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Abstract In the paper we study LlogL estimates for Fourier multipliers resulting from
modulation of the jumps of Lévy processes. We exhibit a class of functions m : R

d → C,
for which the corresponding multipliers Tm satisfy the following estimate: for K > 1, any
locally integrable function f on R

d and any Borel subset A of R
d ,

∫

A

|Tm f (x)| dx ≤ K
∫

Rd

�(| f (x)|) dx + |A|
2(K − 1)

,

where�(t) = (t + 1) log(t + 1)− t . We also present related lower bounds which arise from
considering appropriate examples for the Beurling-Ahlfors operator.

Keywords Fourier multiplier · Singular integral · Martingale · Differential subordination
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1 Introduction

The martingale theory is a fundamental tool in obtaining L p bounds for many important sin-
gular integrals and Fourier multipliers. The purpose of this paper is to extend this connection
to the case of appropriately localized L log L inequalities. This will be accomplished by the
use of a certain duality approach and a related sharp inequality for differentially subordinated
martingales.
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516 A. Osȩkowski

Recall that for any bounded function m : R
d → C, there is a unique bounded linear

operator Tm on L2(Rd), called the Fourier multiplier with the symbol m, which is given
by T̂m f = m f̂ . The norm of Tm on L2(Rd) is equal to ||m||L∞(Rd ) and it has been long of
interest to study those m, for which the corresponding Fourier multiplier extends to a bounded
linear operator on L p(Rd), 1 < p < ∞. In this paper we shall consider the following class
of symbols, studied by Bañuelos and Bogdan [1] and Bañuelos et al. [2]. Let ν be a Lévy
measure on R

d : that is, a nonnegative Borel measure on R
d such that ν({0}) = 0 and

∫

Rd

min{|x |2, 1}ν(dx) < ∞.

Assume further that μ is a finite Borel measure on the unit sphere S of R
d and fix two Borel

functions φ on R
d andψ on S which take values in the unit ball of C. We define the associated

multiplier m = mφ,ψ,μ,ν on R
d by

m(ξ) =
1
2

∫
S
〈ξ, θ〉2ψ(θ)μ(dθ)+ ∫

Rd [1 − cos〈ξ, x〉]φ(x)ν(dx)
1
2

∫
S
〈ξ, θ〉2μ(dθ)+ ∫

Rd [1 − cos〈ξ, x〉]ν(dx)
(1.1)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the scalar product
in R

d . As proved in [1] and [2], the Fourier multipliers corresponding to these symbols
can be given a martingale representation by the use of transformations of jumps of Lévy
processes. Combining this representation with Burkholder’s moment inequality (see Theorem
2.1 below), Bañuelos et al. [2] established the following L p estimate. See also Bañuelos and
Osȩkowski [5] for related lower bounds.

Theorem 1.1 Let 1 < p < ∞ and let m = mφ,ψ,μ,ν be given by (1.1). Then for any
f ∈ L p(Rd) we have

||Tm f ||L p(Rd ) ≤ (p∗ − 1)|| f ||L p(Rd ). (1.2)

The constant p∗ − 1 is the best possible.

In particular, this theorem yields sharp bounds for the real and imaginary parts of the
Beurling-Ahlfors transform (see Sect. 4).

There is a natural question whether the interplay between the martingale theory and Fourier
multipliers can be carried over to other types of estimates. The objective of this paper is to
give the affirmative answer to this question. We shall consider the class of LlogL inequalities,
which arise naturally when one wants to study L1 version of (1.2). Throughout the paper,
the functions �, � : [0,∞) → [0,∞) are given by the formulas

�(x) = ex − 1 − x and �(x) = (x + 1) log(x + 1)− x .

Define the corresponding LlogL class by

LlogL(Rd) =

⎧⎪⎨
⎪⎩ f : R

d → C :
∫

Rd

�(| f (x)|)dx < ∞

⎫⎪⎬
⎪⎭ .

The main result of the paper can be stated as follows.
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Logarithmic inequalities for Fourier multipliers 517

Theorem 1.2 Fix K > 1 and let m = mφ,ψ,μ,ν be given by (1.1), with μ, ν, φ and ψ
satisfying the above assumptions. Then for any K > 1, any f ∈ LlogL(Rd) and any Borel
subset A of R

d we have∫

A

|Tm f (x)|dx ≤ K
∫

Rd

�(| f (x)|)dx + |A|
2(K − 1)

. (1.3)

The reader may wonder why we have used the function � instead of the usual x 	→
x log+ x or x 	→ x log x . Another question which comes into one’s mind is whether we can
replace the integral on the right by the “local” integral over A. We shall see in Sect. 4 that in
general the inequality breaks down if we implement any of these two changes. Thus (1.3) is
the right form for investigation.

By standard optimization over K , Theorem 1.2 leads to the following statement.

