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Abstract The algebra of quantum matrices of a given size supports a rational torus action
by automorphisms. It follows from work of Letzter and the first named author that to under-
stand the prime and primitive spectra of this algebra, the first step is to understand the prime
ideals that are invariant under the torus action. In this paper, we prove that a family of quan-
tum minors is the set of all quantum minors that belong to a given torus-invariant prime
ideal of a quantum matrix algebra if and only if the corresponding family of minors defines
a non-empty totally nonnegative cell in the space of totally nonnegative real matrices of the
appropriate size. As a corollary, we obtain explicit generating sets of quantum minors for the
torus-invariant prime ideals of quantum matrices in the case where the quantisation parameter
q is transcendental over Q.
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30 K. R. Goodearl et al.

0 Introduction

In recent publications, the same combinatorial description has arisen for three separate objects
of interest: torus-invariant prime ideals in quantum matrix algebras Oq(Mm,p(K)) [6], torus-
orbits of symplectic leaves in matrix Poisson varieties Mm,p(C) [2], and totally nonnegative
cells in spaces M≥0

m,p(R) of totally nonnegative matrices [22]. Connections between the sec-
ond and third of these objects were developed in [9]. Here we close the circle by linking the
first and second objects. More detail follows.

Many quantum algebras have a natural action by an algebraic torus, and a key ingredient in
the study of the structure of these algebras is an understanding of the torus-invariant objects.
For example, the Stratification Theory of Letzter and the first named author [13] shows that,
in the generic case, a complete understanding of the prime spectrum of the quantised coor-
dinate ring of m × p matrices, Oq(Mm,p(K)), would start by classifying the (finitely many)
prime ideals invariant under the natural action of the torus H = (K×)m+p . In [6], Cauchon
succeeded in counting the number of H-invariant prime ideals in Oq(Mm,p(K)). His method
involved a bijection between certain diagrams, now known as Cauchon diagrams, and the
H-invariant primes. Considerable progress in the understanding of quantum matrices has
been made since that time by using Cauchon diagrams.

The semiclassical limit of the quantum matrix algebrasOq (Mm,p(K)) is the classical coor-
dinate ring of the matrix variety Mm,p(K), endowed with a Poisson bracket that encodes
the nature of the quantum deformation which leads to quantum matrices. As a result, the
variety Mm,p(K) is endowed with a Poisson structure. In the complex case (K = C), a
natural action of the torus H = (C×)m+p leads to a stratification of the variety Mm,p(C) via
H-orbits of symplectic leaves. In [2], Brown, Yakimov and the first named author showed
that there are finitely many such H-orbits of symplectic leaves. Each H-orbit is defined
by certain rank conditions on submatrices. The classification is given in terms of certain
permutations from the relevant symmetric group with restrictions arising from the Bruhat
order.

The totally nonnegative part of the space Mm,p(R) of real m × p matrices consists of
those matrices whose minors are all nonnegative. One can specify a cell decomposition of
the set M≥0

m,p(R) of totally nonnegative matrices by specifying exactly which minors are to
be zero/non-zero. In [22], Postnikov classified the non-empty cells by means of a bijection
with certain diagrams, known as Le-diagrams.

The interesting observation from the point of view of this work is that in each of the above
three sets of results, the combinatorial objects that arise turn out to be the same! The defi-
nitions of Cauchon diagrams and Le-diagrams are the same, and the restricted permutations
arising in the Brown–Goodearl–Yakimov study can be seen to correspond to Cauchon/Le
diagrams via the notion of pipe dreams.

Once one is aware of these combinatorial connections, the suggestion arises that there
should be a connection between torus-invariant prime ideals, torus-orbits of symplectic leaves
and totally nonnegative cells.

In [9], we study this connection, and prove that a family of minors defines a non-empty
totally nonnegative cell in the space of totally nonnegative matrices if and only if this family
is exactly the set of minors that vanish on the closure of a certain torus-orbit of symplectic
leaves in the matrix Poisson variety. In the present note, we complete the picture and study
the quantum case. Our main result is the following.

Theorem 4.2 Let F be a family of minors in the coordinate ring of the affine variety
Mm,p(C), for some positive integers m, p, and let Fq be the corresponding family of quantum
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Torus-invariant prime ideals in quantum matrices 31

minors in Oq(Mm,p(K)), where K is a field and q ∈ K× is a non-root of unity. Then the
following are equivalent:
1. The totally nonnegative cell associated to F in M≥0

m,p(R) is non-empty.
2. F is the set of all minors that vanish on the closure of some (C×)m+p-orbit of symplectic

leaves in Mm,p(C).
3. Fq is the set of all quantum minors that belong to some (K×)m+p-invariant prime ideal

in Oq(Mm,p(K)).

(The torus actions in (2) and (3) are standard, and are recalled below.)
The proof of this result (see Sect. 4) relies on two algorithms, the deleting-derivations

algorithm and its inverse the restoration algorithm, that were first developed for use in quan-
tum matrices [5,6,17]. We note that recently and independently Casteels [3] has developed
graph-theoretic methods (also based on the restoration algorithm) to compute the set of
quantum minors that belong to a torus-invariant prime in Oq(Mm,p(K)).

The sets of minors that vanish on the closure of a torus-orbit of symplectic leaves in
Mm,p(C) have been explicitly described in [9], based on results of Fulton [7] and Brown–
Goodearl–Yakimov [2]. Further, Yakimov proved that the above sets of minors generate the
ideals of polynomial functions vanishing on closures of torus-orbits of symplectic leaves
[23]. As a consequence of the above theorem, we obtain explicit descriptions of the sets of
quantum minors that belong to a torus-invariant prime in Oq(Mm,p(K)) (see Theorem 4.4).

The importance of understanding the sets Fq rests on the conjecture of the first and third
named authors that, in the generic case (q not a root of unity), all torus-invariant prime ideals
in Oq(Mm,p(K)) are generated by quantum minors [10]. In [16], the second named author
proved this conjecture when the base field K is the field of complex numbers and the quanti-
sation parameter q is transcendental over the rationals. We extend that result here to arbitrary
base fields of characteristic zero (Theorem 1.5). Consequently, in that case we deduce from
the above results explicit generating sets of quantum minors for the torus-invariant prime
ideals of Oq(Mm,p(K)). A different approach to this result, applicable to many quantized
coordinate algebras, has been recently and independently developed by Yakimov in [23].
Explicit generating sets for torus-invariant prime ideals in general will, of course, also follow
if and when the above conjecture is established.

