
Math. Z. (2009) 262:281–299
DOI 10.1007/s00209-008-0373-y Mathematische Zeitschrift

The group reduction for bounded cosine functions
on UMD spaces

Markus Haase

Received: 19 September 2007 / Accepted: 25 April 2008 / Published online: 30 May 2008
© The Author(s) 2008

Abstract It is shown that if A generates a bounded cosine operator function on a UMD
space X , then i(−A)1/2 generates a bounded C0-group. The proof uses a transference prin-
ciple for cosine functions.
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1 Introduction

A cosine function on a (complex) Banach space X is a strongly continuous mapping Cos :
R −→ L(X) that satisfies the identity

Cos(t + s) + Cos(t − s) = 2 Cos(t) Cos(s) (t, s ∈ R) (1.1)

as well as Cos(0) = I . One can prove from this that a cosine function is exponentially
bounded, i.e.,

θ(Cos) := inf
{
ω ≥ 0 | ∃M ≥ 1 : ‖Cos(t)‖ ≤ Meω|t |, t ∈ R

}
< ∞.

The generator of a cosine function Cos is defined as the unique operator A such that

λR(λ2, A) =
∞∫

0

e−λt Cos(t) dt (λ > θ(Cos)). (1.2)
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The generator A is densely defined, and the cosine function provides solutions to the
second-order abstract Cauchy problem

u′′(t) = Au, u(0) = x, u′(0) = 0.

Conversely, if the abstract second order problem for an operator is well-posed, then it gives
rise to a cosine function. In this way, cosine functions play the same role for the second order
problem as semigroups do for the first order problem. We refer to [1, Chaps. 3.14-3.16] for
details on these facts and more material on the theory of cosine functions.

An important example of a cosine function arises as

Cos(t) = 1

2
(U (t) + U (−t)) (t ∈ R),

where U is a C0-group. The generator A of the cosine function and the generator B of the
group are then related by A = B2. (As an example consider B = d/dt the generator of the
shift group on L2(R); then A is the one-dimensional Laplacian.) It is natural to ask, which
cosine functions arise in this manner, but in general there is little hope. Indeed, there is no
way in general to reconstruct a group U from its associated cosine function. Taking squares
deletes information that cannot be recovered. However, as B is a square root of A, one might
look at i(−A)1/2, whenever −A is sectorial. (The minus sign is natural here, since the spec-
trum of A extends to the left.) Let us call the group generated by i(−A)1/2, if it exists, the
square root reduction group associated with the original cosine function. It turns out that in
general the square root reduction group does not exist, but only due to a shortcoming of the
Banach space. Indeed, Fattorini [8] has shown the following result.

Theorem (Fattorini 1969) Let A be the generator of a cosine function on a UMD space X.
If −A is also sectorial, then i(−A)1/2 generates a C0-group.

A proof adapted from the original one is in [1, 3.16.7]. More recently, functional cal-
culus methods have been used to give a different proof (see [11] and combine it with [10,
Proposition 3.17] and standard perturbation). However, the approach was via the so-called
phase space and a direct functional calculus proof is still to be found.

There is another issue here. Fattorini’s theorem is qualitative in nature and tells us nothing
about the growth properties of the reduction group, depending on the growth of the cosine
function. In particular, it has been an open problem for a long time whether the reduction
group associated with a bounded cosine function is itself bounded. On Hilbert spaces this
is known to be true [9], but the methods used are typical for Hilbert spaces, finding self-
adjointness by introducing an equivalent scalar product. To the best of our knowledge, the
last serious attempt to solve the problem on a general UMD space was made by Cioranescu
and Keyantuo [5], building on the paper [13]. The present paper solves the problem in the
affirmative.

Theorem 1.1 Let A generate a bounded cosine function on a UMD space. Then i(−A)1/2

generates a bounded C0-group.

To avoid many minus signs, it is convenient to change notation a little and write A instead
of −A. Moreover, we shall prove Theorem 1.1 in two steps according to the following equiv-
alent version:

Theorem 1.1 (Alternative Version) Let −A be the generator of a bounded cosine function
Cos on a UMD space X. Then there exists a bounded C0-group U such that
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The group reduction for bounded cosine functions on UMD spaces 283

Cos(s) = 1

2
(U (s) + U (−s)) (s ∈ R)

and −i A1/2 is the generator of U.

The purpose of this reformulation is to avoid the theory of sectorial operators as long as
possible. In fact, our proof of the first part (the existence and boundedness of the group) is
essentially self-contained, whereas for the second part (the identification of the generator)
one has to appeal to the well-established theory of fractional powers. However, we find it
very instructive that this theory is not needed to obtain the existence and boundedness of the
group reduction in the first place. Needless to say that we will not make use of Fattorini’s
original theorem at any point.