Corollary 1.3 Under the assumptions of the above theorem, we have

∫

A

|Tm f (x)|dx ≤
∫

Rd

�(| f (x)|)dx + √
2

⎛
⎜⎝|A|

∫

Rd

�(| f (x)|)dx

⎞
⎟⎠

1/2

. (1.4)

What can be said about the tightness of (1.3) and (1.4)? We strongly believe that these
estimates are sharp [(i.e., the constants (2(K − 1))−1 in (1.3) and

√
2 in (1.4) cannot be

decreased]. Unfortunately, we have not been able to prove this. Nevertheless, we shall show
the sharpness of the martingale inequality on which the argumentation is based. We shall
also present examples for the Beurling-Ahlfors transform, which will yield the following
statement.

Theorem 1.4 For any K > 2/π there is a multiplier m : C → R from the class (1.1), a
Borel subset A of C and a function f ∈ LlogL(C) for which∫

A

|Tm f (z)|dz = K
∫

C

�(| f (z)|)dz + |A|
π(Kπ − 2)

.

Furthermore, for any c < 2/π there is a multiplier m : C → R from the class (1.1), a Borel
subset A of C and a function f ∈ LlogL(C) for which

∫

A

|Tm f (z)|dz >
∫

C

�(| f (z)|)dz + c

⎛
⎝|A|

∫

C

�(| f (z)|)dz

⎞
⎠

1/2

.

A few words about the proof and the organization of the paper. The heart of the matter
lies in proving a certain martingale inequality which can be regarded as a dual to (1.3) and
is of independent interest. This is done in the next section. Section 3 is devoted to the proof
of (1.3). We also discuss there the possibility of extending this estimate to the vector valued
setting. In the final part of the paper we study the lower bound for the constants in (1.3) and
(1.4).

2 A martingale inequality

As mentioned in the Sect. 1, the results of this paper depend heavily on a certain inequal-
ity for differentially subordinated martingales. Let us start with introducing the necessary

123
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probabilistic background and notation. Assume that (
,F,P) is a complete probability
space, equipped with (Ft )t≥0, a nondecreasing family of sub-σ -fields of F , such that F0

contains all the events of probability 0. Let X, Y be two adapted martingales taking values in
a certain separable Hilbert space (H, | · |), which may and will be taken to be equal to �2. As
usual, we assume that the processes have right-continuous trajectories that have limits from
the left. The symbol [X, Y ] will stand for the quadratic covariance process of X and Y . See
e.g. Dellacherie and Meyer [9] for details in the case when the processes are real-valued, and
extend the definition to the vector setting by [X, Y ] = ∑∞

k=0[Xk, Y k], where Xk, Y k are the
k-th coordinates of X , Y . Following Bañuelos and Wang [6] and Wang [17], we say that Y
is differentially subordinate to X , if the process ([X, X ]t − [Y, Y ]t )t≥0 is nonnegative and
nondecreasing as a function of t .

A celebrated theorem of Burkholder [7] compares the L p-norms of differentially subor-
dinated martingales. We would like to mention that the result was originally formulated in
the discrete-time case, and the extension below is due to Wang [17] (see also [8]). We use
the notation ||X ||p = supt≥0 ||Xt ||p for 1 ≤ p ≤ ∞.

Theorem 2.1 Assume that X, Y are H-valued martingales such that Y is differentially sub-
ordinate to X. Then for 1 < p < ∞ we have

||Y ||p ≤ (p∗ − 1)||X ||p, (2.1)

where p∗ = max{p, p/(p − 1)}. The constant p∗ − 1 is the best possible.

In the limit case p = 1 the moment inequality does not hold any more, but we have the
following substitute, established by the author in [14] in the discrete-time case; see [15] and
[16] for the continuous time version.

Theorem 2.2 Assume that X, Y are H-valued martingales such that Y is differentially sub-
ordinate to X. Then for any K > 1,

||Y ||1 ≤ K sup
t≥0

E|Xt | log |Xt | + L(K ),

where

L(K ) =
{

K 2

2(K−1) exp(−K −1) if K ≤ 2,

K exp(K −1 − 1) if K > 2.

The constant is the best possible.

We shall study a certain version of this result; in fact, to obtain the localized estimate
(1.3), we need to consider the following dual bound.

Theorem 2.3 Assume that X, Y are H-valued martingales such that ||X ||∞ ≤ 1 and Y is
differentially subordinate to X. Then for any K > 1 we have

sup
t≥0

E�(|Yt |) ≤ 1

2K (K − 1)
||X ||1. (2.2)

The constant 1/(2K (K − 1)) is the best possible.

The proof rests on Burkholder’s method: we shall deduce the inequality (2.2) from
the existence of a family {UK }K∈(1,∞) of certain special functions given on the set
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Logarithmic inequalities for Fourier multipliers 519

S = {(x, y) ∈ H × H : |x | ≤ 1}. To this end, we first study an auxiliary object: a function
u∞ : H × H → R given by

u∞(x, y) =
{

0 if |x | + |y| < 1,

(|y| − 1)2 − |x |2 if |x | + |y| ≥ 1.

