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Abstract
We consider the physical setup of a three-dimensional fluid–structure interaction prob-
lem. A viscous compressible gas or liquid interacts with a nonlinear, visco-elastic,
three-dimensional bulk solid. The latter is described by an evolution with inertia, a
non-linear dissipation term and a term that relates to a non-convex elastic energy
functional. The fluid is modelled by the compressible Navier–Stokes equations with
a barotropic pressure law. Due to the motion of the solid, the fluid domain is time-
changing. Our main result is the long-time existence of a weak solution to the coupled
system until the time of a collision. The nonlinear coupling between the motions of
the two different matters is established via the method of minimising movements. The
motion of both the solid and the fluid is chosen via an incrimental minimization with
respect to dissipative and static potentials. These variational choices together with a
careful construction of an underlying flow map for our approximation then directly
result in the pressure gradient and the material time derivatives.
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1 Introduction

The interaction of fluids with elastic structures has attracted the interest of scientists
from various fields due to the immense potential for applications ranging from hydro-
and aero-elasticity [9] over bio-mechanics [2] to hydrodynamics [6]. In the last two
decades there has also been a huge development in the understanding of the math-
ematical models—typically highly coupled systems of nonlinear partial differential
equations (PDEs).

The interaction of incompressible viscous fluids with elastic structures has been
studied intensively. Results concerning the existence of weak solutions to the coupled
system (which exist as long as the moving part of the structure does not touch the
fixed part of the fluid boundary) can be found, for instance, in [7, 12, 16, 21–23]. The
first result in [7] is concerned with a flexible elastic plate located on one part of the
fluid boundary. The shell equation is linearised and the shell is assumed to be one-
dimensional. The existence of a weak solution to the incompressible Navier–Stokes
equations coupled with a plate in flexion is proved in [12]. In [21] the incompressible
Navier–Stokes equations are studied in a cylindrical wall. The movement of the latter
is modelled by the one-dimensional cylindrical linearised Koiter shell model. The
elastodynamics of the cylinder wall in [23] is governed by the one-dimensional linear
wave equation modelling a thin structural layer, and by the two-dimensional equations
of linear elasticity modelling a thick structural layer. The interaction with a linear-
elastic shell of Koiter-type in a general geometric set-up (where the middle surface of
the shell serves as the mathematical boundary of the three-dimensional fluid domain)
is studied in [16]. The result has recently been extended to the original (and fully
nonlinear) Koiter model, cf. [22].

What all these results have in common is that the incompressible Navier–Stokes
equations are coupled to a lower dimensional equation for the structure. We are inter-
ested in models where fluid domain and structure have the same dimension which is
the case for the interaction with an elastic bulk. This has only been studied for small
deformations/linear elasticity, in the regime of strong solutions in [3, 14]. We are,
however, interested in the more difficult situation of large strain elasticity. A major
difficulty is that the associated elastic energy involves a non-convex functional. Con-
sequently, it is not possible to apply fixed point arguments to obtain a solution and
one is forced to use variational methods instead. A corresponding approach has been
developed recently by the second and third author together with Benešová in [1]. They
provide an approach to the fully coupled system which is based on De Giorgi’s cel-
ebrated minimising movement method. The key idea in [1] is that the second order
time derivative of the structure displacement is discretised in two steps (yielding a
velocity scale and an acceleration scale) and to use a Lagrangian approximation of
the material time derivative on the time-discrete level. The result is the existence of
a global-in-time weak solution to the coupled system describing the interaction of an
incompressible fluid with a three-dimensional visco-elastic bulk solid.

The situation in the compressible case is completely different and the analysis
of problems from fluid–structure interaction is still at the beginning. A first result
has been achieved by the first and third author in [4]. They prove the existence of
a weak solution to a coupled system describing the motion of a three-dimensional
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compressible fluid interacting with a two-dimensional linear elastic shell of Koiter-
type. Recently, they extended the result to heat-conducting fluids and fully nonlinear
shell models in [5]. Results on the existence of local strong solutions appeared recently
in [18–20, 24]. In this paper we aim at the natural next step and consider the interaction
of a compressible fluid with a three-dimensional visco-elastic bulk solid in order to
arrive at a compressible counterpart of the result in [1].

