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Abstract We construct time independent configurations of two gravitating elastic bodies.
These configurations either correspond to the two bodies moving in a circular orbit around
their center of mass or strictly static configurations.

Keywords Elastic bodies · Rotation

1 Introduction

In the year 1933 Leon Lichtenstein published a book entitled “Gleichgewichtsfiguren
rotierender Flüssigkeiten” (“equilibrium figures of rotating fluids”) in which he collected
his work on this topic, published in Mathematische Zeitschrift in the years 1905–1928. Lich-
tenstein showed existence of solutions of the nonlinear PDEs describing rotating fluids in
various configurations under the influence of Newtonian gravity. The simplest configurations
are: one axisymmetric rigidly rotating fluid ball and two self-gravitating fluid balls in circular
motion around their center of gravity. More complicated configurations treated are toroidal
rings or even families of nested rings. All these problems have in common that the equa-
tions become time independent in a corotating system and that they express the balance of
gravitational, centrifugal and pressure forces. Of particular importance is that the total force
and torque on the bodies must vanish. Lichtensteins method is—in modern language—the
implicit function theorem in the context of bifurcation theory. In one class of problems he
begins with an exact non rotating solution and finds a nearby solution with small angular
velocity. More interesting are the cases with several bodies. Starting from two point particles
on a circular orbit around their center of gravity, one “puts two small homogeneous fluid
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382 R. Beig, B. G. Schmidt

bodies on these orbits”: this is no solution to the equation, however for a small body the error
is small enough to begin an iteration which converges to an exact solution. The purpose of this
paper is to show that basically all configurations Lichtenstein treated can also be successfully
studied if the bodies are made of elastic material. The case of one slowly rotating elastic body
was studied in [1]. In this paper we treat: Firstly, one elastic body in circular motion in the
gravitational field of some central mass which is kept fixed. Secondly, two bodies in circular
motion around their common center of gravity under their mutual Newtonian gravitational
field.

Thirdly we deal with a static problem, where one small body is near a non-degenerate
equilibrium point of a given gravitational field—such as that in the center of a hollow triaxial
cylinder, (iv) like (iii)—with the mutual interaction and self-interaction of both bodies taken
into account.

The paper is organized as follows. Section 2 reviews elastostatics; quotes properties of the
elasticity operator and formulates the equations for general “force functionals”. In Sect. 3
we discuss various types of forces, which in particular include centifugal and gravitational
forces. Section 4 contains the main application, the motion of a body in an external grav-
itational field and the motion of two bodies under their gravitational attraction. Section 5
is in a way separate from the main theme of rotating bodies. It shows, that the techniques
developed can be used to demonstrate the existence of Newtonian static two-body solutions
for particular geometries of the bodies. This possibility had always been conjectured, but the
existence of a full PDE solutions had not been demonstrated.

2 Elastostatics

In this section we recall the setup of nonrelativistic elastostatics. We are using the material
representation where elastic states are decribed by deformations, i.e. maps from material
space, the “body”, to physical space. A fuller and more general description can be found
in [1].

Let � be a bounded open connected subset in R
3 with smooth boundary ∂�. The basic

objects are maps � : � → R
3. We will use X A, resp. xi for Cartesian coordinates in � resp.

R
3 and δAB , resp. δi j for the metrics on the domain, resp. target space. There is a trivial or

reference state, denoted by �̄, which we will always take to be the identity. We assume the �’s
are sufficiently close to �̄ (see below), so that they have a regular inverse f : �−1(�) → �.
We define � A

i by the equation

� A
i (X)(∂B�i )(X) = δA

B (1)

and the tensor H AB by

H AB(X) = � A
i (X)�B

j (X)δi j . (2)

In other words, H AB is the inverse of the pulled-back-under-� Euclidean metric on R
3.