We shall need the following properties of this function.

Lemma 2.4 (i) There is an absolute constant A > 0 such that for all x, y ∈ H,

u∞(x, y) ≤ A(|x |2 + |y|2 + 1). (2.3)

(ii) For all x, y ∈ H we have

u∞(x, y) ≤ (|y| − 1)2 − |x |2. (2.4)

(iii) If x, y, h, k ∈ H satisfy

|x | + |y| ≤ 1, |x + h| + |y + k| ≥ 1 and |k| ≤ |h|, (2.5)

then u∞(x + h, y + k) ≤ 0.
(iv) If x, y ∈ H satisfy |y| ≤ |x |, then u∞(x, y) ≤ 0.

Proof (i), (ii) This follows immediately from the formula for u∞.
(iii) The desired inequality is equivalent to ||y +k|−1| ≤ |x +h|. Note that 1−|y +k| ≤

|x + h|, which is the middle bound in (2.5). In addition, combining this assumption with the
triangle inequality, we obtain

|y + k| − 1 ≤ |y| + |k| − 1 ≤ −|x | + |h| ≤ |x + h|
and we are done.

(iv) The estimate is trivial if |x | + |y| ≤ 1; for remaining x, y,

u∞(x, y) = (|y| + |x | − 1)(|y| − |x | − 1) ≤ 0.

�
The key fact about u∞ is described in the following lemma.

Lemma 2.5 Suppose that martingales X, Y are bounded in L2 and Y is differentially sub-
ordinate to X. Then for any t ≥ 0,

Eu∞(Xt , Yt ) ≤ 0. (2.6)

We shall need the following auxiliary fact. Recall that for any semimartingale X there
exists a unique continuous local martingale part Xc of X satisfying

[X, X ]t = [Xc, Xc]t +
∑

0≤s≤t

|�Xs |2

for all t ≥ 0. Here �Xs = Xs − Xs− denotes the jump of X at time s (we set X0− ≡ 0).
Furthermore, we have that [Xc, Xc] = [X, X ]c, the pathwise continuous part of [X, X ]. Here
is the Lemma 1 of Wang [17].

Lemma 2.6 If X and Y are semimartingales, then Y is differentially subordinate to X if and
only if Y c is differentially subordinate to Xc and |Ys | ≤ |Xs | for all s ≥ 0.
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Proof of Lemma 2.5 By (2.3), we see that the random variable u∞(Xt , Yt ) is integrable.
Introduce the stopping time τ = inf{s ≥ 0 : |Xs | + |Ys | > 1}. We shall show the following
three statements:

Eu∞(Xt , Yt )1{|X0|+|Y0|>1} ≤ Eu∞(X0, Y0)1{|X0|+|Y0|>1}, (2.7)

u∞(Xt , Yt ) = u∞(X0, Y0) = 0 on {|X0| + |Y0| ≤ 1, τ > t} (2.8)

and

Eu∞(Xt , Yt )1{|X0|+|Y0|≤1, τ≤t} ≤ Eu∞(X0, Y0)1{|X0|+|Y0|≤1, τ≤t}. (2.9)

These three facts yield the claim: indeed, they give Eu∞(Xt , Yt ) ≤ Eu∞(X0, Y0) and it
suffices to note that u∞(X0, Y0) ≤ 0, in view of the differential subordination and part (iv)
of Lemma 2.4.

To prove (2.7), use (2.4) to get

E
[
u∞(Xt , Yt )|F0

] ≤ E
[|Yt |2 − |Xt |2|F0

]− 2E(|Yt ||F0)+ 1.

Of course, E(|Yt ||F0) ≥ |Y0|. Moreover,

E
[
(|Yt |2 − |Xt |2)−(|Y0|2 − |X0|2)|F0

]=E
[
([Y, Y ]t − [X, X ]t )−([Y, Y ]0 − [X, X ]0)|F0

]

is nonpositive, due to the differential subordination. Consequently, on the set {|X0| +
|Y0| > 1},

E
[
u∞(Xt , Yt )|F0

] ≤ |Y0|2 − |X0|2 − 2|Y0| + 1 = u∞(X0, Y0),

which yields (2.7). The condition (2.8) is obvious, by the definition of u∞ and τ . To get (2.9),
we proceed as previously: on the set {|X0| + |Y0| ≤ 1, τ ≤ t} we have, in virtue of (2.4),

E
[
u∞(Xt , Yt )|Fτ

] = E
[|Yt |2 − |Xt |2|Fτ

]− 2E(|Yt ||Fτ )+ 1

≤ |Yτ |2 − |Xτ |2 − 2|Yτ | + 1

= u∞(Xτ , Yτ ).