Throughout this paper, we use the following conventions:

• N denotes the set of natural numbers, and we set C× := C\{0}.
• If I is any non-empty finite subset of N, then |I | denotes its cardinality.
• K is a field, K× := K\{0} and q ∈ K× is not a root of unity.
• m and p are two positive integers.
• If k is a positive integer, then Sk denotes the group of permutations of [[1, k]] := {1, . . . , k}.
• Let K be a K-algebra and M = (xi,α) ∈ Mm,p(K ). If I ⊆ [[1, m]] and � ⊆ [[1, p]] with

|I | = |�| = k ≥ 1, then we denote by [I |�]q(M) the corresponding quantum minor of
M . This is the element of K defined by:

[I |�]q(M) = [i1, . . . , ik |α1, . . . , αk]q :=
∑

σ∈Sk

(−q)l(σ )xi1,ασ(1)
· · · xik ,ασ(k)

,

where I = {i1, . . . , ik},� = {α1, . . . , αk} and l(σ ) denotes the length of the k-permutation
σ . Also, it is convenient to allow the empty minor: [∅|∅]q(M) := 1 ∈ K . Whenever we
write a quantum minor in the form [i1, . . . , ik |α1, . . . , αk]q , we tacitly assume that the row
and column indices are listed in ascending order, that is, i1 < · · · < ik and α1 < · · · < αk .
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32 K. R. Goodearl et al.

1 H-prime ideals of Oq(Mm, p(K))

1.1 Quantum matrices

We denote by R := Oq(Mm,p(K)) the standard quantisation of the ring of regular functions
on m × p matrices with entries in K; the algebra R is the K-algebra generated by the m × p
indeterminates Xi,α , for 1 ≤ i ≤ m and 1 ≤ α ≤ p, subject to the following relations:

Xi,β Xi,α = q−1 Xi,α Xi,β , (α < β);
X j,α Xi,α = q−1 Xi,α X j,α, (i < j);
X j,β Xi,α = Xi,α X j,β , (i < j, α > β);
X j,β Xi,α = Xi,α X j,β − (q − q−1)Xi,β X j,α, (i < j, α < β).

It is well known that R can be presented as an iterated Ore extension over K, with the gen-
erators Xi,α adjoined in lexicographic order. Thus, the ring R is a noetherian domain; its
skew-field of fractions is denoted by F or Fract R. Moreover, since q is not a root of unity,
it follows from [12, Theorem 3.2] that all prime ideals of R are completely prime.

The quantum minors in R are the quantum minors of the matrix (Xi,α) ∈ Mm,p(R).
To simplify the notation, we denote by [I |�]q the quantum minor of R associated to the
row-index set I and the column-index set �.

It is easy to check that the torus H := (K×)m+p acts on R by K-algebra automorphisms
via:

(a1, . . . , am, b1, . . . , bp). Xi,α = ai bα Xi,α for all (i, α) ∈ [[1, m]] × [[1, p]].
We refer to this action as the standard action of (K×)m+p on Oq(Mm,p(K)). Recall that an
H-prime ideal of R is a proper H-invariant ideal P such that whenever P contains a product
I J of two H-invariant ideals, it must contain either I or J . As q is not a root of unity, it
follows from [13, 5.7] that there are only finitely many H-primes in R and that every H-prime
is completely prime. Hence, the H-prime ideals of R coincide with the H-invariant primes.
We denote by H- Spec(R) the set of H-primes of R.

1.2 H-primes and Cauchon diagrams

In [6], Cauchon showed that his theory of deleting-derivations can be applied to the iterated
Ore extension R. As a consequence, he was able to parametrise the set H-Spec(R) in terms
of combinatorial objects called Cauchon diagrams.

Definition 1.1 [6] An m × p Cauchon diagram C is simply an m × p grid consisting of mp
squares in which certain squares are coloured black. We require that the collection of black
squares have the following property: If a square is black, then either every square strictly to
its left is black or every square strictly above it is black (For an example, see Fig. 1).

We denote by Cm,p the set of m × p Cauchon diagrams.

Note that we will often identify an m × p Cauchon diagram with the set of coordinates of
its black boxes. Indeed, if C ∈ Cm,p and (i, α) ∈ [[1, m]]×[[1, p]], we will say that (i, α) ∈ C
if the box in row i and column α of C is black.

Recall [6, Corollaire 3.2.1] that Cauchon has constructed (using the deleting-derivations
algorithm) a bijection between H-Spec(Oq(Mm,p(K))) and the collection Cm,p . We discuss
this bijection in more detail in Sect. 4.

Notation 1.2 Let C ∈ Cm,p . We denote by JC the unique H-prime ideal of R corresponding
to the Cauchon diagram C under the above bijection.
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Torus-invariant prime ideals in quantum matrices 33

Fig. 1 An example of a 4 × 5 Cauchon diagram

At this point, it is worth recalling that Cauchon diagrams are also closely related to
restricted permutations. More precisely, set

S = S[−p,m]
m+p := {w ∈ Sm+p | − p ≤ w(i) − i ≤ m for all i = 1, 2, . . . , m + p}.

The set S is an initial interval of the symmetric group Sm+p endowed with the Bruhat order.
Namely, we have [18, Proposition 1.3], [2, Lemma 3.12]:

S =
{
w ∈ Sm+p

∣∣∣∣ w ≤
[

1 2 · · · p p + 1 p + 2 · · · m + p
m + 1 m + 2 · · · m + p 1 2 · · · m

]}
.

It was proved in [18, Corollary 1.5] that the cardinality of S is equal to the number of m × p
Cauchon diagrams. Note that one can construct an explicit bijection between these two sets
by using the concept of pipe-dreams. (See [22, Sect. 19].)

1.3 Generators of H-prime ideals of Oq(Mm,p(K))

In [10], the first and third named authors conjectured that all H-primes in R are generated
by quantum minors. (Of course, any prime generated by quantum minors is an H-prime,
since every quantum minor of R is an H-eigenvector.) They proved this conjecture in the
case where m, p ≤ 3 [10,11]. In [16, Théorème 3.7.2], the second named author proved
this conjecture in the case where K = C and the quantisation parameter q is transcendental
over Q. The result can then be extended to arbitrary base fields of characteristic 0 (keeping
q transcendental over Q), as we show below.

Note that the above conjecture is still open when we only assume that q ∈ K× is not a
root of unity.

Although in [17] an algorithm was developed that constructs, starting only from a Cauchon
diagram C , all of the quantum minors that belong to the H-prime ideal JC , it is not easy
to identify the families of quantum minors that generate H-prime ideals. Casteels [3] has
recently developed a graph theoretic method in order to compute these families.

