purely
non-Gaussian.

Definition 3.1 We say that a quantum Lévy process admits a decomposition into a maximal
Gaussian part and a purely non-Gaussian part if its generating functional L : Pol(G) → C

decomposes as L = LG + L R , where LG , L R : Pol(G) → C are generating functionals
such that the associated (via Proposition 1.8) cocycles are respectively Gaussian and purely
non-Gaussian.

For motivations behind this terminology, relations to the classical Lévy–Khintchine
decomposition and the (non)-uniqueness of a possible decomposition described above we
refer to [14]. Here we only remark that if the answer to Question 1.1 were always positive
(which we know is not true) then the decomposition defined above would always exist. The
decomposition exists for all quantum Lévy processes on classical groups and for SUq(2)
([15]) or, more generally SUq(N ) for arbitrary N ∈ N ([6]). For the non-existence examples
we refer to the forthcoming work [5]; here we will prove, using the results of Sect. 2, that
the decomposition exists in presence of α-symmetry.

We begin with two lemmas, in which we use several times the notion of an adjoint for a
densely defined conjugate linear Hilbert space operator.

Lemma 3.2 Let η : Pol(G) → H be an α-real cocycle and let D = η(Pol(G)). Then the
formulas

T (η(a)) = η
(
Sα(a)∗

)
, T ′(η(a)) = η

(
Sα(a∗)

)
, a ∈ Pol(G),

define conjugate linear involutive maps T, T ′ : η(A) → H. The operators T and T ′ are
mutually adjoint on D and therefore closable as densely defined operators onH. Furthermore
each of the maps T, T ′ leaves η(K2) invariant and the corresponding restrictions TR :=
T |η(K2), T ′

R = T ′|η(K2) are densely defined conjugate linear closable operators on the
Hilbert space R := η(K2).

Proof To verify that T is well defined we need to check that η(a) = 0 implies T (η(a)) =
η
(
Sα(a)∗

) = 0 for any a ∈ Pol(G). It is in fact sufficient to do this for a ∈ K1 (as Sα

is unital and ε-preserving and η(1) = 0). Let L be the unique Sα-invariant generating
functional associated toη viaTheorem2.7. Then the conditionη(a) = 0 implies that L(ba) =
〈η(b∗), η(a)〉 = 0 for all b ∈ K1. Since L is Sα-invariant,

0 = L ◦ Sα(ba) = L
(
Sα(b)∗Sα(a)∗

) = 〈η(Sα(b)), η(Sα(a)∗)〉
for all b ∈ K1, which by non-degeneracy of η and the fact that Sα is bijective is equivalent
to η

(
Sα(a)∗

) = 0. The proof for T ′ is identical. The fact that both T and T ′ are involutive
follows from Proposition 1.4 (v).

Further since η : A → H is α-real

〈T (η(a)), T ′(η(b))〉 = 〈
η
(
Sα(a)∗

)
, η

(
Sα(b∗)

)〉 = 〈η(b), η(a)〉
for a, b ∈ Pol(G). This means that T ′ = T ∗|D , T = (T ′)∗|D and implies closability of both
operators.

Finally since Sα as an ε-preserving anti-homomorphism leaves K2 invariant, T and T ′
map η(K2) to itself and the last statement follows easily. 	
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In view of the above we will write in what follows T † instead of T ′.

Lemma 3.3 Let η : Pol(G) → H be an α-real cocycle. Then each of the cocycles ηR = PR◦η

and ηG = PG ◦ η is also α-real.

Proof We use the same notation as in the last lemma. Begin by denoting the closure of T
by T , so that we have T = (T †)∗, and similarly let TR denote the closure of TR , so that
TR = (T †

R)∗. Note that we have of course TR
∗ = T ∗

R and as (T †
R)2 = idη(K2), we also have

(T ∗
R )2 = idDomT ∗

R
.

Take ζ ∈ D := η(Pol(G)) and ξ ∈ η(K2) and compute

〈PRζ, T †
Rξ 〉 = 〈ζ, T †

Rξ 〉 = 〈ζ, T †ξ 〉 = 〈ξ, T ζ 〉 = 〈PRξ, T ζ 〉 = 〈ξ, PR T ζ 〉,
which proves PR(D) ⊂ Dom(TR), TR PR |D = PR T , with the latter equality understood as
one for linear operators acting between D andR. Similarly we show PR(D) ⊂ Dom(T ∗

R) and
T ∗

R PR |D = PR T †. We will need another of these relations, namely T ∗
R (PR(D)) ⊂ Dom(T ∗