The paper is structured as follows. In Sect. 2 we construct a functional calculus Φ in a
Phillips type manner using integrals of the form

Tµx :=
∫

R

Cos(s)x µ(ds) (x ∈ X)

where µ is a bounded measure. We show how this functional calculus can be interpreted in
a canonical way as a functional calculus for a certain unbounded operator B. The group U
will be given as U (s) = Φ(e−is·) = e−is B , s ∈ R, and the (uniform) boundedness of these
operators is reduced to the uniform boundedness of certain approximants. By means of a
transference principle, which we state and prove in Sect. 3, one reduces this uniform bound-
edness to the uniform boundedness of certain Fourier-multipliers on the space L2(R; X). In
Sect. 4 we briefly provide the necessary background on Fourier multipliers and the notion of
UMD spaces, and finally bring the different ingredients together to prove that the group U is
uniformly bounded. In Sect. 5 we give a new and simpler proof of a known representation for-
mula for the operators A1/2 Sin(s), s ∈ R, where (Sin(s))s∈R is the associated sine function
(Theorem 5.1). Again using transference, this leads to an alternative proof of (the first part of)
Theorem 1.1. Finally, in Sect. 6 we prove that the operator B constructed before is identical
to the square root A1/2 obtained from A by means of the sectorial functional calculus (or by
the classical theory of fractional powers). Moreover, we show that the functional calculus Φ

is compatible with and provides a proper extension of the sectorial functional calculus for
A1/2.

Definitions and conventions

We usually consider (unbounded) closed operators A, B on a complex Banach space X . By
L(X) we denote the set of all bounded (fully defined) operators on X . The domain and the
range of a general operator A are denoted by D(A) and R(A), respectively. Its resolvent
is R(λ, A) = (λ − A)−1, and �(A) denotes the set of λ ∈ C where R(λ, A) ∈ L(X). Its
complement σ(A) = C\�(A) is the spectrum.

For ω ∈ (0, π] we denote by

Sω := {z 	= 0 | |arg z| < ω}
the horizontal sector of angle 2ω, symmetric about the positive real axis, and we let R+ :=
[0,∞) the positive semi-axis, including the point 0. For each open subset Ω ⊂ C we denote
by H∞(Ω) the Banach algebra of bounded holomorphic functions on Ω . If Ω is an arbitrary
locally compact space, then the set of complex regular Borel measures on Ω is denoted by
M(Ω). The Fourier transform of a tempered distribution Φ on R is denoted by F(Φ) or
Φ̂. We often write s and t (in the Fourier image) to denote the real coordinate, e.g., sin t/t
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denotes the function t �−→ sin t/t . On a complex domain we use z as the coordinate, so that
f (z) denotes the function z �−→ f (z).

Let X be a Banach space and p ∈ [1,∞). For a finite measure ν ∈ M(R) we denote by

Lν := ( f �−→ f ∗ ν) : L p(R; X) → L p(R; X)

the convolution operator on the X -valued L p-space.

2 A functional calculus

We suppose in this section that −A is the generator of a bounded cosine function (Cos(t))t∈R

on the Banach space X . Note that as mentioned in the introduction we consider −A instead
of A in order to avoid many minus signs later. In order to construct the reduction group, we
shall built up a functional calculus for an yet unknown operator B and only later (Sect. 6) we
will identify this operator as A1/2.

The so-called Phillips calculus for Cos is the mapping

(µ �−→ Tµ) : M(R) −→ L(X)

with Tµ being defined by

Tµx :=
∫

R

Cos(s)x µ(ds) (x ∈ X, µ ∈ M(R)).

Since Cos is an even function, the operator Tµ depends only on the even part µe of µ, defined
by

µe(A) := 1

2
(µ(A) + µ(−A)) (A ∈ B(R)),

and hence we may assume always that µ is an even measure. Thus we let

Me(R) := {µ ∈ M(R) | µ is even}
and note that this is a closed subalgebra of the convolution algebra M(R) of all bounded
measures on R.

Proposition 2.1 Let (Cos(s))s∈R be a bounded cosine function. Then the mapping

(µ �−→ Tµ) : Me(R) −→ L(X)

is a bounded homomorphism of Banach algebras.

Proof Let µ, ν ∈ Me(R) and x ∈ X . We compute

TµTνx =
∫

R

∫

R

Cos(t) Cos(s)x ν(ds) µ(dt)

= 1

2

∫

R

∫

R

Cos(t + s)x ν(ds) µ(dt) + 1

2

∫

R

∫

R

Cos(t − s)x ν(ds) µ(dt)

(∗)=
∫

R

∫

R

Cos(t + s)x ν(ds) µ(dt)

=
∫

R

Cos(s)x (µ ∗ ν)(ds) = Tµ∗νx .
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The group reduction for bounded cosine functions on UMD spaces 285

In equality (∗) we performed a change of variable s �→ −s in the second integral and used
that ν is an even measure. That

∥∥Tµ

∥∥ ≤ sups∈R
‖Cos(s)‖ ‖µ‖M is obvious.

For µ ∈ M(R) we define its cosine transform by Cµ := F(µe), i.e.,

(Cµ)(t) =
∫

R

cos(st) µ(ds) (t ∈ R).

Evidently, if µ is even then Cµ coincides with the Fourier transform of µ. Moreover, Cµ is
always an even function, hence is determined by its restriction to R+. Therefore often we
shall not distinguish between a function defined on R+ and its even extension to R. Let

E(R+) := {Cµ | µ ∈ M(R)} = {F(µ) | µ ∈ Me(R)}.
Then E(R+) is an algebra with respect to pointwise multiplication of functions. If f = Cµ ∈
E(R+) we define Φ( f ) := Tµ, which is a good definition since the Fourier transform is
injective and Tµ = Tµe . The mapping

Φ : E(R+) −→ L(X)

is a homomorphism of algebras, by Proposition 2.1 and the product law of the Fourier trans-
form. Note that for λ > 0 and µ := (1/2)e−λ|s|ds we have

f (t) := C(µ)(t) = µ̂(t) = λ

λ2 + t2 (t ∈ R)

and

Φ( f ) = Tµ =
∞∫

0

e−λs Cos(s) ds = λR(λ2,−A) = λ(λ2 + A)−1.