In [2, Theorem 4.2], Brown, Yakimov and the first named author described the H-orbits
of symplectic leaves of Mm,p(C) in terms of the vanishing and nonvanishing of explicit sets
of minors. Following the philosophy that symplectic leaves of Mm,p(C) should correspond
bijectively to primitive ideals of Oq(Mm,p(C)), they conjectured that a set of minors defines
the closure of an H-orbit of symplectic leaves if and only if the corresponding set of quantum
minors generates an H-prime ideal in Oq(Mm,p(C)) (see [2, 0.2]). This conjecture is proved
here (see Theorem 4.4).

Lemma 1.3 Let K1 ⊆ K2 be infinite fields, and let A be a noetherian K2-algebra supporting
a rational action of a torus H2 = (K ×

2 )r by K2-algebra automorphisms. Set H1 := (K ×
1 )r ,

which acts on A by restriction of the H2-action. Then the H1-prime ideals of A coincide with
the H2-prime ideals.

Proof By [1, Proposition II.2.9], every H2-prime of A is prime, and consequently H1-prime.
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34 K. R. Goodearl et al.

Rationality of the H2-action on A implies that A has a K2-basis (ai )i∈I of H2-eigenvectors
whose H2-eigenvalues are rational characters of H2 [1, Theorem II.2.7]. If (κ j ) j∈J is a basis
for K2 over K1, then (κ j ai )i∈I, j∈J is a K1-basis for A, consisting of H2-eigenvectors with
rational H2-eigenvalues. Observe that the restriction to H1 of any rational character of H2 is a
rational character of H1. Consequently, each κ j ai is an H1-eigenvector whose H1-eigenvalue
is a rational character of H1. Thus, the H1-action on A is rational.

Now any H1-prime P of A is prime by [1, Proposition II.2.9]. Consider the induced action
of H2 on Spec(A) by homeomorphisms, and let S be the stabilizer of P in H2 under this
action. It follows from [1, Lemma II.2.8] that S is a Zariski-closed subgroup of H2. On the
other hand, S ⊇ H1, and H1 is Zariski-dense in H2 because K1 is infinite. Therefore S = H2,
whence P is an H2-prime, as required. �	
Proposition 1.4 Let K1 ⊆ K2 be fields, q ∈ K ×

1 a non-root of unity, and identify the algebra
Oq(Mm,p(K2)) with Oq(Mm,p(K1)) ⊗K1 K2. Set Hi := (K ×

i )m+p for i = 1, 2, and let
Hi act on Oq(Mm,p(Ki )) by Ki -algebra automorphisms in the standard way. Then the rule
P �→ P ⊗K1 K2 gives a bijection

H1- Spec Oq(Mm,p(K1)) −→ H2- Spec Oq(Mm,p(K2)).

Proof Set Ai := Oq(Mm,p(Ki )), and recall that Hi acts rationally on Ai . By [1, Theorem
II.6.4], every Hi -prime P of Ai is strongly Hi -rational in the sense that Z(Fract Ai/P)Hi =
Ki . (See the proof of [1, Theorem II.5.14] for a verification of the required hypotheses.)

The action of H1 on A1 extends naturally to an action of H1 ≡ H1 × 〈id〉 on A2

(by K2-algebra automorphisms), and it follows from [10, Proposition 3.3] that the rule
P �→ P ⊗K1 K2 gives a bijection H1- Spec(A1) → H1- Spec(A2). In view of Lemma 1.3,
H1- Spec(A2) = H2- Spec(A2), and the proposition is proved. �	
Theorem 1.5 Assume that char(K) = 0 and that q is transcendental over Q. Then every
H-prime of Oq(Mm,p(K)) is generated, as a left (or right) ideal, by the quantum minors
that it contains.

Proof First, consider the subfield K1 := Q(q) ⊆ K, and identify Oq(Mm,p(K)) with
Oq(Mm,p(K1)) ⊗K1 K. Set H1 := (K ×

1 )m+p , with the standard action on Oq(Mm,p(K1)).
By Proposition 1.4, any H-prime of Oq(Mm,p(K)) has the form P ⊗K1 K for some H1-prime
P of Oq(Mm,p(K1)). Hence, it suffices to show that P is generated, as a left (or right) ideal
of Oq(Mm,p(K1)), by the quantum minors it contains.

Now identify K1 with a subfield of C, and set H2 := (C×)m+p , with the standard action on
Oq(Mm,p(C)). By Proposition 1.4, P ⊗K1 C is an H2-prime of Oq(Mm,p(C)), and thus by
[16, Théorème 3.7.2], P ⊗K1 C is generated, as a left (or right) ideal of Oq(Mm,p(C)), by the
set X of quantum minors it contains. Note that X is also the set of quantum minors contained in
P , and let P ′ be the left ideal of Oq(Mm,p(K1)) generated by X . Then P ′⊗K1 C = P ⊗K1 C,
and consequently P ′ = P . Therefore P is generated as a left ideal by X , and similarly as a
right ideal. �	

2 H-orbits of symplectic leaves in Mm, p(C)

In this section, we study the standard Poisson structure of the coordinate ring Oq(Mm,p(C))

coming from the commutators of Oq(Mm,p(C)). Recall that a Poisson algebra (over C) is a
commutative C-algebra A equipped with a Lie bracket {−,−} which is a derivation (for the
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Torus-invariant prime ideals in quantum matrices 35

associative multiplication) in each variable. The derivations {a,−} on A are called Hamilto-
nian derivations. When A is the algebra of complex-valued C∞ functions on a smooth affine
variety V , one can use Hamiltonian derivations in order to define Hamiltonian paths in V .
A Hamiltonian path in V is a smooth path γ : [0, 1] → V such that there exists f ∈ C∞(V )

with dγ
dt (t) = ξ f (γ (t)) for all 0 < t < 1, where ξ f denotes the vector field associated to

the Poisson derivation { f,−}. It is easy to check that the relation “connected by a piecewise
Hamiltonian path” is an equivalence relation. The equivalence classes of this relation are
called the symplectic leaves of V ; they form a partition of V .

A Poisson ideal of A is any ideal I such that {A, I } ⊆ I , and a Poisson prime ideal is
any prime ideal which is also a Poisson ideal. The set of Poisson prime ideals in A forms
the Poisson prime spectrum, denoted PSpec(A), which is given the relative Zariski topology
inherited from Spec(A).

2.1 The Poisson algebra O(Mm,p(C))

Denote by O(Mm,p(C)) the coordinate ring of the variety Mm,p(C); note that O(Mm,p(C))

is a (commutative) polynomial algebra in mp indeterminates Yi,α with 1 ≤ i ≤ m and
1 ≤ α ≤ p.