The material is described by the stored-energy function ŵ(�, ∂�) = ŵ(�, H BC ), smooth
in its arguments and subject to the conditions

(
∂ŵ

∂ H AB

) ∣∣∣∣
HC D= δC D

= 0 (3)
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and that L ABC D , defined by

L ABC D =
(

∂2ŵ

∂ H AB∂ HC D

) ∣∣∣∣
H E F = δE F

, (4)

should satisfy

L ABC D M AB MC D ≥ C |M |2 (5)

with C a positive constant and M AB = M (AB). Condition Eq. (3) will mean that the refer-
ence state �̄ has vanishing stress. Condition Eq. (5), called uniform pointwise stability, is an
ellipticity condition satisfied by standard materials. We will sometimes need the condition
that the material be homogenous and isotropic. Homogeneity means thast ŵ is independent
of �. Isotropy of the material means that ŵ depends on H AB only through the principal
invariants of H A

B = H ACδBC . In the latter case L ABC D is of the form

L ABC D = λ δABδC D + 2µδC(AδB)D, (6)

and uniform pointwise stability is then equivalent to µ > 0, 3λ + 2µ > 0.

Remark Perfect fluids can be described by assuming the stored-energy to be a function solely
of J , where J is the determinant of H A

B . However in this case condition (5) is never satisfied.

The “first Piola stress tensor” is defined by

σ̂i
A(�, ∂�) = ∂ŵ

∂(∂A�i )
= −2H AC�B

i
∂ŵ

∂ H BC
. (7)

Let now C be a neighbourhood of � = �̄ in W 2,p(�, R
3), p > 3, small enough so that

each � ∈ C has a C1-inverse (see p. 224 of [4]).
Next let E be the quasilinear second-order operator sending each map � ∈ C to

Ei [�](X) = (∂Aσi
A)(X) (8)

where σi
A(X) = σ̂ A

i (�(X), ∂�(X)). Denoteσi by (σi
An A)|∂�, where n A is the outward nor-

mal to ∂�. Let the “load space” L be defined by L = W 0,p(�, R
3)×W 1−1/p,p(∂�, R

3). It is
then well known (see [9]), that the operator E sending � ∈ C to the pair (b = Ei , τ = σi ) ∈ L

is well defined and C1. Here are some properties of the map E .

Property 1 E(�̄) = 0. This is obvious, since σ̂i
A(�̄, ∂�̄) = 0 by Eqs. (3,7).

Property 2 If (b, τ ) ∈ E(C) then there holds
∫
�

(ξ i ◦�)(X) bi (X) dV (X) +
∫
∂�

(ξ i ◦�)(X) τi (X) dS(X) = 0, (9)

where ξ i (x) is any Killing vector of Euclidean R
3. Note that (9), when required only for

translations, is independent of �. The conditions (9)—often called “equilibration condi-
tions”—have the meaning of vanishing total and force and total torque. If these conditions
were violated, the body will be set into motion and no time independent solution exists.
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Finally, the linear map δE : W 2,p(�, R
3) → L, given by the linearization of E at � = �̄,

has

Property 3 δE is Fredholm with (6-dimensional) kernel given by the Euclidean Killing vec-
tors at the reference state, i.e. δ�i of the form δ�i (X) = (ξ i ◦�̄)(X). Furthermore δE has a
range (of codimension 6) given by the subspace L�̄ of all (b, τ ) satisfying the equilibration
conditions (9) at � = �̄.
A proof of Property 3 can be found in [9].

We now come to the concept of force density in the present context. Let F be a “load
map”, i.e. a C1—map from C to L. We are interested in solving equations of the form

E[�] + λF[�] = 0 (10)

for small λ. Our load maps will be of the form

F : � ∈ C �→ (bi = Fi [�], τi = 0). (11)

We are thus seeking solutions to the elastic equations with σi , the normal stress at the bound-
ary, vanishing, i.e. “freely floating bodies”.

We will call a force field F equilibrated at �, if F[�] satisfies Eq. (9) with τi = 0 i.e. if∫
�

(ξ i ◦�)(X) Fi [�](X) dV (X) = 0 (12)

for all Euclidean Killing vectors ξ . Given a functional Fi , we will try to solve (10) by the
implicit function theorem. Suppose �λ is a 1-parameter family of solutions of (10) with
�0 = �̄. Then (12) must hold for any λ, whence for λ = 0. Therefore the reference config-
uration must be equilibrated for the force functional in order for being the starting solution
for an application of the implicit function theorem. Suppose we have such a �̄, then the
linearisation of the elasticity operator at �̄ still has a non trivial finite dimensional kernel
and range. In the spirit of bifurcation theory one could try to project the equation onto some
complement of the range. Sometimes this approach works, provided one takes “sufficiently
small” but finite bodies of any shape. We used this approach in [2]. In the present section
we will just consider spherical bodies. Then one can use some discrete symmetries to make
the space of configurations and loads smaller so that the implicit function theorem can be
applied.

