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Abstract In this paper, we investigate the essential approximate point spectrum and the
essential defect spectrum of a 2×2 block operator matrix on a Banach space. Furthermore, we
apply the obtained results to two-group transport operators in the Banach space L p([−a, a]×
[−1, 1])× L p([−a, a] × [−1, 1]), a > 0, p ≥ 1.

1 Introduction

In this article, we are concerned with the essential spectra of operators defined by a 2 × 2
block operator matrix,

A0 :=
(

A B

C D

)
. (1.1)

In general, the operators occurring in the representation (1.1) are unbounded. A acts on the
Banach space X and has the domain D(A), D is defined on D(D) and acts on the Banach
space Y and the intertwining operators B and C are defined on the domains D(B) and D(C),
respectively, and act between these spaces. Then the operator A0 is defined on the domain
[D(A)∩D(C)]×[D(D)∩D(B)]. Note that, the operator A0 need to be closed, or the domain
of this operator can be determined by an additional relation between the components x and
y of its elements. In [2], it is shown under some conditions that A0 is closable and its closure
will be denoted by the operator A.

Let X and Y be two Banach spaces. We denote by L(X, Y ) (resp. C(X, Y )) the set of
all bounded (resp. closed, densely defined) linear operators from X into Y and we denote
by K(X, Y ) the subspace of compact operators from X into Y. For T ∈ C(X, Y ), we write
D(T ) ⊂ X for the domain, N (T ) ⊂ X for the null space and R(T ) ⊂ Y for the range of T .
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776 S. Charfi, A. Jeribi

The nullity, α(T ), of T is defined as the dimension of N (T ) and the deficiency, β(T ), of T
is defined as the codimension of R(T ) in Y.

Let σ(T ) (resp. ρ(T )) denote the spectrum (resp. the resolvent set) of T . The set of upper
semi-Fredholm operators is defined by

�+(X, Y ) := {T ∈ C(X, Y ) such that α(T ) < ∞ and R(T ) is closed in Y}
and the set of lower semi-Fredholm operators is defined by

�−(X, Y ) := {T ∈ C(X, Y ) such that β(T ) < ∞ and R(T ) is closed in Y}.
�(X, Y ) := �+(X, Y )∩�−(X, Y ) denote the set of Fredholm operators from X into Y and
�±(X, Y ) := �+(X, Y ) ∪ �−(X, Y ) the set of semi-Fredholm operators from X into Y .
While the number i(T ) := α(T )− β(T ) is called the index of T , for T ∈ �±(X, Y ).
If X = Y then L(X, Y ), C(X, Y ), K(X, Y ), �(X, Y ), �+(X, Y ), �−(X, Y ) and �±(X, Y )
are replaced by L(X), C(X), K(X), �(X), �+(X), �−(X) and �±(X), respectively. A
complex number λ is in �+T , �−T , �±T or �T if λ− T is in �+(X), �−(X), �±(X) or
�(X), respectively.

In this work, we are concerned with the following essential spectra:

σeg(T ) := {λ ∈ C such that λ− T /∈ �+(X)} := C\�+T ,

σew(T ) := {λ ∈ C such that λ− T /∈ �−(X)} := C\�−T ,

σess(T ) := C\ρess(T ),

σb(T ) := σ(T )\σd(T ),

σeap(T ) := C\ρeap(T ),

σeδ(T ) := C\ρeδ(T ),

where ρess(T ) := {λ ∈ �T such that i(λ− T ) = 0} and σd(T ) is the set of isolated points
λ of the spectrum such that the corresponding Riesz projectors Pλ are finite dimensional. The
characterization of the sets ρeap(.) and ρeδ(.) is given by Jeribi and Moalla [20] as follows

ρeap(T ) := {λ ∈ C such that λ− T ∈ �+(X) and i(λ− T ) ≤ 0} ,
and

ρeδ(T ) := {λ ∈ C such that λ− T ∈ �−(X) and i(λ− T ) ≥ 0} .
We call σeg(.) and σew(.) the Gustafson and Weidmann essential spectra [12] and σess(.)

the Schechter essential spectrum [12,14–16,26,27]. σeap(.) is the essential approximate
point spectrum [20,24,25] and σeδ(.) is the essential defect spectrum [20,25,28]. σb(.) is
the Browder spectrum [18]. In the next, we will denote by ρb(.) := C\σb(.) the Browder
resolvent set.

In recent years, a number of papers have been devoted to study the essential spectra of
block operator matrices acting in a product of Banach spaces. The situation where the
domains of the diagonal operators satisfy D(A) ⊂ D(C) and D(B) ⊂ D(D) was consi-
dered by the authors in [1,30] to study the Wolf essential spectrum [34]. They have assu-
med the compactness condition for the operators (λ − A)−1 (see [1]) and C(λ − A)−1 and
((λ− A)−1 B)∗ (see [30]) for some (and hence for all) λ in the resolvent set ρ(A), whereas in
the paper of [4], it is assumed that only (λ− A)−1, λ ∈ ρ(A), belongs to a nonzero two-sided
closed ideal I(X) ⊂ F(X) of L(X) where F(X) is the set of Fredholm perturbations (see
Sect. 2). Thus, Moalla et al. [19] extend the obtained results into a large class of operators
and describe many essential spectra of A and they apply their results to describe the essential
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The essential spectra of some matrix operators 777

spectra of two-group transport operators with general boundary conditions in L p-spaces. But,
to determine the essential spectra of A, they must absolutely know the one of the entry A of
the matrix (1.1). In [2], A. Bátkai, P. Binding, A. Dijksma, R. Hryniv and H. Langer give a
generalization of these results and describe the essential spectrum of A. They have assumed
that D(A) ⊂ D(C) and that the intersection of the domains of the operators B and D is
sufficiently large. Moreover, the domains of the operator matrix is defined by an additional
relation of the form �X (x) = �Y (y) between the two components of its elements. In fact,
they have supposed that the operator C(A1 − λ)−1 is compact for some (and hence for all)
λ in the resolvent set of A1 where A1 := A|D(A)∩N (�X ). However, in the classical transport
theory, in L1-spaces this operator is weakly compact (see Sect. 4). Therefore, their results
cannot be applied in our work. From this problem, we have the idea to extend these results and
we concern ourselves exclusively with the investigation of the essential approximate σeap(A)
and the essential defect spectrum σeδ(A). Indeed, the use of the Browder resolvent and the
lower-upper factorization given by [18] allow us to formulate and give some supplements to
many results presented in [2]. By comparison with the papers of [4,19], we mention that we
can determine the essential spectra of matrix A without having the essential spectra of the
operator A, but we know only the one of its restriction A1 and we will give in our work an
application in transport theory which is more general than the one provided in [19].

