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Abstract Given an oriented graph G, the modular flow polynomial φG(k) counts the
number of nowhere-zero Zk-flows of G. We give a description of the modular flow polyno-
mial in terms of (open) Ehrhart polynomials of lattice polytopes. Using Ehrhart–Macdonald
reciprocity we give a combinatorial interpretation for the values of φG at negative argu-
ments which answers a question of Beck and Zaslavsky (Adv Math 205:134–162, 2006).
Our construction extends to Z�-tensions and we recover Stanley’s reciprocity theorem for the
chromatic polynomial. Combining the combinatorial reciprocity statements for flows and ten-
sions, we give an enumerative interpretation for positive evaluations of the Tutte polynomial
tG(x, y) of G.
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2 F. Breuer, R. Sanyal

1 Introduction

The chromatic polynomial of a graph is probably the most famous graph polynomial. In 1973,
Stanley [18] gave an “unorthodox” interpretation of graph colorings in terms of acyclic ori-
entations and compatible maps. The benefit of this interpretation is a natural, combinatorial
interpretation of (suitably normalized) evaluations of the chromatic polynomial at a negative
argument. In some sense this was one of the first combinatorial reciprocity theorems [19]. In
2006, Beck and Zaslavsky [3] gave a different perspective on this result by casting it into the
realms of geometry. They identified graph colorings as lattice points “inside” a polytope but
“outside” a hyperplane arrangement—an object answering to the name of inside-out poly-
tope. Thus, the chromatic polynomial can be understood as a sum of Ehrhart functions and a
suitably generalized Ehrhart–Macdonald reciprocity yields the combinatorial interpretation.
We explain more of the details in the sections to come. For a general background on Ehrhart
polynomials and Ehrhart–Macdonald reciprocity we refer the reader to [2].

An equally important polynomial invariant of a graph is given by the modular flow poly-
nomial. Let G = (V, E) be an oriented graph and let A be an abelian group. An A-flow is
an assignment f : E → A such that at every vertex we have a conservation of flow, i.e.,

∑

uv∈E

fuv −
∑

vu∈E

fvu = 0

for every v ∈ V . The support of the flow f is supp( f ) = {e ∈ E : fe �= 0} and f is called
nowhere-zero if supp( f ) = E . Tutte [20] was the first to consider nowhere-zero flows for
a fixed group A. He proved that the number of nowhere-zero A-flows depends only on the
order of the group and that φG(k), the number of nowhere-zero Zk-flows, is a polynomial in k.
Clearly, this is only meaningful for finite groups, but in the case of Z-flows a natural concept
is that of a k-flow which is a Z-flow with values strictly smaller than k in absolute values.
Tutte [21] proved that there is a nowhere-zero Zk-flow if and only if there is a nowhere-zero
k-flow. However, the number of nowhere-zero k-flows and Zk-flows differ in general. Let us
emphasize that the two flow polynomials are invariant under reorientations of G and therefore
are an invariant of the underlying unoriented graph of G. However, working with oriented
graphs yields cleaner and more transparent results.

In 2002, Kochol [12] proved that φG(k), the number of nowhere-zero k-flows, is also
a polynomial and in [4] Beck and Zaslavsky showed that this is yet another incarnation of
Ehrhart theory of inside-out polytopes. Moreover, this approach yields a reciprocity statement
that parallels that for the chromatic polynomial: (−1)ξ(G)φG(−k) counts pairs of k-flows and
compatible totally cyclic orientations. This raised the question for a combinatorial reciprocity
theorem of the modular flow polynomial (cf. [4, Problem 3.2]).

As an answer to this question, the first result of this paper gives an interpretation of
(−1)ξ(G)φG(−k) as naturally counting pairs of Zk-flows and totally cyclic reorientations on
certain subgraphs. We give the precise statement in Sect. 2. A little surprisingly, our proof
is somewhat simpler than the one for k-flows in [4]. For starters, we do not need the theory
of inside-out polytopes per se; in Sect. 3 we relate our proof to inside-out polytopes which
sheds “geometric light” on some well-known properties of flow polynomials. In Sect. 4, we
discuss colorings and their relations to Zk-tensions. We sketch how analogous arguments
yield a reciprocity statement for Zk-tensions that corresponds to Stanley’s reciprocity for
colorings [18]. In Sect. 5 we make use of the reciprocity statements to prove a enumerative
interpretation for arbitrary evaluations of Tutte polynomials of graphs at positive arguments,
which is implicit in the work of Reiner [15]. In the appendices we give traditional, that is
deletion-contraction, proofs for the main results of Sects. 2 and 5.
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Ehrhart theory, modular flow reciprocity, and the Tutte polynomial 3

2 Modular flow reciprocity

Let G = (V, E) be an oriented graph, that is, an unoriented graph equipped with an orien-
tation of its edges. We allow, even encourage, G to have multiple edges and loops. For an
S ⊆ E we denote by G\S, G/S, and G[S] the result of deleting, contracting, and restricting
to S, respectively. Moreover, we denote by SG the reorientation of G along S, i.e., the graph
obtained by reversing the orientation of the edges in S. We denote by c(G) the number of
(weakly) connected components and we call e ∈ E a coloop or bridge if c(G\e) = c(G)+1.
Finally, we denote by ξ(G) := |E | − |V | + c(G) the cyclotomic number of G.

Let us give a precise definition for the main character.

Definition 2.1 For an oriented graph G = (V, E), the modular flow polynomial φG of G is
the function

φG(k) = # { f : E → Zk : f nowhere-zero Zk-flow}.

The name was justified by Tutte [21] who showed that φG is indeed a polynomial of degree
ξ(G). In particular, φG can be extended to negative arguments. In order to state our main
result of this section we need the notion of a totally cyclic orientation. An oriented graph
is called totally cyclic if every edge is contained in a directed cycle and σ ⊆ E is a totally
cyclic reorientation if σ G is totally cyclic.

Theorem 2.2 (Modular flow reciprocity) Let G = (V, E) be an oriented graph and let k
be a positive integer. Then (−1)ξ(G)φG(−k) counts pairs ( f, σ ) where f is a Zk-flow and
σ ⊆ E\supp( f ) is a totally cyclic reorientation for G/supp( f ).

Let us remark that our result differs from the reciprocity theorem for k-flows (cf. [4,
Thm 3.1b]) inasmuch that the flow and the reorientation are not subject to a compatibility
constraint. Rather, we reorient at most those edges e with f (e) = 0 in the first place and
contract all other edges.