Now use part (iii) of Lemma 2.4 with x = Xτ−, y = Yτ−, h = Xτ and k = Yτ : the first
two conditions in (2.5) follow from the definition of τ , while the third one, |Yτ | ≤ |Xτ |,
is due to the differential subordination. Thus, u∞(Xτ , Yτ ) ≤ 0 = u∞(X0, Y0) and the proof
is complete. �

Now fix K > 1 and recall that S = {(x, y) ∈ H × H : |x | ≤ 1}. Introduce the function
UK : S → R by

UK (x, y) =
∫ ∞

1
aK (r)u∞(x/r, y/r)dr + bK (|y|2 − |x |2),

where

aK (r) = r2

2K 2(K − 1)
exp

( r

K
− 1

)
and bK = 1

2K (K − 1)
.

A direct computation shows that UK (x, y) = (|y|2 − |x |2)/(2K (K − 1)) if |x | + |y| ≤ 1,
while for remaining (x, y) ∈ S we have
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UK (x, y) = K − |x |
K − 1

exp

( |x | + |y| − 1

K

)
− 1 − y

K
− 1

2K (K − 1)
.

We shall establish the following majorization.

Lemma 2.7 For any (x, y) ∈ S we have

UK (x, y) ≥ �(|y|/K )− |x |/(2K (K − 1)). (2.10)

Proof Of course, it suffices to establish the inequality for H = R; furthermore, since
UK (x, y) = UK (−x, y) = UK (x,−y) for all (x, y) ∈ S, we may restrict ourselves to
x, y ≥ 0. The next observation is that UK is linear along the line segments of slope −1
contained in the strip S+ = [0, 1] × [0,∞); thus it suffices to check the majorization at
the boundary of S+. Finally, we have that the function x 	→ UK (x, 0) is concave on [0, 1]
and hence we will be done if we show (2.10) for x ∈ {0, 1} and y ≥ 0. We easily check
that both sides of the estimate are equal when x = 1. To deal with the case x = 0, define
F(y) = UK (0, y) − �(y/K ) for y ≥ 0. One easily checks that F is of class C1, satisfies
F(0) = F ′(0+) = 0 and

F ′′(y) =
⎧⎨
⎩

K −2
(

K
K−1 − ey/K

)
if y < 1,

K −2e(y−1)/K
(

K
K−1 − e1/K

)
if y > 1.

Thus F is convex and hence nonnegative. The claim follows. �

Now we are ready to establish Theorem 2.3.

Proof of (2.2) Fix X, Y as in the statement, M > 0 and introduce the stopping time

τ = τM = inf {t ≥ 0 : |Yt | ≥ M}.
Then the stopped martingale Y τ = (Yτ∧t )t≥0 is bounded: indeed, for any t we have
|Yτ∧t−| ≤ M , so by Lemma 2.6,

|Yτ∧t | ≤ |Yτ∧t−| + |Yτ∧t | ≤ M + |Xτ∧t | ≤ M + 2||X ||∞.
Obviously, Y τ is differentially subordinate to X . Thus ||Y τt ||2 ≤ ||Xt ||2, using the L2 inequal-
ity of Burkholder. Hence, by Lemma 2.5 and Fubini’s theorem,

EUK (Xt , Y τt ) ≤
∞∫

1

aK (r)Eu∞(Xt/r, Y τt /r)dr ≤ 0. (2.11)

The fact that Fubini’s theorem is applicable follows immediately from the boundedness of
X and Y τ . Combining (2.11) with (2.10) yields

E�(|Y τt |/K ) ≤ 1

2K (K − 1)
E|Xt | ≤ 1

2K (K − 1)
||X ||1.

It suffices to let M → ∞ and then take supremum over all t ≥ 0 to get the claim, in virtue
of Fatou’s lemma. �
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Sharpness Fix δ > 0 and consider a sequence (ξn)n≥0 of independent random variables
given by ξ0 ≡ 1/2, P(ξ1 = −1/2) = P(ξ1 = 1/2) = 1/2 and, for k ≥ 1,

P(ξ2k = −1) = 1 − P(ξ2k = δ) = δ

1 + δ
,

P(ξ2k+1 = 1 − δ) = 1 − P(ξ2k+1 = −δ) = δ.

Introduce the stopping time τ = inf{k : (−1)kξk < 0}, which, obviously, is finite almost
surely. Define the processes X, Y by

Xt = ξ0 + ξ1 + ξ2 + · · · + ξτ∧�t�, Yt = ξ0 − ξ1 + ξ2 − · · · + (−1)τ∧�t�ξτ∧�t�.