This paper is divided into four sections. In the next section, we give some preliminary
results and notations used in the sequel of the paper. In Sect. 3 we introduce the assumptions
(H1)–(H8) to be imposed on the entries of the matrix (1.1) and we give a characterization of
its essential approximate point spectrum and its essential defect spectrum. In the last section,
we apply the obtained results to describe σeap(.) and σeδ(.) of a class of transport equations
acting in the Banach space X p × X p, 1 ≤ p < ∞, where

X p := L p([−a, a] × [−1, 1]), a > 0.

We will consider the following operator

A = T + K,

where

T ψ =
⎛
⎜⎝−ξ ∂ψ1

∂x
− σ1(ξ)ψ1 0

0 −ξ ∂ψ2

∂x
− σ2(ξ)ψ2

⎞
⎟⎠ =

(
T1 0

0 T2

) (
ψ1

ψ2

)
(1.2)

and

K =
(

0 K12

K21 K22

)

with K12, K21 and K22 are bounded linear operators defined on X p by

⎧⎪⎨
⎪⎩

Ki j : X p −→ X p

ψ −→
∫ 1

−1
κi j (x, ξ, ξ

′)ψ(x, ξ ′) dξ ′ (1.3)
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and the kernels κ12(., ., .), κ21(., ., .) and κ22(., ., .) are assumed to be measurable. The
operator T1 is defined by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 : D(T1) ⊆ X p −→ X p

ψ −→ T1ψ(x, ξ) = −ξ ∂ψ
∂x
(x, ξ)− σ1(ξ)ψ(x, ξ)

D(T1) =
{
ψ ∈ X p such that ξ

∂ψ

∂x
∈ X p

}

and T2 is the streaming operator defined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T2 : D(T2) ⊆ X p −→ X p

ψ −→ T2ψ(x, ξ) = −ξ ∂ψ
∂x
(x, ξ)− σ2(ξ)ψ(x, ξ)

D(T2) =
{
ψ ∈ X p such that ξ

∂ψ

∂x
∈ X p and ψ i = H(ψ0)

}
,

where σ(.) ∈ L∞(−1, 1), ψ0, ψ i represent the outgoing and the incoming fluxes related
by the boundary operator H . The function ψ(x, ξ) represents the number density of gas
particles having the position x and the direction cosine of propagation ξ . The variable ξ may
be thought of as the cosine of the angle between the velocity of particles and the x-direction.
The function σ j (.), j = 1, 2, is a measurable function called the collision frequency.

2 Notations and preliminaries results

In this section, we recall some definitions and we give some lemmas that we will need in the
sequel.

Definition 2.1 Let X and Y be two Banach spaces and let F ∈ L(X, Y ).

(i) F is called a Fredholm perturbation if T + F ∈ �(X, Y ) whenever T ∈ �(X, Y ).
(ii) F is called an upper (resp. lower) semi-Fredholm perturbation if T + F ∈ �+(X, Y )

(resp. �−(X, Y )) whenever T ∈ �+(X, Y ) (resp. �−(X, Y )).

The sets of Fredholm, upper and lower semi-Fredholm perturbations are denoted by
F(X, Y ), F+(X, Y ) and F−(X, Y ), respectively. If in Definition 2.1 we replace �(X, Y ),
�+(X, Y ) and �−(X, Y ) by �b(X, Y ) := �(X, Y ) ∩ L(X, Y ),�b+(X, Y ) := �+(X, Y ) ∩
L(X, Y ) and �b−(X, Y ) := �−(X, Y ) ∩ L(X, Y ) we obtain the sets Fb(X, Y ), Fb+(X, Y )
and Fb−(X, Y ). These classes of operators are introduced and investigated by Gohberg et al.
[10]. Recently, it is shown in [3] that Fb(X, Y ), Fb+(X, Y ) and Fb−(X, Y ) are closed sub-
sets of L(X, Y ) and if X = Y, then Fb(X) := Fb(X, X), Fb+(X) := Fb+(X, X) and
Fb−(X) := Fb−(X, X) are closed two-sided ideals of L(X).

Proposition 2.1 [3, Theorem 2.1] Let X, Y and Z be three Banach spaces.

(i) If the set �b(Y, Z) is not empty, then

F ∈ Fb+(X, Y ), T ∈ L(Y, Z) imply T F ∈ Fb+(X, Z).

F ∈ Fb−(X, Y ), T ∈ L(Y, Z) imply T F ∈ Fb−(X, Z).
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The essential spectra of some matrix operators 779

(ii) If the set �b(X, Y ) is not empty, then

F ∈ Fb+(Y, Z), T ∈ L(X, Y ) imply FT ∈ Fb+(X, Z).

F ∈ Fb−(Y, Z), T ∈ L(X, Y ) imply FT ∈ Fb−(X, Z).

Proposition 2.2 [9,10,27]

(i) �+T , �−T and �T are open.
(ii) i(λ− T ) is constant on any component of �T .

(iii) α(λ − T ) and β(λ − T ) are constant on any component of �T except on a discrete
set of points at which they have larger values.

Remark 2.1 Let A ∈ C(X), then it follows from the closedness of A that D(A) endowed
with the graph norm ‖.‖A (i.e., ‖.‖A := ‖x‖ + ‖Ax‖) is a Banach space. Let X A denote
(D(A), ‖.‖A). In this new space the operator A satisfies ‖Ax‖ ≤ ‖x‖A and consequently A
is a bounded operator from X A into X. If Â denotes the restriction of A to D(A), we observe
that α( Â) = α(A) and β( Â) = β(A).

Proposition 2.3 Let A be a closed operator in a complex Banach space X with nonempty
resolvent set. If �A is connected, then

σeg(A) = σeap(A) and σew(A) = σeδ(A).

Proof It easy to check that σeg(A) ⊂ σeap(A). For the second inclusion we takeµ ∈ ρeg(A),
then µ ∈ �+A = �A ∪ (�+A\�A). Hence, we will discuss these two cases:

1st case If µ ∈ �A then i(A − µ) = 0.
Indeed, let µ0 ∈ ρ(A), then µ0 ∈ �A and i(A − µ0) = 0. It follows from Proposi-

tion 2.2 (i i) that i(A −µ) is constant on any component of�A, therefore ρ(A) ⊆ �A, then
i(A − µ) = 0 for all µ ∈ �A. This shows that µ ∈ ρeap(A).