Let us illustrate the result with two examples that will accompany us throughout.

Example 1 Consider the following graph G1 with two vertices and three parallel and iden-
tically oriented edges e1, e2, e3.

The flow conservation for a flow f is given by f (e1)+ f (e2)+ f (e3) = 0 and this readily
yields the number of nowhere-zero Zk-flows as φG1(k) = (k − 1)(k − 2). The cyclotomic
number of G1 is ξ(G1) = 2 and hence (−1)2φG1(−k) = (k +1)(k +2). Now let us count the
number of pairs ( f, σ ) stated in Theorem 2.2 according to n f = |supp( f )|. For n f = 0, f
is the unique zero-flow and the number of totally cyclic orientations is 6. The case n f = 1
does not show up and for n f = 2 there are exactly

(3
2

)
choices of non-zero edges and (k − 1)

flows each time. The contraction in each case yields a loop which has two totally cyclic
reorientations. Together with n f = 3, in which case we count the number of nowhere-zero
Zk-flows, we get (k − 1)(k − 2) + 6(k − 1) + 6 = (k + 1)(k + 2). ��
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4 F. Breuer, R. Sanyal

Example 2 Our second example is the multigraph G2:

In order to compute the flow polynomial, consider the case of a 3-cycle a, b, c without
parallel edges. It is clear that the flow is determined by the (non-zero) value on the edge a and
the flow polynomial is thus k−1. Now every nowhere-zero flow on the 3-cycle yields (k−2)2

nowhere-zero flows on G2 since flow on b and c can be “rerouted” through b′ and c′ as long as
all remain nonzero. Hence,φG2(k) = (k−1)(k−2)2 and (−1)ξ(G2)φG2(−k) = (k+1)(k+2)2

with ξ(G2) = 3. The argument extends to counting the pairs ( f, σ ) combinatorially, by lifting
the pairs from the 3-cycle. ��

We will now set the stage for the proof of Theorem 2.2 which will mainly consist of
casting the statement of Theorem 2.2 into a discrete geometric statement involving lattice
polytopes. As a first step we will identify Zk with a set of coset representatives given by the
integers 0, 1, . . . , k − 1. With this identification the flow conservation at a vertex v ∈ V can
be rephrased as

∑

uv∈E

fuv −
∑

vu∈E

fvu = 0 over Zk

⇔
∑

uv∈E

fuv −
∑

vu∈E

fvu ≡ 0 mod k

⇔
∑

uv∈E

fuv −
∑

vu∈E

fvu = k · bv for some bv ∈ Z.

Letting A = AG ∈ {0,±1}V ×E be the incidence matrix of G, the last equivalence yields
the following polyhedral reformulation: A point f ∈ Z

E represents a nowhere-zero Zk-flow
if there is a b ∈ Z

V such that f is contained in (k · P◦
G(b)) ∩ Z

E where

P◦
G(b) := {p ∈ R

E : Ap = b, 0 < pe < 1 for all e ∈ E}.
Note that for such a b, P◦

G(b) is a relatively open polytope of dimension dim P◦
G(b) =

rank AG = ξ(G). Denote by BG = {b ∈ Z
V : P◦

G(b) �= ∅} the collection of all feasible
b’s. The set BG is clearly finite (since the cube is compact) and for distinct b, b′ ∈ BG , the
relatively open polytopes P◦

G(b) and P◦
G(b′) are necessarily disjoint. The incidence matrix

AG of an oriented graph is totally unimodular (cf., for example, [16, Sec. 19.3, Ex 2]). This
remains true if we add rows that contain just a single 1 to encode constraints like 0 ≤ pe ≤ 1.
Standard methods (cf. [16, Thm. 19.1]) then imply that the closure PG(b) = P◦

G(b) is a
vertex induced subpolytope of the |E |-dimensional standard cube. In particular, PG(b) has
all its vertices in the standard lattice Z

E , that is, PG(b) is a lattice polytope.

Example 1 (continued) The edge space of G1 is three dimensional. The incidence matrix of
G1 is

A = AG1 =
(−1 −1 −1

1 1 1

)
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Ehrhart theory, modular flow reciprocity, and the Tutte polynomial 5

It follows that P◦
G1

(b)={x ∈ R
3 : 0 < x1, x2, x3 < 1, x1+x2+x3 =−b1, x1+x2+x3 = b2}

is non-empty iff b′ = (−1, 1) or b′′ = (−2, 2). The following figure shows the two polytopes
as slices of the cube. The points correspond to the 6 nowhere-zero Z4-flows.

��
For a polytope P ⊂ R

d and k ∈ Z>0 let us denote by Ehr(P; k) = |(k · P) ∩ Z
d | the

number of lattice points in the k-th dilate of P . Ehrhart [9] showed that if P is a lattice
polytope then Ehr(P; k) is a polynomial in k of degree dim P .

Proposition 2.3 Let G = (V, E) be an oriented graph. Then

φG(k) =
∑

b∈BG

Ehr(P◦
G(b); k)

is a sum of Ehrhart polynomials. ��
Probably the most appealing feature of Ehrhart theory is that Ehrhart polynomials adhere

to a beautiful geometric reciprocity that gives a meaning to the evaluation Ehr(P;−k). For
details see [2, Sect. 4].

Theorem 2.4 (Ehrhart–Macdonald reciprocity) Let P be a lattice polytope and denote by
P◦ the (relative) interior of P. Then

Ehr(P◦; k) = (−1)dim P Ehr(P;−k).

In light of Proposition 2.3 together with Ehrhart–Macdonald reciprocity it is sufficient to give
a combinatorial meaning to the lattice points in the boundary of k · PG(b). Fix a b ∈ BG and
let F ⊂ PG(b) be a proper face. As PG(b) is a section of the |E |-cube, there is a partition
σ− ∪ σ0 ∪ σ+ = E into disjoint parts such that the relative interior of F is given by all the
points p ∈ PG(b) such that

0 = pe for e ∈ σ−,

0 < pe < 1 for e ∈ σ0, and
pe = 1 for e ∈ σ+.