Let us gather some information about these processes. Since ξ1, ξ2, . . . have mean zero,
X and Y are martingales. Furthermore, we have [X, X ]t = [Y, Y ]t for all t ≥ 0, so Y is
differentially subordinate to X . Next, it is not difficult to verify that X is bounded by 1 and
Yτ takes values in the set {0, 2δ, 4δ, . . .}. More precisely,

P(Yτ = 0) = P(τ = 1)+ P(τ = 2) = 1

2
+ 1

2
· δ

1 + δ

and, for � = 1, 2, . . .,

P(Yτ = 2�δ) = P(τ = 2�+ 1)+ P(τ = 2�+ 2) = δ(1 − δ)�−1

(1 + δ)�+1 .

Consequently, for K > 1 we have

E�(Yτ /K ) = δ

1 − δ2

∑
�≥1

�(2�δ/K )

(
1 − 2δ

1 + δ

)�
.

If we let δ → 0, the expression on the right converges to

1

2

∞∫

0

�(x/K )e−x dx = 1

2K (K − 1)
,

and thus the constant (2K (K − 1))−1 cannot be improved in (2.2). �

3 Proof of Theorem 1.2

We start by recalling the martingale representation of the multipliers from the class (1.1).
This is described in full detail in [1] and [2], so we shall be brief. Let m be the multiplier as
in (1.1), with the corresponding parameters φ, ψ, μ and ν. Assume in addition that ν(Rd)

is finite and nonzero. Then for any s < 0 there is a Lévy process (Xs,t )t∈[s,0] with Xs,s ≡ 0,
for which Lemmas 3.1 and 3.2 below hold true. To state these, we need some notation. For
a given f ∈ L∞(Rd), define the corresponding parabolic extension U f to (−∞, 0] × R

d by

U f (s, x) = E f (x + Xs,0).
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Next, fix x ∈ R
d , s < 0 and let f, φ ∈ L∞(Rd). We introduce the processes F =

(F x,s, f
t )s≤t≤0 and G = (Gx,s, f,φ

t )s≤t≤0 by

Ft = U f (t, x + Xs,t ),

Gt =
∑

s<u≤t

[
(Fu − Fu−) · φ(Xs,u − Xs,u−)

]
(3.1)

−
t∫

s

∫

Rd

[
U f (v, x + Xs,v− + z)− U f (v, x + Xs,v−)

]
φ(z)ν(dz)dv.

Finally, fix s < 0, a function φ on R
d taking values in the unit ball of C and define the

operator T = T s by the bilinear form∫

Rd

T f (x)g(x)dx =
∫

Rd

E
[
Gx,s, f,φ

0 g(x + Xs,0)
]
dx, (3.2)

where f, g ∈ C∞
0 (R

d). By the results from [1] and [2], the family
{
(Xs,t )s≤t≤0

}
s<0 can be

chosen so that the following statements are valid.

Lemma 3.1 For any fixed x, s, f, φ as above, the processes F x,s, f ,Gx,s, f,φ are martin-
gales with respect to (Ft )s≤t≤0 = (σ (Xs,t : s ≤ t))s≤t≤0. Furthermore, if ||φ||∞ ≤ 1, then
Gx,s, f,φ is differentially subordinate to F.

Lemma 3.2 Let 1 < p < ∞ and d ≥ 2. The operator T s is well defined and extends to
a bounded operator on L p(Rd), which can be expressed as a Fourier multiplier with the
symbol

M(ξ) = Ms(ξ)

=
⎡
⎢⎣1 − exp

⎛
⎜⎝2s

∫

Rd

(1 − cos〈ξ, z〉)ν(dz)

⎞
⎟⎠
⎤
⎥⎦
∫

Rd (1 − cos〈ξ, z〉)φ(z)ν(dz)∫
Rd (1 − cos〈ξ, z〉)ν(dz)

if
∫

Rd (1 − cos〈ξ, z〉)ν(dz) �= 0, and M(ξ) = 0 otherwise.

We are ready to establish the following dual version of (1.3).

Theorem 3.3 Assume that K > 1 and let m : R
d → C be a multiplier as in Theorem 1.2.

Then for any Borel function f on R
d taking values in the unit ball of C we have

||�(|Tm f |/K )||L1(Rd ) ≤ 1

2K (K − 1)
|| f ||L1(Rd ). (3.3)

Proof It is convenient to split the reasoning into two parts.

Step 1. First we show the estimate for the multipliers of the form

Mφ,ν(ξ) =
∫

Rd (1 − cos〈ξ, z〉)φ(z)ν(dz)∫
Rd (1 − cos〈ξ, z〉)ν(dz)

. (3.4)

In addition, we assume that 0 < ν(Rd) < ∞, so that the above approach using Lévy
processes is applicable. Fix s < 0 and functions f, g ∈ C∞

0 (R
d) such that f is bounded
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by 1; then the martingale F x,s, f also takes values in the unit ball of C.By Young inequality,
Fubini’s theorem and (2.2), we have

∣∣∣∣∣∣∣
∫

Rd

E

[
Gx,s, f,φ

0

K
g(x + Xs,0)

]
dx

∣∣∣∣∣∣∣

≤
∫

Rd

E�

(
|Gx,s, f,φ

0 |
K

)
dx +

∫

Rd

E�
(|g(x + Xs,0)|)dx

≤ 1

2K (K − 1)

∫

Rd

E|F x,s, f
0 |dx +

∫

Rd

�(|g(x)|)dx (3.5)

= 1

2K (K − 1)

∫

Rd

| f (x)|dx +
∫

Rd

�(|g(x)|)dx .

