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Abstract We study the quantum affine superalgebra U,(Lsl(M, N)) and its finite-
dimensional representations. We prove a triangular decomposition and establish a system
of Poincaré-Birkhoff-Witt generators for this superalgebra, both in terms of Drinfel’d cur-
rents. We define the Weyl modules in the spirit of Chari—Pressley and prove that these Weyl
modules are always finite-dimensional and non-zero. In consequence, we obtain a high-
est weight classification of finite-dimensional simple representations when M # N. Some
concrete simple representations are constructed via evaluation morphisms.
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664 H. Zhang

1 Introduction

In this paper g € C\{0} is not a root of unity and our ground field is always C. We study a
quantized version of the enveloping algebra of the affine Lie superalgebra Ls((M, N), which
we denote by Uy (Lsl(M, N)).

Some properties of U, (Lsl(M, N)). For M, N € Z>1, the quantum affine superalgebra
U, (Lsl(M, N)) is defined in terms of Drinfel’d currents. It is the superalgebra with
(1) Drinfel’d generators an, his, Kiil forl<i<M+N—1,n€eZ,s € Zx;
(2) Zp-grading |Xy; ,| = T, and |X;,| = |K;™'| = |his] = [Ky'| = |has| = 0 for
i #M;

(3) defining relations (3.1)—(3.7) (see Sect. 3.1 for details).

Informally, when g = 1, U, (Lsl(M, N)) can be thought of as the universal enveloping
algebra of the Lie superalgebra Lsl(M, N) := sl(M, N)QC[t, t~ 11 with the convention that
X[ = Eiigit", X, = Eip1it", hig = (Ejj — (=DM Ejpy )t

1

Let qu (Lsl(M, N)) (resp. Ug (Lsl(M, N))) be the subalgebra of U, (Lsl(M, N)) generated
by the an (resp. the Kl.i] , hi s). Then the Chevalley relations imply that

Uy (LsU(M, N)) = U (LsI(M, N)UD(LsI(M, N) U (LsI(M, N))

and that Ug (Lsl(M, N)) is a commutative algebra.

When M # N, it is shown in [44, Theorem 6.8.2] that U, (Lsl(M, N)) has a Chevalley
presentation and is equipped with a Hopf superalgebra structure. Using the coproduct, we
can form the tensor product of two representations of U, (Lsl(M, N)). Note however that
the coproduct formulae for X * h ;s are highly non-trivial.

i,n’

Backgrounds In analogy with the applications of quantum affine algebras in solvable lattice
models [23], quantum affine superalgebras also appear as the algebraic supersymmetries of
some solvable models. In [8], the quantum affine superalgebra U, (Ls[(2, 1)), together with
its universal R-matrix, which exists in the framework of Khoroshkin and Tolstoy [31,32], was
used to define the Q-operators and to deduce their functional relations. These Q-operators
were then applied in integrable models of statistic mechanics (3-state gl(2, 1)-Perk—Schultz
model) and the associated quantum field theory. Here the functional relations come essentially
from the tensor product decompositions of representations of U, (Lsl(2, 1)) and its Borel
subalgebras.

When M # N, U, (5[(7/17\7)) (extended U, (Lsl(M, N)) with derivation) is the quantum
supersymmetry analogue of the supersymmetric # — J model (with or without a boundary). A
key problem is to diagonalize the commuting transfer matrices. In [28] for example, Kojima
proposed a construction of the boundary state using the machinery of algebraic analysis
method. There to obtain the bosonization of the vertex operators [29], one needs to work in
some highest weight Fock representations of Uy (s [(7/17\/)).

In the case M = N = 2, the Lie superalgebra s[(2, 2) admits a two-fold non-trivial
central extension. In [7], using the quantum deformation of this centrally extended algebra
and its fundamental representations (which exist infinitely), Beisert-Koroteev deduced Shas-
try’s spectral R-matrix R(u, v). Also it is found [5] that the S-matrix of AdS/CFT enjoys
a symmetry algebra: the conventional Yangian associated to the centrally extended algebra.
Later, [6] derived a quantum affine superalgebra o) depending essentially on two parameters,
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Quantum affine superalgebras 665

together with a Hopf superalgebra structure and its fundamental representations of dimension
4. This algebra is interesting itself as it is explained there to have two conventional “limits”:
one is Uy (5@)); the other is the Yangian limit. The two limiting processes carry over
to the fundamental representations. Higher representations of this algebra are however still
missing.

It is therefore worthwhile to study quantum (affine) superalgebras, Yangians, and their
representations. For a symmetrizable quantum affine superalgebra U, (g), early in 1997,
Ruibin Zhang has classified integrable irreducible highest weight representations [48] (here
being symmetrizable excludes the existence of simple isotopic odd roots). Recently, in
[21,27], the authors obtained a (super)categorification of some quantum symmetrizable
Kac-Moody superalgebras and their integrable highest weight modules from quiver Hecke
superalgebras. However, the affine Lie superalgebras Lsl(M, N) are not symmetrizable, as
they contain simple isotopic odd roots. It is desirable to study U, (Lsl(M, N)) and their
representations.

In the paper [47], Zhang considered the gl(M, N) super Yangian and its finite-dimensional
representations. The super Yangian Y (gl(M, N)) can be viewed as a deformation of the
universal enveloping superalgebra U (gl(M, N) ® C[¢]). Zhang equipped the super Yangian
with a Hopf superalgebra structure and wrote explicitly a Poincaré-Birkhoff-Witt (PBW for
short) basis. From this PBW basis one reads a triangular decomposition. Zhang proved that
all finite-dimensional representations of Y (gl(M, N)) are of highest weight with respect to
this triangular decomposition, and parametrised these highest weights by polynomials (see
Sect. 6 below). The aim of this paper is to develop a similar highest weight representation
theory for some quantum affine superalgebras.

We remark that Zhang’s proof of the classification result relied on the coproduct structure
A and on some superalgebra automorphisms ¢ of the super Yangian. For the quantum affine
superalgebra U, (Lsl(M, N)) defined in terms of Drinfel’d generators, the coproduct structure
is highly non-trivial (its existence is not clear a priori), and we do not have the analogue of
the automorphisms ¢;. To overcome such difficulties we propose the PBW argument in this
paper, which is independent of coproduct structures.

Main results. In this paper, we study finite-dimensional representations of the quantum
affine superalgebras U, (Ls((M, N)) for M, N € Z.q (possibly M = N). First, we prove
the Drinfel’d type triangular decomposition.

Theorem 3.3 The following multiplication map is an isomorphism of vector superspaces:

U, (Lsl(M, N))@Ug(ﬁsl(M, N))@U;’(ﬁs[(M, N))
—> Uy(Lsl(M,N)), a®b®c +> abc.

Furthermore, the three subalgebras above admit presentations as superalgebras.

With respect to this triangular decomposition, we can define the Verma modules M(A),
which are parametrised by the linear characters A on U g (Lsl(M, N)), and are isomor-
phic to U, (Lsl(M, N)) as vector superspaces. These Verma modules are important as it is
shown that when M # N, all finite-dimensional simple U, (Ls{(M, N))-modules are their
quotients up to modification by one-dimensional modules. We are led to consider the exis-
tence of finite-dimensional non-zero quotients of M(A), the so-called modules of highest
weight A.

Let V be a finite-dimensional quotient of M(A), with a non-zero even highest weight
vector vpo. When 1 < i < M + N — 1 and i # M, the subalgebra l7, generated by
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666 H. Zhang

Xiin, Ki, hisforn € Z,s € Zo is isomorphic to Uy, (Lsl2). As (Z-v,\ is finite-dimensional,

from the highest weight representation theory of U, (Lsl>) we conclude that there exists a
Drinfel’d polynomial P; € 1 4+ zC[z] such that (see Sect. 2.1 below for the qﬁiin)

Pi(zq;! _

> g vn =g DRG] and (X e Py =0, (L)
’ Pi(zqi) ’
nez
On the other hgnd, the subalgebra U M isno longer Uy, (Lsl), but a superalgebra with simpler
structure. As Upsv, is finite-dimensional, we can eventually find another Drinfel’d polyno-
mial
d d
0@ = Zaszs € 1+ zC[z] such that ZasX;,LdﬂvA =0. (1.2)
s=0 s=0

Now let us set

+ _ —
AKy) =c, A(Z ¢M’"¢M’”z”) => f=f@eClzz ", (13)

nez 9= q_] nez
then we see that
— !
fo=——=, Q@ f()=0. (1.4)
q9—49

The linear character A is completely determined by P = (P;) and (f, c¢) in view of Egs.
(1.1)—(1.4). We come out with the set Ry n of highest weights consisting of A = (P, f, ¢)
such that there exists Q(z) satisfying Relations (1.1)—(1.4). For such (A, Q), motivated by
the theory of Weyl modules for quantum affine algebras [15], we define the Weyl module
W(A; Q) as the quotient of M(A) by Relations (1.1)-(1.2). Hence all finite-dimensional
non-zero quotients of M(A), if exist, should be quotients of W(A; Q) for some Q. The
sufficiency of restrictions (1.1)—(1.4) on the linear characters is guaranteed by

Theorem 4.5 For all A = (P, f,c) € Ru,n and Q € 1 + zC[z] such that Qf = 0,
deg QO < dim W(A; Q) < oo.

In consequence, when M # N, as remarked above, up fo modification by some one-
dimensional modules, finite-dimensional simple Uy (Lsl(M, N))-modules are parametrised
by their highest weights A € Ry N-

The firstinequality deg O < dim W(A; Q) comes from a detailed analysis of some weight
subspaces of W(A; Q), using firmly the triangular decomposition Theorem 3.3. Indeed, we
shall see that the U, (Lsl(M, N))-module structure on W(A; Q) determines the parameter
(A; Q) uniquely, which justifies the definition of a highest weight. For the proof of W(A; Q)
being finite-dimensional, we argue by induction on (M, N) (this explains the reason for
considering also M = N). We use a system of linear generators for the vector superspace
Uy (LsW(M, N)), the so-called PBW generators, to control the size of the Weyl modules. To
be more precise, let

A={oj+oi1+--+oj|l<i<j<M+N-1}

be the set of positive roots of the Lie superalgebra s((M, N) with the ordering: o;; +- - - +ot; <
ajr+---Fajifeitheri < i’ori =i, j < j'.For (B, n) € A x Z, we define the root vector
Xpgn) e U, ;’ (Lsl(M, N)) as quantum brackets in such a way (Definition 3.11) that finally
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Quantum affine superalgebras 667

Theorem 3.12 The vector superspace U q+ (Lsl(M, N)) is spanned by H;E A(Hfi 1
Xp(n; g)) where cg € Z>o for B € Aandn;g € Zfor1 <i < cg.

The proof of the PBW theorem above is a combinatorial argument by inductions on (M, N)
and on the length of weights. We have not considered the problem of linear independence,
which is beyond the scope of this paper.

We remark that Eq. (1.2) is by no means superficial. Indeed, for A € Ry v, the quotient
of M(A) by Relation (1.1), denoted by W(A), is infinite-dimensional. We call W(A) the
universal Weyl module in the sense that all integrable quotients of M(A) remain quotients
of W(A). In particular, contrary to the case of quantum affine algebras, integrable highest
weight # finite-dimensional highest weight.

The paper is organised as follows. In Sect. 2, we remind the notion of a Weyl module for
the quantum affine algebra U, (Ls(y ), and that of a Kac module for the quantum superalgebra
Uy (gl(M, N)). In Sect. 3, we define the quantum affine superalgebra U, (Lsl(M, N)) and its
enlargement U, (L'sI(M, N)) interms of Drinfel’d currents, following Yamane [44]. Here, the
enlargement is needed to avoid the problem of linear dependence among the simple roots of
s[(M, N). We prove a triangular decomposition (Theorem 3.3) in terms of Drinfel’d currents,
following the argument of [ 18,22]. Then we define the root vectors (Definition 3.11) and prove
Theorem 3.12. In Sect. 4, the notion of a highest weight, the Verma modules M(A), the Weyl
modules W(A; Q), and the relative simple modules S’(A) are defined. We prove that the Weyl
modules are always finite-dimensional and non-zero (Theorem 4.5) by using the triangular
decomposition and the PBW theorem. When M # N, we conclude the highest weight
classification of finite-dimensional simple U, (Ls{(M, N))-modules (Proposition 4.15). The
universal Weyl modules are introduced to study integrability property.

In Sect. 5, we recall Yamane’s isomorphism (Theorem 5.2) between Drinfel’d and Cheval-
ley presentations for U, (Lsl(M, N)) inthe case M # N.From this isomorphism, we deduce
a formula for the highest weight of the tensor product of two highest weight vectors (Corol-
lary 5.5) and henceforth a commutative monoid structure on the set R s,y of highest weight.
From Zhang’s evaluation morphisms (Proposition 5.6) we construct explicitly some simple
Uy (LsW(M, N))-modules (Proposition 5.9).

Section 6 is left to further discussions. We include in the two appendixes the related
calculations that are needed in the triangular decomposition and the coproduct formulae for
some Drinfel’d currents.

2 Preliminaries
We recall the highest weight representation theories for the quantum affine algebra U, (Lsly)

and the quantum superalgebra U, (g{(M, N)). Here we use gl instead of s| to avoid the problem
of linear dependence among simple roots when M = N (see Notation 3.10).

2.1 Weyl modules for the quantum affine algebra U, (Lsly)

Fix N € Zx,. Let (a; ;) € Mat(N — 1, Z) be a Cartan matrix for the simple Lie algebra sly
with

aij =28 j =8 j-1 =8 jt1.

Following Drinfel’d, the quantum affine algebra U, (Ls[y ) is an algebra with [3, Theorem 4.7]:
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668 H. Zhang

(a) generators X”l,h,g,K. withn € Z,s € Z4o,1 <i <N - 1;
(b) relationsfor 1 <i,j <N —1,m,n,k€Z,s,t € Zx

KiK' =K 'Ki =1, [Ki, Kj1=[Ki, hj 51 = [his, hj,] =0,

- [sa ]
KiX7, K =g X5, this, X7,1=+ %Xi

j.n’ J.n+s?