The variety Mm,p(C) is a Poisson variety: there is a unique Poisson bracket on the coor-
dinate ring O(Mm,p(C)) determined by the following data. For all (i, α) < (k, γ ), we set:

{Yi,α, Yk,γ } =

⎧
⎪⎪⎨

⎪⎪⎩

Yi,αYk,γ if i = k and α < γ

Yi,αYk,γ if i < k and α = γ

0 if i < k and α > γ

2Yi,γ Yk,α if i < k and α < γ.

This is the standard Poisson structure on the affine variety Mm,p(C) (cf. [2, §1.5]); the
Poisson algebra structure on O(Mm,p(C)) is the semiclassical limit of the noncommutative
algebras Oq(Mm,p(C)).

As with quantum minors in Oq(Mm,p(K)), we abbreviate the notation for the minors of
the matrix Y = (Yi,α), writing [I |�] := [I |�](Y ).

Note that the Poisson bracket on O(Mm,p(C)) extends uniquely to a Poisson bracket on
C∞(Mm,p(C)), so that Mm,p(C) can be viewed as a Poisson manifold. Hence, Mm,p(C)

can be decomposed as the disjoint union of its symplectic leaves.

2.2 Torus action

Notice that the torus H := (C×)m+p acts on O(Mm,p(C)) by Poisson automorphisms via:

(a1, . . . , am, b1, . . . , bp). Yi,α = ai bαYi,α for all (i, α) ∈ [[1, m]] × [[1, p]].
We denote by H-PSpec(O(Mm,p(C))) the set of those Poisson primes of O(Mm,p(C)) that
are invariant under this action of H. Note that H is acting rationally on O(Mm,p(C)).

At the geometric level, this action of the algebraic torus H comes from the left action of
H on Mm,p(C) by Poisson isomorphisms via:

(a1, . . . , am, b1, . . . , bp). M := diag(a1, . . . , am)−1 · M · diag(b1, . . . , bp)
−1.

This action of H on Mm,p(C) induces an action of H on the set Sympl(Mm,p(C)) of sym-
plectic leaves in Mm,p(C) (cf. [2, §0.1]). As in [2], we view the H-orbit of a symplectic leaf
L as the set-theoretic union

⋃
h∈H h.L ⊆ Mm,p(C), rather than as the family {h.L | h ∈ H}.

123
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We denote the set of such orbits by H-Sympl(Mm,p(C)). These orbits were described by
Brown, Yakimov and the first named author who obtained the following results.

We use the notation of [2] except that we replace n by p. In particular, we set N = m + p.
Let wm◦ , w

p◦ and wN◦ denote the respective longest elements in Sm, Sp and SN , respectively,
so that wr

0(i) = r + 1 − i for i = 1, . . . , r . Recall from equation (3.24) and Lemma 3.12 of
[2] that

wN◦ S = S
≥(w

p◦ ,wm◦ )

N := {w ∈ SN | w ≥ (w p◦ , wm◦ )}, (1)

where

(w p◦ , wm◦ ) :=
[

1 2 · · · p p + 1 p + 2 · · · p + m
p p − 1 · · · 1 p + m p + m − 1 · · · p + 1

]
.

Theorem 2.1 [2, Theorems 3.9, 3.13, 4.2]

1. There are only finitely many H-orbits of symplectic leaves in Mm,p(C), and they are
smooth irreducible locally closed subvarieties.

2. The set H-Sympl(Mm,p(C)) of orbits (partially ordered by inclusions of closures) is

isomorphic to the set S
≥(w

p◦ ,wm◦ )

N with respect to the Bruhat order.
3. Each H-orbit of symplectic leaves is defined by the vanishing and nonvanishing of certain

sets of minors.
4. Each closure of an H-orbit of symplectic leaves is defined by the vanishing of a certain

set of minors.

For y ∈ S
≥(w

p◦ ,wm◦ )

N , we denote by Py the H-orbit of symplectic leaves described in
[2, Theorem 3.9].

These results have several consequences for the (potential) link between the Poisson
structure of O(Mm,p(C)) and the noncommutative structures of Oq(Mm,p(C)) and
Oq(Mm,p(K)). For instance, combined with [18, Corollary 1.5], the theorem shows that
the number of H-orbits of symplectic leaves in Mm,p(C) is the same as the number of
H-prime ideals in Oq(Mm,p(K)), and so the same as the number of m × p Cauchon dia-
grams.

In [9, Theorem 2.9], we extended the results of the previous theorem. More precisely, we
defined, for each restricted permutation w ∈ S, a family M(w) of minors and proved that a
minor [I |�] vanishes on PwN◦ w if and only if [I |�] ∈ M(w). (The conditions used to define
M(w) will be given below in Definition 4.3, to define the corresponding family Mq(w) of
quantum minors.)

To finish this section, let us mention that the symplectic leaves in Mm,p(C) are algebraic;
that is, they are locally closed subvarieties of Mm,p(C). As a consequence, [8, Proposi-
tion 4.8] applies to our situation, so that there are only finitely many Poisson H-primes in
O(Mm,p(C)). More precisely, the Poisson H-primes in O(Mm,p(C)) are in bijection with
the H-orbits of symplectic leaves in Mm,p(C), and the minors that belong to a Poisson
H-prime ideal are exactly those that vanish on the closure of the corresponding H-orbit of
symplectic leaves in Mm,p(C). Hence, the number of Poisson H-primes in O(Mm,p(C)) is
the same as the number of m × p Cauchon diagrams, and the families of minors that belong
to Poisson H-primes are exactly the families M(w) with w ∈ S.

In [9, Section 5], we constructed an (explicit) bijection between the set of m × p Cauchon
diagrams and the set of Poisson H-primes in O(Mm,p(C)). As in [9, Theorem 5.3], we
denote by J ′

C the unique Poisson H-prime associated to the Cauchon diagram C under this
bijection.
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Torus-invariant prime ideals in quantum matrices 37

3 q-quantum matrices and the deleting-derivations algorithm

For the remainder of this section, K denotes a K-algebra which is also a skew-field. Except
where otherwise stated, all the matrices that are considered have their entries in K .

3.1 q-quantum matrices

Definition 3.1 (See [21, Chapter 4]) Let M = (xi,α) ∈ Mm,p(K ). We say that M is a
q-quantum matrix if the following relations hold between the entries of M :

xi,β xi,α = q−1xi,αxi,β , (α < β);
x j,αxi,α = q−1xi,αx j,α, (i < j);
x j,β xi,α = xi,αx j,β , (i < j, α > β);
x j,β xi,α = xi,αx j,β − (q − q−1)xi,β x j,α, (i < j, α < β).