Plugging this into the definition of T s [(see (3.2)], we obtain

∫

Rd

[
T s f (x)

K
g(x)−�(|g(x)|)

]
dx ≤ || f ||L1(Rd )

2K (K − 1)
.

Now fix M > 0 and put

g(x) = T s f (x)

|T s f (x)|
[

exp

(
min

{ |T s f (x)|
K

,M

})
− 1

]

(if T s f (x) = 0, set g(x) = 0). This gives

∫

Rd

�

(∣∣∣∣T
s f (x)

K

∣∣∣∣
)

1{|T s f (x)|≤M K }

+
( |T s f (x)|(eM − 1)

K
−�(eM − 1)

)
1{|T s f (x)|>M K }dx ≤ || f ||L1(Rd )

2K (K − 1)

and hence, by Fatou’s lemma, if we let M → ∞, we get

∫

Rd

�

(∣∣∣∣T
s f (x)

K

∣∣∣∣
)

dx ≤ || f ||L1(Rd )

2K (K − 1)
.

Now if we let s → −∞,then Ms converges pointwise to the multiplier Mφ,ν given
by (3.4). By Plancherel’s theorem, T s f → TMφ,ν f in L2 and hence there is a sequence
(sn)

∞
n=1 converging to −∞ such that limn→∞ T sn f → TMφ,ν f almost everywhere. Thus

Fatou’s lemma yields the desired bound for the multiplier TMφ,ν .
Step 2. Now we deduce the result for the general multipliers as in (1.1) and drop the
assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in polar
coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)μ(dθ),
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where δε denotes Dirac measure on {ε}. Next, consider a multiplier mε as in (3.4), in which
the Lévy measure is 1{|x |>ε}ν + νε and the jump modulator is given by 1{|x |>ε}φ(x) +
1{|x |=ε}ψ(x/|x |). If we let ε → 0, we see that

∫

Rd

[1 − cos〈ξ, x〉]ψ(x/|x |)νε(dx) =
∫

S

〈ξ, θ〉2φ(θ)
1 − cos〈ξ, εθ〉

〈ξ, εθ〉2 μ(dθ)

→ 1

2

∫

S

〈ξ, θ〉2φ(θ)μ(dθ).

This yields the claim by the similar argument as above, using of Plancherel’s theorem
and the passage to the subsequence which converges almost everywhere. �

Proof of Theorem 1.2. For notational simplicity, we shall skip the lower indices and write
m instead of mφ,ψ,μ,ν . Observe that the class (1.1) is closed under the complex conjugation:
we have m̄ = mφ̄,ψ̄,μ,ν . Fix f ∈ L log L(Rd) and put g = Tm f 1A/|Tm f | (g = 0 if the
denominator is zero). We have∫

A

|Tm f (x)|dx =
∫

Rd

Tm f (x)g(x)dx

=
∫

Rd

T̂m f (x)ĝ(x)dx

=
∫

Rd

f̂ (x)T̂m̄ g(x)dx

=
∫

Rd

f (x)Tm̄ g(x)dx

≤ K
∫

Rd

�(| f (x)|)dx + K
∫

Rd

�(|Tm̄ g(x)|/K )dx

≤ K
∫

Rd

�(| f (x)|)dx + ||g||L1(Rd )

2(K − 1)
. (3.6)

Here in the fifth line we have exploited Young’s inequality and in the latter passage we
have used (3.3) and the fact that g takes values in the unit ball of C. It suffices to note that
||g||L1(Rd ) ≤ |A| to complete the proof. �

In the remainder of this section we discuss the possibility of extending the assertion of The-
orem 1.2 to the vector-valued multipliers. For any bounded function m = (m1,m2, . . . ,mn) :
R

d → C
n , we may define the associated Fourier multiplier acting on complex valued func-

tions on R
d by the formula Tm f = (Tm1 f, Tm2 f, . . . , Tmn f ). As we shall see, the reasoning

presented above can be easily modified to yield the following statement.

Theorem 3.4 Let ν, μ be two measures on R
d and S, respectively, satisfying the assumptions

of Theorem 1.2. Assume further that φ,ψ are two Borel functions on R
d taking values in the

unit ball of C
n and let m : R

d → C
n be the associated symbol given by (1.1). Then for any

complex valued function f on R
d and K > 1 we have
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∫

Rd

exp

(∣∣∣∣Tm f (x)

K

∣∣∣∣
)

dx ≤ || f ||L1(Rd )

2K (K − 1)

and for any Borel subset A of R
d ,

∫

A

|Tm f (x)|dx ≤ K
∫

Rd

�(| f (x)|)dx + |A|
2(K − 1)

.