O in — i,
+ i,m+n i,m+n
[Xtm’X/n] 8’/ q— qfl
(X7, X7,0=0 ifli—j|>1,
+ + +a; iyt ypE +ai iyt yE + £ eqs s
le_HX‘ _qa/X le_H_q“JX X/n+1 X”H_]X if i —j| <1,
(XG5 X7 X5y 1)y + X, [XF, X1l = 0 if li = jl = 1.

Here [n], = q;:::,n ,[a,bly = ab —uba and [,] = [, ];. The ¢iim are defined by the
generating series

D b =K exp(x(q — g7 D hiasz™) € Ug(Lsty) 211,

nez S€Z~0

Note that U, (Lsly) has a structure of Hopf algebra from its Chevalley presentation.

Let A = (Pi(z) : 1 <i<N—=1) e (14 zClz)N~'. The Weyl module, W(A), is
the U, (Lsly)-module generated by v with relations (see [15, Sect. 4], or the review [11,
Sect. 3.4] where we borrow the notations):

Xfoa=0 forneZ 1<i<N-1, 2.D
P; 1

> i oaz =g h PRATD ) copll ] forl<i<N—1,  (22)

nez P( )

(X; ) teePiyy =0 forl <i <N -—1. (23)

Let V be an U, (Lsly)-module. We say that V' is integrable if the actions of X o forl <
i < N — 1 are locally nilpotent. We say that V' is of highest weight A if V is generated by a
vector v satisfying Relations (2.1)—(2.2).

We reformulate [14, Theorem 3.3] and [15, Proposition 4.6] in the case of s[y as follows.

Theorem 2.1 (a) Forall A € (1 + zC[z]))VN ™!, we have 0 < dim W(A) < oo, and W(A)
has a unique quotient which is a simple U, (Lsly)-module, denoted by S(A).

(b) All finite-dimensional simple U, (Lsly)-modules are of the form S(A) ® Cg where A €
(1 + zClzDN ! and Cy is a one-dimensional Uy (Lsly)-module.

(c) All integrable modules of highest weight A are quotients of W(A), in particular, they
are finite-dimensional.

The Weyl modules W(A) are generally non-simple, due to the non-semi-simplicity of the
category of finite-dimensional U, (Lsly)-modules, a phenomenon that appears also in the
classical case U (Lsly).

2.2 Kac modules for the quantum superalgebra U, (g{(M, N))

From this section on, we consider superalgebras. By definition, a superalgebra is an (associa-
tive and unitary) algebra A with a compatible Z,-grading A = A @ At,i.e. AjA; C A
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Quantum affine superalgebras 669

for i, j € Zp. We remark that a superalgebra can be defined by a presentation: generators,
their Z-degrees, and their defining relations.

Let V = V5 ® V7 be a vector superspace. Write [v| =i fori € Z; and v € V;. Endow the
algebra of endomorphisms End (V') with the following canonical superalgebra structure:

End(V); := {f € End(V) | £(V}) C Viy, for j € Z,}.

By a representation of a superalgebra A, we mean a couple (o, V) where V is a vector
superspace and p : A —> End(V) is a homomorphism of superalgebras. Call V an A-
module in this case. When A is a Hopf superalgebra, given two representations (p;, V;)i=1,2,
we can form another representation ((p1 ® p2)A, Vi @ V»). Here ® means the super tensor
productand A : A — A ® A is the coproduct.

Onthe other hand, a Lie superalgebra is by definition a vector superspace V = V5® V with
aLiebracket[,]: V xV — V suchthat [A;, A;] C A;;jandfora € A;,b e Aj,c € Ay
(with i, j, k € Zp)

[a,b] = —(=1)"[b, a]
la, [b, c]] = [[a, b, c] + (=) [b, [a, c]].

When A is a superalgebra, [a, b] = ab — (—1)"/ba fora € A;, b € Aj makes A into a Lie
superalgebra. In particular, when V is the vector superspace with Vi = CM and Vi = CN,we
write End(V) as gl(M, N) to emphasis its Lie superalgebra structure. There is a super-trace
on gl(M, N) given by

str: gl(M, N) —> C, [+ g+ try;(flvy) — trv, (fv)
for f € gl(M, N)g, g € gl(M, N)7.

Andsl(M, N) := ker(str) is a sub-Lie-superalgebra of gl(M, N). We refer to [24,41] for the
classification of finite-dimensional simple Lie superalgebras in terms of Dynkin diagrams
and Cartan matrices.

Fix M, N € Z=1. Equip the free Z-module @;" " Ze; with the following bilinear from

( VP 1 ifl<i<M, 2.4)
€,€;)=106;;, li = .
v e —1 ifM+1<i<M+N.

For1 <i < M+ N — 1, set g; = ¢'. The quantum superalgebra U,(gl(M, N)) is a
superalgebra with:

(a) generators tl.il,e?E where l <i <M+ N,1<j<M+N-—-1;

(b) Zr-grading ley;| = Tand 13| = 6| = |ef| = 0for 1 <i < M+ N — 1,i # M;
(c) relationsfor 1 <i <M+ N,1 < j,k <M + N — 1 [43, Proposition 10.4.1]

-1 -1 + -1 +/i(€j,€j—€; +
[i[i =1= [i t, [iej [l, =q i (€i.€j ]+l)ej ,
lj =lj+1 =l lj+1
T A e A i
ej. e | =0k — ,
qj —4;

[ejﬂ,[ejﬂ,e,ﬂq_l} =0 ifcip==%1,j#M,

+ + + +
[[[eM_l,eM]q,eM+l]q_l ,eM] =0 when M,N > 1,
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670 H. Zhang

where the super-brackets are: [, ] = [, 11, [a, b], = ab—(— DIlblypa fora, b homogeneous.
U, (gl(M, N)) is endowed with a Hopf superalgebra structure as follows [9, Eq. (2.5)]

—1; 1 _ ;i —1; _ _
Alt) =14 ®1;, A(ej) = 1@e;r+e;r@tj /t]:’jll, A(ej)=tj./tj+/l+1@ej +e; ®L
2.5)

We remark that the subalgebra U, (sl(M, N)), generated by eii, tl.li t;rl‘i“ forl <i <M

+N —1isasub-Hopf-superalgebra. Lete™ :=[- - - [[efr, €2+]q2, e;r]%], e, 6A+4+N—1]4M+N—1'
The following lemma is needed later.

Lemma 2.2 (see [43,Lemma5.2.1]) For 2<j <M+ N—1, [eT, e}']q(q—eMM,eH]—ej) =0.
Let Syr.v bethesetof A = (A; : 1 <i <M + N) € C such that [46, Eq. (13)]
A=A — ANiy1 € Z>p forl<i<M+N-—-1,i # M.

Let A € Sy, y. The Kac module, K(A), is the U, (gl(M, N))-module generated by v, with
Z,-grading 0, and relations [46, Sect. 3]

eijzo forl<j<M+N-—1, (2.6)
tiva = qtvy forl<i<M+N, .7)
(€)' "oy =0 forl <j<M+N—1j#M. (2.8)

We call it Kac module as it is a generalisation of Kac’s induction module construction for
Lie superalgebras [[25], Proposition 2.1]. Note that we also have the notion of integrable
modules (actions of the e;‘L being locally nilpotent) and highest weight modules. The Kac
modules in the category of finite-dimensional U, (gl(M, N))-modules play the same role as
the Weyl modules in that of finite-dimensional U, (Lsly)-modules.

Theorem 2.3 (a) For A € Sy n, 0 < dimK(A) < oo, and K(A) has a unique quotient
which is a simple U, (gl(M, N))-module, denoted by L(A).

(b) All finite-dimensional simple U, (gl(M, N))-modules are of the form L(A) ® Cg where
A € Sy,n and Cq is a one-dimensional U, (gl(M, N))-module.

(c) All integrable modules of highest weight A are quotients of K(A), in particular, they are
finite-dimensional.

3 The quantum affine superalgebra U, (Lsl(M, N))

In this section, we recall the Drinfel’d realization of the quantum affine superalgebra
U, (Lsl(M, N)) following Yamane [44, Theorem 8.5.1]. We prove a triangular decompo-
sition for this superalgebra. Then we give a system of linear generators of PBW type in terms
of Drinfel’d currents. These turn out to be crucial for the development of finite-dimensional
representations in the next section.

3.1 Drinfel’d presentation of U, (Lsl(M, N))

Following Eq. (2.4), define
ci,j = (€ —€y1,€j —€jy1) forl <i,j <M+ N-—1

Hence (/;c;,j) can be viewed as a Cartan matrix for the Lie superalgebra s((M, N).
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Quantum affine superalgebras 671

Definition 3.1 [[44], Theorem 8.5.1] U,(Lsl(M, N)) is the superalgebra generated by
X5 K higforl <i < M+N—1,n € Z,s € Zx, with the Zp-grading | X}, |

L _
= 1 for n € Z and O for other generators, and with the following relations: 1 < i, j <
M+ N—1,mnk,u€Z,s,t €Zx

KiK;7'=1=K"Ki, [Ki, K;1=[Ki, hj;] = [his. hj:]1=0, 3.1)
+ -1 i vk + [shicijlg o+
Kin’nKi =q C"]Xj’na [hi,xy Xj,n] = iij,n+s’ (32)
D man — i,

+ — i,m+n i,m+n

[X,"mv Xj,n] =8i,j 1 s (33)
qi — 4;
(X, X7, =0 forc;; =0, (3.4
+ + +oiiyvE v _ deiivE v + + o
XLm+1XLn__q ijﬁnxim+l__q QJXLmX)ﬁ+1_-Xjﬂ+1XLm ibrqd #(L

3.5)

(X7 X5 Xyl + (X7, X, X dy1lg =0 foreij = +1,i # M, (3.6)

+ + + + + + + +
[[[XM—I,m’ Xanlg—1s XM+1,k]11’ XM,u] + [[[XM—I,m’ Xt ulg—1s XM+1,1<]f1’ XM,n] =0
when M, N > 1. 3.7

where the qbfn are given by the generating series
Dbt =K exp(Eg — ;") D hissz™) € Uy (Lsl(M, N)IZF'T (3.8)
nez S€Z~0

We understand that U, (Lsl(M, 0)) = Uy (Lsly) and Uy (Lsl(0, N)) = Uq—l(ﬁﬁ[N). We
also need an extension of the superalgebra U, (Ls[(M, N)). For this, note that there is an
action of the group algebra C[Ky, KO_I] onit: fori e {l,..., M+ N —1},5s € Zxo,n € Z

KoKF'Ky' = K Kohi oKy = his, KoX7,Ky' = ¢ X5 (3.9)

Let Uy (L'sI(M, N)) := U, (Lsl(M, N)) x C[Ko, K, 1.
One can see informally U, (L'sl(M, N)) as a deformation of the universal enveloping
algebra of the Lie superalgebra £'s[(M, N) where

L'si(M,N) = Ls\(M,N) ® C(E;; ® 1) € gi(M, N) @ C[r,t1].

When M = N, the Lie superalgebra £'s[(M, N) is nothing but (s{(M, N)(l))% in
Yamane’s notation [44, Sect. 1.5].

3.2 Triangular decomposition

There is an injection of superalgebras U, (Lsl(M, N)) — U, (L'sl(M, N)) given by x >
x x 1. Identify U, (LsI(M, N)) with a subalgebra of U, (L'sl(M, N)) from now on.

Notation 3.2 Let U;E (Lsl(M, N)) (resp. U(?(lls[(M, N))) be the subalgebra of
U, (Lsl(M, N)) generatedbythean (resp. the Kl.il, h;s)foralli e {1,--- ,M+N—-1},n €
Z,s € Zzg. Let U;)(ll’sl(M, N)) be the subalgebra of U,(L'sl(M, N)) generated by
Ug (Lsl(M, N)) and thl. These subalgebras are clearly Z;-homogeneous.

Theorem 3.3 We have the following triangular decomposition for U, (Lsl(M, N)):
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(a) the multiplication m : Uq’(ﬁs[(M, N))@Ug(ﬁsl(M, N))@U;r(ﬁsl(M, N)) —
Uy (Lsl(M, N)) is an isomorphism of vector superspaces;

(b) U;’ (Lsl(M, N)) (resp. Uq_ (LsW(M, N))) is isomorphic to the algebra with generators

X:n (resp. X;") and Relations (3.4)—(3.7) with + (resp. Relations (3.4)—(3.7) with —);

(c) U;) (LsW(M, N)) is an algebra of Laurent polynomials

UJ(Lsl(M, N))
= Clhiy:s€Zpo 1 <i <M+N—-1[K, K7':1<i <M+ N—1]. (3.10)

As animmediate consequence, we obtain also a triangular decomposition for U, (£'s[(M,N)).

Corollary 3.4 The multiplication below
m U, (Lsl(M, N))@U;)(ﬁ’s[(M, N))@U;(Es[(M, N))
—> Uy(L'sl(M, N)), a®b®c +> abc

is an isomorphism of vector superspaces. U, (? (L's\(M, N)) is an algebra of Laurent polyno-
mials

Ug(ﬁ’st(M, N))
= Clhis:s€Zpo, | <i <M+N—-1Ki,K;':0<i <M+N-1]. (3.11)

Another consequence is the existence of (anti-)isomorphisms of superalgebras.

Corollary 3.5 (1) There is an isomorphism of superalgebras 7| : U ;‘ (Lsl(M,N)) —
U,;(Lﬁl(M, N)) defined by 11 (X:'n) = X;fnforalln eZandl1 <i <M+ N — 1.

(2) There is an anti-automorphism of superalgebras 1) : U;r(ﬁs[(M, N)) — U;(ﬁ
s((M, N)) defined by 1o(X;" ) = X foralln € Zand1 <i <M + N — 1.

nn l,—n

Proof In view of Theorem 3.3 about presentations of algebras, it is enough to prove that
71, T2 respect Relations (3.4)—(3.7). ]

Remark 3.6 (1) The triangular decomposition will be used to construct the Verma modules
and to argue that the Weyl modules are non-zero. See Sect. 3.2.

(2) There are two types of triangular decomposition: one is in terms of Chevalley generators,
the other Drinfel’d currents. For the Chevalley type, the triangular decomposition for
quantum Kac-Moody algebras was proved in [22, Theorem 4.21]. For the Drinfel’d
type, Hernandez proved the triangular decomposition for general quantum affinizations
[18, Theorem 3.2]. Their ideas of proof are essentially the same, which we shall follow
below.