A lattice point f in the relative interior of k · F represents a Zk-flow but, since 0 ≡ k mod k,
this representation is not unique. However, if f ′ ∈ (k · PG(b′)) ∩ Z

E for some b′ ∈ BG

yields the same Zk-flow modulo k but is different from f otherwise, then f ′ is in the relative
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6 F. Breuer, R. Sanyal

interior of k · F ′ where F ′ ⊂ PG(b′) is a proper face and F �= F ′. Thus, the idea is to keep
track of the origin of f . This leads to reorientations on the contraction.

To this end, let zF and zP be points in the relative interiors of F and PG(b) respectively and
consider z := zP − zF . Then z ∈ ker AG and we can predict the sign of ze for e ∈ σ− ∪ σ+.
The next lemma relates the kernel of AG to totally cyclic reorientations of G.

Lemma 2.5 [11, Lem. 8.1] Let G = (V, E) be a graph and A = AG its incidence matrix.
The connected components of ker A\{p ∈ R

E : pe = 0 for some e ∈ E} are in bijection
with the totally cyclic reorientations of G. The totally cyclic reorientation σ associated to a
connected component is σ = {e ∈ E : pe < 0} for an arbitrary point p in that component.

The restriction z̃ of z to σ+ ∪ σ− is an element of ker AG/σ0 and Lemma 2.5 then asserts
that σ+ is a totally cyclic reorientation for G/σ0 and uniquely identifies the face F for which
zF is in the relative interior.

Proof of Theorem 2.2 Let f ∈ k · [0, 1]E ∩ Z
E be a lattice point in the k-th dilate of the

|E |-dimensional standard cube. Let σ( f ) = {e ∈ E : fe = k} and denote by f the point f
modulo k componentwise.

By our discussion and, in particular, Ehrhart–Macdonald reciprocity we have that

(−1)ξ(G)φG(−k) =
∣∣∣∣∣∣

⋃

b∈BG

(k · PG(b)) ∩ Z
E

∣∣∣∣∣∣

where the union on the right-hand side is over disjoint sets. The theorem follows by proving
that f �→ ( f , σ ( f )) is a bijection between points in the right-hand side and pairs of Zk-flows
and totally cyclic orientations on the contraction of the support. However, by our previous
reasoning it is clear that this is a well-defined map and we are left with showing that there
exists an inverse mapping.

Let ( f , σ ) be a pair with f : E → Zk a Zk-flow and σ ⊆ E\supp( f ) a totally cyclic
reorientation of G/supp( f ). Let f ′ ∈ k · [0, 1]E ∩Z

E be the unique point with f ′
e = k iff e ∈ σ

and f ′ = f . The point f ′ is in the boundary of PG(b) for b = A f ′ and we are done if we can
show that b ∈ BG . Now, by Lemma 2.5, we can pick a vector z ∈ R

E with Az = 0, ze < 0
for e ∈ σ and ze > 0 for e �∈ supp( f ) ∪ σ . Thus, for ε > 0 sufficiently small, f ′ + εz is a
point of PG(b) in the interior of the cube and this concludes the argument. ��

As an immediate Corollary we get the following known enumerative result.

Corollary 2.6 [18, Cor. 1.3] Let G = (V, E) be an oriented graph. Then (−1)ξ(G)φG(−1)

is the number of totally cyclic reorientations of G.

In particular, every totally cyclic reorientation belongs to exactly one PG(b). It is worth-
while interpreting this partition of totally cyclic reorientations as an equivalence relation.
The following proposition phrases the equivalence in combinatorial terms. For a set σ ⊆ E
we denote by eσ ∈ {0, 1}E the characteristic vector of σ .

Proposition 2.7 Let G = (V, E) be an oriented graph and σ, σ ′ ⊆ E two totally cyclic
reorientations. The points eσ , eσ ′ ∈ {0, 1}E are both vertices of PG(b) for some b ∈ BG if
and only if σ G can be obtained from σ ′ G by the reversal of directed cycles.

Proof The points eσ , eσ ′ ∈ {0, 1}E are both contained in a common PG(b) iff z := eσ − eσ ′
is an element of ker AG . By [11, Lem. 8.5], z is a linear combination with non-negative
coefficients of orientations of cycles of G. ��
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Ehrhart theory, modular flow reciprocity, and the Tutte polynomial 7

For an oriented graph G = (V, E), we denote by IG ∈ Z
V the in-degree sequence, that is the

number (IG)v of incoming edges for every vertex v ∈ V . Similar, we define the out-degree
sequence OG ∈ Z

V of G.

Theorem 2.8 Let G = (V, E) be an oriented graph. Then BG is in bijection with

{Iσ G : σ ⊆ E totally cyclic reorientation}.
Proof Let AG be the incidence matrix of G. It is clear that we can recover IG from the
knowledge of the (undirected) degree sequence D = IG + OG and IG − OG = AG1 =: b0.
Now, for any reorientation σ ⊆ E , we have

Iσ G − Oσ G = Aσ G1 = AG(1 − 2eσ ) = b0 − 2AGeσ .

Hence, the in-degree sequence of σ G is uniquely determined by bσ = AGeσ . Moreover, the
reversal of a directed cycle in G leaves the in- and out-degree sequences invariant and thus is
invariant within PG(b). Using that BG = {b = AGeσ : σ ⊆ E totally cyclic reorientation }
finishes the proof. ��
As φG is the sum of the (open) Ehrhart polynomials for P◦

G(b), we recover the following
result by Gioan [10]. It follows from the fact that constant term of the Ehrhart polynomial
Ehr(P; k) equals 1 (= the Euler characteristic of P).

Corollary 2.9 [10, Thm. 3.1] Let G = (V, E) be an oriented graph and tG(x, y) its Tutte
polynomial. Then

tG(0, 1) = (−1)ξ(G)φG(0) =
∑

b∈BG

Ehr(PG(b); 0) = |BG |

is the number of in-degree sequences of totally cyclic reorientations of G.

The evaluation tG(0, 1) has several known interpretations as, for example, the number of
spanning trees with zero external activity, the Euler characteristic of the independence com-
plex of the matroid MG associated to G, or the number of facets of the broken circuit complex
of the dual matroid M⊥

G . We refer the reader to the survey article by Brylawski and Oxley
[6] for further details.

3 Modular flows inside-out

In this section we relate our previous construction to inside-out polytopes. The benefit in
doing so will be a simple geometric explanation for the following fact.

Corollary 3.1 The modular flow polynomial of an oriented graph G has degree ξ(G) and
leading coefficient 1.