In order to define the deleting-derivations algorithm in the next section, we will need the
following notation.

Notation 3.2 • We denote by ≤ the lexicographic ordering on N2. Recall that

(i, α) ≤ ( j, β) ⇐⇒ [(i < j) or (i = j and α ≤ β)].
• Set E◦ = ([[1, m]] × [[1, p]])\{(1, 1)} and E = E◦ ∪ {(m, p + 1)}.
• Let ( j, β) ∈ E◦. Then ( j, β)+ denotes the smallest element (relative to ≤) of the set

{(i, α) ∈ E | ( j, β) < (i, α)}.
The deleting derivations/restoration algorithms will be applied to matrices that are not

necessarily q-quantum matrices. However, the matrices involved do have reasonable com-
mutation relations that lead to the following definition.

Definition 3.3 Let M = (xi,α) ∈ Mm,p(K ) and let ( j, β) ∈ E . We say that M is a ( j, β)-

q-quantum matrix if the following relations hold between the entries of M . If

(
x y
z t

)
is any

2 × 2 sub-matrix of M , then

1. yx = q−1xy, zx = q−1xz, zy = yz, t y = q−1 yt, t z = q−1zt.

2. If t = xk,γ , then t x =
{

xt (if (k, γ ) ≥ ( j, β))

xt − (q − q−1)yz (if (k, γ ) < ( j, β)).

Note that our definitions of q-quantum matrix and ( j, β)-q-quantum matrix differ slightly
from those of [4, Definitions III.1.1 and III.1.3]. Because of this, we must interchange q and
q−1 whenever carrying over results from [4], and we need a shift of index in the above
definition. More precisely, Cauchon’s definition of a ( j, β)-q-quantum matrix [4, Definition
III.1.3] matches, after switching q and q−1, our definition of a ( j, β)+-q-quantum matrix.

3.2 The deleting-derivations algorithm

Now, we recall the deleting-derivations algorithm (see [6], Convention 4.1.1 and [16], Con-
ventions 2.2.3). This algorithm plays a central role in the study of the H-prime ideals of the
algebra of generic quantum matrices.

Convention 3.4 (Deleting-derivations algorithm) Let M = (xi,α) ∈ Mm,p(K ) be a matrix.

As r runs over the set E , we define matrices M (r) := (x (r)
i,α ) ∈ Mm,p(K ) as follows.
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1. When r = (m, p + 1), the entries of the matrix M (m,p+1) are defined by x (m,p+1)
i,α := xi,α

for all (i, α) ∈ [[1, m]] × [[1, p]].
2. Assume that r = ( j, β) ∈ E◦ and that the matrix M (r+) = (x (r+)

i,α ) has already been

defined. The entries x (r)
i,α of the matrix M (r) are defined as follows.

(a) If x (r+)
j,β = 0, then x (r)

i,α = x (r+)
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(b) If x (r+)
j,β �= 0 and (i, α) ∈ [[1, m]] × [[1, p]], then

x (r)
i,α =

⎧
⎨

⎩
x (r+)

i,α − x (r+)
i,β

(
x (r+)

j,β

)−1
x (r+)

j,α if i < j and α < β

x (r+)
i,α otherwise.

We say that M (r) is the matrix obtained from M by applying the standard deleting-deri-

vations algorithm at step r , and x (r+)
j,β is called the pivot at step r .

3. If r = (1, 2), then we set ti,α := x (1,2)
i,α for all (i, α) ∈ [[1, m]] × [[1, p]]. Observe that

x (r)
i,α = x (r+)

i,α for all r ≤ (i, α), and so ti,α = x (i,α)
i,α = x (i,α)+

i,α for all (i, α) ∈ E◦.

When m = p, step 2 of the deleting-derivations algorithm can be written as M ( j,β) =
φ(m, j,β)(M ( j,β)+) in the notation of [4, Sect. III.2.3].

Lemma 3.5 Let ( j, β) ∈ E. If M = (xi,α) ∈ Mm,p(K ) is a q-quantum matrix, then the
matrix M ( j,β) is ( j, β)-q-quantum.

Proof When m = p, this follows from [4, Proposition III.2.3.1] by induction on ( j, β). The
rectangular case is proved in the same manner. It also follows by applying the square case to
a square matrix obtained from M by adjoining suitable zero rows or columns. �	
3.3 H-invariant q-quantum matrices

Before introducing the class of q-quantum matrices that will be of interest for us, let us give
some notation for the quantum minors of a q-quantum matrix and the matrices obtained by
applying the deleting-derivations algorithm.

Notation 3.6 Let M = (xi,α) ∈ Mm,p(K ), and let δ = [I |�]q(M) be a quantum minor of
M . If ( j, β) ∈ E , set

δ( j,β) := [I |�]q(M ( j,β)).

For i ∈ I and α ∈ �, set

δ
( j,β)

î ,̂α
:= [I\{i} | �\{α}]q(M ( j,β)),

while

δ( j,β)
α→γ := [I | � ∪ {γ }\{α}]q(M ( j,β)) (γ ∈ [[1, p]]\�)

and

δ
( j,β)
i→k := [I ∪ {k}\{i} | �]q(M ( j,β)) (k ∈ [[1, m]]\I ).

In [16], the effect of the deleting-derivations algorithm on quantum minors was studied.
Here we restrict our attention to a particular class of q-quantum matrices.
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Definition 3.7 A q-quantum matrix M = (xi,α) ∈ Mm,p(K) is said to be H-invariant if,
for any ( j, β) ∈ E◦ and any quantum minor δ = [i1, . . . , il |α1, . . . , αl ]q(M) of M such that
(il , αl) < ( j, β), we have:

δ( j,β)+ = 0 �⇒ δ( j,β) = 0.

This definition is motivated by the fact proved in [15, Proposition 3.1.4.5] that, if J is
an H-prime ideal of the algebra Oq(Mm,p(K)), then the matrix (Xi,α + J ) (whose entries
are the canonical images of the generators of Oq(Mm,p(K)) modulo the H-prime J ) is an
H-invariant q-quantum matrix. For the convenience of the reader, another proof of this result
is presented in Corollary 3.9.

Also, in the case where K = C, it was proved in [9, Theorem 5.4] that, if J ′ is a Poisson
H-prime ideal of O(Mm,p(C)), then the matrix (Yi,α + J ′) over O(Mm,p(C))/J ′ is an
H-invariant 1-quantum matrix.