2nd case If µ ∈ (�+A\�A), then

α(A − µ) < ∞ and β(A − µ) = +∞.

So, i(A − µ) = −∞ < 0.
Hence, we obtain the second inclusion from the above two cases. Reasoning in the same

way, we get the second equality. �
Lemma 2.1 [18, Lemma 1] Let A be a closed operator in a complex Banach space X with
nonempty resolvent set. For λ, µ ∈ ρb(A), we have the resolvent identity

Rb(A, λ)− Rb(A, µ) = (λ− µ)Rb(A, λ)Rb(A, µ)+ Rb(A, λ)S(λ, µ)Rb(A, µ),

where S(., .) is a finite rank operator with the following expression

S(λ, µ) := [
(A − (λ+ 1)) Pλ − (A − (µ+ 1)) Pµ

]
.

Lemma 2.2 [18, Lemma 2] Let X and Y be two complex Banach space, B : Y −→ X and
C : X −→ Y linear operators. Then,

(i) Rb(A, µ)B is closable for some µ ∈ ρb(A) if and only if it is closable for all such µ.
(ii) C is A-bounded if and only if C Rb(A, µ) is bounded for some (or every) µ ∈ ρb(A).

(iii) If B and C satisfy the conditions (i) and (i i), respectively, and B is densely
defined, then C Rb(A, λ)S(λ, µ)Rb(A, µ), Rb(A, λ)S(λ, µ)Rb(A, µ)B and
C Rb(A, λ)S(λ, µ)Rb(A, µ)B are operators of finite rank for any λ, µ ∈ ρb(A).
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780 S. Charfi, A. Jeribi

Definition 2.2 Let X and Y be two Banach spaces. An operator A ∈ L(X, Y ) is said to be
weakly compact if A(B) is relatively weakly compact in Y for every bounded subset B ⊂ X.

The family of weakly compact operators from X into Y is denoted by W(X, Y ). If X = Y
the family of weakly compact operators on X, W(X) := W(X, X) is a closed two-sided
ideal of L(X) containing K(X) (see [8,11]).

Definition 2.3 A Banach space X is said to have the Dunford–Pettis property (for short
property DP) if for each Banach space Y every weakly compact operator T : X −→ Y takes
weakly compact sets in X into norm compact sets of Y. For example it is well known that
any L1-space has the property DP [7].

Definition 2.4 Let X be a Banach space. An operator S ∈ L(X) is called strictly singu-
lar if, for every infinite-dimensional subspace M of X , the restriction of S to M is not a
homeomorphism.

Let S(X) denote the set of strictly singular operators on X .
The concept of strictly singular operators was introduced in the pioneering paper by

Kato [17] as a generalization of the notion of compact operators. For a detailed study of
the properties of strictly singular operators we refer to [11,17]. Note that S(X) is a closed
two-sided ideal of L(X) containing K(X). If X is a Hilbert space then S(X) = K(X).
The class of weakly compact operators in L1-spaces (resp. C()-spaces with  a compact
Haussdorff space) is nothing else than the family of strictly singular operators on L1-spaces
(resp. C()-spaces) (see [23, Theorem 1]).

Let X be a Banach space. If N is a closed subspace of X , we denote by πN the quotient
map X −→ X/N . The codimension of N , codim(N ), is defined to be the dimension of the
vector space X/N .

Definition 2.5 Let X be a Banach space. An operator S ∈ L(X) is said to be strictly
cosingular if there exists no closed subspace N of X with codim(N ) = ∞ such that
πN S : X −→ X/N is surjective.

Let CS(X) denote the set of strictly cosingular operators on X . This class of operators was
introduced by Pelczynski [23], it forms a closed two-sided ideal of L(X) [31].

Definition 2.6 We say that a Banach space X is weakly compact generating (w.c.g.) if the
linear span of some weakly compact subset is dense in X. For more details and results see [6].
In particular, all separable and all reflexive Banach spaces are w.c.g. as well as L1(, dµ) if
(,µ) is σ -finite. It is proved in [32] that if X is a w.c.g., then

F+(X) = S(X) and F−(X) = CS(X).

Remark 2.2 Let (,�,µ) be a positive measure space and let X p denote the spaces
L p(, dµ) with 1 ≤ p < ∞. Since the spaces X p, 1 ≤ p < ∞, are w.c.g., then we
can deduce from what precedes that

K(X p) ⊂ F+(X p) ∩ F−(X p).

Definition 2.7 We say that X is subprojective if given any closed infinite dimensional sub-
space M of X , there exists a closed infinite dimensional subspace N contained in M and
a continuous projection from X onto N . For example, the space L p (2 ≤ p < ∞) is
subprojective [33].
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The essential spectra of some matrix operators 781

Definition 2.8 We say that X is superprojective if every subspace V having infinite codi-
mension in X is contained in a closed subspace W having infinite codimension in X as it
exists a bounded projection from X to W. For example, the spaces L p (1 < p ≤ 2) are
superprojective [33].

Let X be a w.c.g Banach space. It is proved in [29] that if X is superprojective (resp.
subprojective), then S(X) ⊂ CS(X) (resp. CS(X) ⊂ S(X)). Accordingly, we have the
following result:

Proposition 2.4 Let X be a w.c.g Banach space, then

(i) If X is superprojective, then S(X) ⊂ F+(X) ∩ F−(X).
(ii) If X is subprojective, then CS(X) ⊂ F+(X) ∩ F−(X).

3 The main result

Let X , Y and Z be three Banach spaces. In this paper, we consider the linear operators �X

from X into Z and �Y from Y into Z , therefore we define in the Banach space X × Y the
operator A0 as follows:

A0 :=
(

A B

C D

)
,

D(A0) :=
{(

x
y

)
such that x ∈ D(A), y ∈ D(D) ∩ D(B) and �X x = �Y y

}
.

In what follows, we will assume that the following conditions hold:

(H1) The operator A is densely defined and closable.
It follows from Remark 2.1 that D(A), the domain of closure A of A, coincides with
the Banach space X A which is contained in X .