(3) For gasimple finite-dimensional Lie algebra, as demonstrated by Grossé [16, Proposition
8], one can realize the quantum affine algebra U, (§) as a quantum double by introducing
topological coproducts on the Borel subalgebras with respect to Drinfel’d currents. In this
way, the Drinfel’d type triangular decomposition follows automatically and a topological
Hopf algebra structure is deduced on U, (g). We believe that analogous results hold for
Uy(Lsl(M, N)). In particular, U, (Lsl(M, N)) could be endowed with a topological
Hopf superalgebra structure (with coproduct being Drinfel’d new coproduct).

We proceed to proving Theorem 3.3. Let V be the superalgebra defined by: generators
X:hi KF' (1 <i < M+ N —1,n € Zs € Zy); Zr-grading |X3; | = [ and 0

in’
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otherwise; Relations (3.1)—(3.3). Define its three subalgebras VE and V0 analogously. Then
(V=, VO, V) forms a triangular decomposition for V. Moreover, V* (resp. V 7) is freely
generated by the X' * . (tesp. the X; ), and V0 is the RHS of (3.10).

Forl <i < ] <M+N — 1 let 1 ij be the vector subspace of vE generated by the
vectors [Xlim, X lif ¢ j = 0and X; mHXjt — qicin leter1 qﬂ“uXjE XJ w1 T
Xin_HX if ¢;;; #O0forallm,n € Z. Let I (resp. 17) be the sum of the I+ (resp. the

1)

Lemma3.7 Let | < ik,u < M + N — 1 with k < u. Then[lku,X 1 =0inV.

Furthermore, the vector subspaces V-VOVHITVY and V- I-V-VOVT are two-sided
ideals of V.

Proof We argue that this follows essentially from [18, Theorem 3.2]. If i ¢ {k, u}, then it is
clear that [/, ,ffu, X fF o] = 0 from Relation (3.3). Without loss of generality, suppose i = k.

If ci.o = O and k # u, then [[X},, Xif, 1. Xp o] = [%, X;r,]. Writing ¢, as a
; ,

k,m?

product of KjEl h s and using the relations Ky X, = X;F Ky, hi s X;F ) = X;F by s, we

see that [% X;,] = 0. This says that [1;",. X; o] = 0. Similarly, [, X{ o] = 0.

Ifck,y =0and k = u, then k = u = M. We have

Pirn — P Parn — Pu
X+ _ + n n m R —
[[XMm’ M,n]’XM,O]= |:XMm’ q_q_l - q_q_l ’XM,n :

Again the relations KMXL,n = X+ KM,hMS Ln = XM nth imply that [ MM
X}y 01 = 0. Similarly, [1;; 4/, Xp; 0] = 0.

If g # Oandk # u, then ey, = *1and [[X{,,, X;, 1, X o = (Bin=bin o+ 1V

k,m> ax—a u,n

We want to write this vector as a product of the form V- V0 vt by using only the following
relations

Klej:nKk_l = qu uX;:_n’

[Slkck u]qk X+

+ 71—
[hk,s, Xu.n] = 7 u,n+s°

K exp (g —q; ) D hixwd™ | =D ¢,

SE€Z~( nez

We are in the same situation as Uy, (EE ), when showing that the Drinfel’d relations of degree 2
respect the triangular decomposition It follows from Theorem 3.2 and the technical lemmas
in Sect. 3.3.1 of [18] that [%, X", 1= 0. As aresult, [Ikiu, XFol=0.

. . ,

Similar considerations lead to [Ik u, Xk ol =0when ¢, #0and k =u.
For the second part, note that the I  are stable by the [h, s, ]. Relation (3.3) applies. O

This means that the Drinfel’d relations of degree 2 respect the triangular decomposition.
Let V be the quotient of V by the two-sided ideal generated by the /™ + I~. Then

14 V-
V: = = poy P = Py P P = poy P =
V-I-V-Voy+t 4 v-Voy+ty+ V-I-v- —VvHItv+t

[
I®
<t
=)
®
2
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where the isomorphism is induced by the triangular decomposition for V. Let 7y : V —> V.
be the canonical projection. By abuse of notation, we identify xE K; =1 and h; s with

nn’
nl(an), J'rl(l(l.ﬂE ), and 7y (h; 5) respectively. Let yE = m(Vi) and V0 = m(VO). The
above identifications say that (V—, VO, V1) forms a triangular decomposition for V. More-
over, the projection 771 induces isomorphisms

v+ V- .
vt — vz _— vixvyO
VHi+tv+ V-I-Vv-
Whenc; j = +landi # M, let J, i be subspace of V* generated by the LHS of Relation

(3.6) with + for all m, n, k € Z. Let JJr (resp. J ™) be the sum of the J+ (resp. the J )
Using Theorem 3.2 and the technical lemmas in Sect. 3.3.1 of [18] we deduce that (the same
argument as Lemma 3.7 above).

Lemma 3.8 Forall1 < i, j,k <M+ N — 1suchthat ¢;j = £1 and i # M, we have
[JjE XFol = 0in V. Therefore, the vector subspaces V ~ VOv+ytvtandv-Jg-v-vovt
are two-sided ideals of V.

In other words, the Serre relations of degree 3 respect the triangular decomposition. Suppose
now M, N > 1.Let O% (resp. O ™) be the subspace of VT (resp. V ™) generated by the LHS
of Relation (3.7) with + (resp. with —) for all m, n, k, u € Z.

Lemma 3.9 In the superalgebra V, [Oi, X;FO] =0forall1 <i <M+ N — 1. Therefore,
V=0~V VIVt and V- VOVt OtV are two-sided ideals of V.

Sketch of proof When i ¢ {M — 1, M, M + 1}, this is clear from Relation (3.3). We are
reduced to the case M = N = 2. The related calculations are carried out in “Appendix 1.
O

By definition the superalgebra U, (Lsl(M, N)) is the quotient of V' by the two-sided ideal
N generated by J* 4+ J~ 4+ O 4+ O~. Now from the two lemmas above we get

N=V-(J +0)v vyt rv-voytut4+ohvt,
from which Theorem 3.3 follows.

3.3 Linear generators of PBW type

We shall find a system of linear generators for the vector superspace U, ; (Lsl(M, N)). In
view of Corollary 3.5, this will produce one for U, p (Lsl(M, N)).

Notation 3.10 (1) For simplicity, in this section, let Uy y := U;‘ (Lsl(M, N)).

(2) Let A}, y be the subalgebra of U, (L'sl(M, N)) generated by K;' with 0 < i <
M—l—N—l.ThenA;w’N = (C[K,-,Ki_1 :0 <i < M+ N — 1] is an algebra of
Laurent polynomials (Corollary 3.4). Let Py n be the set of algebra homomorphisms
A?vl, y — C.Then Py y has an abelian group structure: for o, 8 € Py n

(@ +AKT = aKFHBKT, 0K =1, (~e)(K) = a(K7).

From Relations (3.2) and (3.9), we see that Uy v = P (Um,N)a Where

aePy. N

(UnN)a ={x € Uy n | KixK; ' = a(Ki)x for0 <i < M+ N —1}.
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Moreover, (Uy N)a(Um,N)p = (Upm,N)atrp- Let wt(Up n) = {a € Py, v [(Un,N)e
£0}.

Sil o if g
(3) For1 <i < M+ N — 1, define a; € Py n by: o;(K;) = ZC“ 1;; " These
«; are Z-linearly independent in Py n. Let Oy y = @ﬁTNq Zo; and QM’N =

@MV Zooa;. We have X, € (Un.n)a; and wt(Upyn) S Q} y- (It is for the
reason of linear independence among ¢; that we introduce U, (L'sI(M, N)).)

) Set Ay ={ai +aipi+-+a; € Q) yI1<i<j<M+N—1}with the
following total ordering: o; + -+ -+ o <oy +---+ojifi <i'ori =i, j<j".

Following [19, Definition 3.9], we can now define the root vectors.
Definition 3.11 Forf =«o; + ...+ aj € Ay, and n € Z, define Xg(n) € (Uy,n)p by
Xp(n) = [ (X7, X5y olass Xia0laisas -5 X oly, (3.12)
with the convention that X,, (n) = X/, = X (n).
Similar to the quantum affine algebra U, (5/[; ) [19, Theorem 3.11], we have

Theorem 3.12 The vector space Uy n is spanned by vectors of the form ]_[;e NI
(H;il Xg(nip)) where cg € Z>o for B € Ay y andn;pg € Zforl <i < cp.

Remark 3.13 (1) The above generators are called of Poincaré-Birkhoff-Witt type because
on specialisation ¢ = 1 they degenerate to PBW generators for universal enveloping
algebra of Lie superalgebras [36, Theorem 6.1.1]. This PBW theorem will be used to
argue that the set of weights of a Weyl module is always finite.

(2) We believe that the vectors in Theorem 3.12 with the following conditions form a basis
of Uy n:forl <i < j<cgnipg<njpif p(f) =0andn;p <njpif p(B) =

1 ifi=M,

0 otherwise.
Indeed, in the paper [19], the PBW basis Theorem 3.11 was obtained for the two-
parameter quantum affine algebra U, ¢ (sl,), with the linear independence among the
PBW generators following from a general argument of Lyndon words [40]. Hu-Rosso-
Zhang called this PBW basis the quantum affine Lyndon basis.

(3) For g asimple finite-dimensional Lie algebra, Beck has found a convex PBW-type basis
for the quantum affine algebra Uy (g) in terms of Chevalley generators (see [3, Propo-
sition 6.1] and [4, Proposition 3]). When g = sl;, the Drinfel’d type Borel subalgebra
of Uy (Lsly) can be realized as the Hall algebra of the category of coherent sheaves on
the projective line P! (IFy). In this way, the Drinfel’d type PBW basis follows easily ([2,
Proposition 25]).

1. Here p € homz(Qwm N, Z3) is the parity map given by: p(v;) =

Lemma 3.14 For2 <i < M+N—1landn € Z, we have [Xo, 1.4 ap y_ (1), X; (0)], =0
where &; = g~ €1=eMiN-€i=€ixD) (see Eq. (2.4) for the definition of the involved bilinear form).

Proof Note that the association 7| +— Ko,el > X1 o ei — Xi for2<i<M+N-1

extends to a homomorphism of superalgebras U, (g[(M N ) — U (L'sl(M, N)). Lemma
2.2 applies. O

Let Uy, y be the vector subspace of Uy, y spanned by the vectors in Theorem 3.12. As
these vectors are all Qs y-homogeneous, U //w ~ i Op n-graded. Our aim is to prove that

Uun = UMN, or equivalently, (Upy n)p < (UI"LN);; for all B € QL,N. Remark that
Umo = UI/VI,O’ Upn = Ué,N and Uy = Ul/,l'
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Proposition 3.15 For B € Ay n, (Uu,n)pg = (U//W,N)ﬁ'

Proof This comes essentially from Proposition 3.10 of [19], whose proof relied only on the
Drinfel’d relations of degree 2.

Proof of Theorem 3.12. This is divided into three steps.

Step 1: induction hypotheses. We shall prove Uy vy = U //w » by induction on (M, N). This
is true when MN =0or M + N < 2.Fix M, N € Z~o with M + N > 3. Suppose

Hypothesis A. If M', N’ € Zso verify M < M,N' < N,M' + N < M + N, then
Unrv = Upyr g

We want to show that (Up n), = (U N)}, forally e Q MN- Define the height function
h € homz(Qum N, Z) by h(a;) = 1foralll <i < M + N — 1. We proceed by induction on
h(y). From Proposition 3.15 and Relations (3.4)—(3.5), it is clear that (Up, n), = (UIIVI,N)V
when h(y) < 2. Fix k € Z-,. Suppose

Hypothesis B. Ify € 0}, y and h(y) <k, then (U )y = Uy )y

Fix B € Q-/\‘CI,N with () = k. We need to ensure (Up,n)p C (U,/W’N),g.

Step 2: consequences of these hypotheses. To simplify notations, let X,, := >
fory e Aynvand X; := Xy, forl <i <M+ N — 1.

7 CX,, (n)

ne

Claim 1 We have X1(Upt.n)p—a, S (Upy 8-

N

Proof This is a direct application of Hypothesis B, as h(8 — 1) = k — 1 and XlU;V[,N
Uy - O

Claim2 For2 <i <M+ N — 1, we have (Upy ) g—o; Xi € (U//VI,N)ﬂ'

Proof According to Hypothesis B, it suffices to verify that U 1/v1 NXi S Uy yfor2 <i
M + N — 1. From the definition of U 1,\4 ~» We have to ensure that

IA

— Cy

H HXV("JLV) Xi SUyy

yEA}VLN j=1

where A}VI’N =fas+--+oa |2 <s <t < M+ N — 1} is an ordered subset of
Ay, n. We are reduced to consider the subalgebra of Uy v generated by the X, (n) with
2 <s <M+ N —1andn € Z, which is canonically isomorphic to Up;—1 y (Theorem 3.3).
Hypothesis A applies. O

Claim 3 For2 <s <M + N — 1, we have Xo, 4. 4o, (UM, N) g ——ay (U}/W,N)}g.

Proof f B —a; — -+ — a5 € QM,N\QLJ\H then (Uy,N)g—a)—-—a, = 0 and the LHS
is 0. If 8 = a1 + -+ - + a4, then Proposition 3.15 applies. We suppose from now on that
B—a—- - —o € Q;LN\{O}. In view of the definition of UI"LN and Hypothesis B, it is

enough to prove that: for 1 <t <s <M+ N —1

Xyt Xog+-tay (UI/VI,N)ﬂ*(Otl+“'+0!s)*(011+'“+0tt) c UZ/W,N' (3.13)
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Case s < M+ N — 1. Suppose B — (1 + -+ a5) — (@1 + -+ ;) € QAJ“,,’N. As
t<s<M+N—1, Xq +...4a, and Xq, +...4o, are both in the subalgebra of Uy v generated
by the X;(n) with 1 <i < M + N — 2 and n € Z, which is isomorphic to Uy, y—;. From
Hypothesis A, we get
s—1
Xot1+~~~+a5Xot1+~~~+ot, < ZXot1+~~-+ot,-(U;t4,N)(a1+--~+m)+(<¥i+|+~--+a5)s
i=1
s—1
th1+~--+as X(X1+"'+Ott(U[/\L[\I)ﬂ—(a]+"'+(¥.y)—(011+"'+06r) < ZXot1+--~+ot,-(U1/14,N);3—(a1+-~-+ai)~
i=1
By inductionon2 < s < M 4+ N — 2 and Claim 1, we get (3.13).