3.4 Effect of the deleting-derivations algorithm on quantum minors

The aim of this section is to obtain a characterisation of the quantum minors of M ( j,β)+ that
are equal to zero in terms of the quantum minors of M ( j,β) that are equal to zero, for an
H-invariant q-quantum matrix M . The first step does not require H-invariance.

Proposition 3.8 Let M = (xi,α) ∈ Mm,p(K ) be a q-quantum matrix and r = ( j, β) ∈ E◦.

Set u := x ( j,β)+
j,β and let δ = [i1, . . . , il |α1, . . . , αl ]q(M) be a quantum minor of M with

(il , αl) < ( j, β). Assume that u �= 0, il < j and αh < β < αh+1 for some h ∈ [[1, l]]. (By
convention, αl+1 = p + 1.) Then

δ( j,β)+u = δ( j,β)u + qδ
( j,αh)
αh→β x ( j,αh)

j,αh
. (2)

Proof We proceed by induction on l + 1 − h. If l + 1 − h = 1, then h = l and αl < β. It
follows from [16, Proposition 2.2.8] that

δ( j,β)+u = δ( j,β)u −
l∑

k=1

(−q)(l+1)−kδ
( j,β)
ik→ j x ( j,β)

ik ,β .

Moreover it follows from [16, Proposition 2.2.8] that

δ
( j,β)
ik→ j = δ

( j,β−1)
ik→ j = · · · = δ

( j,αl )
+

ik→ j .

Then we deduce from [6, Propositions 4.1.1 and 4.1.2] that

δ
( j,β)
ik→ j = δ

( j,αl )

îk ,α̂l
x ( j,αl )

j,αl
.

As x ( j,β)
ik ,β = x ( j,β−1)

ik ,β = · · · = x ( j,αl )
ik ,β by construction, we obtain

δ( j,β)+u = δ( j,β)u −
l∑

k=1

(−q)(l+1)−kδ
( j,αl )

îk ,α̂l
x ( j,αl )

j,αl
x ( j,αl )

ik ,β .

As ik < j, αl < β and the matrix M ( j,αl ) is ( j, αl)-q-quantum, x ( j,αl )
j,αl

and x ( j,αl )
ik ,β commute,

so that

δ( j,β)+u = δ( j,β)u −
l∑

k=1

(−q)(l+1)−kδ
( j,αl )

îk ,α̂l
x ( j,αl )

ik ,β x ( j,αl )
j,αl

.
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Hence, by using a q-Laplace expansion [10, Corollary A.5, Equation (A.6)], we obtain

δ( j,β)+u = δ( j,β)u + qδ
( j,αl )
αl→β x ( j,αl )

j,αl
,

as desired.
Now let l + 1 − h > 1, and assume the result holds for smaller values of l + 1 − h. Note

that β < αh+1 ≤ αl . Expand the quantum minor δ( j,β)+ along its last column [10, Corollary
A.5, Equation (A.5)], to get

δ( j,β)+ =
l∑

k=1

(−q)k−l x ( j,β)+
ik ,αl

δ
( j,β)+
îk ,α̂l

.

The value corresponding to l + 1 − h for the minors δ
( j,β)+
îk ,α̂l

is l − h, and so the induction
hypothesis applies. We obtain

δ
( j,β)+
îk ,α̂l

u = δ
( j,β)

îk ,α̂l
u + qδ

( j,αh)

îk ,α̂l
αh→β

x ( j,αh)
j,αh

for k ∈ [[1, l]]. As x ( j,β)+
ik ,αl

= x ( j,β)
ik ,αl

= · · · = x ( j,αh)
ik ,αl

by construction, we obtain

δ( j,β)+u =
l∑

k=1

(−q)k−l x ( j,β)
ik ,αl

δ
( j,β)

îk ,α̂l
u + q

l∑

k=1

(−q)k−l x ( j,αh)
ik ,αl

δ
( j,αh)

îk ,α̂l
αh→β

x ( j,αh)
j,αh

= δ( j,β)u + qδ
( j,αh)
αh→β x ( j,αh)

j,αh
,

by two final q-Laplace expansions [10, Corollary A.5, Equation (A.5)]. This concludes the
induction step. �	
Corollary 3.9 Let J be an H-prime ideal of the algebra R = Oq(Mm,p(K)). Then the
matrix (Xi,α + J ) ∈ Mm,p(R/J ) is an H-invariant q-quantum matrix.

Proof Set xi,α = Xi,α + J for all (i, α) and M = (xi,α) ∈ Mm,p(FJ ), where FJ denotes
the skew-field of fractions of the noetherian domain R/J . Clearly, M is a q-quantum matrix.
Let ( j, β) ∈ E◦ and let δ = [i1, . . . , il |α1, . . . , αl ]q(M) be a quantum minor of M such

that (il , αl) < ( j, β). Assume that δ( j,β)+ = 0. We need to prove that δ( j,β) = 0. If
δ( j,β) = δ( j,β)+ , then there is nothing to do; so assume that δ( j,β) �= δ( j,β)+ . In this case,

it follows from [16, Proposition 2.2.8] that u = t j,β = x ( j,β)+
j,β �= 0 and il < j while

αh < β < αh+1 for some h ∈ [[1, l]]. Thus, Proposition 3.8 implies that

δ( j,β)+u = δ( j,β)u + qδ
( j,αh)
αh→β x ( j,αh)

j,αh
.

Hence,

0 = δ( j,β)u + qδ
( j,αh)
αh→β t j,αh .

In order to conclude, observe that each x ( j,β)
i,α = ti,α + Qi,α where the element Qi,α lies

in the algebra

L := K〈t±1
k,γ | (k, γ ) < ( j, β) and tk,γ �= 0〉,

and that each x ( j,αh)
i,α = ti,α + Q′

i,α where

Q′
i,α ∈ K〈t±1

k,γ | (k, γ ) < ( j, αh) and tk,γ �= 0〉 ⊆ L .
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(This can be proved by an easy induction, similar to [16, Lemme 3.5.4].) Hence, δ( j,β) and
δ
( j,αh)
αh→β t j,αh both belong to L . Finally, we note that [17, Theorem 3.7], which was proved for

the case K = C, holds for the general coefficient field K (with the same proof). This result
implies that the powers of u = t j,β are linearly independent over L . It follows that δ( j,β) = 0,
as desired. �	
We now restrict our attention to the case where M is an H-invariant q-quantum matrix. In
this case, we deduce from [16, Proposition 2.2.8] and Proposition 3.8 the following charac-
terisation of the quantum minors of M ( j,β)+ that are equal to zero in terms of the quantum
minors of M ( j,β) that are equal to zero.