This, in turn, is a consequence of the fact that the number of modular Zk-flows is a gener-
alized Tutte–Grothendieck invariant (cf. Sect. 5) and, hence, obeys the following deletion-
contraction property.

Proposition 3.2 ([6, Prop. 6.3.4]) Let G = (V, E) be an oriented graph and e ∈ E an edge.
If e is neither a loop nor a coloop, then

φG(k) = φG/e (k) − φG\e (k).

Otherwise, φG(k) = (k − 1)φG\e (k) if e is a loop and φG(k) = 0 if e is a coloop.
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8 F. Breuer, R. Sanyal

While the degree of the polynomial is clear from our interpretation in terms of Ehrhart
polynomial, the fact that the leading coefficient is 1 is not.

Proposition 3.3 ([2, Cor. 3.20]) Let P be a d-dimensional lattice polytope then the leading
coefficient of Ehr(P; k) is the volume vol(P) of P.

So, the best we can say so far is that

1 =
∑

b∈BG

vol(PG(b)).

However, the answer we are aiming at is that suitably arranging the polytopes PG(b) yields
a subdivision of a standard cube of dimension ξ(G). Thus, the total volume of the PG(b)’s
is that of the standard cube.

In particular, the subdivision of the cube is induced by an arrangement of hyperplanes and
therefore directly leads to inside-out polytopes. For our needs an inside-out polytope is a pair
(P, H) consisting of a d-dimensional lattice polytope P ⊂ R

d and a hyperplane arrangement
H = {H1, . . . , Hm} such that any flat that meets P also meets the interior of P . The hyper-
plane arrangement is allowed to be infinite as long as only finitely many hyperplanes meet P .
The open Ehrhart function of (P, H) is the function Ehr(P◦, H; k) = |k ·(P◦\∪H)∩Z

d |. In
the case of a lattice inside-out polytope, i.e., H subdivides P into lattice polytopes, the open
(as well as the closed) Ehrhart function is a polynomial of degree d and leading coefficient
vol(P).

Let G = (V, E) be an oriented graph and let T ⊆ E be a spanning forest, i.e., a spanning
tree per component. Let T c = E\T denote the edges not in the forest. We will use T to
construct a cycle basis, i.e., a basis for ker AG , combinatorially. Let C ∈ {0,±1}T c×E be
the matrix with rows C f • for f ∈ T c defined as follows: The support of C f • is given by the
edges in the unique undirected cycle K in G[T ∪ f ]. There is a unique reorientation of K that
makes it an oriented cycle and that fixes the orientation on f . The signs keep track of which
edges have to be reoriented. It is known (see [17, Thm. 11.1]) that every flow is an integral
linear combination of the C f •. This implies that every nowhere-zero Zk-flow corresponds to
a unique point h ∈ Z

T c
with 0 < h f < k for f ∈ T c and (hC)e �≡ 0 mod k for all e ∈ T .

Denote by C•e the columns of C for e ∈ T , then this yields the following interpretation in
terms of inside-out polytopes.

Proposition 3.4 Let P = [0, 1]T c
be the standard cube in R

T c
and let H be the arrangement

of hyperplanes He,de = {q ∈ R
T c : CT

•e q = de} for e ∈ T and de ∈ Z. Then

φG(k) = Ehr(P◦, H; k).

In some sense the above construction is dual to that presented in Sect. 2: whereas the linear
conditions in the construction of Sect. 2 forced the points to be Zk-flows, the construction
here satisfies that automatically, and violating the linear conditions enforces the nowhere-zero
condition. This is an instance of Gale duality (cf. [14, Sect. 5.6]) applied to the hyperplane
arrangement H.

Example 1 (continued) For the choice of the spanning tree T = {e1}, the cycle basis is

e1 e2 e3

C = e2

e2

(−1 1 0
−1 0 1

)
.
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Ehrhart theory, modular flow reciprocity, and the Tutte polynomial 9

The polytope P is a 2-cube and the hyperplane arrangement H is given by He1,d =
{(q1, q2) ∈ R

T c : q1 + q2 = −d} for d ∈ Z. The resulting inside-out polytope is the
following.

��
Example 2 (continued) For G2 we pick the spanning tree T = {a, b} and, hence, the cycle
basis

a b b′ c c′

C =
b′

c

c′

⎛

⎝
−1 1

1 1 1
1 1 1

⎞

⎠ .

So the two parallel classes of hyperplanes correspond to Ha,da = {(b′, c, c′) ∈ R
T c :

c + c′ = da} and Hb,db = {(b′, c, c′) ∈ R
T c : −b′ + c + c′ = db}. The resulting inside-out

polytope is:

The four chambers correspond to the feasible b’s. ��
So the leading coefficient of φG refers to the volume of a ξ(G)-dimensional standard

cube P = [0, 1]T c
. The chambers, i.e., connected components of P◦\ ∪ H are in bijection

with BG . Indeed, every chamber is isomorphic to a unique P◦
G(b) under the restriction to

the coordinates T c. With some more work it is possible to see the reciprocity in this picture.
This line of thought has been pursued by Babson and Beck [1] via toric arrangements and
by Chen and Stanley [8] via group arrangements.

One point worth mentioning is that the deletion-contraction property of the flow polyno-
mial can be nicely observed in terms of the freedom of choice for a spanning forest. The
contraction of an edge e simply removes the family of hyperplanes He,de from the arrange-
ment. The resulting over count can be compensated for by subtracting the number of lattice

123



10 F. Breuer, R. Sanyal

points in the inside-out polytope obtained by restricting to this family. However, choosing a
spanning forest not containing e yields an inside-out polytope where the family He,de corre-
sponds to two parallel facets of the cube and restricting yields the inside-out polytope for G\e.

4 Modular tensions and Stanley’s reciprocity theorem

In the introduction we mentioned Stanley’s reciprocity theorem for the chromatic polynomial
χG of a graph G = (V, E). It turns out that this reciprocity is best observed in the related set-
ting of modular tensions. In this section we sketch the changes to our previous constructions
in order to accommodate modular tensions and we formulate a reciprocity theorem.

An �-coloring is a map c : V → {0, . . . , � − 1}. An �-coloring c is called proper if
c(u) �= c(v) whenever u and v are adjacent in G and the chromatic polynomial χG(�) counts
the number of proper �-colorings of G. A reorientation σ of G is acyclic if no edge of G lies
on a directed cycle. A coloring c and an acyclic reorientation σ are compatible if for every
edge uv of σ G we have c(u) ≤ c(v).