Case s = M + N — 1. The idea is to write the LHS of (3.13) as a sum of the form
Zf’“{N 2 X +-+a, Um, N in order to reduce to the first case. If B — (a1 4 - - +apm4n—1) —
(1 +---4+o) € QJACI’N\{O}, then we can apply Hypothesis B to (o) + -+ + opr4n—1) +
(@) + -+ o)t
M+N-2
Xa1+"‘+‘1M+N—1Xa1+"'+at < Z Xoj 4t (UI/t/I,N)(Of1+~~'+01x)+(0ti+1+~~~+0tM+N—1)
i=1
X“l+"'+(1M+N—]XUl1+"'+ar(Uj/ll,N)/s—(Oll+"'+0lM+N7|)—(Ol]+"'+0lz)
M+N=-2
Z Xa1+~--+a,-(U;V[’N)ﬁ—(ot]-&---~+a,~)-
i=1

We return henceforth to the first case s < M + N — 1 and conclude. It remains to consider
the situation 8 = (a1 + -+ + ap4n—1) + (@1 + - - - + @) and we are left to ensure that

/
Xo(1+"'+aM+N7] XOt1+'"+Dtr < UM,N

forl <t <M+ N —2.When M + N < 3, this can be checked by hand. Assume from now
on M+ N > 3.
Suppose first thatt = 1 and g = o1 + (@1 + - - - + @p+n—1). From Definition 3.11,

Koyttaprin 1) = Xoytotap iy 2 (M Xm4n—1(0)
EgmN-1Xu+N-10) Xyt tapsy_n ().

Noting Xyr4n-1(0)X1(a) = X1(@)Xp+n-1(0) (since M + N — 1 > 3), we get

Xay+otay oy MX1(@) € Eqaren—1 Xprn—100) Xaq 4 ctayysy_o (M X1(@)
+ (UM,N) —aprsn_1 XM+N—-1-
The second term of the RHS is contained in (U 1/\4 ) thanks to Claim 2. Using Hypothesis
B for B — ap4n—1 (or Hypothesis A for the subalgebra of Uy, n generated by the X;(n)
with1l <i <M + N — 2), we have
M+N-3

/
Xol1+~~+01M+N—2X1 < 2 Xot1+~~+0ti (UM,N)111+0ti+1+~~+otM+N—2
i=1

and we get Xo, 4 tap .y (M X1(@) € Xprin—10) XMV X 4o

’
(UM’N)011+Ot,+1+ UM EN-2 + UM,N Since XM+N IX(X|+ o = XO!]+--~+Dé,'XM+N—l for
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1 <i<M+ N — 3, we arrive at the first case s < M + N — 1, and the first term the RHS
is contained in U 1/\/1 N

Supposenext2 <t <M+ N —2,sothat = (a1 + -+ o) + (o1 + - - - + 4N -1)
andk = M 4+ N — 1 +¢. Note that

M+N-1

Xay+otay @) € KO Xi—1(0) - XoOX1 @+ D Uyt Xi (3.14)
i=2

in view of Claim 2. It suffices to prove that for all a, b € Z
Vab = Xayttan iy (@Xe (0)X—1(0) - - X2(0)X1(b) € (Upy n)p-
From Lemma 3.14, we deduce that
Va,b = X (0)X;—1(0) - - X2(0) Xo 4ty (@ X1 (D).
Applying Hypothesis B to o + - - - + apr4nv—1 + o1 (Which is of height k — (r — 1)), we get

M+N-2
X0t1+~-+01M+N—1 (a)Xl(b) € z Xot1+~~~+0ti(Ul/\/I,N)Ot1+a5+1+-~+aM+N_1-
i=1
Applying Hypothesis B once more to (g + - - - + ;) + (01 + - - - + ;) (of height < k — 1),
we get
M+N-2
Va,b € Z Xol]+"~+01i(Uj/W’N)ﬂ—(Ot[+“'+ot,')~
i=1

As desired, we return to the first case s < M + N — 1. m]

Step 3: demonstration of Theorem 3.12. Now we are ready to show that (Uy n)g <
(U, w)p- Remark that

M+N-—1 M+N—1

(Um,n)p = Z Xi(UmMN)p—a; = Z Xi(Upg )i
i=1 i=1

where the second equality comes from Hypothesis B applied to 8 — ;. We are led to verify
that

Xi Xa1+-~-+oz5 (UM,N)ﬂ—a,-—(a1+-~-+aS) < (U//v[,N),B

for2 <i < M+N-—1landl <s < M+ N —1. Assume furthermore 8 = o; + (o1 +- - - +0oz5)
(using the same argument as one in the proof of the first case of Claim 3), so thatk = s + 1.
When i > s+ 1, thanks to Proposition 3.15 and Relation (3.4), it is clear that X; X¢, 4.4, €
(UI’V[’N)/;. Suppose i < s.If s < M + N — 1, then we are working in the subalgebra of Uy n
generated by the X;(n) with 1 <i < M 4+ N — 2 and n € Z, Hypotheses A applied. Thus
assume s = M + N — 1 and we are to show

XiXo+taysn S (UZ/VI,N)ﬂ

foralll <i <M+ N —1.Here 8 =«o; + (a1 +---+ay4+n—1) isof height k = M + N.
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(a) Suppose that i = 1. In view of Relation (3.14),

X1(@) X+ tapypn- (0) € X1(@Xp4N-1(0)Xp14n-2(0) - - - X2(0) X1 (b)
M+N—1

+ z (Um,N)p—a; Xj-
=2

The second term of the RHS is contained in (U 1",1 ) p thanks to Claim 2. For the first term,
from Proposition 3.15 (or Hypotheses B applied to 8 — «1), we get

M+N-—1

Xi@Xyen-1OXpn-200) -+ X200 € D" Xaytootary (Ur. N ey +-tayon
j=1

and X1()Xpr48-1(0)Xprx-2(0) - X2(0)X1(5) € TN X povia
(UM N)p—(a1++aj) C (U/’W’N)ﬁ thanks to Claims 1,3.
(b) Suppose i = M + N — 1. Following the proof of case (a), it is enough to verify that
Wap = XMrN-1(@Xp4n-10)Xp+8-2(0) - X2(0)X1(b) € (Upy 5)p
for a, b € 7Z. From Relations (3.4)—(3.5), we get

Xpman-100)--- X2(0) X1 (D) € Xpyan—1(@)Xysn-2(—a)Xpyn—3(0) - - X2(0) X
M+N—1

+ Z (UM,N)(X1+"'+O(M+N,1—D{ij
i=2

and wap € Xprpn—1(@? Xprin—2(—a) Xpin-30) - X2 (0)X1 + XN Unt n)pa;
X, the second term of the RHS being contained in (U 1/1/1 ) thanks to Claim 2. For the first

term: either N = 1 and we have Xp4ny—1 (@) = 0;or N > 1 and the Serre relation of
degree 3 between X j7+n—1(a) and X4+ n—2(—a) together with Relation (3.4) implies that

Xmn—1@)? Xpsn-2(—a) Xpr4n—30) - X2(0)X1 € (U, N) p—aunrsn1 X M-N—1-
Thus wy 5 € zy:zN*l(UM,N),g,aj X; c (UI/VI,N)ﬂ thanks to Claim 2.

(c) Suppose atlast 1 <i < M + N — 1. As in the cases (a) and (b), it suffices to verify
that

ap = Xi(@Xyrn-10)Xp4n-2(0) - X2(0)X1(b) € (Upy g
for a, b € Z. An argument of Relation (3.4) shows that
uap € Xpuan-100) - Xip2(0) X; (@) Xi1(0)X; (O X1 Xi—2--- X1.

Next, using Relation (3.5) between X; and X1, together with Serre relations around X; of
degree 3 and Relation (3.7) of degree 4 when i = M (which guarantees M, N > 1), we get

Xi(@)Xi+1(0)X; (0)X;—1 S (Upm, Ny +ei+ai Xi T (Um, Ny +20; Xi+1. (3.15)
Now an argument of Relation (3.4) and Claim 2 ensure that
ap € (Um.N)p—a; Xi + (Unt . N) p—aipy Xit1 S (Upp y)p-

This completes the proof of Theorem 3.12. O
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Remark 3.16 In the proof of Theorem 3.12, Relations (3.4)—(3.5) were used repeatedly. The
Serre relations of degree 3 appeared first in case (b) of Step 3. Then, to prove (3.15), we
find the Serre relations of degree 3 and the oscillation relation of degree 4 (when M, N > 1)
indispensable.

4 Representations of U, (Lsl(M, N))

In this section, we consider the analogy of Theorem 2.1 for quantum affine superalgebras.
As we shall see, in the super case, corresponding to the odd isotopic root oy, Drinfel’d
polynomials have to be replaced by formal series with torsion.

4.1 Highest weight representations

From Theorem 2.1, we see that the highest weights of finite-dimensional simple U, (Lsly)-
modules are essentially elements of (1 4 zClzDY L. For quantum affine superalgebras, this
set is replaced by Ry, -
Definition 4.1 Define R,y to be the set of triples (P, f, ¢) such that:
(@) f(2) =,z 22" € Cllz, z~ 1] is a formal series annihilated by a non-zero polyno-
mial;
-1
(b) ¢ € C\[0} with <=5 = foy:
(©) P = (P)i<i<M+N-1,i=m With Pi(z) € 1 +zC[z]foralll <i < M+ N — 1 and
i =M.
Define also 7~2M,N to be the set of (P, f, ¢; Q) such that: (P, f,c) € Ry, n and
(d) O(z2) € 1+ zC[z] with Q(z) f(z) = 0.

For convention, we admit that Ry, = Ro.y = Ro.ny = Rn.0 = (1 +zC[zDV 1.

Verma modules. Let (P, f,c¢) € Ry n. The Verma modulg, denoted by M(P, f, ¢), is the
U, (Lsl(M, N))-module generated by vp, f,¢) of Z;-degree O subject to the relations

X e fo=0forl<i<M+N-1,nez, @.1)

deg P; P; (Zqi_l)

> ¢nd v o =4 v, fo) € Co, 1o llz1]
i Pi(zqi)
forl<i<M+N-1,i #M, 4.2)
+ —
_ ¢M,n - ¢M,n n _ -1
Kmvp, f.e) = cve, f,e)s Z ——— v £ = f@ve, e € Coe, follz 27 11
nez 9-4
4.3)
Note that M(P, f, c) has a natural U, (L'sl(M, N))-module structure by demanding

Kovp, f.c) = v, f.0)- (4.4)

From the triangular decomposition of U, (Lsl(M, N)), we have an isomorphism of vector
superspaces

U;(Es[(M, N)) — M(P, f,c), x> XVp, fe)- 4.5)

Later in Sect. 6, we will write Relation (4.3) in a form similar to Relation (4.2). See Eq. (6.2).
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Weyl modules. Let (P, f,c; Q) € 7éM,N' The Weyl 7m0dule, W(P, f,c; Q), is the
U, (Lsl(M, N))-module generated by v(p, 1,¢) of Z-degree 0 subject to Relations (4.1)—(4.3)
and

(X't Fiyp poy =0 forl <i <M+ N—1,i #M, (4.6)
d d

> aq-sXj; v g =0 where we understand Q(z) = > a,z* € 1+2C[z].  (4.7)

s=0 s=0

For the convention, when (M, N) = (1, 1), we shall replace Relation (4.7) by the following:

d
> a5 Xy Vi) =0 foralln € Z. (4.8)
s=0
Note that W(P, f, ¢; Q) isendowed with an U, (L'sI(M, N))-module structure through Rela-
tion (4.4).

Simple modules. Let (P, f,c) € Ry, n. From the isomorphism (4.5) we see that the
U, (L'sl(M, N))-module M(P, f, ¢) has a weight space decomposition (see Notation 3.10)

MP, f,o= @ M@, f0), with
nexre, ro—0% n

M2, f,e)p={x e M@, f,c) | Kix = p(Kj)x for0 <i <M+ N — 1}

where Ap, r,c) € Py, N is givenby: Ko —~ 1; Ky = ¢; K; q?egpi forl <i <M+N-1
andi # M.Inparticular, M(P, f, ¢))xp, 1o = Co, 10 is one-dimensional. In consequence,
there is a unique quotient of M(P, f, ¢) which is simple as a U, (L'sI(M, N))-module. This
leads to the following

Definition 4.2 For (P, f,c) € Ry, let S'(P, f, ¢) be the simple quotient of M(P, f, ¢) as
U, (L'sl(M, N))-module.

Remark 4.3 (1) S'(P, f, c¢) is not necessarily simple as a Uy (Lsl(M, N))-module.
(2) By definition, we have natural epimorphisms of U, (£'s[(M, N))-modules:

M(P, f,c) - S'(P, f.c), M(P, f,¢c) —» W(P, f.c; Q), VP, f.c) = VP, f.0)

for all (P, f,c; Q) € 7~2M,N. It W(P, f,c; Q) # 0, then the first epimorphism factorises
through the second. We shall see in the next section that this is indeed always the case.

Lemmadd If M # N, then S'(P, f,c) is a simple Uy(Ls(M, N))-module for all
(P, f.¢) € Ru,N-

Proof Let Ay, n be the subalgebra of U, (Lsl(M, N)) generated by Kl.jEl forl <i <
M + N —1. As in Notation 3.10, there is a unique abelian group structure over Alg(A s v, C)
so that the inclusion Ay ny — A;\l,  induces a group homomorphism ¢ : Py y —>
Alg(AM,N, (C), o = OC|AM’N.