3 Forces

In our applications we will deal with the centrifugal force and the gravitational force under
various circumstances.

3.1 Spatial force fields

Both the centrifugal and an external gravitational force give rise to maps F of the form

Fi [�](X) = (Ki ◦ �)(X), (13)

where Ki (x) is a smooth vector field on R
3 with a potential

Ki = ∂i K (14)
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satisfying


K = δi j∂i∂ j K = const. (15)

We call such fields Ki harmonic. It follows that ξ i Ki , where ξ i is any Euclidean Killing
vector, is a harmonic function. Let us define

µR,x [ξ ;�] =
∫

BR(x)

(ξ i ◦�)(X) (Ki ◦�)(X) dV (x), (16)

where BR(x) is the open ball of radius R centered at the point x . Suppose x0 is a critical
point of K . Then, by the (solid form of the) mean-value theorem for harmonic functions (see
[5]), there holds

µR,x0 [ξ ; �̄] =
∫

BR(x0)

ξ i Ki dV (x) = |BR | (ξ i Ki )(x0) = 0 (17)

This means that Fi = Ki ◦ � is equilibrated at �̄ provided that � = BR(x0).
We will also use the variational formula

δ�µR,x0 [ξ ; �̄] · δ� =
∫

BR(x0)

(LξK )i δ�i dV (x). (18)

Taking in (18) for δ� = η, with η another Euclidean Killing vector, we find the integrand in
(18) is again harmonic. Consequently

δ�µR,x0 [ξ ; �̄] · η = |BR | (ξ iη j∂i∂ j K )(x0) (19)

3.2 Force fields equilibrated at all deformations

It seems remarkable at first sight, that there should exist such force fields. Suppose there is
a symmetric tensor field �i j [�](x) on R

3, having the property that

∂ j�i
j = 0 ∀x ∈ R

3 \ �(�). (20)

and that �i j is of O(|x |−4) at infinity. (We are here and henceforth raising and lowering
indices with the Euclidean metric δi j .) Then Fi = J (∂ j�i

j ) ◦ � is equilibrated for all �.
(Recall that J denotes the Jacobian determinant of �.) To see this, compute∫

�

(ξ i ◦�)(X)J (X)((∂ j�i
j )◦�)(X) dV (X) =

∫
�(�)

ξ i (x) (∂ j�i
j )(x) dV (x). (21)

Now the integral on the right-hand side of (21) can be extended to all of R
3. After partial

integration, using that ξ diverges at most linearly at infinity, there follows∫
�

Fi [�](X)dV (X) = −
∫

R3

(∂ jξi )(x)�i j (x)dV (x) = 0 (22)

An example is afforded by the following situation: Let ρ be the function on R
3 given by

ρ[�](x) = [(J ◦�−1)(x)]−1ρ0 χ�(�) (23)
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with χ be the characteristic function and ρ0 a constant. This is the spatial density corre-
sponding to the (constant) reference density ρ0. Consider, then, the function U on R

3 given
by


U = −4πGρ (24)

with U (x) = O(|x |−1) at infinity, i.e. the gravitational potential generated by ρ. Now take

�i j = 1

4πG

[
(∂i U )(∂ j U ) − 1

2
δi j δkl(∂kU )(∂lU )

]
. (25)

Then

∂ j�i
j = −ρ∂i U (26)

so that (20) is satisfied. In this case, equlibration can also be checked by first computing

Fi [�](X) = Gρ0

∫
�

�i (X) − �i (Y )

|�(X) − �(Y )|3 dV (Y ), �i = δi j�
j (27)

and using the explicit form of the Killing vectors. We have of course rediscovered the well-
known fact that the total force and the total torque on a body due to its own gravitational field
is zero.