(H2) D(A) ⊂ D(�X ) ⊂ X A and �X is bounded as a mapping from X A into Z .
(H3) The set D(A) ∩ N (�X ) is dense in X and the resolvent set of the restriction

A1 := A|D(A)∩N (�X ) is not empty, i.e. ρ(A1) �= ∅.
(H4) D(A) ⊂ D(C) ⊂ X A and C is A1-bounded.

Remark 3.1 It follows from (H3) that A1 is a closed operator in the Banach space X A with
nonempty resolvent set. For λ ∈ ρb(A1), let Pλ denotes the corresponding finite rank Riesz
projector with range and kernel denoted by Rλ and Nλ, respectively.

Let A1λ the operator defined by:

A1λ = (A1 − λ)(I − Pλ)+ Pλ

because D(A1) is Pλ−invariant, A1λ has the same domain of A1 with respect to the decom-
position X = Rλ ⊕ Nλ, we can write A1λ = (A1 − λ|Nλ ) ⊕ I. Since σ(A1 − λ|Nλ) =
σ(A1 − λ)\{0}, A1λ has bounded inverse denoted by Rb(A1, λ) and called the Browder
resolvent. This clearly extends the usual resolvent (A1 − λ)−1 from ρ(A1) to ρb(A1).

Lemma 3.1 Under the assumptions (H1)–(H3), for any λ ∈ ρb(A1), the following decom-
position holds:

D(A) = D(A1)⊕ N (Aλ), (3.1)

where Aλ is the operator defined on D(A) by: Aλ := (A − λ)(I − Pλ)+ Pλ.
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Proof Let λ ∈ ρb(A1). It is clear that the sum (3.1) is contained in D(A) and it follows that

D(A1) ∩ N (Aλ) = N (A1λ).

Since the operator A1λ is invertible, then N (A1λ) = {0} and we get

D(A1) ∩ N (Aλ) = {0}.
For any f ∈ D(A), we set

g = Rb(A1, λ)Aλ f ∈ D(A1).

Then, f − g ∈ N (Aλ) and f = g + f − g ∈ D(A1)+ N (Aλ). �

Lemma 3.2 Under the assumptions (H1)–(H3), for any λ ∈ ρb(A1), the restriction

�λ := �X |N (Aλ) (3.2)

is injective and
R(�λ) = �X (N (Aλ)) = �X (D(A)) := Z1 (3.3)

does not depend on λ.

Proof Let λ ∈ ρb(A1). The injectivity of the operator �λ follows from the fact that:

N (�λ) := N (Aλ) ∩ N (�X ) = N (A1λ) = {0}.
It follows from the definition of the operator�λ that his range coincides with�X (N (Aλ)).

Therefore, it follows from (H3) that �X (D(A1)) = {0}. Hence, the use of Lemma 3.1 and
the linearity of the operator �X make us conclude that �X (N (Aλ)) = �X (D(A)). Hence
R(�λ) does not depend on λ. �

In the following, for λ ∈ ρb(A1), the inverse Kλ of the operator �λ will play an important
role:

Kλ := (
�X |N (Aλ)

)−1 : Z1 −→ N (Aλ) ⊂ X.

In the other words, Kλz = x means that x ∈ D(A) and

Aλx = 0, (3.4)

�X x = z. (3.5)

Lemma 3.3 If λ1, λ2 ∈ ρb(A1), then

Kλ1 − Kλ2 = Rb(A1, λ1) [(λ1 − λ2)+ S(λ1, λ2)] Kλ2 ,

where S is the finite rank operator defined by

S(λ1, λ2) := [
(A1 − (λ1 + 1)) Pλ1 − (A1 − (λ2 + 1)) Pλ2

]
.

If Kλ is closable for at least one λ ∈ ρb(A1), then it is closable for all such λ, and the
above relation holds with Kλ j replaced by the closures K λ j , j = 1, 2.
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The essential spectra of some matrix operators 783

Proof Let z ∈ Z1 and set x = x1 − x2 where x j = Kλ j z, j = 1, 2. The use of Eq. (3.4)
shows that

Aλ1 x = − Aλ1 x2

= − [
(A − λ1)(I − Pλ1)+ Pλ1

]
x2

= − [
(A − λ2)(I − Pλ1)+ (λ2 − λ1)(I − Pλ1)+ Pλ1

]
x2

= [
(A − (λ1 + 1))Pλ1 − (A − (λ2 + 1))Pλ2 + (λ1 − λ2)

]
x2

= [
(A1 − (λ1 + 1))Pλ1 − (A1 − (λ2 + 1))Pλ2 + (λ1 − λ2)

]
x2

= [(λ1 − λ2)+ S(λ1, λ2)] x2.

Therefore, it follows from Eq. (3.5) that �X x = �X x1 − �X x2 = 0. Hence x ∈ D(A1) and
x = Rb(A1, λ1) [(λ1 − λ2)+ S(λ1, λ2)] x2. This allowed us to conclude that

Kλ1 − Kλ2 = Rb(A1, λ1) [(λ1 − λ2)+ S(λ1, λ2)] Kλ2 .

So

Kλ2 − Kλ1 = −Rb(A1, λ2) [(λ1 − λ2)+ S(λ1, λ2)] Kλ1 .

Hence

[(λ1 − λ2)+ S(λ1, λ2)] Kλ1 = A1λ2 Rb(A1, λ1) [(λ1 − λ2)+ S(λ1, λ2)] Kλ2 .

Since the operator S(., .) is of finite rank and A1λ2 Rb(A1, λ1) is bounded and boundedly
invertible, Kλ1 is closable if Kλ2 is such, in which case their closures K λ j , j = 1, 2 satisfy
the same relations. �

Concerning the operators Kλ, D, �Y and B we impose the following conditions:

(H5) For some (hence for all) λ ∈ ρb(A1), the operator Kλ is bounded as a mapping from
Z into X .

(H6) The operator D is densely defined and closed.
(H7) D(�Y ) ⊃ D(D) ∩ D(B), the set

Y1 = {y such that y ∈ D(D) ∩ D(B) and �Y y ∈ Z1}
is dense in Y and the restriction of �Y to this set is bounded as an operator from Y
into Z .

(H8) For some (and hence for all, see Lemma 2.2 (i))λ ∈ ρb(A1), the operator Rb(A1, λ)B
is closable and its closure Rb(A1, λ)B is bounded.

Remark 3.2 We will denote by

(i) �X the extension of �X by continuity to X A = D(A). It is a bounded operator from
X A into Z .