This is clearly an injective operator. Hence (E, Φ) is a proper primary functional calculus,
and we may choose freely any superalgebra F of E to obtain a proper abstract functional
calculus in the sense of [10, Chap. 1]. We might take for example the algebra of all functions
from R+ to C. A function f : R+ −→ C is called regularizable if there is e ∈ E(R+) such
that e f ∈ E(R+) as well and Φ(e) is injective. In this case, e is called a regularizer for f ,
and the (closed but potentially unbounded) operator Φ( f ) is defined as

Φ( f ) := Φ(e)−1Φ(e f ).

This definition does not depend on the chosen regularizer and is also compatible with the
definition of Φ on the algebra E(R+); moreover, it obeys the standard rules for unbounded
functional calculi. See [10, Chap. 1] for proofs of these facts and more information.

To identify regularizable functions, we recall the well-known Bernstein lemma.

Lemma 2.2 Let f ∈ H1(R), i.e., f, f ′ ∈ L2(R). Then f ∈ F(L1(R)). Moreover, the
mapping F−1 : H1(R) −→ L1(R) is continuous.

Proof See [1, Lemma 8.2.1].

Here is a first application.

Lemma 2.3 Let f ∈ C1(R+) such that f ′ is polynomially bounded. Then f is regularizable,
whence Φ( f ) is defined.

123



286 M. Haase

Proof As usual we view f as an even function on R. The hypotheses imply that f is poly-
nomially bounded. Let g(t) := f (t)(1 + t2)−n for n ∈ N large enough such that g ∈ L2(R)

and f ′(t)(1 + t2)−n ∈ L2(R). Then

g′(t) = (1 + t2)n f ′(t) − 2nt f (t)(1 + t2)n−1

(1 + t)2n
= f ′(t)

(1 + t2)n
− 2nt

(1 + t2)
g(t)

for t 	= 0. Hence g′ ∈ L2(R) and by Bernstein’s lemma it follows that g ∈ F(L1(R)). As g
is even, g ∈ E(R+) and since Φ

(
(1 + t2)−n

) = (1 + A)−n is injective, f is regularizable.

Using this lemma one sees that the function f (t) = |t | is regularizable by the function
(1 + t2)−1, and hence the operator

B := Φ( f ) = Φ(|t |)
is defined. From the definition it is immediate that D(A) ⊂ D(B), and so B is densely
defined. Moreover, for λ /∈ R+, the function (λ − |t |)−1 is in H1(R), whence in E(R+).
Therefore

(λ − B)−1 = Φ

(
1

λ − |t |
)

∈ L(X).

This shows that σ(B) ⊂ R+.
It is reasonable to say that the functional calculus Φ is a functional calculus for B and

write f (B) instead of Φ( f ). In Sect. 6 we shall show that B = A1/2, but that is unimportant
at the moment. We note that also the functions fs, s ∈ R, defined by

fs(t) := e−is|t | (t ∈ R)

satisfy the conditions of the lemma. Hence we obtain the operators

U (s) := Φ(e−is|t |) = [e−is|t |](B) (s ∈ R).

Our main goal is to show that if X is a UMD space, then U is a bounded C0-group on X .
Functional calculus then yields that indeed

Cos(s) = [cos(t)](B) =
(

e−is|t | + eis|t |

2

)
(B) = U (s) + U (−s)

2
(s ∈ R)

and the first step in the proof of Theorem 1.1 is complete.

Lemma 2.4 If U (s) = [e−is|t |](B) is a bounded operator for every s ∈ R, then (U (s))s∈R

is a C0-group and its generator is −i B.

Proof Suppose that the hypothesis of the lemma holds true. General functional calculus the-
ory yields that U is a group. To prove that U is strongly continuous by classical semigroup
theory [12, Theorem 10.2.3] it suffices to show that the trajectories U (·)x , x ∈ X , are all
measurable. Since D(A) is dense in X , it suffices to show that U (·)x is continuous for each
x ∈ D(A). Hence we consider the functions

gs(t) := e−is|t |

1 + t2 (t, s ∈ R)

and by Bernstein’s lemma it suffices to show that (s �−→ gs) : R −→ H1(R) is continuous.
This is easy to see.
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Now, let −C be the generator of U . To prove that i B = C , note that ‖gs‖H1 = O(|s|) as
|s| → ∞. Hence one can take Laplace transforms within H1(R) and obtains for large λ > 0

(1 + A)−1(λ + C)−1 =
∞∫

0

e−λsU (s)(1 + A)−1 ds =
∞∫

0

e−λsΦ(gs) ds

= Φ

⎛
⎝

∞∫

0

e−λs gs ds

⎞
⎠ = Φ

(
1

(1 + t2)(λ + i |t |)
)

= (1 + A)−1(λ + i B)−1.

This shows that C = i B.

Finally, we state a “convergence lemma” for our functional calculus.

Lemma 2.5 Let ( fα)α be a net of continuous functions on R+ converging pointwise to a
function f and satisfying the following conditions:

(1) fα/(1 + t2) ∈ H1(R) for all α.
(2) fα/(1 + t2) → f/(1 + t2) within H1(R).

Then fα(B)x → f (B)x for all x ∈ D(A). If in addition
(3) supα ‖ fα(B)‖ < ∞,

then f (B) ∈ L(X) and fα(B) → f (B) strongly.