Proof Suppose first that ν is finite. For a given C∞ function f : R
d → C bounded by 1,

we introduce martingales F and G = (G1,G2, . . . ,Gn) by the formula (3.1). It is easy
to check that G is differentially subordinate to F , arguing as in [1] or [2]. Applying the
representation (3.2) to each coordinate of G separately, we obtain the associated multiplier
T = (T 1, T 2, . . . , T n), where T j has symbol Mφ j ,ν j defined in (3.4). Now we repeat
the reasoning from (3.5), with a vector valued function g : R

d → C
n (the expression

Gx,s, f,φ
0 g(x +Xs,0) under the first integral is replaced with the corresponding scalar product).

An application of (2.2) gives

||�(|T f |/K )||L1(Rd ;Cn) ≤ || f ||L1(Rd )

2K (K − 1)
,

which extends to general f by standard density arguments. The passage to general m as in
(1.1) is carried over in the same manner as in the scalar case and thus we obtain the vector
version of Theorem 3.3. The duality argument explained in (3.6) extends to the vector-
valued setting with no difficulties (one only has to replace appropriate multiplications by
scalar products) and thus Theorem 1.2 holds true for the multipliers in C

n . �

4 Logarithmic estimates for the Beurling-Ahlfors operator

The inequalities obtained in the previous sections can be applied to the Beurling-Ahlfors
transform BA on C. This operator is a Fourier multiplier with the symbol m(ξ) = ξ/ξ, ξ ∈ C;
alternatively, it can be defined by the singular integral

BA f (z) = − 1

π
p.v.

∫

C

f (w)

(z − w)2
dw.

The Beurling-Ahlfors transform is of fundamental importance in the study of partial differ-
ential equations and quasiconformal mappings, since it changes the complex derivative ∂ to
∂ . Precisely, we have

BA(∂ f ) = ∂ f (4.1)

for any f from the Sobolev space W 1,2(C,C) of complex valued locally integrable functions
on C whose distributional first derivatives are in L2 on the plane. Directly from the form
of the multiplier m we infer that BA is an isometry on L2(C) and ||BA||L2(C)→L2(C) = 1.
There is a very interesting question about the norm of the Beurling-Ahlfors operator act-
ing on L p(C), 1 < p < ∞. A long-standing conjecture of T. Iwaniec [11] states that
||BA||L p(C)→L p(C) = p∗ − 1 for all p from that range. In 1965, Lehto constructed some
examples showing that ||BA||L p(C)→L p(C) ≥ p∗ − 1. The upper bound has been studied
by many authors: see e.g. [3,6,10] and [13]. The most tight result so far is the estimate
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||BA||L p(C)→L p(C) ≤ 1.575(p∗ − 1) of Bañuelos and Janakiraman, who established it by a
clever refinement of Burkholder’s moment L p estimate.

The results of this paper yield localized logarithmic estimates for the Beurling-Ahlfors
operator. Write the identity

ξ

ξ
= ξ2

1 − ξ2
2

ξ2
1 + ξ2

2

+ i
2ξ1ξ2

ξ2
1 + ξ2

2

and note that the real and imaginary parts of ξ/ξ can be represented as the Fourier
multipliers with the symbols of the form (1.1). For example, the choice d = 2, μ =
δ(1,0) + δ(0,1), ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives rise to Tm = Re (BA); like-
wise, d = 2, μ = δ

(1/
√

2,1/
√

2) + δ
(1/

√
2,−1/

√
2), ψ(1/

√
2, 1/

√
2) = 1 − ψ(1/

√
2,−1/

√
2)

and ν = 0 leads to Tm = Im (BA). By a similar choice of the parameters, 1
2 BA can also be

shown to be a multiplier of the form described in (1.1).
Thus, the following statement is an immediate consequence of Theorem 1.2.

Theorem 4.1 For any K > 1 and any Borel subset A of C we have

∫

A

|Re (BA) f (z)|dz ≤ K
∫

C

�(| f (z)|)dz + |A|
2(K − 1)

,

∫

A

|Im (BA) f (z)|dz ≤ K
∫

C

�(| f (z)|)dz + |A|
2(K − 1)

and
∫

A

|BA f (z)|dz ≤ 2K
∫

C

�(| f (z)|)dz + |A|
K − 1

.

We turn to the lower bounds. The following statement immediately yields the assertion of
Theorem 1.4.