Theorem 4.1 (Stanley [18]) For an oriented graph G = (V, E) and � > 0 an integer,
(−1)|V |χG(−�) is the number of tuples (c, σ ) where c is an �-coloring and σ ⊆ E is a
compatible acyclic reorientation.

The idea that leads to the notion of tensions is the following. Let us suppose for a moment
that G is connected. Then we can recover the coloring c by knowing the initial color c(v0)

of some vertex v0 and the difference of the colors t (uv) := c(u) − c(v) on each (oriented)
edge uv. For this to make sense, we identify the set of colors with the group Zl in which the
difference of two colors makes sense. Thus, we recover the color on a vertex w by adding
and subtracting the tensions t (e) of edges along a path from v0 to w. Note that the color of
c(w) is independent of the chosen path and we take this as the defining property of tensions.

For a cycle C ⊆ E in the underlying undirected graph, we denote by C− ⊂ C a collection
of edges whose reorientation turns C into a directed cycle and we let C+ := C\C− be the
remaining edges. Let A be an abelian group. A map t : E → A is called an A-tension if

〈C, t〉 :=
∑

e∈C+
t (e) −

∑

e∈C−
t (e) = 0

for each undirected cycle C ⊆ E . Note that this is independent of the choice of C−. An
induced coloring c is proper if and only if t is nowhere-zero, that is supp(t) := {e ∈ E :
t (e) �= 0} = E . It can be shown that, as in the case of flows, the number of nowhere-
zero A-tensions depends only on the order of A and we define θG(�) to be the number of
nowhere-zero Z�-tensions of G.

Every nowhere-zero Z�-tension t yields |Z�|c(G) different colorings by choosing an initial
color for every component and this proves the following known fact that χG(�) = �c(G)θG(�),
i.e., the tension polynomial is a non-trivial factor of the chromatic polynomial. Hence, we
arrive at the following equivalent reformulation of Theorem 4.1 which is already implicit in
Stanley’s work; see also Chen [7].

Theorem 4.2 Let G = (V, E) be an oriented graph. Then (−1)|V |−c(G)θG(−�) counts pairs
(t, σ ) where t is a Z�-tension on G and σ is an acyclic reorientation of G\supp(t).

Equivalence of Theorems 4.1 and 4.2 In light of the fact that χG(�) = �c(G)θG(�) it suffices
to argue that for a given k-coloring c and a corresponding Zk-tension t , the acyclic reorien-
tations of G\supp(t) are in bijection with the acyclic reorientations of G that are compatible
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Ehrhart theory, modular flow reciprocity, and the Tutte polynomial 11

with c. If σ is an acyclic reorientation of G then clearly σ ∩ E\supp(t) is an acyclic reorienta-
tion of G\supp(t). Conversely, let σ ′ be an acyclic reorientation of G\supp(t). We have to show
that there is a unique extension of σ ′ to an acyclic reorientation σ of G that is compatible with
c. However, the condition that e = uv has to be oriented from u to v whenever c(u) < c(v)

fixes the reorientation of all edges in supp(t). Suppose the resulting reorientation σ did con-
tain a directed cycle C . Then all vertices on C have to have the same color with respect to
c, as following an edge can never decrease the color. But this means that C ⊆ E\supp(t)
which is a contradiction to σ ′ G\supp(t) being acyclic. ��
Note the similarity to the statement of Theorem 2.2. This is not at all surprising from the
(oriented) matroid point of view as we have the following correspondences:

flow f ↔ tension t
ξ(G) ↔ |V | − c(G)

totally cyclic ↔ acyclic
G/supp( f ) ↔ G\supp(t)

Let us quickly remark on the conception of a “tension”. If A is an ordered group, such as Z,
then the elements in A can be thought of heights and a tension measures the difference in
altitude along an edge. In particular, if we reorient G such that t (e) > 0 for all e, then it is
clear that every nowhere-zero Z-tension yields an acyclic reorientation.

We refrain from giving a proof of Theorem 4.2 but instead supply the necessary modifi-
cations to the proofs for flow reciprocity in Sects. 2 and 3.

For an arbitrary spanning tree T , let C be the cycle basis constructed in Sect. 3. It suf-
fices to verify the defining properties of tensions on such a cycle basis as every cycle is a
superposition of these elementary cycles. Thus, identifying Z� = {0, . . . , � − 1}, we have
that t : E → Z represents a nowhere-zero Z�-tension if 0 < t (e) < � for every e ∈ E
and there is a d ∈ Z

T c
such that Ct = � · d . Analogously to the flow case, this formulation

furnishes a collection of relatively open disjoint polytopes whose Ehrhart polynomials yield
the nowhere-zero tension polynomial.

For the reciprocity the key lemma that yields the interpretation in terms of acyclic reori-
entations is

Lemma 4.3 ([11, Lem. 7.1]) Let G = (V, E) be an oriented graph and C a cycle basis.
Then the connected components of ker C\{p ∈ R

E : pe = 0 for some e ∈ E} are in bijection
with the acyclic reorientations of G.

Tensions can be parametrized by the edges in a spanning forest, leaving it to the non-forest
edges T c to compensate along each cycle in the cycle basis C . This yields the description of
an inside-out polytope analogous to the flow case in Sect. 3.

5 An interpretation of the Tutte polynomial

An (integral) generalized Tutte–Grothendieck (T – G) invariant is an assignment fG ∈ Z to
every graph G such that for some constants τ f , σ f ∈ Z

(1) fG = σ f fG\e + τ f fG/e for every e ∈ E that is neither a loop nor a coloop, and
(2) fG = fG[e] · fG\e otherwise.

A large collection of important invariants for graphs (or more generally matroids) qualifies as
Tutte–Grothendieck invariants (cf. [6]), among them all evaluations of chromatic and mod-
ular flow and tension polynomials. The Tutte polynomial tG(x, y) ∈ Z[x, y] of a graph G is
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12 F. Breuer, R. Sanyal

the unique function such that every generalized T–G invariant fG can be expressed as

fG = σ
ξ(G)
f τ

|V |−c(G)
f tG

(
f I
τ f

,
fL
σ f

)

where fL and f I is the invariant of a loop and coloop, respectively.
Insofar the Tutte polynomial expresses a multitude of enumerative invariants, but, to the

best of our knowledge, there is no enumerative interpretation for arbitrary evaluations of the
Tutte polynomial. The reciprocity statements of Sects. 2 and 4 yield a natural interpretation
of what the Tutte polynomial evaluated at (1 + �, 1 + k) for positive k, � counts.