4 Circular orbits

4.1 Test body in a central gravitational field

Here we consider the gravitational field of a point source of mass M , in a reference frame
rigidly rotating with angular frequence ω. This leads to a spatial, harmonic force field given
by

K̄i = ρ0 ∂i

[
ω2 (x1)2 + (x2)2

2
+ G M

r

]
, (28)

where r = √
(x1)2 + (x2)2 + (x3)2. The field K̄i vanishes on the circle given by r = L , x3 =

0 where

ω2 L = G M

L2 , (29)

which of course corresponds to circular orbits of point particles. Thus we take λFi = λKi ◦�

with

Ki = ∂i

[
(x1)2 + (x2)2

2
+ L3

r

]
(30)

on R
3\{0} and solve

E + λF = 0, (31)

where E and F are respectively defined after Eq. (8) and in Eq. (11). For small λ near the
reference state defined by

�̄ = id|�, (32)
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where � = BR(l). Here R < L and l is for concreteness taken to be l = (L , 0, 0). (The
body is here and henceforth assumed to have spherical shape in its relaxed configuration.)
The interpretation of a solution �λ for small λ will be that of an elastic body moving with
constant angular frequency ω along a circle (of radius ∼ �1(L , 0, 0)) in the central gravita-
tional field of a mass M . Furthermore there holds

λ = ρoω
2, ω2 = G M

L3 (33)

Since the function in square brackets in Eq. (30) has Laplacian equal to a 2, it follows from
our previous discussion that F is equilibrated at � = �̄.

Our application of the implicit function theorem will be much simplified if we a pri-
ori impose the condition that the configurations be symmetric with respect to reflection at
the planes X2 = 0 and X3 = 0. Thus we now restrict W 2,p(�, R

3) to the Banach space
W 2,p

sym(�, R
3) of all maps � ∈ W 2,p(�, R

3), so that

�1(X1, X2, X3) = �1(X1,−X2, X3) = �1(X1, X2,−X3)

�2(X1, X2, X3) = −�2(X1,−X2, X3) = �2(X1, X2,−X3) (34)

�3(X1, X2, X3) = �3(X1,−X2, X3) = −�3(X1, X2,−X3)

These relations are the same as those satisfied by a vector field, which has mirror symmetry
w.r. to both the X2 = 0 and the X3 = 0 plane. Since the set (34) contains the identity, there
will again be an open neighbourhood of the identity, which we call Csym, so that each ele-
ment of Csym has a C1-inverse. We will define as restricted load space the Lsym given by all
(b, τ ) ∈ W 0,p(�, R

3) × W 1−1/p,p(∂�, R
3), with components having the same symmetries

(34). Supposing that the stored energy function is homogenous and isotropic, it follows that
∂Aσi

A also satifies (34). Similarly, using that �—whence ∂�—is invariant under the mirror
symmetry, it follows that σi

An A is also invariant. Thus the elasticity operator E maps Csym

into Lsym. Next observe that the equilibration conditions (9) in Csym are by symmetry all
identically satisfied except for that where ξ = ∂1. Thus Le

sym, the set of equilibrated loads in
Lsym, is simply given by all (b, τ ) ∈ Lsym, for which

∫
BR(l)

b1(X) dV (X) +
∫

∂ BR(l)

τ1(X) dS(X) = 0. (35)

In particular the set Le
sym does not depend on �. It is clearly a Banach subspace of Lsym of

codimension 1. Note next that the only Killing vectors in W 2,p
sym(�, R

3) are translations in
the X1-direction. Thus the linearized operator δE at �̄ has kernel exactly given by the linear
span of δ� = ∂1.