If M # N, then the restriction t|g,,  : Qu.n —> Alg(Ay N, C) is injective. It follows
that the decomposition in weight spaces of M(P, f, ¢) withrespectto Alg(A’, . C) isexactly
one with respect to Alg(Ay, v, C). Thus, all sub-U, (Lsl(M, N))-modules of M(P, f, c) are

sub-Uy, (L'sI(M, N))-modules. O
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4.2 Main result

In this section, we shall see that the Weyl modules we defined before are always finite-
dimensional and non-zero, a generalisation of Theorem 2.1 (a). More precisely, we have

Theorem 4.5 Forall (P, f,c; Q) € ﬁM,N, we have deg Q < dim W(P, f, c; Q) < oo.
As an immediate consequence (Remark 4.3)

Corollary 4.6 For all (P, f,c; Q) € 7~€M,N, there are epimorphisms of Ug(L'sI(M, N))-
modules

M(P, f,c) - W(P, f.c; Q) - S'(P, f.c).
In particular, S' (P, f, c) is finite-dimensional.

Remark 4.7 When MN = 0, we understand Q(z) = 1, and Theorem 4.5 above becomes
Theorem 2.3 (a). When M = N =1, Uq_ (Lsl(1, 1)) is an exterior algebra, and Relation
(4.8) guarantees that W( f, ¢; Q) be finite-dimensional.

To prove Theorem 4.5, one can assume M > 1, N > 1 due to the following:

Lemma 4.8 Suppose MN > 0. The following defines a superalgebra isomorphism:

am,N Uy (Lsl(M, N)) — Uy (LsI(N, M))

-1 + +
Ki= Ky Xiw = Xygn—i—n>
X, (DPeOXy o his e ()P Ry

forl <i <M+ N —1,n€Z,s € Zyy. Here p € homz(Qwy N, Z2) is the parity map in
Remark 3.13.

Proof This comes directly from Definition 3.1 of U, (Lsl(M, N)). ]

We remark that the isomorphism s, n respects the corresponding triangular decomposi-
tions of Uy (Lsl(M, N)) and U, (LsI(N, M)). Hence, n/’{‘,,’N of a Verma/Weyl module over
U, (Lsl(N, M)) is again a Verma/Weyl module over U, (Lsl(M, N)).

Proof of Theorem 4.5. This is divided into two parts. We fix notations first. Let (P, f, c; Q) €
Ry, n with f(2) = > ,c a2 and Q(z) = 221:0 agz® of degree d. Let M := M(P, f, ¢) be
the Verma module over U, (L'sl(M, N)). Letv := v, f,e) € ML Let A :=Ap fc) € Pu,n
be given by: Ko — 1; Ky — ¢; K; — qidegP" forl <i <M+ N —1landi # M. Let
W:=W(, f,c; 0).

Part I. Non-triviality of Weyl modules. As noted in the preceding section, M = €p
(M),, where

Md—QL,N

M), ={fweM|Kiw=upnK)wfor0<i <M+ N -1}, M), =Cuv.

Furthermore, (U, (L'sU(M, N)))oM), S (M), 4« for « € Qp n (see Notation 3.10).
By definition, W is the quotient of M by the sub-U,(L's[(M, N))-module J generated
by vy = Zfzoad_sX;“v and v; £ (Xl.fo)l"'degpiv where 1 <i < M+ N —1 and
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i # M. (Here we use the assumption that M > 1, N > 1). Since vyy € (M);_q,, and
v; € (M)a—(1+4deg P)e;» J 18 Py, n-graded, and so is W:

W=M/J= & W,

;LE)LfQ'}CLN

Let Ji == Uf(Ls(M, N)(EV " Cop) € J. We want to find (J1);. and (J1)i—ay-
Indeed

O = Xfom + D (XHH v ()3 —ay = Cou
i#M

where X 1+ > (CX + , (we have used these X; * in the proof of Theorem 3.12).

nez

Claim. (]1))L =0.

Proof We have XanM = Zf:Oad—s[XL,an&,s]U = Zfzoad_sfnﬂv = 0 as
(Z —0as2°)Q.,, fmz™) = 0. Fori # M, let U; be the subalgebra of Uq(ﬁ’sl(M N))
generated by the Xlim, K; £ ,his withm € Z and s € Zo. The subspace U,v of Mis a
quotient of the Verma module M(P;) over Uy, (Lsly) of highest weight P;. Theorem 2.1 (a)
forces that (X;")!+dee Py, = (x;)ltdeeF (X; o yl+deg iy — 0, as it must be in the Verma

module M(FP;). ]

From the triangular decomposition of U, (L'sl(M, N)), we see that J = Uq’ (Lsl(M, N))
UN(L's(M, N))Jyand (J);, =0, (N)r—ay = UNL'sUM, N))vyr. As M > 1, (J)—ay, =
> nez Cup(n) where vy (n) == Zf:() ad—sX )y o1, v- Using the isomorphism (4.5) and the
defining relations of Uq_ (Lsl(M, N)), we conclude that (M)y—o), = D,z (CX;,I’nv and
(W)1—ay, has a presentation as vector space

(W))L_aM = (M))L—(XM/(J))L—O(M

d
= Vect<X;,,,nv, neZ| Y aqsXy,,v=0forne Z>. (4.9)
s=0

RemarkthathM_MX;,,ynv = X,T,,,,,HU"F@M—lX;,,,,U withOy—1 = —Res(z 2 Py—1(2))dz.
Conclude

Proposition 4.9 Suppose M > 1, N > 1. Using the notations above, we have dim(W), = 1
and dim(W);_q,, = d = deg Q. Moreover, Q(z — Oy—1) is the characteristic polynomial
of hy—1,1 € End(W);_q,,).

Remark 4.10 (1) This proves the first part of Theorem 4.5: deg O < dim W.

(2) The proposition above also says that the polynomial Q(z) can be reconstructed from
the U, (L's[(M, N))-module structure on W. (Similarly, when M # N, Q(z) can be deduced
from the U, (Lsl(M, N))-module structure on W. See the proof of Lemma 4.4.) The same
goes for P by using the theory of Weyl modules over U, (Lsl2), and for (f, ¢) in view of
Relation (4.3). In conclusion:

the parameter (P, f, ¢; Q) is uniquely determined by the Uy (L'sl(M, N))-module structure
(or Uy (LsW(M, N))-module structure when M # N) on W(P, f, c; Q).
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Part 1. Dimension of Weyl modules. As in the proof of Theorem 3.12, we use induction on
(M, N). Suppose that the theorem is true for (M’, N) such that M’ < M, N’ < N and
M’ + N’ < M + N. We adapt the notations above and assume M > 1, N > 1. It remains to
show that W is finite-dimensional. Let P be the set of weights:

Pi={ue Py | (W), #0}.

Then P C A — QII‘N. As Wis Py y-graded, it suffices to prove the following:

(1) forall u € P, (W), is finite-dimensional;
(2) P is afinite subset of Py n.

For (1), (W)y_q,, is of dimension deg Q. For i # M, (W);,_, being finite-dimensional
comes from Relation (4.6) and the theory of Weyl modules over U, (Lsl>). One can copy
(word by word) the proof of [14, Sect. 5, (b)], or that of [15, Proposition 4.4] where only the
Drinfel’d relations of degree 2 were involved.

We proceed to verifying (2). First, by using the isomorphism 71 : U q‘" (LsI(M,N)) —
Uq_ (Lsl(M, N)) in Corollary 3.5 and the root vectors in Definition 3.11, we define: for
BeAynyandn e€Z

Xg(n) :=1(Xp(-n), Xz := > CXzn), X; =X,.
nez

Theorem 3.12 says that

Uy (st Ny = D[] (xp)®

dﬂZOﬂEAM,N

—\d — d. — d _ -
= 2 ,(Xl) 1(X011+0(2) ? .”(Xﬂf1+"'+aM+N—l) N 1UM*LN
d;

where Uy_in is the subalgebra of U,/ (Lsl(M, N)) generated by the Xin with2 <i < M+

N —1andn € Z. According to Theorem 3.3, UATFLN is isomorphic to Uq_ (Lsl(M —1, N))
as superalgebras.

Claim. U M_1.NVIs finite-dimensional.

Proof Let Uy 1,y be the subalgebra of Uy (LsI(M, N)) generated by the X7, K, hi
with2 <i =M+ N —1,n €Zs € Zg. Then Uy—1,nv = Uy (Lsl(M — 1, N)) as
superalgebras. Moreover, Uy, yv can be realised as a quotient of the the Weyl module
W((P)i>2, f,c; Q) over Uy (Lsl(M — 1, N)). From the induction hypothesis, Uy —1,nv is

finite-dimensional. Note that U, _; yv = Uy—1,nV. m]

Let C; := dim UA;_LNU. Then as a subspace of W, (U;,_]va)AiZ?SN_lciai = 0if

¢i > Cypforsome?2 <i < M + N — 1. In consequence, if u = X — Z?Q'N_l uja; € P,
then

M+N-1 M+N-1

p=xr— D elr+-+a)— > fii
i=2

i=1
withe; > 0and 0 < f; < Cy. It follows that

uj—u;>—Cy forl<i<j<M+N-—-1. (4.10)
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On the other hand, using the anti-automorphism 7, of Corollary 3.5, we can also write

— — d —
Uy (LsUM,N)) =Upy_y y Z(XaH— aayan_) | Unn—1
d>=0

where U, M.N—1 is the subalgebra of U, (Lsl(M, N)) generated by the X n with 1 < i <
M + N — 2 and n € Z. Similar argument as in the proof of the claim above shows that
UM’N_] v is a finite-dimensional subspace of W. Let C; = dim UM,N_1 v. Then

M+N-1 M+N-2
/ / /
Z oy —ep(ap + - +opypn—1) — Z fiej

j=I
for some e/ > 0 and 0 < f; < Cy. It follows that
uy —uy > —Cs. “4.11)

Now inequalities (4.10) and (4.11) imply that |u; — ua| < max{Cy, Co} forall u = A —
ZlMJer71 uja; € P.In particular, u© + sy ¢ P when |s| > 0. Hence, X1 o and X o are
locally nilpotent operators on W. Let Up be the subalgebra of U, (L'sl(M, N )) generated by
the X;—fo, Kl.il with0 <i < M + N — 1. Then Uj is an enlargement of U, (sl). From the
theory of integrable modules over U, (sly) we see that u € P implies s1(u) € P. Here, for
nw=A— Ziﬂi}w—l uja;, we have sj(u) = A — (deg Py — uy + up)ay — ZM“ZLN Yoy In
view of (4.10),

(deg Py —uy +uz) —uz > —Cj. 4.12)

Now the three inequalities (4.10)—(4.12) say that all the u; are bounded by a constant. In
other words, P is finite. This completes the proof of Theorem 4.5. O

Remark 4.11 (1) Our proof relied heavily on the theory of Weyl modules over U, (Lsl2).
Using PBW generators we deduced the integrability property of Weyl modules: the
actions of X oforl <i < M+ N — 1 are locally nilpotent. Even in the non-graded
case of quanturn affine algebras considered in [15], the integrability property (Theorem
2.1) is non-trivial (see the references therein).

(2) From integrability, we get an action of Weyl group on the set P of weights [35,
Sect. 41.2]. In the non-graded case, the action of Weyl group already forces that P
be finite (argument of Weyl chambers). In our case, the Weyl group, being Sy x Gy,
is not enough to ensure the finiteness of P. And once again, we used PBW generators
to obtain further information on P.

4.3 Classification of finite-dimensional simple representations

In this section, we show that all finite-dimensional simple modules of U, (£'s{(M, N)) (or
Uy(Lsl(M, N)) when M # N) are almost of the form S'(P, f,c) with (P, f,c) € Ru.n,a
super-version of Theorem 2.1 (b).

Lemma 4.12 Suppose MN > 0 and (M, N) # (1, 1). Let V be a finite-dimensional non-
zero Uy (L'sl(M, N))-module. Then there exist a Zo-homogeneous vector v € V\{0}, &; €
{1} for1l <i <M+ N —1,i # M, t € C\{0} and (P, f,c; Q) € 7%M,N satisfying
Relations (4.1), (4.3), (4.6), (4.7), Kov = tv and
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-1
 degP; i(Zq,' ) +1
> ¢ = eig; gy L€ VI

nez

forl <i <M+ N—1,i #M.

Proof We follow the proof of [[13], Proposition 3.2] step by step. From the finite-dimensional
representation of the commutative algebra A, ,, on V, one finds A € Py v such that

V. ={weV]|Kiw=AMK)wfor0<i <M+ N —1} #0.

By replacing V with U, (L'si(M, N))(V),, one can suppose that V is Py y-graded: V =
®M€PM,N(V)“' Let P :={u € Pyn | (V) # 0}. Then P is a finite set. There exists
Ao € Psuchthat Ao +o; ¢ P foralll <i <M + N — 1 (Here we really need the fact that
these o; are linearly independent). Note that (V);,, is also Z-graded. Moreover, (V)y, is
stable by the commutative subalgebra U, 3 (L'sl(M, N)). One can therefore choose a non-zero
Zp-homogeneous vector v € (V);, which is a common eigenvector of U, O(E/s[(M N)).In
particular, X+ v=0foralll <i <M+ N —1andn € Z, and Kgv = Lo(Kp)v.

When i ;é M, let U be the subalgebra generated by the xE in Kiil, h; s withn € Z and
s € Z+o. Then U,- = U, (Lsly) as algebras, and U,-v is a finite-dimensional highest weight
Uy; (Lslp)-module. One can thus find (g;, P;) satisfying the above relation thanks to Theorem
2.1 (b). N

Wheni = M, by definition of v, there exists f, € C foralln € Z such that %v =

Jfuv. On the other hand, as X, v is finite-dimensional, there exist m € Z,d € Z>o and
ap, - -+ ,ag € C such that
d
ag #0, ap =1, Zad—A‘X;fLHmU =0.
s=0

By applying 171, to the above equation and noting that a1 ;v €Cv, [hp—1, X;4,s+m]
m" Xt s4ms: We get Relation (4.7) with respect to the polynomial Q(z) = Zf:o asz’.