Proof Since D(A) is dense in X , it suffices to show that

fα(B)(1 + A)−1 → f (B)(1 + A)−1

in norm. This is guaranteed by conditions (1) and (2) and Bernstein’s lemma.

Note that the hypotheses of Lemma 2.5 imply that fα → f uniformly on compact subsets
of R+. On the other hand, the hypotheses (1) and (2) of Lemma 2.5 are clearly satisfied if
one has the following situation:

(1) f ∈ C1(R+) and fα ∈ C1(R+) for all α;
(2) fα → f and f ′

α → f ′ uniformly on compact subsets of R+;
(3) supα ‖ fα‖∞ + ∥∥ f ′

α

∥∥∞ < ∞.

An example for this situation is given, for fixed s ∈ R, by the functions

fα(t) := e−(α+is)|t |, f (t) := e−is|t | (t ∈ R, 0 < α ≤ 1)

viewed as a net for α ↘ 0. Let us define

TB(λ) := Φ(e−λ|t |) = [e−λ|t |](B) (Re λ > 0).

The following proposition shows that things behave as expected.

Proposition 2.6 Let U and TB be defined as above. Then the following assertions hold.

(a) TB(λ)x = λ

π

∞∫

0

Cos(s)x

λ2 + s2 ds (x ∈ X, Re λ > 0).
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(b) TB : {Re λ > 0} −→ L(X) is holomorphic and satisfies the semigroup law, and for
each ϕ ∈ (0, π/2) one has

sup{‖T (λ)‖ | λ 	= 0, |arg λ| ≤ ϕ} < ∞
(c) −B is the generator of the semigroup TB.
(d) For each s ∈ R, U (s) is a bounded operator if and only if

sup
0<α≤1

‖TB(α + is)‖ < ∞,

and in this case U (s)x = limα↘0 TB(α + is)x (x ∈ X).

Property (b) can be abbreviated by saying that TB is a bounded holomorphic semigroup
of angle π/2, see [1, Definition 7.3.7].

Proof (a) follows from the fact that

F−1(e−λ|t |)(s) = λ

π(λ2 + s2)
=: gλ(s) (s ∈ R).

(b) The semigroup law is just the multiplicativity of the functional calculus. Holomorphy
follows since the mapping

(λ �−→ gλ) : {Re λ > 0} −→ L1(R)

is holomorphic and the remaining statement follows from the identity

‖gλ‖L1 = 2

π

∞∫

0

1∣∣(λ/ |λ|)2 + s2
∣∣ ds (Re λ > 0).

(c) Note that ‖gr‖L1 = 1 for all r > 0. Hence one may take Laplace transforms in L1 and
this shows that

∞∫

0

e−zr TB(r) dr = Φ

⎛
⎝

∞∫

0

e−zr e−r t dr

⎞
⎠ = Φ

(
1

z + t

)
= (z + B)−1

for z > 0.
(d) By abstract functional calculus we have

TB(α + is) = [e−α|t |e−is|t |](B) = U (s)TB(α)

Since TB is a bounded semigroup, if U (s) is bounded then the operators TB(α + is), α > 0,
are uniformly bounded. Conversely, supposing that these operators are uniformly bounded
one can apply the convergence lemma (Lemma 2.5) and the remarks following it.

As a consequence we note that to prove the first part of Theorem 1.1 we only have to
establish the uniform boundedness

sup{‖TB(λ)‖ | Re λ > 0} < ∞.

This will be done with the help of a transference principle, which is the topic of the following
section.
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The group reduction for bounded cosine functions on UMD spaces 289

Remark 2.7 The idea to reduce the proof of Theorem 1.1 to the uniform boundedness of the
operator family (TB(λ))Re λ>0 is taken from the paper by Cioranescu and Keyantuo [5]. These
authors employ the theory of boundary values of holomorphic semigroups as it is presented in
[1, Sect. 3.9]. That theory can be incorporated into the general theory of functional calculus,
but doing so here would certainly take us too far astray. We decided to give an ad hoc proof
based on functional calculus methods in order to keep the presentation as self-contained as
possible and to demonstrate once more the power of functional calculus theory.

Let us also mention that the more recent paper [14] treats the Phillips calculus in a wider
context under the name “vector-valued cosine transform” and uses it to characterize general
cosine functions on Banach spaces.

3 The transference result

Let us begin with some abstract considerations. Suppose one is given an operator T on a
Banach space X and wants to estimate its norm. Transference means that one factorises the
“bad” operator T over a second Banach space Y via mappings ι : X −→ Y , S : Y −→ Y
and P : Y −→ X , i.e., T = P Sι. This means that the diagram

Y
S �� Y

X

ι

��

T �� X
��

P

commutes. The operator S is hopefully “better” than T in the sense that one has reasonable
estimates on its norm. The factorization leads to estimates of the form ‖T ‖ ≤ c ‖S‖. It is
possible in certain cases to keep S fixed while varying ι, P , thereby improving on c.

A classical example is the transference principle by Coifman and Weiss [6,7] in its abstract
form given by Berkson et al. [2]. It has the form

∥∥∥∥∥∥

∫

R

U (s)x µ(ds)

∥∥∥∥∥∥
≤ M2

∥∥Lµ

∥∥L(L p(R;X))
(µ ∈ M(R)),

where U is a bounded C0-group on a Banach space X , M := sups∈R
‖U (s)‖ is its bound,

and Lµ denotes the convolution operator

Lµ := ( f �−→ µ ∗ f )

on each space where it is meaningful. Such an estimate is particularly useful if the Banach
space is a UMD space, because then one can use Fourier multiplier theory to estimate the
norm of Lµ. We aim at the analogous result when the group U is replaced by a cosine
function.

