Skip to main content
Log in

Analysis of orthogonality and of orbits in affine iterated function systems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce a duality for affine iterated function systems (AIFS) which is naturally motivated by group duality in the context of traditional harmonic analysis. Our affine systems yield fractals defined by iteration of contractive affine mappings. We build a duality for such systems by scaling in two directions: fractals in the small by contractive iterations, and fractals in the large by recursion involving iteration of an expansive matrix. By a fractal in the small we mean a compact attractor X supporting Hutchinson’s canonical measure μ, and we ask when μ is a spectral measure, i.e., when the Hilbert space \({L^2( \mu)}\) has an orthonormal basis (ONB) of exponentials \(\{{e_\lambda, | \lambda \in \Lambda}\}\) . We further introduce a Fourier duality using a matched pair of such affine systems. Using next certain extreme cycles, and positive powers of the expansive matrix we build fractals in the large which are modeled on lacunary Fourier series and which serve as spectra for X. Our two main results offer simple geometric conditions allowing us to decide when the fractal in the large is a spectrum for X. Our results in turn are illustrated with concrete Sierpinski like fractals in dimensions 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, S.I., Lapidus, M.L.: Spectral geometry: an introduction and background material for this volume. In: Andersson, S.I., Lapidus, M.L. (eds.) Progress in Inverse Spectral Geometry, pp. 1–14. Trends in Mathematics, Birkhäuser Verlag, Basel (1997)

  2. Bandt, C., Hung, N.V., Rao, H.: On the open set condition for self-similar fractals. Proc. Am. Math. Soc. 134(5), 1369–1374 (electronic) (2006)

    Google Scholar 

  3. Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O., Saupe, D., Voss, R.F.: The Science of Fractal Images. Springer, New York (1988). With contributions by Yuval Fisher and Michael McGuire

  4. D’Andrea, J., Merrill, K.D., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket spaces. University of Colorado (preprint) (2006)

  5. Dutkay D.E. and Jorgensen P.E.T. (2006). Iterated function systems, Ruelle operators and invariant projective measures. Math. Comp. 75: 1931–1970

    Article  MATH  MathSciNet  Google Scholar 

  6. Dutkay D.E. and Jorgensen P.E.T. (2006). Wavelets on fractals. Rev. Mat. Iberoamericana 22: 131–180

    MATH  MathSciNet  Google Scholar 

  7. Dutkay, D.E., Jorgensen, P.E.T.: Harmonic analysis and dynamics for affine iterated function systems. Houston J. Math., to appear, http://arxiv.org/abs/math.DS/0502277

  8. Dutkay, D.E., Jorgensen, P.E.T.: Fourier frequencies in affine iterated function systems. Preprint (2006)

  9. Falconer K. (1997). Techniques in Fractal Geometry. Wiley, Chichester

    MATH  Google Scholar 

  10. Farkas, B., Matolcsi, M., Mora, P.: On Fuglede’s conjecture and the existence of universal spectra. Preprint http://arxiv.org/abs/math.CA/0612016 (2006)

  11. Fuglede B. (1974). Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16: 101–121

    Article  MATH  MathSciNet  Google Scholar 

  12. Haagerup, U.: Orthogonal maximal abelian *-subalgebras of the n × n matrices and cyclic n-roots. In: Doplicher, S., Longo, R., Roberts, J.E., Zsido, L. (eds.) Operator Algebras and Quantum Field Theory (Rome, 1996), pp. 296–322. International Press, Cambridge (1997)

  13. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, Vol. 2: Structure and Analysis for Compact Groups: Analysis on Locally Compact Abelian Groups. Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer, New York (1970)

  14. Hutchinson J.E. (1981). Fractals and self-similarity. Indiana Univ. Math. J. 30(5): 713–747

    Article  MATH  MathSciNet  Google Scholar 

  15. Iosevich A., Katz N. and Pedersen S. (1999). Fourier bases and a distance problem of Erdős. Math. Res. Lett. 6(2): 251–255

    MATH  MathSciNet  Google Scholar 

  16. Iosevich A. and Pedersen S. (1998). Spectral and tiling properties of the unit cube. Internat. Math. Res. Notices 1998(16): 819–828

    Article  MATH  MathSciNet  Google Scholar 

  17. Jorgensen P.E.T. (1982). Spectral theory of finite volume domains in R n. Adv. Math. 44(2): 105–120

    Article  MathSciNet  Google Scholar 

  18. Jorgensen P.E.T. and Pedersen S. (1987). Harmonic analysis on tori. Acta Appl. Math. 10(1): 87–99

    Article  MathSciNet  Google Scholar 

  19. Jorgensen, P.E.T., Pedersen, S: An algebraic spectral problem for \(L^{2}(\Omega),\Omega\subset{\bf R}^n\), C. R. Acad. Sci. Paris Sér. I Math. 312(7):495–498