By applymg XJr Mo to Relation (4.7), we conclude that Q(z2)(>, 7 fuz") = 0. O

Analogous result holds for the superalgebra U, (Lsl(M, N)) when MN > O and M # N,

as the weights «;|4,, , are linearly independent (see the proof of Lemma 4.4). Let D be the
set of superalgebra automorphisms of U, (£'sl(M, N)) of the following forms:

Ko— tKo, Ki — €Ki, hjs+— his, X+ »—>a,X

n in’

Xr—)X

forl <i < M+N—1,n€Z,s € Zxy, wheree; € {£1},t € C\{0} withep, = 1. Note that
such an automorphism always preserves U, (Ls[(M, N)). Let D be the set of superalgebra
automorphisms of U, (Lsl(M, N)) of the form 71|Uq([;5[(M,N)) with 7 € D.

Corollary 4.13 Suppose MN >0 and (M, N) # (1,1). All finite-dimensional simple
U, (L's (M, N))-modules are of the form w*(S' (P, f, ¢)) where (P, f,¢) € Ry n andm € D.

Definition 4.14 Let (P, f,c) € Ry, and let V be a Uy (Lsl(M, N))-module. We say that
V is of highest weight (P, f, c) if there is an epimorphism of U, (Lsl(M, N))-modules:
M(, f.c) - V.

One can now have a super-version of Theorem 2.1 (b). Let ¢ : U,(Lsl(M,N)) —
U, (L'sI(M, N)) be the canonical injection defined in Sect. 3.2.
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Proposition 4.15 Suppose MN > 0 and M # N.

(a) All finite-dimensional simple U, (Ls/(M, N))-modules are of the form w*1*S'(P, f, ¢)
where (P, f,c) € Ry,y and € D.

(b) Let V be a finite-dimensional Uy (Lsl(M, N))-module of highest weight (P, f,c) €
Rm,n. Let 0 : M(P, f,c) — V be an epimorphism of Uy (Ls((M, N))-modules. Then
there exists Q(z) € Clz] such that (P, f,c; Q) € 7~3M,N and 6 factorizes through the
canonical epimorphism M(P, f,c) — W(P, f, c; Q).

(c) For (P, f,c; Q1), (P, f,c; Q2) € 7~2M,N, the canonical epimorphism M(P, f,c) —
W(P, f,c; Q1) factorizes through M(P, f,c) — W(P, f,¢; Q2) if and only if Q1(z)
divides Q»(z) as polynomials.

Proof (a) and (b) come from Lemma 4.12 and Theorem 4.5. For (c), the “if” part is clear
from the definition of Weyl modules. Without loss of generality, assume M > N. Suppose
that W(P, f, ¢; Q2) — W(P, f, ¢; Q1) and we have a surjection

(W(B’ fv [N Qz)))u(gff)—OtM - (W(£7 f! c Ql)))»(g)f)c)—oéM

which respects clearly the actions of /13/_1,1. We conclude from Proposition 4.9. O

4.4 Integrable representations

This section deals with generalisations of Theorem 2.1 (c). We shall see that, for all A €
Rum N, there exists a largest integrable module of highest weight A. However, such modules
turn out to be infinite-dimensional, contrary to the quantum affine algebra case.

Definition 4.16 Call a U, (Lsl(M, N))-module integrable if the actions of X ;TLO are locally
nilpotent for 1 <i <M + N — 1.

Note that the actions of X E,o are always nilpotent. From the representation theory of Uy (sl2)
[22, Chapter 2], we see that finite-dimensional U, (Lsl(M, N))-modules are always inte-
grable. In particular, the Weyl modules and all their quotients are integrable.

Universal Weyl modules. Let (P, f,c) € Ry, n. The associated universal Weyl module,
denoted by W(P, f, ¢), is the U, (Lsl(M, N))-module generated by v(p, ¢ of Z-degree 0
subject to Relations (4.1)~(4.3) and (4.6). W(P, f, ¢) becomes a U, (L's{(M, N))-module
by Relation (4.4). Note that W(P, f, c), being a quotient of M(P, f, c),is Py, n-graded. Let
WtW(P, f.¢)) € Ap, f.c) — Q. y be the set of weights.

Proposition 4.17 Suppose MN > 0. Fix (P, f,c) € Ry n. Then there exists k € Z~ such
that:
M+N—1
wt(W(P, f,c)) € {A'(E’f.vc)_ z ujoi € Py N |upy—u;j > —kforl <i < M+N-—1}.
i=1

In particular, W(P, f, c¢) is integrable.

Proof The idea is similar to that of the proof of Theorem 4.5: to use PBW generators
to deduce restrictions on the set of weights. One also needs the isomorphism 7y v :
Uy(LsU(M, N)) —> Uy (Lsl(N, M)) to change the forms of the PBW generators. O

Thus, for (P, f,c) € Ru n, the universal Weyl module W(P, f, c) is the largest integrable
highest weight module of highest weight (P, f, ¢). Note however that W(P, f, c¢) is by no
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means finite-dimensional when M N > 0. Indeed, for all (P, f, c; Q), we have an epimor-
phismof U, (Lsl(M, N))-modules W(P, f, c) - W(P, f, c; Q).Itfollows from Proposition
4.9 that dim W(P, f,c) > deg Q. As deg Q can be chosen arbitrarily large, W(P, f, ¢) is
infinite-dimensional.

5 Evaluation morphisms

Throughout this section, we assume M > 1,N > 1 and M # N. After [44, Theorem
8.5.1], there is another presentation of the quantum superalgebra U, (Lsl(M, N)). From
this new presentation, we get a structure of Hopf superalgebra on U, (Lsl(M, N)) (in the
usual sense). Using evaluation morphisms between U, (Lsl(M, N)) and U, (gl(M, N)), we
construct certain finite-dimensional simple U, (Lsl(M, N))-modules.

5.1 Chevalley presentation of U, (Lsl(M, N)) for M # N

o~

Enlarge the Cartan matrix C = (c¢j j)1<i,j<m+nN—1 to the affine Cartan matrix C =
(ci,jo<i,j<m+N—1 Withco o =0, co,; = ¢j0 = —0;1 + 8 myn—1forl <i <M+ N —1.
Setqo =gq.

Definition 5.1 [[44], Proposition 6.7.1] U(; (5[(/11/17\7)) is the superalgebra generated by
El.i, Kl.i] for0 < i < M + N — 1 with the Z,-grading |E0i| = |Eﬁi,,| = 1 and 0 for
other generators, and with the following relations: 0 <i, j <M + N — 1
KK '=1=K"K;,
+ -1 toi
KiETK; ' = q*ET,
Ki— K
qi — qiil ,
[E, E71=0 forc;; =0,
[EE, [EF, E;t]q,,]q =0 fore,j==+1,i #0, M,
UEy_1. Exjlyt Expilgs Eyl = 0= [[IET. Ey )1, Exp oy 1lg- Eg]
when M + N > 3,
(Eq. [E3. [Ey. [Ey. ET 1,1 = [EY. [Eq. [E5. [Ey. Ef g1,
when (M, N) = (2, 1).

(Ef E;1=46i,

Remark that ¢ := KoKj--- Ky +ny—1 is central in U(; (5[(7/1,\N)). We reformulate part of
[44, Theorem 8.5.1]:

Theorem 5.2 There exists a unique superalgebra homomorphism ® : U, (; (5[(7-/17\7)) —
Uy (Lsl(M, N)) such that:

®(Ko) = (K1 Kypn—-1)"",
O(K) =Ki, ®EF) =X forl<i<M+N-1,

QES) = (DM gV ML X XS g - X v voJawn— (K1 Kapv—1) ™

P(EG) = (K1 Kyen-Dl - IX{ 1 X olans - Xigan—1.olawn-1-

Furthermore, ® is surjective with kernel ker ® = Ut; (5[(747\7))@ —1).

@ Springer



Quantum affine superalgebras 689

Note that ®(E]) = (—)MN=1gN=Mx_ . (D®(Ko) and (Ey) = ®(K;")
Xay+-+aysy_i (—1) from Definition 3.11 and the proof of Theorem 4.5.

From the construction of U; (5[(71/1—,\]\/)) in Sect. 6.1 of [44], we see that U; (5[(7/[7\/)) is
endowed with a Hopf superalgebra structure: for0 <i < M + N — 1

AK) =K ®Ki, AEN=1®E"+E @K', A(E)) =K ®E +E ®1.
(5.1

Here the coproduct formula is consistent with that of (2.5). Under this coproduct, A(c) =
¢ ® c. Hence, ker & = U(; (SI@))(C — 1) becomes a Hopf ideal of U[; (5[(7/[7\7)), and @
induces a Hopf superalgebra structure on U, (Ls[(M, N)).

To simplify notations, let U := U, (Lsl(M, N)) and X+ .= Z?LJ[NA XljE where XljE =
5 CXE, C .

Lemmas.3 For 1 < i < M + N — 2, there exist xii, yii, zijE € C such that modulo
UX™)?@U(X)?

Athi) =hi1 Q1+ 1Q®h; +X,»+Xi__1,1Ki__11 @Ki—lX?L_],O
X KT @ KX+ 2 X K ©@ K X
Ahi—1)=hi, 1Q1+1Qh; 1 +xi_X,-__1,0K,»__11@Ki—ler_Lq
+yi7XiTOKi71 ®KiX; +Z;Xijrl,OKi;ll@Kl*lxitrl,fl'
Moreover, zl.i = +(q; — qi_l). We understand X(:)t,n =0, Kaﬂ = CID(KSH).

The idea is to express h; +1 as products in the <I>(Eii), d>(Kii1) with0<i <M+ N-1
and then use the coproduct Formulae (5.1). Details are left to “Appendix 2”.
Now we can deduce a similar result of [[13], Proposition 4.4]

Proposition 5.4 Let1 < j <M + N — 1 and n € Z~. In the vector superspace U Q U,
we have

(@) AXT) =10 X7 + X[ @K', and modulo UX~ @ U(X™)?,

n
+y = + + -1 -1+ +
AXT)=10XT, +XT,8K; +Z1<j o7, ®X]

=“jn—s’
s=1
n—1
+ N 2 + + -1 1 ,— +
AXT_)=K@X[_, + X[ @K+ > Kile;_®XT_ ...

s=1
(b) AX70)=K;®Xj o+ X;,®1, and modulo U(X")*@UX™,

n—1

AX; ) =K @X;, +X;,0K; + > X; @K;¢l

Jjin—s’

s=1

n
AX;_ =K ®X;_,+X;_, 01+ Z X; . 8Kié;
s=1

() A%y = ¢%,® ¢y, and modulo UX~ @ UXT + UXT @UX™,

n
£y _ + +
A5 4,) = Z it OP Ln—s) (52
s=0
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Proof Note that Relation (3.2) implies [/; ;, X?EH’"] = :|:(—1)1’(°")Xli+1 s fOrs = £1.
One can prove the first four formulae by induction on n, using repeatedly the above
lemma. Take the first formula as an example. Assume that M +2 < j < M + N — 1
(similar in other cases). Suppose we know the formula for A(X;fn). Then A(X;fn +]) =

—[A(hj_1, 1), A(an)]. Remark that for i # j

(X7, @K' X K @ KXl = [XT,, X, 1K' @ KiK' X = 0.

jn’

Hence, modulo U X~ @U(X+)2, (recall thatg; | = ¢; = g Y

AX

T =ext, +X;“”®K_1+ZK o ex], .

1®hj11+hj—11®1+ (¢ —X; K @K X}l
1@ X], 0+ X, 8K

+ZK_1¢;’_S®X/ n+l—s +(q_] _q)[Xj_n’X ]KJ_IQX;O
s=1
n+1
— -1 -1+
=1® /n+]+Xjn+l®K +ZK ¢js®X/n+l -5’
s=1
9L + oy i
as desired. For the last formula, we use —~—= = [X7, X (], —
;74 A T
conclude. O

=X}y, Xj_,]and

As in the case of quantum affine algebras [14, Proposition 4.3], we get

Corollary 5.5 For (P, f,c), (Q, g,d) € Ry N, there exists amorphism of Uy (Lsl(M, N))-
modules

M(Qv f * g, Cd) —> M@v f3 c)@M(Qﬂ gvd)
— [Tt fTeT L fE o
such that V(PQ, frg.cd) > U(B,f,c)@v(g,g,d)- Here [ x g = g1 with f* =c* +
(@ —q7") 252 frsz™ and (PQ)i = PiQifor 1 <i <M+ N —1,i # M.
The corollary above endows R,y with a structure of monoid (valid even if M = N):
*:RyunN X RuN — Run, (P, f,0)*x(0Q,8,d) = (PO, f*g,cd)

where the neutral element is (Z, 0, 1). From the commutativity of (R n, *) we also see
that if the tensor product S; ® S of two finite-dimensional simple U, (Ls[(M, N))-modules
remains simple, then so does S ® §1 and §1 ® $2 = S ® Sy as Uy (Lsl(M, N))-modules.

5.2 Evaluation morphisms
In this section, we construct some simple modules of U, (Lsl(M, N)) via evaluation mor-

phisms.
As in the case of quantum affine algebras U, (s[,,), we also have evaluation morphisms:
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Proposition 5.6 There exists a morphism of superalgebras ev : Ué(ﬁ[m)) —
l
Uy (al(M, N)) such that ev(K ;) = / HAT eV(EY) = el for1 < j < M+ N -1,
ev(Ko) =1 tM+N and
eV(E)) = —(=)" Ml ler € 1o o ey oy fitns
ev(Eq) =17 tuanl L6 €3l v eyt laninn-

Remark 5.7 ev(EOi) appeared implicitly in [45, Lemma 4]. Note however that Zhang did
not verify the degree 5 relations in the case (M, N) = (2, 1). A lengthy calculation shows
that this is true, and that ev is always well-defined. The modified element K = tlt;[:_ N 18
needed to ensure that KeijEK_1 = eijE for2 <i <M+ N —2and KeijtK_1 = qileijE when
i=1,M+N—-11f0 < |[M — N| <2, then K can be chosen so that K € U, (sl(M, N)).

It is clear that ev(Kp--- Ky4+ny—1) = 1. This implies that ev : U‘;(s[(flj\’)) —

Uy(@l(M, N)) factorizes through & : U, (5[(747\/)) - Uy(Lsl(M, N)). Let ev/
Uy(Lsl(M, N)) — U, (gl(M, N)) be the superalgebra morphism thus obtained.