Theorem 3.1 Let (Cos(t))t∈R be a bounded cosine function on a Banach space X, and let
Tµ be defined by

Tµx =
∫

R

Cos(s)x µ(ds) (x ∈ X, µ ∈ Me(R)).
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290 M. Haase

Then

∥∥Tµ

∥∥ ≤ 5M2
∥∥Lµ

∥∥L(L p(R;X))
(µ ∈ Me(R)),

where M := sups∈R
‖Cos(s)‖ and p ∈ [1,∞).

Proof Fix p ∈ [1,∞) and suppose first that µ has support within the interval [−N , N ]. We
want to factorise Tµ over Y := L p(R; X), with S = Lµ being the convolution with µ. Since
µ is an even measure, one has for x ∈ X and |t | ≤ n

Cos(t)Tµx =
N∫

−N

Cos(t) Cos(s)x µ(ds)

= 1

2

⎡
⎣

N∫

−N

Cos(t − s)x µ(ds) +
N∫

−N

Cos(t + s)x µ(ds)

⎤
⎦

=
N∫

−N

Cos(t − s)x µ(ds) = [µ ∗ (ιn x)](t) = (Lµιn x)(t),

where ιn : X −→ Y is given by

ιn(x) = [s �−→ 1[−(N+n),(N+n)](s) Cos(s)x] ∈ L p(R; X) (x ∈ X).

To determine Pn : Y −→ X such that Tµ = Pn Lµιn , note that by the defining identity for
cosine functions (1.1) one has x = 2 Cos(t)2x − Cos(2t)x and hence

x = 1

n

n/2∫

−n/2

x dt = 2

n

n/2∫

−n/2

Cos(t)2x dt − 1

2n

n∫

−n

Cos(t)x dt (x ∈ X).

If we replace x by Tµx in this identity and recall that Cos(t)Tµx = (Lµιn x)(t) for |t | ≤ n,
we see that

Tµ = Pn Lµ ιn,

where Pn : Y −→ X is defined by

Pn f := 2

n

n/2∫

−n/2

Cos(t) f (t) dt − 1

2n

n∫

−n

f (t) dt ( f ∈ Y ).

Let us estimate norms. One clearly has

‖ιn x‖L p =
⎛
⎜⎝

n+N∫

−(n+N )

‖Cos(s)x‖p ds

⎞
⎟⎠

1
p

≤ (2n + 2N )
1
p M ‖x‖ (x ∈ X),
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and hence ‖ιn‖ ≤ (2n + 2N )
1
p M . On the other hand, for f ∈ Y = L p(R; X)

‖Pn f ‖ ≤ 2M

n

n/2∫

−n/2

‖ f (t)‖ dt + 1

2n

n∫

−n

‖ f (t)‖ dt

≤ 4M + 1

2n

n∫

−n

‖ f (t)‖ dt ≤ 4M + 1

2n
(2n)1/p′ ‖ f ‖L p([−n,n];X)

≤ 5M(2n)−1/p ‖ f ‖Y

by Hölder’s inequality. Hence ‖Pn‖ ≤ 5M(2n)−1/p . Combining these estimates yields

∥∥Tµ

∥∥ ≤ 5M2
(

1 + N

n

) 1
p ∥∥Lµ

∥∥L(Y )
.

But n was arbitrary, and so we can let n → ∞ to obtain
∥∥Tµ

∥∥ ≤ 5M2
∥∥Lµ

∥∥L(L p(R;X))
.

As a last step we remove the support restriction on µ. For a general even measure µ the
sequence of measures µn(ds) := 1[−n,n](s)µ(ds) converges to µ in the total variation norm.
This implies convergence Lµn → Lµ in L(L p(R; X)) by Young’s inequality, and Tµn → Tµ

in L(X). The theorem is completely proved.

To make effective use of Theorem 3.1, one has to have good estimates for the norm of the
convolution operators Lµ. This is the topic of the next section.

4 UMD spaces and proof of main theorem

Let us recall the notion of a bounded Fourier multiplier. Fix p ∈ [1,∞). A function m ∈
L∞(R) is called a bounded L p(R; X)-Fourier multiplier if there is a constant c = c(m, p, X)

such that
∥∥F−1 (m f̂ )

∥∥L p(R;X) ≤ c ‖ f ‖L p(R;X)

for all functions f belonging to the Schwartz class S(R; X). In this case the operator Tm

given by

Tm f := F−1(m f̂ ) ( f ∈ S(R; X))

extends to a bounded operator on L p(R; X), and the function m is called the symbol of Tm .
We set

Mp(R; X) := {m ∈ L∞(R) | m is a bounded L p(R; X)-Fourier multiplier}
with the norm ‖m‖Mp(R;X) = ‖Tm‖L(L p(R;X)). The following lemma collects some useful
facts.

Lemma 4.1 Let p ∈ [1,∞) and let X be a Banach space. Then the following assertions
hold.

(a) If µ ∈ M(R) then µ̂ ∈ Mp(R; X) and Tµ̂ = Lµ is convolution with µ.
(b) The space Mp(R; X) is a Banach algebra.
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292 M. Haase

(c) If m ∈ Mp(R; X) then for α, β, γ ∈ R, β 	= 0,

mα,β,γ (t) := e−iαt m(βt + γ ) ∈ Mp(R; X)

with
∥∥mα,β,γ

∥∥Mp(R;X)
= ‖m‖Mp(R;X).