  20. Jorgensen P.E.T. and Pedersen S. (1992). Spectral theory for Borel sets in R n of finite measure. J. Funct. Anal. 107(1): 72–104

    Article  MathSciNet  Google Scholar 

  21. Jorgensen P.E.T. and Pedersen S. (1993). Group-theoretic and geometric properties of multivariable Fourier series. Exposition. Math. 11(4): 309–329

    MathSciNet  Google Scholar 

  22. Jorgensen P.E.T. and Pedersen S. (1998). Dense analytic subspaces in fractal L 2-spaces. J. Anal. Math. 75: 185–228

    MathSciNet  Google Scholar 

  23. Kahane, J.-P.: Géza Freud and lacunary Fourier series. J. Approx. Theory 46(1), 51–57 (1986). Papers dedicated to the memory of Géza Freud

    Google Scholar 

  24. Kigami J. (2004). Local Nash inequality and inhomogeneity of heat kernels. Proc. Lond. Math. Soc. (3) 89(2): 525–544

    Article  MATH  MathSciNet  Google Scholar 

  25. Kigami J. and Lapidus M.L. (2001). Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 217(1): 165–180

    Article  MATH  MathSciNet  Google Scholar 

  26. Kigami J., Strichartz R.S. and Walker K.C. (2001). Constructing a Laplacian on the diamond fractal. Exp. Math. 10(3): 437–448

    MATH  MathSciNet  Google Scholar 

  27. Kolountzakis M.N. and Matolcsi M. (2006). Tiles with no spectra. Forum Math. 18(3): 519–528

    Article  MATH  MathSciNet  Google Scholar 

  28. Łaba I. and Wang Y. (2006). Some properties of spectral measures. Appl. Comput. Harmon. Anal. 20(1): 149–157

    Article  MathSciNet  MATH  Google Scholar 

  29. Lagarias J.C. and Wang Y. (1996). Self-affine tiles in R n. Adv. Math. 121(1): 21–49

    Article  MATH  MathSciNet  Google Scholar 

  30. Lagarias J.C. and Wang Y. (1997). Integral self-affine tiles in R n, II: Lattice tilings. J. Fourier Anal. Appl. 3(1): 83–102

    Article  MATH  MathSciNet  Google Scholar 

  31. Lam T.Y. and Leung K.H. (2000). On vanishing sums of roots of unity. J. Algebra 224(1): 91–109

    Article  MATH  MathSciNet  Google Scholar 

  32. Lapidus M.L., Neuberger J.W., Renka R.J. and Griffith C.A. (1996). Snowflake harmonics and computer graphics: numerical computation of spectra on fractal drums. Internat. J. Bifur. Chaos Appl. Sci. Eng. 6(7): 1185–1210

    Article  MATH  MathSciNet  Google Scholar 

  33. Matolcsi, M.: Fuglede’s conjecture fails in dimension 4. Preprint http://arxiv.org/abs/math. CA/0611936 (2006)

  34. Pedersen S. and Wang Y. (2001). Universal spectra, universal tiling sets and the spectral set conjecture. Math. Scand. 88(2): 246–256

    MATH  MathSciNet  Google Scholar 

  35. Senechal M. (1995). Quasicrystals and Geometry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Sierpiński, W.: General topology. Mathematical expositions, No. 7, University of Toronto Press, Toronto (1952). Translated by C. Cecilia Krieger

  37. Stewart I. (1995). Four encounters with Sierpiński’s gasket. Math. Intelligencer 17(1): 52–64

    Article  MATH  MathSciNet  Google Scholar 

  38. Strichartz R.S. and Wang Y. (1999). Geometry of self-affine tiles, I. Indiana Univ. Math. J. 48(1): 1–23

    MATH  MathSciNet  Google Scholar 

  39. Tao T. (2004). Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2-3): 251–258

    MATH  MathSciNet  Google Scholar 

  40. Tao T. and Vu V. (2006). On random ±1 matrices: singularity and determinant. Random Struct. Algorithms 28(1): 1–23

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen.

Additional information

Research supported in part by the National Science Foundation DMS 0457491.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutkay, D.E., Jorgensen, P.E.T. Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256, 801–823 (2007). https://doi.org/10.1007/s00209-007-0104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0104-9

Keywords

Mathematics Subject Classification (2000)

Navigation