Lemma 5.8 For the superalgebra morphism ev’ : Uy(Ls(M, N)) —> Uy (gl(M, N)), we
have

(a) ov'(X{,) =1"el, v/ (X],) =€ 17"
(b) for2 < j <M+ N —1, modulo "M TN~ U, (gi(M, N))e;, ev'(X},) =0and

2[ n

ov (Xjn)—q_[q‘1 )'e;

Proof According to the Formulae (8.1)—(8.2) in “Appendix 2, we get

+2
B —t
ev'(hix1) = (1 — g™ ey () *'ef + #

The rest is clear in view of Relations (3.2)—(3.3). O

Remark that from Definition 3.1 of quantum affine superalgebras U, (Ls[(M, N)) admit
naturally a Z-grading provided by the second index (the first index gives Qs ny-grading).
From this Z-grading, we construct for each a € C\{0}, a superalgebra automorphism &,
Uy(Lsl(M, N)) — Uy (Lsl(M, N)) defined by:

X5, > d" X5, his > a'hig, KT K

nn’

forl <i <M+ N —1,n€Z,s € Zxy. Furthermore, define the evaluation morphism ev,
by

evg :=ev o @, 1 Ug(Lsl(M, N)) —> Uy(gl(M, N)). (5.3)

Givenarepresentation (p, V) of U, (g{(M, N)),one can constructa family (poev,, evyV :

a € C\{0}) of representations of U, (Lsl(M, N)). In particular, one obtains some finite-

dimensional simple modules in this way. Take a € C\{0}. Lemma 5.8 together with Theorem
2.3 leads to the following proposition:
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Proposition 5.9 Let A € Sy y and a € C\{0}. Then eviL(A) = *S'(P, f, ¢) as simple
Uy (Lsl(M, N))-modules, where

A
Pi2) =[] — ¢/ abigi™z) forl<i<M+N-—1i#M, (5.4)
s=1
—1
cC—¢C
CcC = qAM+AM+I’ f(z) = — Z(aquZAMZ)n’ (55)
q—
nez
N
0, =1, 9S=Hq;1 for2<s<M+N—1. (5.6)
i=2

Example 5.10 When A; = §; 1, we get the fundamental representation of U, (gl(M, N))
on the vector superspace V = V5 @ Vg with dim Vj = M, dim V; = N (see for example
[9, Sect. 3.2] for the actions of Chevalley generators). We obtain therefore finite-dimensional
simple U, (Lsl(M, N))-modules corresponding to (P, 0,1) € Ry, y where Pi(z) = 1 —
qdi1az with a € C\{0}.

6 Further discussions

Representations of quantum superalgebras. As we have seen in Sect. 5.2, for a € C\{0}
there exists a superalgebra homomorphism (assuming M # N)

evg : Uy(Lsl(M, N)) — U, (gl(M, N)).

One can pull back representations of U, (gl(M, N)) to get those of U, (Lsl(M, N)).

In 2000, Benkart et al. [9] proposed a subcategory Ojp of finite-dimensional representa-
tions of U, (gl(M, N)) over the field Q(g) to study the crystal bases. Using the notations in
Sect. 2.2, one has also the finite-dimensional simple modules L(A) for A € ZM*+N verifying
A — A1 €Zspforl <i <M+ N —1,i # M. Simple modules in Ojy are of the form
L(A) ® D where D € Oy is one-dimensional and (Proposition 3.4)

O Am+ Amsn =05
(i) if Apr4x > Apyi+1 forsome 1 <k < N —1,then Ay + Appyi+1 > k.

The simple module L(A) in Ojy always admits a polarizable crystal base (Theorem 5.1),
with the associate crystal B(A) being realised as the set of all semi-standard tableaux of
shape Y (Definition 4.1). Here Y, is a Young diagram constructed from A. In this way one
gets a combinatorial description of the character and the dimension for the simple module
L(A).

Explicit constructions of representations of the quantum superalgebra U, (gl(M, N)) are
also of importance to us. In [33], Ky-Van constructed finite-dimensional representations of
U, (gl(2, 1)) and studied their basis with respect to its even subalgebra U, (gl(2) @ gl(1)).
Early in [30,34], certain finite-dimensional representations of U, (gl(2,2)) were con-
structed together with their decomposition into simple modules with respect to the sub-
algebra U, (gl(2) ® gl(2)). In 1991, Palev and Tolstoy [37] deformed the finite-dimensional
Kac/simple modules of U (gl(N, 1)) to the corresponding modules of U, (gl(N, 1)) and wrote
down the actions of the algebra generators in terms of Gel’fand-Zetlin basis. Later, Palev
et al. [38] generalised the above constructions to the quantum superalgebra U, (gl(M, N)).
However, their methods applied only to a certain class of irreducible representations, the so-
called essentially typical representations. Recently, the coherent state method was applied
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to construct representations of superalgebras and quantum superalgebras. In [26], Kien—Ky—
Nam-—Van used the vector coherent state method to construct representations of U, (gl(2, 1)).
However, for quantum superalgebras U, (gl(M, N)) of higher ranks, the analogous construc-
tions are still not explicit.

Relations with Yangians In the paper [47], Zhang developed a highest weight theory for
finite-dimensional representations of the super Yangian Y (g{(M, N)), and obtained a classi-
fication of finite-dimensional simple modules (Theorems 3, 4). Here the set 7ys y of highest
weights consists of A = (A; : 1 <i < M + N) such that
Ai(z) € (=D 4 z7ICz7!) forl <i <M+ N,
Ai®)  Piz+ (=D
Ait1(2) P;(2)
A 0@
Ap+1(2) 0(2)
where Q, Q € 14 zCJ[z] are co-prime polynomials, P;(z) € C[z] are polynomials of leading
0 i<

. . M, . . . .
coefficient 1, and [i] = T ; Iy For any A € Ty v, there exists a finite-dimensional

simple Y (gl(M, N))-module S(A). Up to modification by one-dimensional modules, all
simple modules are of the form S(A). Zhang also constructed explicitly the simple modules
S(A) for A € Ty y:

forl<i<M+N-—-1,i # M,

Ai)e (=D +Cz forl<i<M+N.

Other simple modules S(A) can always be realised as subquotients of ®§'= 1 D¥S(A(5)) where
Ay €7, 13’  and the ¢ are some superalgebra automorphisms of Y (gl(M, N)).

In the case of quantum affine superalgebra U, (Lsl(M, N)), the set of highest weights is
R n, which is a commutative monoid. It is not easy to see, in view of Definition 4.1 and
Corollary 5.5, that as monoids

Run = (14 zCzDMV2 x Ry ).

In the following, we investigate the monoid structure of R 1. As we shall see, R1,; is almost
71.1. Thus, informally speaking, the two monoids Ry y and 7y y are almost equivalent,
and the finite-dimensional representation theories for U, (Lsl(M, N)) and for Y (gl(M, N))
should have some hidden similarities.

Recall that R1,; is the set of couples (f, ¢) where f is a formal series with torsion, with
;:2:11 being the constant term. Let ¢+ : C[[z¥!]] — C[[z, z~']] be the canonical inclusions
of formal series.

Proposition 6.1 Let T be the set of triples (c, Q, P) where:

(a) c € C\{0}, P(z), Q(2) € 1 +zC[z]; “ 5
Z

(b) P(z), Q(z) are co-prime as polynomials, moreover, lim,_, o % =c“.

Equip T with a structure of monoid by: (c, @, P) x (¢, Q', P') = (cc/, QQ', PP'), 1 =
(1,1, 1). Then

1 0(2) 1 0(2)
ty,— T — Ryt (¢, 0, P) (q _q_ll+ (CP(Z)) g —q‘lli (CP(Z))’C)

6.1)

defines an isomorphism of monoids.
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Proof First, 14 _ is well-defined, as the formal series in the RHS of (6.1) is killed by P (z).
Moreover, 4 _ respects the monoid structures in view of Corollary 5.5.

Next, fix (f,c¢) € Ry,1. Let P(z) € 1+ zC[z] be the Drinfel’d polynomial of smallest
degree killing f(z). Express

f(Z)=anZ", P)=1+ajz+ - +asz? withay #0.
n

Then, foralln € Z,

Sotd + futa—1a1 + -+ fup1aa—1 + faaq = 0.

Consider the formal power series

0@ :=c"P@(c+(qg—q N it =D a7 eCllzll.

n>0 5>0
It is clear that a) = 1 and that
ay =aq+c g — g V(fa+ famrar + -+ fiaa—1)
ag+c g —q (= foag) = as(1 — ¢ (¢ = ™)) = agc?,

ay=c(q—q i+ ficrar + -+ fi_aag) =0 fors > d.

% = ¢~2. We remark that

f(z) is completely determined by fo, fi, ..., fa—1, which in turn are determined by Q(z).
This forces

This says that Q(z) € 1+ zC|[z] is of degree d and that lim,_, IQJ

Y1 N 1

(g—q ) f(@)=14(c P()) t—(c P())
If P(z) = P1(z) P2(z) and Q(z) = P1(z) Q2(z), then f(z) should be killed by P>(z). Hence,
deg P;(z) = 0 from the definition of P(z). This says that P(z), Q(z) are co-prime. In other
words,

(f(@),0) =14,-(c, Q(z), P(2)) with (¢, Q(z), P(z)) € T.

Finally, ¢4 _ is injective as P(z), Q(z) are uniquely determined by (f, c). ]

Through the isomorphism ¢ _, Relation (4.3) is equivalent to the following

Z¢M nZ VP, f.c) = CIQJEZ; VP, fc) € (CULfc)[[Z ]] with ty.—(c,Q,P) = (f, o).
nez

(6.2)

In the paper [17], Gautam-Toledano Laredo constructed an explicit algebra homomor-
phism from the quantum loop algebra Uy (Lg) to the completion of the Yangian Y (g) with
respect to some grading, where g is a finite-dimensional simple Lie algebra. Also, they are
able to construct a functor from a subcategory of finite-dimensional representations of Y7 (g)
to a subcategory of finite-dimensional representations of Uy (Lg). It is hopeful to have some
generalisations for quantum affine superalgebras and super Yangians.

Other quantum affine superalgebras Our approach to the theory of Weyl/simple modules
of Uy (Lsl(M, N)) is quite algebraic, without using evaluation morphisms and coproduct, and
is less dependent on the actions of Weyl groups. In general, for a quantum affine superalgebra,
if we know its Drinfel’d realization and its PBW generators in terms of Drinfel’d currents,
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it will be quite hopeful that we arrive at a good theory of finite-dimensional highest weight
modules (Weyl/simple modules).

We point out that in the paper [1], Azam-Yamane-Yousofzadeh classified finite-
dimensional simple representations of generalized quantum groups using the notion of a Wey!
groupoid. We remark that Weyl groupoids appear naturally in the study of quantum/classical
Kac-Moody superalgebras due to the existence of non-isomorphic Dynkin diagrams for the
same Kac-Moody superalgebra. Roughly speaking, a Weyl groupoid is generated by even
reflections similar to the case of Kac-Moody algebras, together with odd reflections in order to
keep track of different Dynkin diagrams. Note that early in [44], Yamane generalised Beck’s
argument [3] by using the Weyl groupoids instead of the Weyl groups to get the two presenta-
tions of U, (Lsl(M, N)). Later in [20], similar arguments of Weyl groupoids led to Drinfel’d
realizations of the quantum affine superalgebras U, (DW (2, 1; x)). Also, in the paper [42],
Serganova studied highest weight representations of certain classes of Kac-Moody superal-
gebras with the help of Weyl groupoids. We believe that Weyl groupoids should shed light
on the structures of both quantum affine superalgebras themselves and their representations.

Affine Lie superalgebras Consider the affine Lie superalgebra Ls[(M, N) with M # N.
As we have clearly the triangular decomposition and the PBW basis, we obtain a highest
(I)-weight representation theory for U (Lsl(M, N)) similar to that of Chari [10]. Here, the
set Wy v of highest weights are couples (P, f) where

() P e (1+zClzhM+N -1 (corresponding to even simple roots);
) f e ([lz, 27111 such that Qf = 0 for some Q € 1+ zC[z] (corresponding to the odd
simple root).

Finite-dimensional simple Lsl(M, N)-modules are parametrized by their highest weight.
Furthermore, for (P, f) € Wy, y and Q € 1 4 zCJ[z] such that Qf = 0, we have also the
Weyl module W(P, f; Q) defined by generators and relations. We remark the recent work
[39] of S. Eswara Rao on finite-dimensional modules over multi-loop Lie superalgebras
associated to sl{(M, N). In that paper, a construction of finite-dimensional highest weight
modules analogous to that of Kac induction was proposed. In this way, the character formula
for these modules is easily deduced once we know the character formulae [12] for Weyl
modules over Lsl,. It is an interesting problem to compare Rao’s highest weight modules
with our Weyl modules, as they both enjoy universal properties.
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7 Appendix 1: Oscillation relations and triangular decomposition

In this appendix we finish the proof of Lemma 3.9: the oscillation relations of degree 4
respect the Drinfel’d type triangular decomposition for U, (£sl(2, 2)). As indicated in the
proof of the main result Theorem 4.5, the triangular decomposition is needed to deduce the
non-triviality of the Weyl modules. In the following, we carry out the related calculations.
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Recall that V is the superalgebra with generators X £ ise K ii and Relations (3.1)—(3.5).

nn’

Here, Relations (3.1)—(3.3) ensure the triangular decomposition for V. Fora, b, ¢, d € Z, let

R(a,b,c,d) = R(a,b,c,d)+ R(a,d, c, b) with

R(a,b,e.d) = X{ X3 X3 X5y + X3 X5, X\ (X5 g X5 X1 X5 g X

+ X X3 XS X = @+ aTDXD X XS XS eV
LetOt = Za,b.c,deZ (Clé(a, b, c,d). Our aim is to show that
(0", X )]=0 fori=1,2.

Using Relation (3.3), we see that
Lemma 7.1 If[R(a,b,c,D), X[O] =O0foralla,b,c €7, then [OT, X[O] =0.

Case i = 1. Introduce the formal series Ry .(z) = > ,.;[R(a,b, c,b)z% X1yl €
¢r¢17¢;a
q—q7!