(d) M1(R; X) = FM(R).
(e) If X = H is a Hilbert space then M2(R; H) = L∞(R) with

‖m‖M2(R;H) = ‖m‖∞.

Proof These facts are standard and can be found in many books.

A Banach space X is called HT-space if the function

h(t) := −i sgn t (t ∈ R)

is a bounded L2(R; X)-multiplier. The associated operator H := Th is called the Hilbert
transform. It is well known that one may replace L2 by any L p, p ∈ (1,∞) in this definition.
Moreover, if X is a HT-space then

H f (t) = lim
ε→0

∫

ε≤|s|≤1/ε

f (t − s)

s
ds

in the L p(R; X)-sense. (Actually, one can assert also convergence pointwise almost every-
where, but this is of no importance in this paper.) After work of Burkholder [4] and Bour-
gain [3], the HT-property can be equivalently characterised by the so-called UMD-property,
involving unconditional martingale differences. We shall not make use of this characteriza-
tion, but nevertheless use the name “UMD space”, as this is now common.

Suppose that −A generates a bounded cosine function (Cos(s))s∈R on a UMD space X .
The semigroup generated by −B (which actually is the same as −A1/2, see Sect. 6) is given
by the Phillips calculus:

TB(λ) = Tµλ with µ̂λ(t) = e−λ|t | (t ∈ R).

By the transference principle (Theorem 3.1) one has

‖TB(λ)‖ ≤ 5M2
∥∥Lµλ

∥∥L(L2(R;X))
= 5M2

∥∥∥e−λ|t |
∥∥∥M2(R;X)

(Re λ > 0).

Now, writing λ = α + is with α > 0, s ∈ R:

e−λ|t | = e−α|t |(cos(st) + h(t) sin(st)) (t ∈ R)

as a simple computation shows. The symbols e−|t |, sin(t), cos(t) are all in FM(R), hence
in M2(R; X), and also h ∈ M2(R; X), since X is a UMD space. Thus it follows from
Lemma 4.1 that the family (e−λ|t |)Re λ>0 is uniformly bounded in M2(R; X). Hence we
have proved the following statement.

Proposition 4.2 Let −A generate a bounded cosine function (Cos(s))s∈R on the UMD space
X. Then the holomorphic semigroup (TB(λ))Re λ>0 is uniformly bounded.

As was explained in Sect. 2, this completes the proof of the first part of Theorem 1.1. In
the next section we shall provide a second approach to this result.
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5 An alternative approach

If Cos : R −→ L(X) is a cosine function, the associated sine function Sin : R −→ L(X) is
defined by

Sin(s)x :=
s∫

0

Cos(r)x dr (x ∈ X, s ∈ R),

see [1, p. 210]. In this section we shall give a new (and simpler) proof of a representation for-
mula for the (in general unbounded) operators A1/2 Sin(s), s ∈ R, originally due to Fatttorini.
As we shall see shortly, the reduction group is given by

U (s) = Cos(s) − i A1/2 Sin(s) (s ∈ R),

and this will lead to an alternative proof of Theorem 1.1.
The approach uses the standard formula

e−is|t | = cos(st) − i sgn(t) sin(st) (s, t ∈ R).

Inserting B (which below will be proved to be equal to A1/2) yields

U (s) = e−is B = Cos(s) − i B Sin(s) (s ∈ R) (5.1)

since, for s ∈ R,

(
sin(s |t |)

|t |
)

(B) =
⎛
⎝

s∫

0

cos(r |t |) dr

⎞
⎠ (B) =

s∫

0

Cos(r) dr = Sin(s).

(One has indeed equality in (5.1), by general functional calculus [10, Theorem 1.3.2] and
since Cos(s) is a bounded operator).

Theorem 5.1 Let −A generate a bounded cosine function Cos on a Banach space X, and
let S(s) := [sgn(t) sin(st)](B) = B Sin(s), s ∈ R. Then

S(s)x = 1

π
PV −

∫

R

Cos(s − r)x

r
dr (s ∈ R). (5.2)

for all x ∈ D(A). In the case that X is a UMD space, sups∈R
‖S(s)‖ < ∞, and the repre-

sentation (5.2) holds for all x ∈ X.

The formula (5.2) is due to Fattorini [8]. The extension in the UMD case was established
by [5, Proof of Theorem 2.5]; in their proof the authors make use of Burkholder’s result that
in a UMD space the Hilbert transform converges almost everywhere. Moreover, some intri-
cate measure-theoretic arguments are also needed. Our approach does not need more than
the mere definition of UMD space, as well as some mild Fourier analysis and the functional
calculus constructed in Sect. 2.

In the proof of Theorem 5.1 we shall have occasion to use the function

H(t) :=
1∫

0

sin(st)

s
ds (t ∈ R),
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which is odd, bounded and has bounded derivative. A classical fact is the identity

lim
t→±∞ H(t) = lim

t→±∞

t∫

0

sin s

s
ds = ±π

2
.

Let us also introduce the function

F(t) := sgn(t)H(t) − π

2
= −

∞∫

|t |

sin r

r
dr (t ∈ R)

which is continuous, even and vanishes at infinity, and finally

Gs,c(t) := sgn(t) sin(st)F(ct) (t ∈ R, s ∈ R, c > 0).

