ERRATUM

Erratum to: Spiraling spectra of geodesic lines in negatively curved manifolds

Jouni Parkkonen · Frédéric Paulin

Published online: 19 January 2014 © Springer-Verlag Berlin Heidelberg 2014

Erratum to: Math. Z. (2011) 268:101–142 DOI 10.1007/s00209-010-0662-0

The correct statement of Proposition 1.4 of [2] is the following one.

Proposition 1.4 For the Golden Ratio $\phi = \frac{1+\sqrt{5}}{2}$, we have $K_{\phi} = 3/\sqrt{5} - 1 \approx 0.34$, and K_{ϕ} is not isolated in Sp_{ϕ}.

The proof of Proposition 1.4 follows as in [2] from the corrected version of Proposition 4.11 below.

Proposition 4.11 Let Γ_0 be the cyclic subgroup of $\Gamma = \text{PSL}_2(\mathbb{Z})$ generated by $\gamma_1 = \pm \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, and let $\mathcal{D} = (\mathbb{H}^2_{\mathbb{R}}, \Gamma, \Gamma_0, C_{\infty})$. Then $K_{\mathcal{D}} = 3/\sqrt{5} - 1$, and $K_{\mathcal{D}}$ is not isolated in the approximation spectrum Sp(\mathcal{D}).

Proof The penultimate sentence of the proof of [2, Prop. 4.11] is incorrect. For every $n \in \mathbb{N}$, let L_1 , γ_n be as in the original version of the proof, and let A_n be the geodesic line from ∞ to the repelling fixed point γ_n^- of γ_n . In order to compute the (strictly increasing) limit, as n tends to $+\infty$, of the approximation constant $c(\gamma_n^-)$ of γ_n^- (using its expression given by Eq. (11) in [2]), we need not only to consider the Γ -translates of L_1 intersecting A_n and to

J. Parkkonen

The online version of the original article can be found under doi:10.1007/s00209-010-0662-0.

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

e-mail: parkkone@maths.jyu.fi

F. Paulin (🖾)

Département de Mathématique et Applications, UMR 8553 CNRS, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France e-mail: Frederic.Paulin@ens.fr

minimise $1 - \cos \theta$ where θ is the intersection angle, but also to consider the Γ -translates of L_1 not intersecting A_n and to minimise $\cosh \ell - 1$ where ℓ is the distance to A_n .

Consider the common perpendicular arc between the translation axis L_n of γ_n and a disjoint Γ -translate of L_1 . By the symmetry at *i* and the computation (done in the original version of the proof) of the translation length of γ_n , we may restrict to the case when the endpoint on L_n of this common perpendicular arc lies on the subarc of L_n between *i* and i + n. Let *L* be the translate by $z \mapsto z + 1$ of L_1 , whose points at infinity are $\frac{3\pm\sqrt{5}}{2}$. Clearly (see in particular the picture in the original version of the proof), the common perpendicular arc δ_n between L_n and *L* realises the minimum distance between L_n and a Γ -translate of L_1 disjoint from L_n whose closest point on L_n lies between *i* and i + n. As $n \to \infty$, the segments δ_n converge (with strictly increasing lengths) to the common perpendicular arc δ_∞ between the positive imaginary axis and *L*. Since δ_∞ is contained in the Euclidean unit circle (which is the angle bisector through *i* of the equilateral geodesic triangle with vertices *i*, 1 + i, $\frac{1+i}{2}$), its hyperbolic length is $\operatorname{argcosh} \frac{3}{\sqrt{5}}$ by an easy computation. Since we analysed the contribution of the Γ -translates of L_1 that intersect L_n in the original version of the proof, and since $\frac{3}{\sqrt{5}} - 1 < 1 - \frac{1}{\sqrt{5}}$, the (strictly increasing) limit of $c(\gamma_n^-)$ is $\frac{3}{\sqrt{5}} - 1$.

To conclude, we also need to improve the last claim of the second paragraph of the proof of [2, Prop. 4.11]. Let *T* be a triangle as in this second paragraph. The distance from a geodesic line γ meeting *T* to the geodesic line containing the side of *T* which is not cut by γ is maximal when γ goes through its opposite vertex and is perpendicular to the angle bisector of *T* at this vertex. This distance is equal to $\operatorname{argcosh} \frac{3}{\sqrt{5}}$ by the above computation. Since we analysed the contribution of the sides of *T* intersecting γ in the original version of the proof, and since $\frac{3}{\sqrt{5}} - 1 < 1 - \frac{1}{\sqrt{5}}$, we have $c(\xi) \leq \frac{3}{\sqrt{5}} - 1$ for every $\xi \in \mathbb{R} - \mathbb{Q}$. The result follows.

We are grateful to Yann Bugeaud for pointing out the mistake. See [1] for an arithmetic proof of the above result.

References

- 1. Bugeaud, Y.: On the quadratic Lagrange spectrum. Math. Z. (to appear)
- Parkkonen, J., Paulin, F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268, 101–142 (2011)