(ii) �
0
Y the extension of �Y |Y1 by continuity to all of Y .

(iii) K λ the extension of Kλ to the closure Z1 of Z1 with respect to the norm of Z .Without
loss of generality we assume that Z1 = Z .

We can easy verify that the operator K λ is also bounded as a mapping from Z1 to X A.

In the space Y, for λ ∈ ρb(A1), we consider the operator

Mλ := D + C Kλ�Y − CλB,

where Cλ := C Rb(A1, λ). The operator Mλ is defined on the set Y1, which is dense in Y
according to (H7).
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Remark 3.3 For any λ1 and λ2 ∈ ρb(A1), it follows from the resolvent identity that:

Mλ1 − Mλ2 = Cλ1 [(λ2 − λ1)− S(λ1, λ2)]
[−Kλ2�Y + Rb(A1, λ2)B

]
. (3.6)

It follows, immediately, from Lemma 2.2 (i i) that Cλ is bounded. Therefore we observe that
�Y is bounded on this domain by assumption (H7), that Kλ is bounded by assumption (H5),
that R(Kλ) ⊂ D(A) ⊂ D(C) and finally S is of finite rank. Now using (H8) we infer that if
Mλ is closable as an operator in Y for some λ ∈ ρb(A1), then it is closable for all λ ∈ ρb(A1).

We emphasize also that the domain of Mλ does not depend on λ. Indeed the difference

Mλ1 − Mλ2 = Cλ1 [(λ2 − λ1)− S(λ1, λ2)]
[
−K λ2�

0
Y + Rb(A1, λ2)B

]
is a bounded operator.

Lemma 3.4 For λ ∈ ρb(A1) and x ∈ D(A) we have

Aλx = A1λ(I − Kλ�X )x

and the operator I − Kλ�X is the projection from D(A1) parallel to N (Aλ).

Proof Let x ∈ D(A), then we have

x = (I − Kλ�X )x + Kλ�X x .

The first summand belongs to D(A1) because x1 = (I − Kλ�X )x ∈ D(A) and �X x1 =
�X x − �X Kλ�X x = 0. Therefore, it is clear that the second summand belongs to N (Aλ).
Now, we apply Lemma 3.1 to get the result. �

For each λ ∈ ρb(A1),we define the bounded, lower and upper triangular operator matrices

T1(λ) =
(

I 0

Cλ I

)
, T2(λ) =

(
I −K λ�

0
Y + Rb(A1, λ)B

0 I

)
,

the finite rank operator-matrix

N(λ) =
(

[A − (λ+ 1)] Pλ 0

0 0

)

and the diagonal operator-matrix

D0(λ) =
(

A1λ 0

0 Mλ − λI

)

with domain D(A1)× Y1.

Theorem 3.1 Assume that the conditions (H1)–(H8) are satisfied. Then A0 is closable in
X × Y if only if, the operator Mλ := D + C Kλ�Y − CλB is closable for some λ ∈ ρb(A1),

or equivalently, for all λ ∈ ρb(A1). Moreover, the closure A of A0 is given by the relation

A := A0 = λI + T1(λ)D(λ)T2(λ)+ N(λ), (3.7)

where D(λ) := D0(λ) =
(

A1λ 0
0 Mλ − λI

)
with domain D(A1)× D(Mλ).
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Proof Let λ ∈ ρb(A1). We shall show that A0 − λI = Gλ where

Gλ =
(

I 0

Cλ I

) (
A1λ 0

0 Mλ − λI

) (
I −Kλ�Y + Rb(A1, λ)B

0 I

)

+
(

[A − (λ+ 1)] Pλ 0

0 0

)
.

To get this equality, we will prove that D(Gλ) ⊂ D(A0) and A0 − λI = Gλ.
First, it follows that D(Gλ) consists of the elements of the form(

x

y

)
=

(
x ′ − Kλ�Y y + Rb(A1, λ)By

y

)
,

where x ′ and y run through D(A1) = D(A) ∩ N (�X ) and D(Mλ), respectively. Therefore
x ∈ D(A), y ∈ D(D) ∩ D(B) and �X x = �X (Kλ�Y y) = �Y y. Hence(

x

y

)
∈ D(A0)

and

D(Gλ) ⊂ D(A0).

Second, let (
x

y

)
∈ D(A0),

i.e. x ∈ D(A), y ∈ D(D) ∩ D(B) and �X x = �Y y.

Gλ

(
x

y

)
=

(
A1λ 0

C Mλ − λI

) (
(I − Kλ�X )x + Rb(A1, λ)By

y

)
+

(
[A − (λ+ 1)] Pλx

0

)

Using Lemma 3.4, we get

Gλ

(
x

y

)
=

(
Aλx + By

C(x − Kλ�X x + Rb(A1, λ)By)+ (Mλ − λI )y

)
+

(
[A − (λ+ 1)] Pλx

0

)

=
(
(A − λI )x + By

Cx + (D − λI )y

)
= (A0 − λI )

(
x

y

)
,

therefore A0 − λI = Gλ.
Finally, it is easy to check that T1(λ) and T2(λ) are bounded and have bounded inverses.

Then we deduce from the factorization of A0 − λI that A0 is closable in X × Y if only if
Mλ is closable as a mapping in Y. Moreover, if Mλ is closable and Mλ denotes its closure,
then for the closure A of A0 we get

A := A0 = λI + T1(λ)

(
A1λ 0

0 Mλ − λI

)
T2(λ)+ N(λ).

�
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Lemma 3.5 (i) If Cλ ∈ Fb+(X, Y ) for some λ ∈ ρb(A1), then Cλ ∈ Fb+(X, Y ) for all
λ ∈ ρb(A1), and σeap(Mλ) does not depend on the choice of λ.

(ii) If Cλ ∈ Fb−(X, Y ) for some λ ∈ ρb(A1), then Cλ ∈ Fb−(X, Y ) for all λ ∈ ρb(A1),

and σeδ(Mλ) does not depend on the choice of λ.