Now look at the stated convergence of the principal value integral (5.2). A simple calcu-
lation yields

∫

a≤|r |≤b

cos[(s − r)t]
r

dr = 2 sin(st)

b∫

a

sin(r t)

r
dr

= 2 sin(st)[H(bt) − H(at)] = 2 sgn(t) sin(st)[F(bt) − F(at)]
= 2Gs,b(t) − 2Gs,a(t) (5.3)

for t ∈ R. We have to look what happens as b tends to ∞ and a tends to 0.

Lemma 5.2 The following assertions hold.

(a) F ∈ F(L1(R)).
(b) For all s ∈ R and c > 0, the function Gs,c is in E(R+).
(c) Gs,c → 0 in E(R+) as c → ∞, in the sense that there exist measures µs,c ∈ M(R)

such that Cµs,c = Gs,c and µs,c → 0 in M(R).
(d) For fixed s ∈ R

Gs,c(t)

1 + t2 → −(π/2) sgn(t) sin(st)

1 + t2 as c ↘ 0

in H1(R) (as functions of t).

Proof (a) Since

F(t) = −
∞∫

|t |

sin s

s
ds (t ∈ R)

we have |t | F ′(t) = sin(t), whence F ′ ∈ L2(R). For t 	= 0, integration by parts yields

F(t) = −
∞∫

|t |

sin r

r
dr = cos t

|t | + 1

|t |
∞∫

1

cos(tr)

r2 dr.

This shows that also |t | F(t) is bounded and hence F ∈ L2(R). We conclude that F ∈ H1(R)

and therefore in F(L1(R)), by Bernstein’s Lemma 2.2.
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(b) and (c) Using the above integration by parts, we find

Gs,c(t) =
(

sin(st)

t

) ⎛
⎝cos(ct)

c
+

∞∫

c

cos(tr)

r2 dr

⎞
⎠ (t ∈ R).

Note that C(1[0,s]) = sin(st)/t and the second factor is the cosine transform of µc :=
c−1δc + 1[c,∞)r−2 dr . This proves (b), and (c) follows readily since obviously µc → 0 in
M(R) as c → ∞.

(d) It is easily seen that sgn(t) sin(st)(1 + t2)−1 ∈ H1(R). Furthermore,

Gs,c(t) + (π/2) sgn(t) sin(st) = sin(st)H(ct)

and it is likewise easy to see that

sin(st)H(ct)

1 + t2 → 0 (c ↘ 0)

in H1(R), as functions of t ∈ R. This completes the proof.

Returning to our starting point, we may insert the operator B by means of the functional
calculus and obtain (for fixed s ∈ R and 0 < a < b < ∞)

1

π

∫

a≤|r |≤b

Cos(s − r)

r
dr = 2

π
(Gs,b(B) − Gs,a(B)).

By (c) of Lemma 5.2 one has limb→∞ Gs,b(B) = 0 in norm, and by (d) of Lemma 5.2
together with the convergence lemma (Lemma 2.5) one has

− 2

π
Gs,a(B)x → (sgn(t) sin(st))(B)x = S(s)x (a ↘ 0)

for all x ∈ D(A). Moreover, the convergence is true for all x ∈ X in the case that
sup0<a≤1

∥∥Gs,a(B)
∥∥ < ∞.

To complete the proof of Theorem 1.1 suppose that X is a UMD space. It suffices to
establish the uniform boundedness

sup
0<a<b

∥∥∥∥∥∥∥

∫

a≤|r |≤b

Cos(s − r)

r
dr

∥∥∥∥∥∥∥
< ∞ (5.4)

or, equivalently,

sup{∥∥Gs,c(B)
∥∥ | s ∈ R, c > 0} < ∞.

By the transference principle (Theorem 3.1) and (5.3) it is sufficient to show that the family
of L2(R; X)-Fourier multiplier operators with symbols

sgn(·) sin(s ·)F(c ·) (s ∈ R, c > 0)

is uniformly bounded. Now F ∈ F(L1(R)) by (a) of Lemma 5.2, and sgn(·) is a bounded
Fourier multiplier since X is UMD. Hence the claim follows from (c) of Lemma 4.1.
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6 Proof that B = A1/2 and compatibility of functional calculi

Let −A be the generator of a uniformly bounded cosine function Cos on the Banach space
X , and let B = Φ(|t |), where Φ is the functional calculus constructed in Sect. 2. As a first
step, let us make sure that the operator A1/2 is defined by classical theory. This amounts to
proving that A is a sectorial operator.

For the following, recall the abbreviation

Sω := {z ∈ C\{0} | |arg z| < ω}
with ω ∈ (0, π]. For background and terminology of sectorial and strip-type operators we
refer to [10, Chap. 3].

Lemma 6.1 Let −A be the generator of a cosine function, uniformly bounded by M ≥ 1,
on a Banach space X. Then σ(A) ⊂ R+ and A satisfies the resolvent estimate

∥∥R(λ2, A)
∥∥ ≤ M

|λ| |Im λ| (λ /∈ R). (6.1)

Furthermore, if A is any operator satisfying (6.1), then A is sectorial of angle 0 and A1/2 is
both sectorial of angle 0 and (strong) strip-type of height 0. More precisely, there is M̃ ≥ 0
such that

∥∥R(λ, A1/2)
∥∥ ≤ M̃

|Im λ| (λ /∈ R).

Proof The estimate (6.1) follows directly from the representation (1.2). (Note that one has
to replace A by −A there and that the formula extends by holomorphy to all Re λ > 0).

By (6.1) we have

∥∥λ2 R(λ2, A)
∥∥ ≤ M

|λ|
|Im λ| (λ /∈ R).