Let us present the model in detail. The fluid together with the elastic structure are
both confined to a fixed container—a bounded Lipschitz domain � ⊂ R

n with n ≥ 2
(where n = 3 is the most interesting case, but also n = 2 has physical relevance).
The deformation of the solid is described by the deformation function η : Q → �,
where Q ⊂ R

n is the reference configuration of the solid, which is assumed to be a
bounded Lipschitz domain as well. We denote by M the part of Q which is mapped
to the contact interface between the fluid and the solid and set P := ∂ Q\M . For a
given deformation, we then deal with a fluid domain �η := �\η(Q), which will be
time-dependent. In �η we observe the flow of a viscous compressible fluid subject to
the volume force f f : I × �η → R

n . We seek the velocity field v : I × �η → R
n

and the density � : I × �η → R solving the system

∂t� + div(�v) = 0 in I × �η, (1.1)

∂t (�v) + div(�v ⊗ v) = div S(∇v) − ∇ p(�) + � f f in I × �η. (1.2)

Here, p(�) is the pressure which is assumed to follow the γ -law, that is p(�) ∼ �γ for
large �, where γ > 1 (see Sect. 2.1 for the precise assumptions). Further, we suppose
Newton’s rheological law

S(∇v) = 2μ

(∇v + ∇v�

2
− 1

n
div v I

)
+ λ div v I

with strictly positive viscosity coefficients μ, λ. The balance of linear momentum for
the solid is given by

�s∂
2
t η + div σ = fs in I × Q, (1.3)

where �s > 0 is the density of the shell and fs : I × Q → R
3 a given external

force. We suppose that the first Piola–Kirchhoff stress tensor σ can be derived from
underlying energy and dissipation potentials; that is

div σ = DE(η) + D2R(η, ∂tη)

for some energy- and dissipation functionals E and R. Prototypical example examples
are given by

R(η, ∂tη) =
ˆ

Q
|∂t∇η�∇η + ∇η�∂t∇η|2 dy, (1.4)
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Fig. 1 A typical setting of fluid/structure interaction

and for some q > n and a >
nq

q−n

E(η) = 1

8

ˆ
Q

(
C(∇η�∇η − I) : (∇η�∇η − I) + 1

(det∇η)a
+ 1

q
|∇2η|q

)
dx .

(1.5)

The latter is defined provided det∇η > 0 a.e. in Q and we set E(η) = ∞ otherwise.
HereC is the positive definite tensor of elastic constants. The general assumptions for
E and R are collected in Sect. 2.1. Equations (1.1)–(1.3) are supplemented with the
coupling conditions and boundary data

σ(t, x)ν(x) = (S(∇v) − p(�)I) ν̂(t, η(t, x)) in I × M, (1.6)

v(t, η(t, x)) = ∂tη(t, x) in I × M, (1.7)

v(t, x) = 0 in I × ∂�\η(P), (1.8)

η(t, x) = ηb in I × P. (1.9)

Here ν(x) is the unit normal to M while ν̂(t, η(t, x)) = cof(∇η(t, x))ν(x) is the
normal transformed to the actual configuration and ηb : P → � is a given function.
Finally, we assume the initial conditions

�(0) = �0, (�v)(0) = q0 in �η(0). (1.10)

η(0, ·) = η0, ∂tη(0, ·) = η1 in Q, (1.11)

where η0 : Q → �, η1 : Q → R
n are given functions with ηb = η in P , E(η0) < ∞

and η0 not in collision, i.e. injective on M with η0(M) ∩ ∂� = ∅. For simplicity
of presentation we assume that ηb(P) consists of connected components of ∂�. See
Fig. 1 for an example of such a configuration. Yet we note that it suffices for all our
arguments that η0 is not in collision and the initial fluid domain �\η0(Q) has itself a
Lipschitz-boundary, i.e. there are no cusps formed between solid and rigid boundary.
We aim to prove the existence of a weak solution to (1.1)–(1.11), where the precise
formulation can be found in Sect. 2.3. A simplified version of our main result reads
as follows and we refer to Theorem 2.11 for the complete statement and the precise
assumptions on the data.
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Theorem 1.1 Under natural assumptions on the data there exists a weak solution
(η, v, �) to (1.1)–(1.11) which satisfies the energy inequality

E (s) +
ˆ s

0

ˆ
�η

S(∇v) : ∇v dx dt + 2
ˆ s

0
R(η, ∂tη) dt

≤ E (0) +
ˆ

�η

� f f · v dx +
ˆ

Q
fs · ∂tη dy,

E (t) =
ˆ

�η(t)

(
�(t) |v(t)|2

2 + H(�(t))
)
dx + �s

ˆ
Q

|∂t η(t)|2
2 dy + E(η(t)),

(1.12)

for almost any s ∈ I , where H is the pressure potential related to p by p(�) =
H ′(�)� − H(�). The interval of existence is of the form I = (0, T ), where T is the
first time of collision1 or ∞ if there is none.