1

Vilz, z~ 11 Using the relations (X Xio] = i1 p—

(R} (2) — R, .(2)) where ’

one gets Ry (z2) =

—1

£t vt vt vt Fovt st v Y
R, (2) = ¢ () X5 , X5 Xy, + X5 X5 b7 (X, ), + X5 07 (D)X, , X5,
+ X3, X7 X3 ,07 () — (g + 9 DX ,¢7 @XT . XT,

PR = D b2 e VI
a>0

We shall prove RZ’ .(2) =0 (R, .(z) = 0being analogous). Note that we have the following
relations

¢ @ =Kiexp|(qg—q7") D his2* | = Kihi(2)

s>1

Kihi(@)X3, = X3 Kih(2)

thl(Z)X;:b=q_l X;b—l—ZasX;r’bﬂzs Kihi(z) avecay =q* —q**2,

s>1

which imply that R;f .(z) = Ap,c(z)K1h1(2) with

Ape(2) = q’ er,b +Za5X2+,b+sZS X;r.,c X;r,b +Za5XZb+sZK

s=1 s>1

“Iyt yt + + “lyt + + s ) oyt
+q X5.X5, XZ,b+za-“X2,b+sZY +q X5, X2,b+za“’X2,b+sZY X3

s>1 s>1

T out vt -1\ ~ly+ y+ + +
+x2qu3ycxz_b—(q+q )q XpXie | Xyt 2 0 X3, 7
s>1
= Zk(n,b,c)z" € V[[zll.

n>0

Itis clear that 1(0, b, ¢) = 0. To deduce that A(n, b, ¢) = O foralln > 1, we do the triangular
decomposition for A(n, b, ¢) by using the Drinfel’d relations of degree 2.
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-2 -2
An,b,c) =¢q x;bxgﬁcanx;hHJrq anXZH,,XLXZb

-2 + + v+ “1y+ v+ +
+4q Z asa; X, o X35 Xopyo +a4 X5 Xy panXs 0,
s+t=n,s,t>1
—1 -2
+q XZba”XZb+n X;:c - (1 + q )XZbX;_,Ca" XZthn
= Iy(b,c) +q  I,(b.c) with I;(b.c)= >

s+t=n,s,t>1

_ xF

: + + + v+ + + +
Here, by relations X2’b+SX3,C = qX3’CX2yb+S + qu,b+s—1X 3,C+1X2,b+s—1’

3,c+1
we get

/ _ ot + + + +
I,(b,c) = z asar (g X3 X5 pysXo pie T 4X0 pys 1 X5 1 X2 pps

s+t=n,s,t>1

+ + +
= X3 1 X2 s 1 X2 b 4s)

= z as_]atXZb+s—1X;c+lXZh+t — didn—1 X;':c+1XZbX;:b+n—l
s+t=n,s,t>1

=1, (b,c+ 1) +aoan1X3, X5 1 XSy — @11 X5 o X3, X5 iy

an(q ™ X3, XSy X = X3, XS XS,

+ q72XZb+n X;:CXZb - qilX;’:cXZIH»n X;:b)

= a"(XZbXZbelX;r,cH - q_IX;r,bX;r,cHXZbﬂfl
+ q_IX;r,b+n—1X3v+,c+l X;r,b - q_ZXIC—HX;,b—&-n—IX;,b)

=Li(b.c+ Dt a1 (1 —q )X, X5 1 XF 0.

T - + +
+@ —a X5 1 X w1 X))

I, (b, c)

where we used that a; = q’las_l. Henceforth,

A, b, ¢) = Ly(b,c) +q 1, (b,c) = L—1(b,c+ 1) +q I _(b,c+ 1)
=An—-1,b,c+1).

Since A (0, b, ¢) = 0 for all b, ¢ € Z, we conclude that A(n, b, ¢) = 0 and RZL,(z) =0.

Case i = 2. We need to verify that I?a,c(z, w) = Zb’dgz[ﬁ’(a, b,c,d), Xio]zbwd =0¢
VIlz,z~', w, w™!]] for all @, ¢ € Z. Similar to the case i = 1, we can express

- 1 ~ ~ ~_ ~__
Ryc(z,w) = m(zre;j(z, w) + RS (@w) + Ry L (@ow) + Ry 2 (2, w)

with RY e V[[z',w/]] for i, j € {#}. We need to prove that RY = 0. For simplicity,
consider only the case

RIT(z,w) == RIf(z,w) + RI T (w, 2) € V[[z, w]] where

++
RLI

Caw) = =Xy OXT | 2 X |+ X | D X5, ) X ef )

d>0 b>0

—X{ 05 @XT, | Do Xa ! |+ X3 | DX | X 08 (w)
d>0 b>0
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—¢3 @XT, | D xF | x5+ | DoXx3," | X165 w)xi,
d=0 b>0

-5 (X7, zxzdwd Xi,+ ZXZhZ XT 07 w)X3,

d>0 b>0

+@+q e X7 X5 D x5 w
d>0

—(q+a | D2ox3," | XT XT 87 w) € Viiz, wl]
b>0

with ¢);r (z) = Kaexp((g —q’l) Z:>1 hy sz°) = K2ha(z). Observe that there exists a formal
series G, +(z, w) € V[[z, w]] with R++(z W) =Gg.c(z, w)K2h(2)+G 4 c(w, 2) Kaha(w) €
Vllz, w]]. More precisely, we have

Gaczow) = —gX{ | XT + D bXi 2 | [ D X5 =@ +q!
s>1 d>0

b\ vt yt R + v s
X szbw XiaX3.—q X3, Xl,a+za5X1,a+szs zxzdw

b>0 s>1 d>0
b\ ot + + s + .d
sz pW” ) Xy = | Xig + zasxl.a+sz sz.dw
b>0 s>1 d=0
+ + ot s + we
x| X3+ thX3,c+tZ - Zb X3 o442 sz,dw
t>1 s>1 d>0
+ o b\ v+
x| X7, + Zafxl,a+rz sz pw” | X3,
t>1 b>0

b —1
+q ZX;:hw X;r,a X;r,c—i_zbfxzc—ktzt +q ZXZ bw
b>0 t>1 b>0

x X;r,c X;L,a + ZaSXi(H_SZ‘Y + (q + qil) X;L,a + Zaina_HZ‘y

s>1 s>1
+ + + .d
x| XT + D XSz > xFw
t>1 d>0
= > wacnd)F'w?  witha, =g — ¢, by=q' —q' %

n,d>0
It is clear that u(a, c, 0, d) = 0. In general, forn > 1
M(a’ ¢ n, d) = _qb"XTaX;_c-i-nXZd - q_la"X;:cXta+nX;_d + qb X;—dxl aX;rc-&-n

+ + + +
— b X Xz dX3 c+n T X1a+nX2,dX3,c an X3, cX2 dXI a+n
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+ - 1oyt oyt oyt
—bn X3 Xy X+ a an Xy X5 XY oy

—1
+ (6] + q ) Z asbt Xii:aJrs X;:c«H X;:d
s+t=n,s,t>1
—1 -1
+ ((] + q )bnxtaX;:chnXZd + (C] + q )a"XT.,aJrnX;:CXZd
+ + v+ + + v+
- z asbtxl’aJrst,Xmcht - Z aSth3,c+tX2,dX1,a+s

s+t=n,s,t>1 s+t=n,s,t>1
= A(a,c,n,d)+ B(a,c,n,d) with
Aa,c.n.d) = q by X T X3 X5y + qan X, XT X3, + qba X3 X X5

3,c+n
-1 + y+ v+ + v+ v+ + v+ oyt
+q anXy X3 XY gy — b X X5 4 X5 oy —an X5 Xy XY 4y
+ + v+ + + v+
—bu X3 1y Xy g XV g —an Xy 1 X5 4 X5,

— + y+ + + y+ +
- b"XI,uX3,c+nfl X2,d+] + anX?:,ch,aJrnfl XZ,d+1

+ + + + + +
+ 00Xy g1 X5 in1 X1 g Fan X5 g1 XY g1 X3¢

-1 + v+ + + v+ +
=4 bn X\ X5 41 X5 cnm1 — 40 X3 X5 41 XY
+ + + -1 + + +
—qbn X35 Xy g Xy — 4 an X 1 X g1 X5
= Aa,con—1,d+ 1)+ (q—q Y X{  XT 01 X3 4y

oyt + 2 + + +
—an1X3 X\ 1 Xy ) T (L= q)bn1 X5 1 Xy g X,

+(1 - q_z)an—ler,aJrn—lXZdJrlX;fc

where the second equality comes from Drinfel’d relations of degree 2 between X ;“ o and X i‘fb
fori =1, 3. '

—ly+ + + + v+

Bla,cn.d)= Y. ahdq ' X{, (XT X5, —aXT,XT )

s+t=n,s,t>1

+ + + “ly+ v+

FaX3 o XV X0 g = a4 X5 4 X g}

_ + + + iyt +

= Z asb{X{ s (X5 i1 X a1 =4 X5 41 X3 c41)

s+t=n,s,1>1

+X;r,c+z(xfr,a+s—lx2+,d+1 - qX;r,d+1X1+,a+s—1)}
=Ba.con—1.d+ 1)+ (q—q Va1 X] 41 X3 X5 44
- b”_lxiaX;:c+n71XZd+l) -(- q_z)a”_lxta+i171XZd+1X;c
- - qz)bn—lx;chn—lXZd-HXta’
ula,c,n,d) = A(a,c,n,d)+ B(a,c,n,d)
=A(@,c,n—1,d+ 1)+ B(a,c,n—1,d+1)=pu(a,c,n—1,d+1).

We get u(a,c,n,d) = 0foralla,c,n,d,ie. Gy(z, w) = 0. Therefore Iéj’j(z, w) =0,
as desired.

8 Appendix 2: Quantum brackets and coproduct formulae

Recall that we have a morphism of superalgebras & : U(; (5[(7/[7\7)) —> Uy (Lsl(M, N))
(Theorem 5.2). In this appendix, we will write h; 41 for 1 <i < M + N — 1 as prod-
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ucts in the <I>(El.lL) and deduce their coproduct formulae. These formulae have been used
in the proofs of Proposition 5.4 and Lemma 5.8. For simplicity, let Egt = @(E(j)t) €
(Ug(LsUM, N)))x(a)++apsy-1)- Recall that Uy (Lsl(M, N)) is Q y,n-graded.

Notation 8.1 (1) Recall that Qy ny = @MHV*I Zeo; and the parity map p € homg

(OMm,N.Zp) given by p(a;) = 1 for i ; ;\4 and O for i # M. Endow Oum, N With a
bilinear form: (@;, @) := (6; — €11, €; — €j41).

(2) Let A be a Qpy y-graded algebra. (We mainly consider U, (Lsl(M, N)),
U, (Lsl(M, N))@2.) Foru € (A)y, v € (A)g, define the quantum bracket

lu,v] == uv — (_1)P(a)p(ﬁ)q—(a,ﬁ)vu = [u, v],r(a,ﬂ) c (A)a+ﬁ-

Foruy,up, -+ up € ATt luy, uz, -+ up] == luy, ug, -+, [up—1, up] -~ 11, with
the convention that |u] = u (brackets from right to left).

An induction argument on i shows that

+ y+ + +
LXi,O’Xz'+1,O’""XMJerl,O’EOJ
i—1
=—[]-a;" | Ll X7 Xog) o L Xy oJ(K1 Ko Kio) ™,
j=2

+ oyt + +
1X2.0: X505 -+ Xprin—1.00 Eo ]

_ - -1 _ + + + +
—_X1,1K1 ’ hl,l—_Lxl,o’xz,o’---’XM+N—1,0onJ-
Remark that [h1, X5 o] = (=1)?®V X7 . Hence,

— + + + + —
X2,1 = (_l)p(a')[sz,O* X3,o’ s XM+N71,0’ Eyl, Xz,o]

= (=DPOXT 0 XS0 Xpn10 Eg K2

where we have used that [X;ro, X530l =0= [Ear, X, o] for i # 2. From [X;:Os X5, =
K>hy, | we get '

hyy = (—1)1’<“1>LX;0, XFo XS0 Xiin_1.0- Eg 1.

Again an induction argument on i shows thatfor 1 <i <M + N — 1

+ oyt + v+ + +
hin = X LXi0» XiZ100 > X100 Xifr00 - Xppw—1,00 Eo
- i<M
where 3; = 1 1 e (8.1)
D)= i>M

Next, we compute A(%;,1) modulo U(X™)? ® U(XH2. By definition

Al = —[AX g AX v 10 1 ® EF
—AXT o AX 100 Eg @ (K1 -+ Kppn—1)].
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On the other hand, remark that —| A X 0""’AX;:—4+N71,0’ I®Ef | =1®h, since
LX) K, Xt++10®K1+1"' D¢/ O®KM+N L0 1®Eg]=0

for1 <i <M+ N — 1, and modulo U(X~)>®@ U(X*)?,

M+N—1
Al =1@h i +hii®1— > L. X" @K 18X},
i=1
z+10®Kl+1v---»EGL@(K1~-~KM+N—1)J-

When i > 3, the corresponding term in the above summation becomes 0. Similar argument
leads to the first part of Lemma 5.3 for A(h; 7).

Notation 8.2 Let A bea Qs v-graded algebra. Foru € (A)y, v € (A)g, define the quantum
bracket

[u,v] :=uv — (_1)P(a)p(ﬂ)q(a,ﬂ)vu = [u, v]q@,,ﬂ) € (A)a+/3~

Foruy,uy,...,u, € A, let [uy,uz,...,u,] := J[...[uy,uz2],...,u,] (brackets from left
to right).

Using the second type of quantum brackets, we obtain
- + +
|—E0» M+N 107-‘-7Xl‘+1’0—| :(Kl"'Ki)l_l_"'l_Xl’_laxz,OL s X J

and hy 1 = K| [Xl _l,X1 ol =TEg, MAN— 1O,...,Xl_,(ﬂ.Similartothecaseh,‘,l,we
have

himt = =iTEg Xppun—100 - Xigr.0- X100 -+ X, (8.2)

and the second part of Lemma 5.3 is easily deduced.
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