Now if ϕ ∈ (0, π) and µ ∈ C\Sϕ , then there is λ /∈ R such that λ2 = µ and ϕ/2 < |arg λ| <

π − ϕ/2. Hence

‖µR(µ, A)‖ ≤ M

|sin(arg λ)| ≤ M

sin(ϕ/2)
(µ /∈ Sϕ).

This proves that A is sectorial of angle 0. It follows by general theory of (fractional powers
of) sectorial operators [10, Chap. 3] that A1/2 is well-defined and again sectorial of angle 0.
Choose M ′ such that

∥∥λR(λ, A1/2)
∥∥ ≤ M ′ (Re λ < 0). (6.2)

Now, if λ /∈ R write

1

λ − z
− 1

(−λ) − z
= 2λ

λ2 − z2 .

Inserting A1/2 yields

R(λ, A1/2) = 2λR(λ2, A) + R(−λ, A1/2). (6.3)

If Re λ ≤ 0 we have by (6.2)

∥∥R(λ, A1/2)
∥∥ ≤ M ′

|λ| ≤ M ′

|Im λ| .
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If Re λ ≥ 0 then Re(−λ) ≤ 0 and hence

∥∥R(λ, A1/2)
∥∥ ≤ 2

∥∥λR(λ2, A)
∥∥ + ∥∥R(−λ, A1/2)

∥∥ ≤ 2M

|Im λ| + M ′

|Im λ|
by (6.3). So the assertion holds with M̃ := M ′ + 2M .

The aim of this section is not only to show that A1/2 = B (as defined in Sect. 2) but also
to prove that the functional calculus Φ from Sect. 2 is a proper extension of the functional
calculi for A1/2 as a sectorial operator and as a strip-type operator.

Let us recall some definitions and results from [10, Chap. 2]. For ϕ ∈ (0, π] we define

H∞
0 (Sϕ) := {

f ∈ H∞(Sϕ) | ∃M, s > 0 : | f (z)| ≤ M min(|z|s , |z|−s)
}
.

The primary functional calculus for A1/2 as a sectorial operator is given by

Ψ ( f ) := 1

2π i

∫

Γ

f (z)R(z, A1/2) dz

for f ∈ H∞
0 (Sϕ), where ϕ ∈ (0, π) and Γ = ∂Sϕ′ with 0 < ϕ′ < ϕ being arbitrary. Since

these functions are holomorphic, they are determined completely by their restrictions to R+
and we will tacitly perform this restriction whenever it is convenient.

Proposition 6.2 Let −A be the generator of a uniformly bounded cosine function on a
Banach space X. Let Φ denote the functional calculus defined in Sect. 2, with B := Φ(|t |).
Let ϕ ∈ (0, π) and f ∈ H∞

0 (Sϕ). Then f ∈ E(R+) and Φ( f ) = Ψ ( f ).

Proof Fix ϕ′ ∈ (0, ϕ) and let Γ := ∂Sϕ′ , Γ+ = R+eiϕ′
, Γ− := R+e−iϕ′

. Then by Cauchy’s
theorem

1

2π i

∫

Γ

f (z)R(−z, A1/2) dz = 0.

Hence

Ψ ( f ) = 1

2π i

∫

Γ

f (z)R(z, A1/2) dz

= 1

2π i

∫

Γ

f (z)[R(z, A1/2) − R(−z, A1/2)] dz

= 1

π i

∫

Γ

f (z)z R(z2, A) dz

= 1

π i

∫

Γ+

f (z)z R((−i z)2,−A) dz − 1

π i

∫

Γ−

f (z)z R((i z)2,−A) dz

= 1

π

∫

Γ+

f (z)(−i z)R((−i z)2,−A) dz + 1

π

∫

Γ−

f (z)(i z)R((i z)2,−A) dz
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= 1

π

∫

Γ+

f (z)

∞∫

0

eizs Cos(s) ds dz + 1

π

∫

Γ−

f (z)

∞∫

0

e−i zs Cos(s) ds dz

=
∫

R

⎡
⎢⎣ 1

2π

∫

Γ+

f (z)eiz|s| dz + 1

2π

∫

Γ−

f (z)e−i z|s| dz

⎤
⎥⎦ Cos(s) ds.

It is routine to check that the function

g(s) := 1

2π

∫

Γ+

f (z)eiz|s| dz + 1

2π

∫

Γ−

f (z)e−i z|s| dz (s 	= 0)

is in L1(R). By specializing X = C and A = t2 ≥ 0 we obtain

C(g(s)ds)(t) = f (t) (t ∈ R).

This finally yields Ψ ( f ) = Φ( f ) as claimed.

Consider now the function e(z) := (1 + z)−1 and note that

f (x) := e(z) − 1

1 + z2 = z2 − z

(1 + z)(1 + z2)
= z(z − 1)

(1 + z)(1 + z2)
∈ H∞

0 (Sϕ)

for any ϕ < π/2. Therefore,

(1 + A1/2)−1 = Ψ ( f ) + (1 + A)−1 = Φ( f ) + (1 + B2)−1 = (1 + B)−1.

This implies that A1/2 = B. Moreover, a look on the construction of the sectorial functional
calculus for A1/2 in [10, Chap. 2] makes it clear that the functional calculus Φ is a proper
extension of it. (By [10, Proposition 1.2.7] one can then conclude that the compatibility for
the primary calculi carries over to the unbounded extensions.)
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