Proof (i) Let λ0 ∈ ρb(A1) such that Cλ0 ∈ Fb+(X, Y ). From the resolvent identity we have,

Cλ − Cλ0 = Cλ0 [(λ− λ0)+ S(λ, λ0)] Rb(A1, λ)

for all λ ∈ ρb(A1). Thus writing Cλ in the form

Cλ = Cλ0 [I + ((λ− λ0)+ S(λ, λ0))Rb(A1, λ)]

and using Proposition 2.1(i i) we deduce that Cλ ∈ Fb+(X, Y ) and the difference

Mλ − Mλ0 = Cλ [(λ0 − λ)− S(λ, λ0)]
[
−K λ0�

0
Y + Rb(A1, λ0)B

]
is in Fb+(Y, Y ). Now, the use of Theorem 3.1(i) and Remark 3.3 in [20] make us conclude
that σeap(Mλ) does not depend on the choice of λ.

(ii) This assertion can be proved in the same way as (i). �
We are now in the position to express the main results of this section.

Theorem 3.2 Let assumptions (H1)–(H8) hold, then

(i) If for some λ ∈ ρb(A1), the operator Cλ ∈ Fb+(X, Y ) then

σeap(A) ∩ ρb(A1) = σeap(Mλ) ∩ ρb(A1).

(ii) If for some λ ∈ ρb(A1), the operator Cλ ∈ Fb−(X, Y ) then

σeδ(A) ∩ ρb(A1) = σeδ(Mλ) ∩ ρb(A1).

Proof First, if µ ∈ ρ(A1) then the relation in Eq. (3.7) became

A −µI :=
(

I 0

Cµ I

) (
A1 −µI 0

0 Mµ −µI

) (
I − Kµ�

0
Y + (A1 − µ)−1 B

0 I

)
. (3.8)

It is clear that the external factors are bounded and have bounded inverses, therefore it
follows from [27, Theorem 6.4] that (A −µI ) is an upper semi-Fredholm operator if only if
Mµ −µI has this property furthermore the use of [22, Theorem 12, p. 152] and Remark 2.1
allow us to conclude that i(A − µI ) = i(Mµ − µ). Hence σeap(A) = σeap(Mµ). Now, by
Lemma 3.5(i), we deduce that σeap(A) = σeap(Mλ).

Second, if µ ∈ σd(A1) then there exists ε > 0 such that the disk

{ζ ∈ C such that |ζ − µ| ≤ 2ε}
does not contain points of σ(A1) different from µ, and the Riesz projection Pµ of A1

corresponding to µ is of finite rank. Consider the operator Ã1 := A1 + εPµ. Then

{λ ∈ C such that 0 < |λ− µ| < ε} ⊂ ρb(A1) ∩ ρb( Ã1).

Until further notice we fix λ ∈ ρb(A1) ∩ ρb( Ã1).
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We define the operator Ã0 as the operator A0 but with A replaced by Ã := A + εPµ, so

Ã0 =
(

Ã B

C D

)
= A0 + ε

(
Pµ 0

0 0

)
,

and for the closure of Ã0 we obtain

Ã = A + ε

(
Pµ 0

0 0

)
.

It is clear that Ã is a finite rank perturbation of A. Therefore σeap(Ã) = σeap(A).
In the next, we will apply the obtained result of the first part of this proof on the operator Ã.

So that, we consider the operator M̃λ := D + C K̃λ�X − C Rb( Ã1, λ)B which is the
perturbation of Mλ, for λ ∈ ρb( Ã1). Here K̃λ, λ ∈ ρb( Ã1), is the operator defined as Kλ
with A replaced by Ã. Hence, K̃λz = x means that x ∈ D( Ã), Ãλx = 0 and �X x = z.
Then, the operator K̃λ is well defined for λ ∈ ρb( Ã1).

The difference K̃λ− Kλ is of finite rank. Indeed, take z ∈ Z1 and put ũ = K̃λz, u = Kλz,
then ũ − u satisfies the relations

�X (̃u − u) = 0 and Aλ(̃u − u) = ( Ãλ − εPµ)̃u = −εPµũ.

This implies that ũ − u ∈ D(A1) and ũ − u = −εRb(A1, λ)Pµũ, so that

K̃λ − Kλ = −εPµRb(A1, λ)K̃λ.

We can also see that the closure of the difference CλB − C Rb( Ã1, λ)B is of finite rank.
Indeed

CλB − C Rb( Ã1, λ)B = −εCλPµRb( Ã1, λ)B.

Using the two last results, we can easily check that the difference M̃λ − Mλ is of finite
rank. Since the operator Mλ is closable in Y , we infer that its perturbation M̃λ is closable
in Y as well, and we will denote its closure by M̂λ. Since M̂λ − Mλ is of finite rank, then
σeap(M̂λ) = σeap(Mλ).

Now, using the following relation

Cλ − C Rb( Ã1, λ) = −εCλPµRb( Ã1, λ)

and the fact that for some λ ∈ ρb(A1), the operator Cλ ∈ Fb+(X, Y ), we can deduce easily
that, for some λ ∈ ρb(A1), C Rb( Ã1, λ) ∈ Fb+(X, Y ).

Hence, Lemma 3.5 implies that σeap(M̂λ) is independent of λ ∈ ρb( Ã1). Now, applying
the first part of this proof for µ ∈ ρ( Ã1), we see that σeap(Ã) = σeap(M̂µ). Then, we get

σeap(A) = σeap(Ã) = σeap(M̂µ) = σeap(M̂λ) = σeap(Mλ)

for any λ ∈ ρb(A1) as required, and the proof of (i) is complete. A same reasoning allows
us to reach the result (i i). �

Remark 3.4 It follows that Theorem 4.2 in [2] is obtained thanks to compacity of the operator
C(A1 − λ)−1 for λ ∈ ρ(A1). But here we extend this result for λ ∈ ρb(A1) and we give
more generalization by assuming that C Rb(A1, λ) is in Fb+(X, Y ) or in Fb−(X, Y ).
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We will denote by Q(λ) the operator defined as follows

Q(λ) :=
(

0 Cλ
−K λ�

0
Y + Rb(A1, λ)B Cλ

[
−K λ�

0
Y + Rb(A1, λ)B

])
.

Theorem 3.3 Let assumptions (H1)–(H8) hold, then

(i) If for some λ ∈ ρb(A1), the operator Cλ ∈ Fb+(X, Y ) and the operator Q(λ) ∈
F+(X, Y ), then

σeap(A) ⊆ σeap(A1) ∪ σeap(Mλ).

If in the addition we suppose that the sets �A, �A1 and �Mλ
are connected and the

sets ρ(Mλ) and ρ(A) are not empty, then:

σeap(A) = σeap(A1) ∪ σeap(Mλ).