Proposition 3.10 Let M = (xi,α) ∈ Mm,p(K ) be an H-invariant q-quantum matrix and

( j, β) ∈ E◦. Set u := x ( j,β)+
j,β . Let δ = [i1, . . . , il |α1, . . . , αl ]q(M) be a quantum minor of

M with (il , αl) < ( j, β).

1. Assume that u = 0. Then δ( j,β)+ = 0 if and only if δ( j,β) = 0.
2. Assume that u �=0. If il = j , or if β ∈ {α1, . . . , αl}, or if β < α1, then δ( j,β)+ = 0 if and

only if δ( j,β) =0.
3. Assume that u �=0, il < j and αh < β < αh+1 for some h ∈ [[1, l]]. Then δ( j,β)+ = 0 if

and only if δ( j,β) = 0 and either δ
( j,αh)
αh→β =0 or x ( j,αh)

j,αh
=0.

Proof (1) and (2) follow from [16, Proposition 2.2.8]. (3) follows from the previous propo-
sition and the fact that M is H-invariant. �	

4 Poisson H-primes of O(Mm, p(C)) versus H-primes in Oq(Mm, p(K))

We are now in position to study the quantum minors that belong to a given H-prime in the
algebra R = Oq(Mm,p(K)).

Associated to each m × p Cauchon diagram C is an H-prime JC of R determined as
follows [6]. Via the deleting-derivations algorithm, R is connected to a quantum affine space
R with generators Ti,α for (i, α) ∈ [[1, m]] × [[1, p]], and there is a canonical embedding
ϕ : Spec(R) → Spec(R). The set {Ti,α | (i, α) ∈ C} generates an H-prime ideal of R,
and JC is the inverse image of this H-prime under ϕ. Moreover, the rule C �→ JC gives a
bijection from Cm,p onto H- Spec(R). (See [17, Section 2] for a summary of the details.) It
is the reverse connection – going from JC back to C—that is important for the proof of the
next theorem. To describe it, set xi,α := Xi,α + JC for (i, α) ∈ [[1, m]] × [[1, p]], consider
the q-quantum matrix MC := (xi,α) ∈ Mm,p(R/JC ), and apply the deleting-derivations
algorithm to MC . For all (i, α), (the K-version of) [17, Theorem 3.7] shows that

x (1,2)
i,α = 0 ⇐⇒ (i, α) ∈ C. (3)

Consequently, x (i,α)
i,α = 0 ⇐⇒ (i, α) ∈ C (recall that x (1,2)

i,α = x (i,α)
i,α ).

Associated to C is also a Poisson H-prime J ′
C of O(Mm,p(C)) which can be described

in an analogous fashion. However, it is given in [9, Section 5] using the (Poisson) restoration
algorithm (the inverse of the deleting-derivations algorithm), in the following way. First, let
AC denote the polynomial ring

C[ti,α | (i, α) ∈ ([[1, m]] × [[1, p]])\C],
and set ti,α = 0 ∈ AC for (i, α) ∈ C . A specific Poisson bracket is defined on AC , and the res-
toration algorithm is applied to the matrix (ti,α) ∈ Mm,p(AC ). This leads to a Poisson algebra
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A′
C := A(m,p+1)

C with generators yi,α , such that there is a Poisson algebra homomorphism
ϕC : O(Mm,p(C)) → A′

C sending Yi,α �→ yi,α for all (i, α). The Poisson H-prime ideal
J ′

C associated to C is defined as J ′
C := ker(ϕC ), and we identify A′

C with O(Mm,p(C))/J ′
C .

The rule C �→ J ′
C defines a bijection from Cm,p onto H-PSpec(O(Mm,p(C))).

Application of the (Poisson) deleting-derivations algorithm [9, Convention B.2] to the
matrix M ′

C := (yi,α) ∈ Mm,p(A′
C ) leads back to the matrix (ti,α), so that ti,α = y(1,2)

i,α for
all (i, α) ∈ [[1, m]] × [[1, p]]. In view of the definition of the ti,α , we thus have

y(1,2)
i,α = 0 ⇐⇒ (i, α) ∈ C. (4)

Consequently, just as with (3), y(i,α)
i,α = 0 ⇐⇒ (i, α) ∈ C .

Theorem 4.1 Let C be an m × p Cauchon diagram. Let JC be the corresponding H-prime
in Oq(Mm,p(K)), and J ′

C the corresponding Poisson H-prime in O(Mm,p(C)).
Then, a quantum minor [I |�]q belongs to JC if and only if the corresponding minor [I |�]

belongs to J ′
C .

Proof Define the matrix MC := (xi,α) as above, and observe that a quantum minor δ belongs
to JC if and only if it corresponds to a quantum minor of MC that is equal to zero. Moreover,
it follows from Corollary 3.9 that MC is an H-invariant q-quantum matrix. In particular,
Proposition 3.10 applies to MC .

Similarly, define the matrix M ′
C := (yi,α) as above, and observe that a minor δ belongs

to J ′
C if and only if it corresponds to a minor of M ′

C that is equal to zero. Moreover, [9,
Proposition 3.15] applies to M ′

C .
So it is sufficient to prove that a quantum minor of MC is equal to zero if and only if the

corresponding minor of M ′
C is equal to zero.

We prove, by induction on ( j, β) ∈ E , that a quantum minor δ( j,β) := [I |�]q(x ( j,β)
i,α ) of

M ( j,β)
C , where I = {i1, . . . , il} and � = {α1, . . . , αl} with (il , αl) < ( j, β), is equal to zero

if and only if the corresponding minor �( j,β) := [I |�](y( j,β)
i,α ) of M ′

C
( j,β) is equal to zero.

The case ( j, β) = (1, 2) follows from the fact that we start with the same Cauchon dia-
gram. Then the induction step follows easily from the fact that one can apply Proposition 3.10
to MC and [9, Proposition 3.15] to M ′

C . Note that the induction step mimics the proof of
[9, Theorem 3.16]. However, for the convenience of the reader we provide details.

We prove that δ( j,β) = 0 implies that �( j,β) = 0. The reverse implication is proved
similarly.

Assume first that ( j, β) = (1, 2). In this case, we have to prove that if x (1,2)
1,1 = 0, then

y(1,2)
1,1 = 0. Assume that x (1,2)

1,1 = 0. Then (1, 1) ∈ C by (3), whence it follows from (4) that

y(1,2)
1,1 = 0, as desired.