To prove Theorem 1.1 we aim to apply a variational approach in the spirit of [1],
where the same problem was solved in the easier case of an incompressible fluid. This
approach is based on a time-delayed approximation: One seeks a continuous solution
for which the inertial terms (i.e. ∂t tη and the material derivative Dv

Dt ) occur in form of a
difference quotient involving a time step h > 0. The resulting equation is of gradient-
flow type, which allows us to construct solutions using the minimizing movements
scheme. On a formal level, this method is well suited to the compressible case: The
flow map, that is constructed to obtain the material derivative, can directly be used to
transport the density. It turns out that the variational nature of the scheme allows us
to generate the pressure term directly from the pressure potential which we include in
the functional we are minimising in each step. The material derivative of the density
also occurs as a difference quotient which leads to the desired equation of continuity
in the limit.

Let us now explain how to make these ideas rigorous. When solving the compress-
ible Navier–Stokes equations it is common toworkwith an artificial viscosity ε in (1.1)
and add ε�� on the right-hand side to make it a proper parabolic equation. As it turns
out the limit ε → 0 can only be performed if the integrability of the density (which
results from the parameter γ in (1.2)) is large and thus outside the realm of physical
interest. Consequently, a second regularisation (δ-level with artificial pressure) is used
and one adds an additional term δ�β (with β sufficiently large) to the pressure in (1.2).
This approach has been introduced in [11]. In order to solve the regularised problem
with ε, δ > 0 fixed, we aim at a variational approach as described above. Due to the
additional term ε��, we need to modify the mass transport from a simple update of
the densities via the flow map. This change also necessitates a rather specific choice
of the discretised inertial term in order to obtain the correct energy inequality (see
Sect. 4.1 for details). Additionally, when combined with the pressure potential, this

1 By collision we refer to a configuration in which the solid either ceases to be injective on the boundary,
or its free part touches ∂�. Both generally result in a change for topology of the fluid domain and possible
concentration effects which are outside of the scope of this article.
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perturbation creates in the limit of the time-step h → 0 the term

ε

2

ˆ
I

ˆ
�η

∇� · (∇vφ + ∇φv) dx dt

in the momentum equation (as well as a similar term in the energy inequality). This
corresponds to a regularisation used similarly in [11] and many subsequent papers.
In order to recover this term, it turns out that we have to exclude the vacuum for the
limit passage h → 0, see Eq. (4.29). Excluding the hypothetical vacuum is a big open
problem for the compressible Navier–Stokes system even in presence of positive ε.
To overcome this difficulty, we split the regularisation of v, that was already present
in [1], on the h-level into its own κ-level: For fixed κ > 0 we add a higher order
dissipation to the momentum equation. This gives sufficient regularity of the velocity
which ultimately yields a minimum principle for the equation of continuity.

For fixed κ, ε, δ > 0 we are able to apply the ideas just explained and to obtain
a solution to the approximate problem by the minimising movement method (with
the acceleration scale limit τ → 0 in Sect. 3.3 and the velocity scale limit h → 0 in
Sect. 4). Eventually, we pass to the limit with respect to the regularisation parameters
κ, ε and δ in Sect. 5. For technical reasons this has to be done in three independent
steps. The limit κ → 0 is rather straightforward as the density remains compact for
ε > 0. The compactness of the density becomes critical in the subsequence limit
procedures where we pass to the limit in ε and δ respectively. This is done via the
method of effective viscous flux which is due to Lions [17] (with important extensions
byFeireisl et al. [11]). Thismethod has been extended to the setting of variable domains
in [4].

It is important to note that in each of these approximations, our approximate solu-
tions are already confined to the set of admissible states. In particular, on each level the
solid deformation η is injective, the solid and the fluid move with the same velocities
at the interface and the total mass of the fluid is conserved at all times. Additionally,
an energy inequality holds on each level. It mirrors the physical energy inequality and
will be our main tool to obtain a priori estimates.

2 Preliminaries

2.1 Assumptions

The assumptions on the solid and its dissipation (see (1.4) and (1.5) for examples of
such functionals) are identical to those in [1]:

Assumption 2.1 (Elastic energy) We assume that q > n and E : W 2,q(Q;�) → R

satisfies:

S1 Lower bound: There exists a number Emin > −∞ such that

E(η) ≥ Emin for all η ∈ W 2,q(Q;Rn).
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S2 Lower bound in the determinant: For any E0 > 0 there exists ε0 > 0 such that
det∇η ≥ ε0 for all η ∈ {η ∈ W 2,q(Q;Rn) : E(η) < E0}.

S3 Weak lower semi-continuity: If ηl⇀η in W 2,q(Q;Rn) then E(η) ≤
lim inf l→∞ E(ηl).

S4 Coercivity: All sublevel-sets {η ∈ E : E(η) < E0} are bounded in W 2,q(Q;Rn).
S5 Existence of derivatives: For finite values E has a well defined derivative which

we will formally denote by

DE : {η ∈ E : E(η) < ∞} → (W 2,q(Q;Rn))′.