Theorem 5.1 Let G be a graph and k, � two positive integers. Then tG(1 + �, 1 + k) counts
triples ( f, t, σ ) where

(i) f is a Zk-flow and t is a Z�-tension on G,
(ii) f and t have disjoint support, and

(iii) σ ⊆ E\supp( f ) ∪ supp(t) is a reorientation of G\supp( f )∪supp(t).

The polynomial tG(1 + �, 1 + k) is also known as the rank polynomial of G.
In Appendix B, we give a proof of Theorem 5.1 from first principles, i.e., we prove that the

stated cardinality itself is a generalized T–G invariant with structure constants τ = σ = 1 and
values 1 + k and 1 + � for loops and coloops, respectively. Here, however, we give a proof
by noting that Theorem 5.1 is equivalent to the convolution formula for Tutte polynomials
of Kook et al. [13] specialized to graphs.

We need the following observation regarding reorientations of graphs.

Lemma 5.2 Let G = (V, E) be an oriented graph. Then there is a unique S ⊆ E such that
G[S] is totally cyclic and G/S is acyclic.

Proof Let S ⊆ E be the collection of edges that lie on a directed cycle in G. Then, clearly,
G[S] is totally cyclic and, as G[S] is componentwise strongly connected, G/S is acyclic.
As for uniqueness, suppose that S′ ⊆ E has the same properties. As G[S′] is totally cyclic,
clearly S′ ⊂ S. Now if e ∈ S\S′, then e is contained in a directed cycle which remains true
in G/S′ , in contradiction to G/S′ being acyclic. Hence S = S′. ��
Proof of Theorem 5.1 Consider the collection of triples ( f, t, σ ) as in the theorem. For every
triple, we claim that there is a unique S ⊆ E such that

(1) f is a Zk-flow on G[S] and σ ∩ S is a totally cyclic reorientation of (G[S])/supp( f ), and
(2) t is a Z�-tension on G/S such that σ\S is an acyclic reorientation of (G/S)\supp(t).

Indeed, let S′ ⊆ E be the set for σ G/supp( f )\supp(t) whose existence and uniqueness is
asserted by Lemma 5.2. Now, it is easy to verify that S := S′ ∪ supp( f ) is the unique set
with the properties above.

In light of Theorems 2.2 and 4.2, the number of triples for which S is the unique set
obeying the above properties is

(−1)ξ(G[S])φG[S](−k) · (−1)|V |−c(G/S)θG/S (−�)

The flow and tension polynomials are both specializations of the Tutte polynomial and hence

tG[S](0, 1 + k) = (−1)ξ(G[S])φG[S](−k)

tG/S (1 + �, 0) = (−1)|V |−c(G/S)θG/S (−�).
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To finish the proof, we recall the result of Kook et al. [13, Thm. 1] stating that

tG(1 + �, 1 + k) =
∑

S⊆E

tG[S](0, 1 + k) tG/S (1 + �, 0).

��
This interpretation yields the following counting formula which matches a result of
Reiner [15] but removes the restriction to prime powers. It follows from Theorem 5.1 together
with the fact that every flow or tension is nowhere zero restricted to its support.

Corollary 5.3 Let G = (V, E) be a graph, then the Tutte polynomial is given by

tG(1 + �, 1 + k) =
∑

S⊆T ⊆E

2|T \S|φG[S](k)θG/T (�)

Let us remark that enumerative interpretations for all evaluations of the Tutte polynomial are
not to be expected as for negative parameters the sign of tG(x, y) depends on the magnitude
of the arguments. However, our interpretation misses some fundamental evaluations such as
tG(1, 2) for the number of spanning sets and tG(2, 1) for the number of independent sets.
We also remark that interpretations for evaluations of the flow- and tension polynomials at
negative values also yield interpretations in the spirit of [15, Cor. 2] for the missing two orth-
ants (1 − �, 1 + k) and (1 + �, 1 − k). In this way, the reciprocity theorems for the modular
flow and tension polynomials can be combined with the convolution formula of Kook et al.
to yield a unified framework in which the value of the Tutte polynomial at every lattice point
in the plane can be interpreted. This is worked out in [5, Sect. 3.11].
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earlier version of this paper.
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Appendix A: Combinatorial proof of modular flow reciprocity

In this section we give a combinatorial proof of Theorem 2.2. Our approach is straightfor-
ward: we show that (−1)ξ(G)φG(−k) is a generalized Tutte–Grothendieck invariant with the
correct structure constants.

Let FG(k) denote the set of all pairs ( f, σ ) of a Zk-flow f and a totally cyclic reorientation
σ of G/supp( f ). Using this notation Theorem 2.2 simply states

(−1)ξ(G)φG(−k) = #FG(k). (1)

In light of Proposition 3.2 it suffices to show that #FG(k) is a Tutte–Grothendieck invariant
with the structure constants as given in the following theorem.

Theorem A.1 Let G = (V, E) be an oriented graph and let k ∈ N.

(1) If E = ∅, then #FG(k) = 1.
(2) If e ∈ E is a coloop, then #FG(k) = 0.
(3) If e ∈ E is a loop, then #FG(k) = (k + 1) · #FG\e(k).
(4) If e ∈ E is neither a loop nor a coloop, then #FG(k) = #FG\e(k) + #FG/e(k).
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14 F. Breuer, R. Sanyal

To show this theorem we examine how a Zk-flow on G induces Zk-flows on G/e and G\e,
respectively, and how a totally cyclic reorientation of G induces totally cyclic reorientations
of G/e and G\e, respectively. We first turn our attention to the Zk-flows.

Lemma A.2 Let G = (V, E) be an oriented graph and e ∈ E neither a loop nor a coloop.
If f is a Zk-flow on G, then f |E\e is

(1) a Zk-flow on G/e and
(2) a Zk-flow on G\e if and only if f (e) = 0.