Now let ( j, β) ∈ E◦, and assume the result proved at step ( j, β). Suppose that δ( j,β)+ = 0.
In order to prove that �( j,β)+ = 0, we consider several cases. Keep in mind that t j,β =
x ( j,β)

j,β = x ( j,β)+
j,β .

• Assume that (il , αl) = ( j, β). We distinguish between two cases.

•• If t j,β = x ( j,β)
j,β = 0, then ( j, β) ∈ C by (3). Hence, it follows from (4) that

y( j,β)
j,β = 0, and so we deduce from [9, Proposition 3.10] that �( j,β)+ = 0, as

required.
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•• If t j,β = x ( j,β)
j,β �= 0, then it follows from [6, Proposition 4.1.2] that 0 = δ( j,β)+ =

δ
( j,β)

ĵ,β̂
x ( j,β)

j,β , so that δ
( j,β)

ĵ,β̂
= 0. Hence, it follows from the induction hypothesis that

�
( j,β)

ĵ,β̂
= 0. As �( j,β)+ = �

( j,β)

ĵ ,β̂
y( j,β)

j,β , by [9, Proposition 3.10], it follows that

�( j,β)+ = 0, as required.

• Assume that (il , αl) < ( j, β). We distinguish between three cases (corresponding to the
three cases of Proposition 3.10).

•• Assume that t j,β = 0. As we are assuming that δ( j,β)+ = 0, it follows from Proposi-

tion 3.10 that δ( j,β) = δ( j,β)+ = 0. Hence, we deduce from the induction hypothesis
that �( j,β) = 0. On the other hand, as t j,β = 0, we have ( j, β) ∈ C and so y( j,β)

j,β = 0.

Thus, it follows from [9, Proposition 3.15] that �( j,β)+ = �( j,β) = 0, as desired.
•• Assume that t j,β �= 0, and that il = j , or that β ∈ {α1, . . . , αl}, or that β < α1.

As we are assuming that δ( j,β)+ = 0, it follows from Proposition 3.10 that δ( j,β) =
δ( j,β)+ = 0. Hence, we deduce from the induction hypothesis that �( j,β) = 0. On
the other hand, as t j,β �= 0, we have ( j, β) /∈ C and so y( j,β)

j,β �= 0. Moreover, as
il = j , or β ∈ {α1, . . . , αl}, or β < α1, it follows from [9, Proposition 3.15] that
�( j,β)+ = �( j,β) = 0, as desired.

•• Assume that t j,β �= 0 and il < j , while αh < β < αh+1 for some h ∈ [[1, l]]. Then,

as in the previous case, we have y( j,β)
j,β �= 0. Moreover, it follows from Proposition

3.10 that δ( j,β)+ = 0 implies δ( j,β) = 0 and either δ
( j,αh)
αh→β = 0 or x ( j,αh)

j,αh
= 0. Hence,

we deduce from the induction hypothesis that �( j,β) = 0 and either �
( j,αh)
αh→β = 0

or y( j,αh)
j,αh

= 0. Finally, it follows from [9, Proposition 3.15] that �( j,β)+ = 0, as
desired. �	

Theorem 4.2 Let F be a family of minors in the coordinate ring O(Mm,p(C)), and let Fq

be the corresponding family of quantum minors in Oq(Mm,p(K)). Then the following are
equivalent:
1. The totally nonnegative cell associated to F in M≥0

m,p(R) is non-empty.
2. F is the set of all minors that vanish on the closure of some H-orbit of symplectic leaves

in Mm,p(C).
3. Fq is the set of all quantum minors that belong to some H-prime in Oq(Mm,p(K)).

Proof The equivalence of (1) and (2) is proved in [9, Theorem 6.2].
On the other hand, as discussed in Sect. 2.2 above, the Poisson H-primes in O(Mm,p(C))

are in bijection with the H-orbits of symplectic leaves in Mm,p(C), and the minors that
belong to a Poisson H-prime ideal are exactly those that vanish on the closure of the corre-
sponding H-orbit of symplectic leaves in Mm,p(C). Thus, (2) holds if and only if F is the
set of all minors that belong to some Poisson H-prime ideal in O(Mm,p(C)). The remaining
equivalence, (2)⇐⇒(3), now follows from Theorem 4.1. �	

The families of minors that vanish on the closure of an H-orbit of symplectic leaves
have been explicitly described in [9, Theorem 2.11]. They are parametrised by the set S of
restricted permutations. Theorem 4.2 shows that the quantum analogues of these families
provide the families of quantum minors that belong to H-primes in Oq(Mm,p(K)).

Let us now be more precise. In [9, Definition 2.6] a family of minors M(w) is defined for
each w ∈ S. The corresponding definition for families of quantum minors is given below.

123



44 K. R. Goodearl et al.

Definition 4.3 For w ∈ S, define Mq(w) to be the set of those quantum minors [I |�]q of
Oq(Mm,p(K)), with I ⊆ [[1, m]] and � ⊆ [[1, p]], that satisfy at least one of the following
conditions.

1. I �≤ wm◦ w(L) for all L ⊆ [[1, p]] ∩ w−1[[1, m]] such that |L| = |I | and L ≤ �.
2. m + � �≤ wwN◦ (L) for all L ⊆ [[1, m]] ∩ wN◦ w−1[[m + 1, N ]] such that |L| = |�| and

L ≤ I .
3. There exist 1 ≤ r ≤ s ≤ p such that |� ∩ [[r, s]]| > |[[r, s]]\w−1[[m + r, m + s]]|.
4. There exist 1 ≤ r ≤ s ≤ m such that |I ∩ [[r, s]]| > |wN◦ [[r, s]]\w−1wm◦ [[r, s]]|.

We are now in position to establish the following result which answers positively a con-
jecture of Brown, Yakimov and the first named author in the case where char(K) = 0 and q
is transcendental over Q.

Theorem 4.4 1. Let J be an H-prime ideal of Oq(Mm,p(K)). Then there exists w ∈ S
such that Mq(w) is exactly the set of those quantum minors that belong to J .

2. Assume that char(K) = 0 and q is transcendental over Q. Then we have:
H-Spec(Oq(Mm,p(K))) = {〈Mq(w)〉 | w ∈ S}.

Proof (1) is a consequence of Theorem 4.2 and [9, Theorem 2.11]. Then (2) follows from
(1) and Theorem 1.5. �	

A different approach to the second part of this result, applicable to many quantized coor-
dinate algebras, has been recently and independently developed by Yakimov in [23] (see [23,
Theorem 5.5]).
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