Now turn to operator F given by � ∈ Csym �→ (bi = Ki ◦ �, τi = 0) ∈ L. By well
known results on “Nemitskii operators” (see [9]), this map is C1. Furthermore it restricts to
a map from Csym to Lsym. Now consider the subset CF ⊂ Csym subject to

µR,l [∂1;�] =
∫

BR(l)

K1 ◦ � d3 X = 0. (36)

As shown in Sect. 3.1, the identity map �̄ lies in CF . Using (18) and Eq. (30), an easy
computation shows that

δ�µR,l [∂1; �̄] · ∂1 = |BR | · 3 (37)
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Thus CF is a C1-submanifold ⊂ Csym near �̄ of codimension 1 (see e.g. [6]). Furthermore,
by construction, E + λF maps CF into Le

sym and its linearization at λ = 0,� = �̄ is an
isomorphism. The implicit function theorem immediately gives the following

Theorem 4.1 Let the stored energy function entering the elasticity map E be homogenous
and isotropic. Fix a sphere of radius R and a number L > R. Let ω, λ be defined by (33).
Then there exists a positive number ε—which depends on L , R and the stored energy function
ŵ—so that a solution �λ of Eq. (31) exists for λ ∈ [0, ε).

4.2 Test body with self-gravity

Now the load Fi is given by

λFi = λ

⎡
⎣Ki ◦ � + ρ0 L3

M

∫
�

�i (X) − �i (Y )

|�(X) − �(Y )|3 dV (Y )

⎤
⎦ , (38)

with Ki given by Eq. (30) and λ given by (33). Using Sect. 3.2 and the fact that (see [2])
Eq. (27) defines a C1-map from Csym to Le

sym ⊂ Lsym, everything literally goes through as
before and we have the

Theorem 4.2 Under the same assumptions as in Theorem 4.1 the equation E +λF = 0 has
a unique solution �λ with �0 = �̄, for sufficiently small λ.

4.3 Two identical bodies with gravitational interaction and self-gravity

Here we take for the relaxed state two spheres of radius R at distance L along the X1 axis.
Thus, for the reference configuration we take balls � = BR( 1

2 l) and �′ = BR(− 1
2 l), where

the vector l is again given by l = (L , 0, 0) with 2R < L , and deformations � : � → R
3,

�′ : �′ → R
3 with

�′1(X1, X2, X3) = −�1(−X1, X2, X3)

�′2(X1, X2, X3) = �2(−X1, X2, X3) (39)

�′3(X1, X2, X3) = �3(−X1, X2, X3)

Thus the relaxed bodies and their deformations have complete mirror symmetry with respect
to the plane X1 = 0 (see Fig. 1).

The force field is given by

λFi [�](X) = ρ0ω
2

[
δi

α�α(X) − L3

2|BR |
∫

BR(− l
2 l)

�i (X) − �′
i (Y

′)
|�(X) − �′(Y ′)|3 dV (Y ′)

− L3

2|BR |
∫

BR( 1
2 l)

�i (X) − �i (Y )

|�(X) − �(Y )|3 dV (Y )

]
(40)

where α = 1, 2. The interpretation of a solution �λ is that of a pair of elastic bodies of mass
m = |BR | ρ0 (reduced mass Mr ), rotating about their centre of mass with angular frequency
ω where

λ = ρ0ω
2, ω2 L = G Mr

L2 , Mr = m

2
. (41)
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Fig. 1 Two spheres in steady rotation

The self-interaction term in (40) is again equilibrated for all �’s. The first two terms in (40)
are again of the form Ki ◦ � with Ki a harmonic force field, where however, for the second
term, the potential for this force field is in turn a functional K of �′, namely there holds


K [�′](x) = −4πρ, (42)

where (see (23))

ρ[�′](x) = [(J ′ ◦�′−1)(x)]−1ρ0 χ�′(�) (43)

with J ′ the Jacobian of the map �′. We again find that F is equilibrated at the identity.
Furthermore

δ�µR, 1
2 l [∂1; �̄] · ∂1 = |BR | · 3 (44)

for the sum of forces in (40), of course the last term does not contribute to µ. Thus exactly
as in the previous section CF is a C1-submanifold ⊂ Csym near �̄ of codimension 1 and
E + λF maps CF into Le

sym with its linearization at λ = 0,� = �̄ an isomorphism. We
have obtained the

Theorem 4.3 Consider Eq. (10) with homogenous and isotropic stored energy function and
with F of the form F : � ∈ C′ �→ (bi = Fi [�], τi = 0) where Fi is given by Eq. (40). For
sufficiently small λ there exists a solution �λ with �0 = �̄.