(ii) If for some λ ∈ ρb(A1), the operator Cλ ∈ Fb−(X, Y ) and the operator Q(λ) ∈
F−(X, Y ), then

σeδ(A) ⊆ σeδ(A1) ∪ σeδ(Mλ).

If in the addition we suppose that the sets �A, �A1 and �Mλ
are connected and the

sets ρ(Mλ) and ρ(A) are not empty, then

σeδ(A) = σeδ(A1) ∪ σeδ(Mλ).

Proof Let µ ∈ C. Using the relation (3.7), we have

A − µI := T1(λ)D(λ)T2(λ)+ N(λ)+ (λ− µ)

:= T1(λ)V(µ)T2(λ)+ (µ− λ)Q(λ)− P(λ)+ N(λ). (3.9)

The matrices-operators V(µ) and P(λ) are defined by

V(µ) :=
(

A1 − µI 0

0 Mλ − µI

)
,

P(λ) :=
⎛
⎝ [A1 − (λ+ 1)] Pλ [A1 − (λ+ 1)] Pλ

[
−K λ�

0
Y + Rb(A1, λ)B

]
Cλ [A1 − (λ+ 1)] Pλ Cλ [A1 − (λ+ 1)] Pλ

[
−K λ�

0
Y + Rb(A1, λ)B

]
⎞
⎠ .

Since T1(λ) and T2(λ) are bounded and have bounded inverses, N(λ) and P(λ) are finite rank
matrices operators and Q(λ) ∈ F+(X, Y ), therefore, for the same reasons as the proof of
Theorem 2.2, it follows from Eq. (3.9) that (A −µI ) is an upper semi-Fredholm operator if
only if V(µ) has this property and i(A−µI ) = i(A1 −µI )+ i(Mµ−µI ). This shows that

σeap(A) ⊆ σeap(A1) ∪ σeap(Mλ).

Since �A, �A1 and �Mλ
are connected and the sets ρ(Mλ) and ρ(A) are not empty then,

using Proposition 2.3 we get

σeap(A) = σeg(A), σeap(A1) = σeg(A1) and σeap(Mλ) = σeg(Mλ).

Now, the result follows from [19, Theorem 3.2(ii)] and the proof of (i) is completed.
A same reasoning allows us to reach the result (i i). �
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4 Application to a two group of transport equations

In this section, we will apply Theorem 3.3 to study the essential spectra of a class of linear
operators on L p-spaces, 1 ≤ p < ∞. Let

X p = L p([−a, a] × [−1, 1], dx dξ), a > 0 and p ∈ [1,∞).

We consider the boundary spaces:

Xo
p := L p[{−a} × [−1, 0], |ξ |dξ ] × L p[{a} × [0, 1], |ξ |dξ ] := Xo

1,p × Xo
2,p

and

Xi
p := L p[{−a} × [0, 1], |ξ |dξ ] × L p[{a} × [−1, 0], |ξ |dξ ] := Xi

1,p × Xi
2,p,

respectively, equipped with the norms

‖ψo‖Xo
p

=
(

‖ψo
1 ‖p

Xo
1,p

+‖ψo
2 ‖p

Xo
2,p

) 1
p =

[∫ 0

−1
|ψ(−a, ξ)|p|ξ | dξ +

∫ 1

0
|ψ(a, ξ)|p|ξ | dξ

] 1
p

and

‖ψ i‖Xi
p
=

(
‖ψ i

1‖p
Xi

1,p
+‖ψ i

2‖p
Xi

2,p

) 1
p =

[∫ 1

0
|ψ(−a, ξ)|p|ξ | dξ +

∫ 0

−1
|ψ(a, ξ)|p|ξ | dξ

] 1
p

.

Let Wp the space defined by:

Wp =
{
ψ ∈ X p such that ξ

∂ψ

∂x
∈ X p

}
.

It is well-known that any function ψ in Wp possesses traces on the spatial boundary {−a} ×
(−1, 0) and {a}× (0, 1)which, respectively, belong to the spaces Xo

p and Xi
p (see [5]). They

are denoted, respectively, by ψo and ψ i .

Now we will consider the matrix of operators

A = T + K,

where

T ψ =
⎛
⎜⎝−ξ ∂ψ1

∂x
− σ1(ξ)ψ1 0

0 −ξ ∂ψ2

∂x
− σ2(ξ)ψ2

⎞
⎟⎠ =

(
T1 0

0 T2

) (
ψ1

ψ2

)
(4.1)

and

K =
(

0 K12

K21 K22

)

with K12, K21 and K22 are bounded linear operators defined on X p by⎧⎨
⎩

Ki j : X p −→ X p

ψ −→
∫ 1

−1
κi j (x, ξ, ξ

′)ψ(x, ξ ′) dξ ′ (4.2)
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and the kernels κ12(., ., .), κ21(., ., .) and κ22(., ., .) are assumed to be measurable. T1 is the
operator defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T1 : D(T1) ⊆ X p −→ X p

ψ −→ T1ψ(x, ξ) = −ξ ∂ψ
∂x
(x, ξ)− σ1(ξ)ψ(x, ξ)

D(T1) = Wp

and T2 is the streaming operator defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T2 : D(T2) ⊆ X p −→ X p

ψ −→ T2ψ(x, ξ) = −ξ ∂ψ
∂x
(x, ξ)− σ2(ξ)ψ(x, ξ)

D(T2) =
{
ψ ∈ Wp such thatψ i = H(ψo)

}
,

where σ(.) ∈ L∞(−1, 1), ψo, ψ i represent the outgoing and the incoming fluxes related by
the boundary operator H namely⎧⎪⎪⎪⎨

⎪⎪⎪⎩
H : Xo

1,p × Xo
2,p −→ Xi

1,p × Xi
2,p

H

(
u1

u2

)
=

(
H11 H12

H21 H22

) (
u1

u2

)

with for k, l ∈ {1, 2}, Hkl : X0
l,p −→ Xi

k,p , Hkl ∈ L(Xo
l,p, Xi

k,p).

It is clear that the operator T is defined on Wp × D(T2).

In the next, we will define the operator A on

D(A) :=
{(

ψ1

ψ2

)
such that ψ1 ∈ Wp, ψ2 ∈ D(TH2) and ψ i

1 = ψ i
2

}
.

Now, it is easy to check that �X and �Y are the following operators⎧⎨
⎩
�X : X p −→ Xi

p

ψ −→ ψ i

and ⎧⎨
⎩
�Y : X p −→ Xi

p

ψ2 −→ ψ i = Hψo .