R )

and (T ∗
R )2PR |D = PR |D . To establish it we pick again ζ ∈ D and ξ ∈ Dom(TR) = η(K2)

and write

〈T ∗
R PRζ, TRξ 〉 = 〈PR T †ζ, TRξ 〉 = 〈T †ζ, PR TRξ 〉 = 〈T †ζ, T ξ 〉 = 〈T 2ξ, ζ 〉 = 〈ξ, ζ 〉,

which shows the desired equalities.
We are now ready for the algebraic computation. For all a, b ∈ Pol(G)

〈
ηR

(
Sα(a)∗

)
, ηR

(
Sα(b∗)

)〉 = 〈
PRη

(
Sα(a)∗

)
, PRη

(
Sα(b∗)

)〉 = 〈PR T η(a), PR T †η(b)〉
= 〈TR PR(η(a)), T ∗

R PR(η(b))〉 = 〈(T ∗
R )2PR(η(b), )PRη(a)〉 = 〈ηR(b), ηR(a)〉,

which proves that ηR is α-real. The proof for the Gaussian part ηG follows now from the
(orthogonal) decomposition η = ηR + ηG . 	


We now formulate the main theorem of this subsection.

Theorem 3.4 LetG be a compact quantum group, let α : Pol(G) → Pol(G) be an admissible
bijection. Then every quantum Lévy process onGwhose generating functional is Sα-invariant
allows the decomposition into a maximal Gaussian part and a purely non-Gaussian part.

Proof Let L : Pol(G) → C be an Sα-invariant generating functional with an α-real cocycle
η associated to it by Proposition 1.8. Lemma 3.3 and Theorem 2.7 imply that there exist
generating functionals LG , L R : Pol(G) → C for which ηG and ηR yield the respective
coboundaries. Since the ranges of ηG and ηR are mutually orthogonal, we have

L(γ (a)) = − 〈
η

(
Sα(a(1))

∗) , η(α(a(2)))
〉

= − 〈
ηG

(
Sα(a(1))

∗) , ηG(α(a(2)))
〉 − 〈

ηR
(
Sα(a(1))

∗) , ηR(α(a(2)))
〉

= LG(γ (a)) + L R(γ (a))

for all a ∈ Pol(G).

3.2 Haagerup property for quantum groups via arbitrary proper cocycles

The concept of the Haagerup property for locally compact quantum groups was developed
in [3] (we refer to that paper for motivations and history behind this notion). It was shown
there that a discrete quantum group Ĝ has Haagerup property if its dual compact quantum
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group admits a proper real cocycle. We will show below that the same fact is true if we delete
the adjective ‘real’. We first introduce some definitions.

Let � be a discrete quantum group with the compact quantum group dual G. Recall the
notations related to irreducible representations of G introduced in Sect. 1. Each functional
ω : Pol(G) → C can be identified with a family of matrices (ωβ)β∈IrrG , with ωβ ∈ Mnβ

defined as ωβ = (idMnβ
⊗ω)(Uβ); all of these matrices are self-adjoint if and only if ω is S-

invariant. Similarly each cocycle η : Pol(G) → H can be viewed as a family of Hilbert space
valuedmatrices (ηβ)β∈IrrG . Note that we can view each ηβ as an operator in B(Cnβ ;Cnβ ⊗H).
In particular we can consider matrices (ηβ)∗ηβ ∈ B(Cnβ ;Cnβ ) ≈ Mnβ . The following two
definitions were introduced in [3] (Definition 7.16 and 7.20).

Definition 3.5 A cocycle η : Pol(G) → H is called proper if for any M > 0 there exists
a finite set F ⊂ IrrG such that for any β ∈ IrrG\F we have (ηβ)∗ηβ ≥ M I

C
nβ . Further an

S-invariant generating functional L : Pol(G) → H is called proper if for any M > 0 there
exists a finite set F ⊂ IrrG such that for any β ∈ IrrG\F we have Lβ ≤ −M I

C
nβ .

A warning is in place: an opposite sign in the inequality for L in comparison to the one
appearing in Definition 7.16 of [3] is due to the fact that in that paper a different convention,
motivated by classical geometric group theory, was used for generating functionals – there
the authors worked with counterparts of conditionally negative definite functions, whereas
here we use the quantum stochastics community convention and treat conditionally positive
definite objects.

The following result arises as a combination of Theorem 2.7 and methods introduced in
[2,3].

Theorem 3.6 A discrete quantum group � has the Haagerup property if and only if Pol(G)

(where G is the compact quantum group dual of �) admits a proper cocycle.

Proof Theorem 7.23 of [3] says that� has theHaagerup property if and only if Pol(G) admits
a proper real cocycle. Assume then that η : Pol(G) → H is a proper cocycle (not necessarily
real). In the first step we use the procedure described in Theorem 5.4 of [2] to symmetrize η.
To that end we consider the opposite representation of Pol(G) on the conjugate Hilbert space
H̄ and the cocycle η : Pol(G) → H̄ given by the formula η(a) = ι ◦ η(R(a∗)) (a ∈ Pol(G))
where ι : H → H is the canonical isomorphism. Recall that the opposite representation is
defined by the formula πop(a)(ι(v)) = ι((π ⊗ R)(a∗)v) for a ∈ Pol(G), v ∈ H.