Theorem 4.2 (i) For any K > 1 there is a function f ∈ W 1,2(C,C) and a Borel subset
A of C such that

∫

A

|BA f (z)|dz = K
∫

C

�(| f (z)|)dz + |A|
4(K − 1)

. (4.2)

(ii) For any K > 2/π there is a function f ∈ W 1,2(C,C) and a Borel subset A of C such
that

∫

A

|Re(BA) f (z)|dz = K
∫

C

�(| f (z)|)dz + |A|
π(Kπ − 2)

,

∫

A

|Im(BA) f (z)|dz = K
∫

C

�(| f (z)|)dz + |A|
π(Kπ − 2)

. (4.3)
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(iii) For any c < 2/π there is a function f ∈ W 1,2(C,C) and a Borel subset A of C such
that

∫

A

|Re(BA) f (z)|dz >
∫

C

�(| f (z)|)dz + c

⎛
⎝|A|

∫

C

�(| f (z)|)dz

⎞
⎠ ,

∫

A

|Im(BA) f (z)|dz >
∫

C

�(| f (z)|)dz + c

⎛
⎝|A|

∫

C

�(| f (z)|)dz

⎞
⎠ . (4.4)

Proof For a fixed α ∈ (0, 1), let R > 0 be given by the equation R2α = 1 − α. Consider a
function w : C → C defined by

w(z) =
{

z|z|−2α − z if |z| ≤ R,

R2−2αz−1 − R2z−1 if |z| > R.

We easily check that w ∈ W 1,2(C,C) and derive that

∂w(z) =
{
αz2|z|−2α−2 if |z| < R,

−R2−2αz−2 + R2z−2 if |z| > R

and

∂w(z) =
{
(1 − α)|z|−2α − 1 if |z| < R,

0 if |z| > R.

Finally, put A = {z ∈ C : |z| ≤ R} and f = ∂̄w. We derive that
∫

C

�(| f (z)|)dz = πR2−2α
[

log(1 − α)+ 2α − 1

1 − α
− 2α log R

]
+ πR2 = α2|A|

(1 − α)2
.

Now we consider the parts (i), (ii) and (iii) separately.

(i) Let α = (2K − 1)−1. Using the polar coordinates, we easily compute that∫

A

|BA f (z)|dz =
∫

A

|∂w(z)|dz = πα

1 − α
R2−2α = |A| · 2K − 1

4(K − 1)2

and ∫

C

�(| f (z)|)dz = |A| · 1
4(K−1)2

.

Now (4.2) can be verified readily.
(ii) Let α = (Kπ − 1)−1. It is straightforward to derive that∫

A

|Re(BA) f (z)|dz = 2α

1 − α
R2−2α = |A| · 2(Kπ − 1)

π(Kπ − 2)2

and ∫

C

�(| f (z)|)dz = |A| · 1

(Kπ − 2)2
.
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This gives the first equality in (4.3). The second one is established analogously, with
the same choice of α.

(iii) We compute that∫
A |Re(BA) f (z)|dz − ∫

C
�(| f (z)|)dz(|A| ∫

C
�(| f (z)|)dz

)1/2 = 2 − πα

π(1 − α)
,

which can be made arbitrarily close to 2/π by choosing a sufficiently small α. The
reasoning for the second bound in (4.4) is similar. This completes the proof of the
theorem. �

Finally, let us address the questions raised below the statement of Theorem 1.2. Since
1
2 BA belongs to the class of multipliers with the symbols of the form (1.1), it suffices to
establish the following fact.

Theorem 4.3 (i) For any c > 0 and K > 0 there is a Borel subset A of C and a Borel
function f on C for which∫

A

|BA f (z)|dz > K
∫

C

| f (z)| log+ | f (z)|dz + c|A|. (4.5)

(ii) For any c > 0 and K > 0 there is a Borel subset A of C and a Borel function f on C

for which ∫

A

|BA f (z)|dz > K
∫

A

�(| f (z)|)dz + c|A|. (4.6)

Proof Introduce w ∈ W 1,2(C,C) by w(z) = (z log |z|2)1{|z|≤1} and let f = ∂̄w. We easily
check that

f (z) = (z/|z|)21{|z|≤1} and BA f (z) = ∂w(z) = (1 + log |z|2)1{|z|≤1}.

In particular, | f | ≤ 1 on C and hence we will be done if we show that the expression

1

|A|
∫

A

|BA f (z)|dz

can be made arbitrarily large by the appropriate choice of a set A. But this is evident: since
limz→0 |BA f (z)| = ∞, it suffices to take A = {z ∈ C : |z| ≤ r} for r > 0 small enough.
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3. Bañuelos, R., Méndez-Hernández, P.: Space-time Brownian motion and the Beurling-Ahlfors transform.
Indiana Univ. Math. J. 52, 981–990 (2003)

4. Bañuelos, R., Janakiraman, P.: L p-bounds for the Beurling-Ahlfors transform. Trans. Amer. Math. Soc.
360, 3603–3612 (2008)
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