5 Static problems

In Newtonian theory it seems obvious that there exist no static solutions wth two gravitating
bodies. They should fall onto each other. This is however in general only true if the geometry
is such that the bodies are separated by a plane. We will show in this section that for more
involved geometries there do exist static 2-body solutions.

First we try to put a small body near a critical point of the field of some external body.
The gravitational force vanishes at critical points of the gravitational potential due to this
body. In Sect. 5.1 we will assume that a critical point, subject also to further restrictions, be
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(a) (b)

Fig. 2 Static configurations

given, and then show that there exists an equilibrium configuration of a small elastic body
near that critical point. However such critical points are absent in those parts of the vacuum
region which are separated by a plane from the support of the large body. One thus has to put
the small body in the “hollow space” of a sufficiently non-convex body (Fig. 2a). We give
a particular example for such a body in Sect. 5.2 corresponding to Fig. 2b, where we also
consider the full 2-body problem.

5.1 Test body

We first treat the case of a body in a given potential field Ki = ∂i K . We make the following
assumptions:

1. K has a nondegenerate critical point at the origin.
2. The domain � has the origin as centre of mass.
3. The Hessian of K and the tensor of inertia of � are simultaneously diagonalizable (i.e.

commute).
4. The eigenvalues of the inertia tensor are all different, and the eigenvalues of the Hessian

are all different.

We now show that, by simultaneously translating, rotating and scaling �, one can satisfy the
equilibration conditions (at the identity). Let fi j = f(i j) be the Hessian of K at the origin,
We first observe that the force K̊i = fi j x j is equilibrated w.r. to �. Namely

µ̊�[di∂i ; �̄] =
∫
�

di fi j x j dV (x) = 0, (45)

by Assumption 2 and

µ̊�[ωi
j x j∂i ; �̄] = ωi j fik� j

k, (46)
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where

� jk =
∫
�

x j xk dV (x). (47)

Expression (46) is zero on account of ωi j = ω[i j] together with Assumption 3. (The quantity
�i j differs from the standard definition of the inertia tensor by a multiple of δi j , so properties
3 and 4 carry over to �i j .) The full force Ki can be written as

Ki = fi j x j + fi jk(x)x j xk . (48)

Denote by �̄S,D the map xi �→ x̄ i = Si
j x j + Di with S a rotation matrix and consider the

expression

k(d, ε; S, D) = 1

ε4 µ�ε [di∂i ; �̄S, εD], (49)

where �ε = {x ∈ R
3| 1

ε
x ∈ �}. After the obvious change of integration variable it follows

that

k(d, ε; S, D) =
∫
�

di [ fi j (S j
j ′ y

j ′ + D j )

+ ε fi jk(εSy + εD)(S j
j ′ y

j ′ + D j )(Sk
k′ yk′ + Dk)

]
dV (y). (50)

Similarly, the quantity

m(ω, ε; S, D) = 1

ε5
µ�ε [ωi

j x j∂i ; �̄S, εD] (51)

is equal to

m(ω, ε; S, D) =
∫
�

ωi
j (S j

j ′ y
j ′ + D j )

[
fik(Sk

k′ yk′ + Dk)

+ ε fikl(εSy + εD)(Sk
k′ yk′ + Dk)(Sl

l ′ y
l ′ + Dl)

]
dV (y). (52)

Clearly we have that k(d, 0; id, 0) = 0, m(ω, 0; id, 0) = 0. We can view the pair (k( · , ε, S,

D), m( · , ε, S, D)) as defining an ε-dependent map from the Euclidean group E(3) into the
dual of the Lie algebra of E(3), and the derivative of this map as a bilinear form V on the
Lie algebra of E(3). We find that

δDk(d, 0 ; id, 0) · e = |�| di fi j e
j (53)

δSk(d, 0 ; id, 0) · µ = 0 (54)

δDm(ω, 0 ; id, 0) · e = 0 (55)