The proof of Theorem 5.4 in [2] shows that the cocycle (η + η̄) : Pol(G) → H ⊕ H̄ is
KMS real (i.e. τ i

2
-real in the terminology used in our article). It is easy to see that η + η̄ is a

proper cocycle, as by the orthogonality of the Hilbert space decomposition for each β ∈ IrrG
we have

((η + η̄)β)∗(η + η̄)β = (ηβ)∗ηβ + (η̄β)∗η̄β ≥ (ηβ)∗ηβ.

Thus without loss of generality we can assume that η : Pol(G) → H is a proper τ i
2
-real

cocycle. Let L be the generating functional associated to η via Theorem 2.7. The defining
formula (2.2) (the first equality) shows that for all β ∈ Irr(G), i, j = 1, . . . , nβ we have

L

(

uβ
i j +

(
q j (β)

qi (β)

) 1
2

uβ
i j

)

= −
nβ∑

k=1

〈
η

(
R(uβ

ik)
∗) , η

(
τ i
2
(ukj )

)〉

= −
nβ∑

k=1

〈
η

(
τ− i

2
(uki )

)
, η

(
τ i
2
(ukj )

)〉
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= −
nβ∑

k=1

(
qk(β)

qi (β)

) 1
2
(

q j (β)

qk(β)

) 1
2 〈

η(uki ), η(ukj )
〉

= −
(

q j (β)

qi (β)

) 1
2

nβ∑

k=1

〈η(uki ), η(ukj )〉,

which can be rephrased as a matrix equality

Lβ + (Qβ)−
1
2 Lβ(Qβ)

1
2 = −(Qβ)−

1
2 (ηβ)∗ηβ(Qβ)

1
2 . (3.2)

In the next step we employ the averaging procedure introduced in the proof of Proposition
7.17 in [3]. Let M : L∞(R) → C be any invariant mean (in other words, a Banach limit on
R). Define a new functional L̃ : Pol(G) → C by the formula

L̃(a) = M (t �→ L ◦ τt (a)) , a ∈ Pol(G).

Positivity and invariance ofM, and the facts that each τt preserves the counit and commutes
with the unitary antipode imply that L̃ is a generating functional which is both R invariant and
τt -invariant for any t ∈ R, and hence also S-invariant. It remains to see what the averaging
procedure looks like in the matrix level. Fix β ∈ IrrG and note that for each i, j = 1, . . . , nβ

we have τt

(
uβ

i j

)
=

(
qi (β)
q j (β)

)i t
uβ

i j , so that

L̃(uβ
i j ) = L(uβ

i j )M
(

t �→
(

qi (β)

q j (β)

)i t
)

.

But the action of any invariant mean on continuous periodic functions is known to yield the
average over the period, so we get

L̃(uβ
i j ) =

{
L

(
uβ

i j

)
if qi (β) = q j (β)

0 otherwise
.

The last formula can be phrased on the matrix level: let P1, . . . , Pk denote all the spectral
projections of Qβ , with the corresponding eigenvalues q1, . . . , qk (of course k, the individual
projections and the respective eigenvalues depend on β, we do not reflect it in the notation
to avoid the clutter). Then the last displayed formula can be written as

L̃β =
k∑

m=1

Pm Lβ Pm .

It remains to multiply both sides of (3.2) by individual Pm and sum the equalities:

k∑

m=1

Pm

(
Lβ + (Qβ)−

1
2 Lβ(Qβ)

1
2

)
Pm = −

k∑

m=1

Pm

(
(Qβ)−

1
2 (ηβ)∗ηβ(Qβ)

1
2

)
Pm

and as Pm(Qβ)t = qt
m Pm for any t ∈ R we obtain

L̃β +
k∑

m=1

Pmq
− 1

2
m Lβq

1
2

m Pm = −
k∑

m=1

Pm

(

q
− 1

2
m (ηβ)∗ηβq

1
2

m

)

Pm
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and further

2L̃β = −
k∑

m=1

Pm(ηβ)∗ηβ Pm .

Finally let M > 0 and choose a finite set F ⊂ IrrG such that for any β ∈ IrrG\F we have
(ηβ)∗ηβ ≥ 2M I

C
nβ (which we can do as η is proper). Multiplying both sides of the last

inequality with Pm on both sides and summing shows that also
∑k

m=1 Pm(ηβ)∗ηβ Pm ≥
2M

∑m
k=1 Pm = 2M I

C
nβ , which together with the last displayed formula shows that L̃ is

an S-invariant proper generating functional. Thus Theorem 7.18 of [3] shows that � has the
Haagerup property. 	
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