Let A1 the operator defined by⎧⎨
⎩

A1 = T1

D(A1) = {ψ1 ∈ Wp such thatψ i
1 = 0}.

Let

λ∗
j = lim inf|ξ |→0

σ j (ξ), j = 1, 2.
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Remark 4.1 (i) For λ such that Reλ > −λ∗
1 (i.e., λ ∈ ρ(A1)), it follows that the solution of

(T1 − λ)ψ = 0

is formally given by

ψ(x, ξ) = ψ(−a, ξ) e− (λ+σ1(ξ))|a+x |
|ξ | , ξ ∈ (0, 1),

ψ(x, ξ) = ψ(a, ξ) e− (λ+σ1(ξ))|a−x |
|ξ | , ξ ∈ (−1, 0).

Thus, the operator Kλ is defined on Xi
p by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kλ : Xi
p −→ X p, Kλu := χ(0,1)(ξ)K

+
λ u + χ(−1,0)(ξ)K

−
λ u with

(K +
λ u)(x, ξ) := u(−a, ξ) e− (λ+σ1(ξ))|a+x |

|ξ | , ξ ∈ (0, 1),

(K −
λ u)(x, ξ) := u(a, ξ) e− (λ+σ1(ξ))|a−x |

|ξ | , ξ ∈ (−1, 0),

where χ(−1,0)(.) and χ(0,1)(.) denote, respectively, the characteristic functions of the in-
tervals (−1, 0) and (0, 1). It is easy to see that the operator Kλ is bounded and ‖Kλ‖ ≤
(pReλ+ λ∗

1)
− 1

p .

(ii) To verify that the operator Q(λ) defined in the third section is compact on X p × X p,

1 < p < ∞ (resp. weakly compact on X1 × X1) we shall prove that the operators

Cλ := K21(λ− A1)
−1

and

−Kλ�Y + (λ− A1)
−1 K12

are compact on X p × X p, 1 < p < ∞ (resp. weakly compact on X1 × X1).

Notice that the collision operators K12, K21 and K22 defined in Eq. (4.2), act only on the
velocity ξ

′
, so x may be seen, simply, as a parameter in [−a, a]. Then, we will consider each

of these operators as a function

Ki j (.) : x ∈ [−a, a] −→ K (x) ∈ L(L p([−1, 1]; dξ).

Definition 4.1 A collision operator Ki j in the form (4.2), is said to be regular if it satisfies
the following conditions:⎧⎪⎪⎨

⎪⎪⎩
− the function Ki j (.) is measurable,
− there exists a compact subset C ⊂ L(L p([−1, 1]; dξ)) such that:

Ki j (x) ∈ C a.e. on [−a, a],
− Ki j (x) ∈ K(L p([−1, 1]; dξ)) a.e. on [−a, a],

where K(L p([−1, 1]; dξ)) is the set of compact operators on L p([−1, 1], dξ).

Lemma 4.1 [21]

(i) If
κ21(x, ξ, ξ ′)

|ξ ′| defines a regular operator, then the operator Cλ := K21(λ− A1)
−1 is

weakly compact on X1.

(ii) If K21 is regular, then the operator Cλ := K21(λ − A1)
−1 is compact on X p for

1 < p < ∞.
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(iii) If K12 is regular, then the operator (λ− A1)
−1 K12 is compact on X p for 1 < p < ∞

and weakly compact on X1.

Remark 4.2 It follows from Theorem 3.1 in [23] that W(X1) = S(X1).

If 1 < p < ∞, X p is reflexive and then L(X p) = W(X p). On the other hand, it follows
from [10, Theorem 5.2] that K(X p) ⊂�= S(X p) ⊂�= W(X p)with p �= 2. For p = 2 we have
K(X p) = S(X p) = W(X p).

Theorem 4.1 If the operator H ∈ S(X p) and the operators K12, K21, K22 are regular and if

in addition κ21(x, ξ, ξ ′) (resp.
κ21(x, ξ, ξ ′)

|ξ ′| ) defines a regular operator on X p for 1 < p < ∞
(resp. on X1), then

σeap(A) = σeδ(A) = {λ ∈ C such that Reλ ≤ −min(λ∗
1, λ

∗
2)}.

Proof First, it is shown in [20] that

σeap(A1) = σeδ(A1) = {λ ∈ C such that Reλ ≤ −λ∗
1}. (4.3)

Second, for λ ∈ ρ(T2) such that rσ ((λ − T2)
−1 K22) < 1, then λ ∈ ρ(T2 + K22) ∩ ρ(T2)

and we have,

(λ− T2 − K22)
−1 − (λ− T2)

−1 =
∑
n≥1

[(λ− T2)
−1 K22]n(λ− T2)

−1.

Since K22 is regular, then it follows from [13, Lemma 3.1] that the operator (λ − T2 −
K22)

−1 − (λ− T2)
−1 is compact on X p, 1 < p < ∞ and weakly compact on X1. Then the

use of Remark 3.3 in [20] leads to

σeap(T2 + K22) = σeap(T2) = {λ ∈ C such that Reλ ≤ −λ∗
2}.

Let µ ∈ ρ(A). The operator Mµ is given by

Mµ = T2 + K22 + K21 Kµ�Y − K21(µ− A1)
−1 K12.

Since the operator H is strictly singular on X p then �Y has also this property. This together
with Lemma 4.1 make us conclude that Mµ − T2 − K22 is compact on X p, 1 < p < ∞ and
weakly compact on X1, then

σeap(Mµ) = σeap(T2 + K22) = {λ ∈ C such that Reλ ≤ −λ∗
2}. (4.4)

Applying Theorem 3.3, and using Eqs. (4.3) and (4.4) we get

σeap(A) = {λ ∈ C such that Reλ ≤ −min(λ∗
1, λ

∗
2)}.

A same reasoning allows us to show that

σeδ(A) = {λ ∈ C such that Reλ ≤ −min(λ∗
1, λ

∗
2)}.

�
Remark 4.3 In this application, we have determined the essential approximate point spectrum
and the essential defect spectrum of the matrix of A without knowing σeap(A) nor σeδ(A)
because the domain of A, D(A), is maximal. But we know that the restriction of the operator A
on the intersection D(A)∩N (�X ) is a transport operator with vacuum boundary conditions.
Hence, we can easily obtain the results and the application in [19] become a special case of
our work.
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