δSm(ω, 0 ; id, 0) · µ = |�| ( fi j�
kl + fmi�

mlδk
j )ω

i
kµ

j
l , (56)

where µi j = µ[i j] and we have used Assumption 2 in (54) and (55). The expression in
brackets on the r.h. side of (56), viewed as a bilinear form on antisymmetric tensors, is sym-
metric by Assumption 3. Writing ωi

j = εi
jk pk, µi

j = εi
jkqk , this form is equivalent to

|�| τi j pi q j where τ i
j , by the standard ε - identities and using Assumption 3, is in matrix

notation given by

τ = 3 � f − (tr f )� − (tr �) f + [(tr �)(tr f ) − 2 tr (� f )] id (57)
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Going to a frame where both � and f are diagonal, we see that τ is also diagonal, with,
e.g. τ11 = ( f33 − f22)(�22 − �33). Thus τ is non-degenerate, using Assumption 4. Using
Assumption 1, the full bilinear form V is also non-degenerate. Therefore by the implicit
function theorem we conclude that there exists, for ε sufficiently close to 0, a unique family
(S(ε), D(ε)) with (S(0), D(0)) = (id, 0) so that µ�ε [di∂i ; �̄S(ε), εD(ε)] = 0 for all di and
µ�ε [ωi

j x j∂i ; �̄S(ε), εD(ε)] = 0 for all ωi
j with ωi j = ω[i j].

We next define �̄ = �ε for fixed small positive ε and, by slight abuse of notation, �̄ = id�̄.
Again our task is to solve (10), namely

E[�] + λF[�] = 0 , (58)

where the load map F is of the form

F : � ∈ C �→ (bi = Fi [�], τi = 0) (59)

and Fi [�] = Ki ◦ �. Both E and F are viewed as maps from C to the load space L (see
Sect. 2). We have the following

Theorem 5.1 For sufficiently small λ equation (58) has a unique solution �λ ∈ C near �̄.

Proof In a similar way as in Sect. 4.1 we define CF as a neighborhood of �̄ in C satisfying
the six conditions

µ�̄[ξ ;�] =
∫

�̄

(ξ i ◦�)(X) Fi [�](X) dV (X) = 0 (60)

for all Euclidean Killing vectors ξ . Consider the expression

δ�µ�̄[ξ ; �̄] · δ� =
∫

�̄

(Lξ K )i δ�i dV (X) (61)

If δ�i is any non-zero Killing vector η and ε entering the definition of �̄ is sufficiently small,
it follows from the above discussion and continuity that the expression (61) can not be zero
for all ξ . Thus CF is a C1-submanifold of C of codimension 6.

There is an operator P : L → L�̄ projecting onto loads equilibrated at the identity.
Such an operator is constructed by choosing a (6-dimensional) complement of L�̄ in L and
requiring this complement to be the kernel of P . We now consider the modified equations

P ◦ (E + λF) = 0. (62)

for � ∈ CF. The linearization δE : W 2,p(�̄) → L�̄ at λ = 0 of the map in Eq. (62) is
clearly an isomorphism, so there exists, for small λ, a solution �̃ of Eq. (62) near �̄ ∈ CF.
By property 2 of the elasticity operator in Sect. 2 we have that, for all � ∈ C, E[�] ∈ L�,
the set of all loads satisfying the equilibration conditions at � = �̃, so this holds trivially
for �̃. We also have that F[�̃] ∈ L�̃, since �̃ ∈ CF . Thus (E + λF)[�̃] ∈ L�̃. By Eq. (62)
the load (E + λF)[�̃] lies in some complement of L�̄. This complement, by continuity, is
also a complement of L�̃. Thus (E + λF)[�̃] = 0, and the proof is complete.

5.2 A static 2-body problem

We first need a domain whose Newtonian potential (assuming constant density) has a critical
point in the vacuum region with all three eigenvalues of the Hessian non-zero and different.
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Consider first the Newtonian potential U0 of a solid ellipsoid centered at the origin with
axes a1 > a2 > a3 and constant density ρ′. From Chapter 3 of [3] (Eqs. (40) and (18)) we
read off that that

(∂i∂ j U0)(0) = −2πGρ′ diag(A1, A2, A3), (63)

where 0 < A1 < A2 < A3. In the limit when a3 approaches a2 we find (using either
Eq. (18) of [3] or the explicit expressions (38), (39) of [3]) that A1 < A < A2 = A3, where
A is the value of Ai when a1 = a2 = a3 (which is equal to 2

3 ). By continuity we have
A1 < A < A2 < A3 for a3 less than but close to a2. We now subtract from U0 the potential
of a solid sphere of radius a < a3, centered at the origin, thus obtaining a new potential U
corresponding to a hollow triaxial ellipsoid �′. The potential U has a critical point at the
origin with Hessian having one positive and two negative eigenvalues, all different.