Proof Let e = uv. At any vertex w �∈ {u, v} the flow (A f )v does not change when passing
from G to G/e or G\e. In G/e the vertices u and v have been identified to form a vertex u′
and (AG/e f |E\e)u′ = (A f )u + (A f )v = 0. In G\e we have (AG\e f |E\e)u′ = (A f )u − f (e)
which is zero if and only if f (e) = 0, and similarly for v. ��

So a Zk-flow on G induces a Zk-flow on G/e and if f (e) = 0 it also induces a Zk-flow
on G\e. Moreover it turns out that any Zk-flow on G/e is induced by a unique Zk-flow on G
and the same holds for G\e.

Lemma A.3 Let G = (V, E) be an oriented graph and e ∈ E neither a loop nor a coloop.

(1) Given a Zk-flow f ′ on G/e there is a unique Zk-flow f on G such that f |E\e = f ′.
(2) Given a Zk-flow f ′ on G\e there is a unique Zk-flow f on G such that f |E\e = f ′.

Moreover this flow has the property f (e) = 0.

Proof In both cases, we necessarily have f (e′) = f ′(e′) for all e′ �= e and we have to check
that there is unique choice for f (e) that makes f a Zk-flow. Let e = uv oriented from u to
v. Let A∗ denote the incidence matrix of G with the column corresponding to e removed. In
both cases (A f )u = (A∗ f )u − f (e) and (A f )v = (A∗ f )v + f (e). So f is a Zk-flow if and
only if f (e) = (A∗ f )u and f (e) = −(A∗ f )v . In the first case these two values coincide
because (A∗ f )u + (A∗ f )v = (AG/e f ′)u′ = 0 where u′ is the vertex obtained by identifying
u and v. In the second case, both of these values are zero, because (A∗ f )u = (AG\e f ′)u = 0
and (A∗ f )v = (AG\e f ′)v = 0. ��
Now we turn to totally cyclic reorientations. Here the situation is a bit more complicated
compared to Zk-flows. We start with a useful characterization of totally cyclic orientations.

Lemma A.4 Let G be an oriented graph. σ is a totally cyclic reorientation of G if and only
if for any vertices u, v ∈ V in the same component of the underlying undirected graph, there
exists a directed path in σ G from u to v.

Proof Suppose σ is totally cyclic. As both u and v lie in the same component of the undi-
rected graph, there is an undirected path P from u to v. As σ G is totally cyclic, every edge
of P lies on a directed cycle. In a directed cycle, there is a directed path from any vertex
to any other vertex. So for any edge uivi in P there is a directed path in G from ui to vi .
Concatenating all these paths, we obtain a directed walk in G from u to v, which in particular
contains a directed path from u to v as a subgraph.

Conversely, suppose we can always find a directed path from any vertex to any other. Let
e be an edge oriented from u to v. Then the assumption guarantees the existence of a path P
from v to u. Concatenating P and e yields a directed cycle. ��

In the following we use 
 to denote the symmetric difference of sets. So given a reorien-
tation σ and an edge e, σ
e is the reorientation obtained from σ by reversing the edge e.
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Lemma A.5 Let G = (V, E) be an oriented graph and e ∈ E neither a loop nor a coloop.
Let σ be a totally cyclic reorientation of G. Then

(1) σ ∩ (E\e) is a totally cyclic reorientation of G/e, and
(2) σ ∩ (E\e) is a totally cyclic reorientation of G\e if and only if both σ and σ
e are

totally cyclic reorientations of G.

Proof (1) As σ G is totally cyclic, there is a collection C of directed cycles in σ G that cover
all edges. Then {C/e|C ∈ C} is a collection of directed cycles in σ∩(E\e)G/e that covers
all edges in G/e and hence σ∩(E\e)G/e is totally cyclic.

(2) Let e = uv. Suppose σ∩(E\e)G\e is totally cyclic. Then by Lemma A.4 there exist
directed paths from u to v and from v to u. These show that no matter which way we
orient e, we can always find a directed cycle on which e lies and so both σ G and σ
eG
are totally cyclic.

Conversely, suppose both σ G and σ
eG are totally cyclic. The edge e lies on a directed
cycle in σ
eG so by Lemma A.4 there is a directed path P from u to v in σ G\e. Let u′, v′ be
any two vertices in G\e. As σ G is totally cyclic there is a directed path P ′ in σ G from u′ to
v′. We replace every occurrence of e in P ′ with P and obtain a directed walk (and hence a
directed path) in σ∩E\eG\e from u′ to v′. By Lemma A.4 it follows that σ∩E\eG\e is totally
cyclic. ��
Lemma A.6 Let G = (V, E) be an oriented graph and e ∈ E neither a loop nor a coloop.

(1) Let σ ⊆ E\e be a totally cyclic reorientation of G/e. Then at least one of σ and σ ∪ e
is a totally cyclic reorientation of G.

(2) Let σ ⊆ E\e be a totally cyclic reorientation of G\e. Then both σ and σ ∪ e are totally
cyclic reorientations of G.

Proof (1) Let σ G/e be totally cyclic and e = uv. Let C be a collection of directed cycles
in σ G/e that covers all edges of G/e. Now we distinguish two cases: Is one of these
cycles “broken” in G or not? More precisely does there exist a cycle C ∈ C that contains
consecutive edges e1 and e2 such that e1 enters u and e2 leaves v (or vice versa)?1 If not,
then C shows that σ G\e is also totally cyclic and we can continue as in part (2) below.
So we suppose that C is such a broken cycle. In this case C gives a directed path from v

to u in G. We now orient e from u to v. Then any directed path P in G/e from a vertex
u′ to a vertex v′ can be turned into a directed path in G from u′ to v′ by substituting
the edge e or the path given by C wherever P is broken. Using Lemma A.4 the claim
follows.

(2) Already in G\e there is, for any two vertices u, v in the same component, a directed path
from u to v. This remains true after the edge e is inserted, no matter how e is oriented
(note that e is not a coloop). So by Lemma A.4 both σ and σ ∪ e are totally cyclic
reorientations of G. ��

Now we have all ingredients to show that #FG(k) is a Tutte–Grothendieck invariant.

Proof of Theorem A.1 (1) If E = ∅, then FG(k) = {(∅,∅)}.
(2) If e ∈ E is a coloop, then any flow f on G has f (e) = 0. Thus e is also a coloop in

G/supp( f ) which means that there is no totally cyclic orientation on G/supp( f ). So
FG(k) = ∅.

