Erratum to: Spiraling spectra of geodesic lines in negatively curved manifolds

Jouni Parkkonen • Frédéric Paulin

Published online: 19 January 2014
© Springer-Verlag Berlin Heidelberg 2014

Erratum to: Math. Z. (2011) 268:101-142
 DOI 10.1007/s00209-010-0662-0

The correct statement of Proposition 1.4 of [2] is the following one.
Proposition 1.4 For the Golden Ratio $\phi=\frac{1+\sqrt{5}}{2}$, we have $K_{\phi}=3 / \sqrt{5}-1 \approx 0.34$, and K_{ϕ} is not isolated in Sp_{ϕ}.

The proof of Proposition 1.4 follows as in [2] from the corrected version of Proposition 4.11 below.

Proposition 4.11 Let Γ_{0} be the cyclic subgroup of $\Gamma=\operatorname{PSL}_{2}(\mathbb{Z})$ generated by $\gamma_{1}=$ $\pm\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, and let $\mathscr{D}=\left(\mathbb{H}_{\mathbb{R}}^{2}, \Gamma, \Gamma_{0}, C_{\infty}\right)$. Then $K_{\mathscr{D}}=3 / \sqrt{5}-1$, and $K_{\mathscr{D}}$ is not isolated in the approximation spectrum $\operatorname{Sp}(\mathscr{D})$.

Proof The penultimate sentence of the proof of [2, Prop. 4.11] is incorrect. For every $n \in \mathbb{N}$, let L_{1}, γ_{n} be as in the original version of the proof, and let A_{n} be the geodesic line from ∞ to the repelling fixed point γ_{n}^{-}of γ_{n}. In order to compute the (strictly increasing) limit, as n tends to $+\infty$, of the approximation constant $c\left(\gamma_{n}^{-}\right)$of γ_{n}^{-}(using its expression given by Eq. (11) in [2]), we need not only to consider the Γ-translates of L_{1} intersecting A_{n} and to

[^0]minimise $1-\cos \theta$ where θ is the intersection angle, but also to consider the Γ-translates of L_{1} not intersecting A_{n} and to minimise $\cosh \ell-1$ where ℓ is the distance to A_{n}.

Consider the common perpendicular arc between the translation axis L_{n} of γ_{n} and a disjoint Γ-translate of L_{1}. By the symmetry at i and the computation (done in the original version of the proof) of the translation length of γ_{n}, we may restrict to the case when the endpoint on L_{n} of this common perpendicular arc lies on the subarc of L_{n} between i and $i+n$. Let L be the translate by $z \mapsto z+1$ of L_{1}, whose points at infinity are $\frac{3 \pm \sqrt{5}}{2}$. Clearly (see in particular the picture in the original version of the proof), the common perpendicular $\operatorname{arc} \delta_{n}$ between L_{n} and L realises the minimum distance between L_{n} and a Γ-translate of L_{1} disjoint from L_{n} whose closest point on L_{n} lies between i and $i+n$. As $n \rightarrow \infty$, the segments δ_{n} converge (with strictly increasing lengths) to the common perpendicular arc δ_{∞} between the positive imaginary axis and L. Since δ_{∞} is contained in the Euclidean unit circle (which is the angle bisector through i of the equilateral geodesic triangle with vertices i, $\left.1+i, \frac{1+i}{2}\right)$, its hyperbolic length is argcosh $\frac{3}{\sqrt{5}}$ by an easy computation. Since we analysed the contribution of the Γ-translates of L_{1} that intersect L_{n} in the original version of the proof, and since $\frac{3}{\sqrt{5}}-1<1-\frac{1}{\sqrt{5}}$, the (strictly increasing) limit of $c\left(\gamma_{n}^{-}\right)$is $\frac{3}{\sqrt{5}}-1$.

To conclude, we also need to improve the last claim of the second paragraph of the proof of [2, Prop. 4.11]. Let T be a triangle as in this second paragraph. The distance from a geodesic line γ meeting T to the geodesic line containing the side of T which is not cut by γ is maximal when γ goes through its opposite vertex and is perpendicular to the angle bisector of T at this vertex. This distance is equal to $\arg \cosh \frac{3}{\sqrt{5}}$ by the above computation. Since we analysed the contribution of the sides of T intersecting γ in the original version of the proof, and since $\frac{3}{\sqrt{5}}-1<1-\frac{1}{\sqrt{5}}$, we have $c(\xi) \leq \frac{3}{\sqrt{5}}-1$ for every $\xi \in \mathbb{R}-\mathbb{Q}$. The result follows.

We are grateful to Yann Bugeaud for pointing out the mistake. See [1] for an arithmetic proof of the above result.

References

1. Bugeaud, Y.: On the quadratic Lagrange spectrum. Math. Z. (to appear)
2. Parkkonen, J., Paulin, F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268, 101-142 (2011)

[^0]: The online version of the original article can be found under doi:10.1007/s00209-010-0662-0.
 J. Parkkonen

 Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland
 e-mail: parkkone@maths.jyu.fi
 F. Paulin (\boxtimes)

 Département de Mathématique et Applications, UMR 8553 CNRS, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France
 e-mail: Frederic.Paulin@ens.fr