We now choose a domain � with mass center at this critical point and such that the iner-
tia tensor satisfies Assumption’s 3 and 4 in Sect. 5.1: as explained in Sect. 5.1 we can, by
translating, rotating and scaling �, find a domain �̄ so that µ�̄[ξ ; id�̄] = 0 for all Euclidean
Killing vectors ξ . By slight abuse of notation we henceforth call �̄ again �. Using an argu-
ment identical to that in Sect. 3.2, one sees that when µ�[ξ ; id�] = 0 there also follows that
µ�′ [ξ ; id�′ ] = 0 for all Euclidean Killing vectors (“actio = reactio”) - and this can also be
checked explicitly. We now assign to the two domains �′ and � the constant densities ρ′
and ρ and elasticity operators E ′ mapping �′ ∈ C′ into the load space L′ and E , mapping
� ∈ C into the load space L, respectively, with both stored energy functions satisfying Eqs.
(3), (5). Neither isotropy nor homogeneity of the stored energy functions is needed in this
section. Associated with �′ there is the load map F ′ with F′ given by

λF′
i [�,�′](X ′) = −G

[
ρ

∫
�

�′
i (X ′) − �i (Y )

|�′(X ′) − �(Y )|3 dV (Y )

+ ρ′
∫
�′

�′
i (X ′) − �′

i (Y
′)

|�′(X ′) − �′(Y ′)|3 dV (Y ′)
]

(64)

and with � there is associated F given by

λFi [�,�′](X) = −G

[
ρ′

∫
�′

�i (X) − �′
i (Y

′)
|�(X) − �′(Y ′)|3 dV (Y ′)

+ ρ

∫
�

�i (X) − �i (Y )

|�(X) − �(Y )|3 dV (Y )

]
. (65)

We now define DF ⊂ C × C′ ⊂ W 2,p(�, R
3) × W 2,p(�′, R

3), p > 3 as the set of
(�,�′) ∈ C × C′ for which

∫
�×�′

ξ i (X)
�i (X) − �′

i (Y
′)

|�(X) − �′(Y ′)|3 dV (X) dV (Y ′) = 0 (66)

and �′ satifies

�′
i (X0) = 0, ∂ ′[i�′

j](X0) = 0, (67)
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where X0 is some given point in �′. Again, by Sect. 3.2 or by calculation using the explicit
form of ξ i (X), one shows that Eq. (66) is equivalent to∫

�×�′
ξ i (X ′)

�′
i (X ′) − �i (Y )

|�′(X ′) − �(Y )|3 dV (X) dV (Y ′) = 0 (68)

Combining the fact that there are no non-zero Killing vectors vanishing at a point together
with their curl and the discussion of the previous subsection—making ε entering the defini-
tion of � smaller if necessary, it follows that DF is a C1-submanifold of C ×C′ near (�̄, �̄′)
of codimension 12. We now set λ = G and solve, using the implicit function theorem, the
equations

P(E[�] + λF[�,�′]) = 0, P ′(E ′[�′] + λF ′[�,�′]) = 0 (69)

on DF , for small G and (�,�′) near (�̄, �̄′). Here P , P ′ are projection operators on L

resp. L′, defined analogously as in Sect. 5.1. The argument showing that we have in fact also
solved the “unprojected” equations proceeds as in Sect. 5.1, if it is recalled that the self force
terms in (65), (64) are identically equilibrated. We thus have the

Theorem 5.2 Consider the coupled set of equations

E[�] + λF[�,�′] = 0, E ′[�′] + λF ′[�,�′] = 0, (70)

where (�,�′) ∈ C × C′. Then, for λ sufficiently small, there is a unique solution (�λ,�
′
λ)

with (�0,�
′
0) = (id�, id�′).
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