1 We also require that C does not consist of a single edge that is a loop.
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(3) If e ∈ E is a loop, then ( f, σ ) �→ ( f |E\e, σ ∩ E\e) is a surjective map from FG(k)

onto FG\e and every fiber of this map has cardinality k + 1. The reason is that given
( f |E\e, σ ∩ E\e) we can define f (e) ∈ Zk arbitrarily and f will become a Zk-flow
on G. The case f (e) = 0 is counted twice as either orientation of e will turn σ into a
totally cyclic orientation of G/supp( f ).

(4) Let e ∈ E be neither a coloop nor a loop. Consider the map πG/e : FG(k) → FG/e(k)

given by ( f, σ ) �→ ( f |E\e, σ ∩ E\e). Lemmas A.2 and A.5 tell us that πG/e is well-
defined and Lemmas A.3 and A.5 tell us that every ( f ′, σ ′) ∈ FG/e(k) has either one
or two pre-images under πG/e. ( f ′, σ ′) has two pre-images if and only if the unique
Zk-flow f with f |E\e = f ′ has f (e) = 0 and both σ ′ and σ ′ ∪ e are totally cyclic
reorientations of G/supp( f ).
Loosely speaking, this means that the cardinalities of FG(k) and FG/e(k) are the same,
except that we have to count those ( f ′, σ ′) ∈ FG/e(k) that have two pre-images twice.
So let F′

G(k) denote the set of all ( f, σ ) ∈ FG(k) such that f (e) = 0 and both σ and σ
e
are totally cyclic reorientations on G/supp f . Consider the map πG\e : F′

G(k) → FG\e(k)

given by ( f, σ ) �→ ( f |E\e, σ ∩ E\e). Lemmas A.2 and A.5 tell us that πG\e is well-
defined and Lemmas A.3 and A.5 tell us that every ( f ′, σ ′) ∈ FG\e(k) has precisely
two pre-images under πG\e. But this means that #FG(k) = #FG/e(k) + #FG\e(k) as
desired. ��

Appendix B: Combinatorial proof of the Tutte interpretation

In this section we give a combinatorial proof of Theorem 5.1, our interpretation of tG(1+�,

1 + k). The approach is similar to that in Appendix A: we show that the counting function,
that we claim is identical to the Tutte polynomial, is a Tutte–Grothendieck invariant with
the appropriate structure constants. Surprisingly, the combinatorial proof of Theorem 5.1 is
much simpler than the combinatorial proof of Theorem 2.2.

Theorem 5.1 states that tG(1 + �, 1 + k) counts the number of triples ( f, t, σ ) where
f and t are, respectively, a Zk-flow and a Zl -tension on G with disjoint support and σ ⊆
E\supp( f )∪supp(t). Now, for any edge set S ⊆ E , the Zk-flows f on G with f (e) = 0 for
all e ∈ S are in bijection with the Zk-flows on G\S . Correspondingly, for any edge set S ⊆ E ,
the Zl -tensions t on G with t (e) = 0 for all e ∈ S are in bijection with the Zl -tensions on
G/S . So if we define the sets TG(�, k) by

TG(�, k) = {(S, t, f ) : S ⊆ E,

t a Z�-tension onG/S,

f a Zk-flow onG[S]},
for k, � ∈ N, Theorem 5.1 then becomes tG(1 + �, 1 + k) = #TG(�, k) for all �, k ≥ 1. By
the fact that the Tutte polynomial is a Tutte–Grothendieck invariant, all we have to show is
the following:

(1) If E = ∅, then #TG(�, k) = 1.
(2) If e ∈ E is a coloop, then #TG(�, k) = (1 + �) · #TG/e(�, k).
(3) If e ∈ E is a loop, then #TG(�, k) = (1 + k) · #TG\e(�, k).
(4) If e ∈ E is neither a loop nor a coloop, then #TG(�, k) = #TG/e(�, k) + #TG\e(�, k).

For any statement A we will denote by [A] the number 1 if A holds and 0 if A does not hold.
Using this shorthand notation and the fact that if e is a loop or a coloop then tG\e = tG/e , we
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can write what we have to show more compactly as

#TG(�, k) = �[e is a coloop]#TG\e(�, k) + k[e is a loop]#TG/e(�, k). (2)

Before we show that this identity holds, we work out how the Zl -tensions on G and on G\e

are related, just as we did in Appendix A for Zk-flows.
Given a map f : E → Zk and a set S ⊆ E we define f |G/S and f |G\S to be the maps

obtained by restricting f to the respective edge sets of G/S and G\S . A fiber of a map f is
the set f −1(x) for any x in the image.

Lemma B.1 If t is a Z�-tension on G, then t |G\e is a Z�-tension on G \ e. If e is a
coloop, every fiber of the map t �→ t |G\e has cardinality k. Otherwise every fiber of the
map t �→ t |G\e has cardinality 1.

Proof A cycle in G\e is also a cycle in G. If 〈C, t〉 = 0 holds for every cycle C of G, then
it also holds for every cycle of G\e. So t |G\e is a Zk-tension on G\e.

Now suppose e is not a coloop in G. Let t ′ be a Zk-tension on G\e. Which Z�-tensions
t on G have t |G\e = t ′? Necessarily, t (e′) := t ′(e′) for all e′ �= e. All we have to show
is that there is a unique choice of t (e) such that t is a tension. Now as e is not a coloop, e
lies on a cycle C . The weights of all other edges on C are fixed. As Zk is a group, there is
a unique choice of t (e) such that 〈C, t〉 = 0. t (e) does not depend on the choice of C , as
〈C ′, t〉 = 〈C ′, t ′〉 = 0 for all cycles C ′ that do not contain e.

If e is a coloop, then e does not lie on any cycle and so we can choose t (e) ∈ Zk arbitrarily.
��

Now the proof of our interpretation of the Tutte polynomial is easy.

Proof of Theorem 5.1 We have to show that (2) holds. To that end we define a map

TG(�, k) → TG\e(�, k) � TG/e(�, k)

(S, t, f ) �→
{

(S, t |G\e, f ) if e �∈ S,

(S \ e, t, f |G/e) if e ∈ S.

By Lemma B.1 a fiber over TG\e(�, k) has cardinality � if e is a coloop and cardinality 1
otherwise. As we have seen in Appendix A, a fiber over TG/e(�, k) has cardinality k if e is a
loop and cardinality 1 otherwise. Thus

#TG(�, k) = �[e is a coloop]#TG\e(�, k) + k[e is a loop]#TG/e(�, k)

for any e ∈ E . ��
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