Furthermore, on any sublevel-set of E , DE is bounded and continuouswith respect
to strong W 2,q(Q;Rn)-convergence.

S6 Monotonicity and Minty-type property: If ηl⇀η in W 2,q(Q;Rn) with
supl E(ηl) < ∞, then

lim inf
l→∞ 〈DE(ηl) − DE(η), (ηl − η)ψ〉 ≥ 0 for all ψ ∈ C∞

0 (Q; [0, 1]).

If additionally lim supl→∞ 〈DE(ηl) − DE(η), (ηl − η)ψ〉 ≤ 0 then ηl → η in
W 2,q(Q;Rn).

Definition 2.2 (Domain of definition) The set of admissible deformations in
W 2,q(Q;�) (injective a.e. and satisfying the Dirichlet boundary condition) can be
expressed as

E :=
{
η ∈ W 2,q(Q;�) : E(η) < ∞, |η(Q)| =

ˆ
Q
det∇η dx, η|P = ηb

}
(2.1)

where ηb : P → ∂� is a fixed injective function of sufficient regularity so that E
is non-empty. By a slight abuse of notation, we use L∞(I ; E) to denote the set of
functions η : I × Q → �, for which η(t) ∈ E for all t ∈ I and t �→ E(η(t)) is
bounded.

Assumption 2.3 (Solid dissipation) The dissipation functional R : E ×
W 1,2(Q;Rn) → R satisfies:

R1 Weak lower semi-continuity: If bl⇀b in W 1,2(Q;Rn) then

lim inf
l→∞ R(η, bl) ≥ R(η, b).

R2 Homogeneity of degree two: The dissipation is homogeneous of degree two in its
second argument, i.e.,

R(η, λb) = λ2R(η, b) ∀λ ∈ R.

In particular, this implies R(η, b) ≥ 0 and R(η, 0) = 0.
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R3 Energy-dependent Korn-type inequality: Fix E0 > 0. Then there exists a constant
cK = cK (E0) > 0 such that for all η ∈ W 2,q(Q;Rn) with E(η) ≤ E0 and all
b ∈ W 1,2(Q;Rn) with b|P = 0 we have

cK ‖b‖2W 1,2(Q)
≤ R(η, b).

R4 Existence of a continuous derivative: The derivative D2R(η, b) ∈ (W 1,2(Q;Rn))′
given by

d

dε
R(η, b + εφ)

∣∣∣
ε=0

=: 〈D2R(η, b), φ〉 ∀φ ∈ W 1,2(Q;Rn)

exists and is weakly continuous in its two arguments. Due to the homogeneity of
degree two this in particular implies

〈D2R(η, b), b〉 = 2R(η, b).

A more thorough discussion of these assumptions is given in [1, Sec. 2.3]. For the
solid energy S1, S3 and S4 are standard for any type of variational approach, while
S5 and S6 help us in obtaining a proper limit equation. The important observation
here is that together with the behaviour of the interface S2 gives us injectivity of
the deformation, which is not only physical but also results in a non-degenerate fluid
domain.

Similarly, R1 is necessary for the variational approach, while R2 and R4 simplify
the situation slightly, as they imply that the resulting term in the equation is linear in
the time-derivative. Finally the energy dependence in R3 is needed to allow for the
frame-invariance required by physical considerations.

Additionally, we need to state some assumptions on the potential energy of the
density, which will also result in the pressure response.

Assumption 2.4 (Pressure) The function p : [0,∞) → [0,∞) satisfies the following.

P1: p ∈ C2((0,∞)) ∩ C1([0,∞));
P2: p′(�) > 0 for all � > 0;
P3: p has γ -growth with γ >

2n(n−1)
3n−2 , i.e. there exists a > 0 and γ >

2n(n−1)
3n−2 such

that

lim
�→∞

p′(�)

�γ−1 = a.

We will also consider the regularised pressure pδ given by

pδ(�) := p(�) + δ�β + δ�2

for δ > 0, where β > max{4, γ }. The function pδ clearly inherits P1 and P2 but has
β-growth instead of γ -growth. Additionally, one also has that

p′′
δ (�) ≥ 2δ for all � > 0.
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Given the pressure through the function p the potential energy of the density can be
described by the fluid potential

Uη(�) :=
ˆ

�\η(Q)

H(�) dx, H(�) := �

ˆ �

1

p(z)

z2
dz,

which satisfies the relation p(�) = H ′(�)� − H(�). For the pressure potential H
we also obtain a regularised version given by Hδ(�) := �

´ �

1
pδ(z)

z2
dz = H(�) +

δ
β−1�

β + δ�2. During the minimising movement approach in Sects. 3 and 4 only Hδ

appears. Some of its properties, which follow directly from P1–P3 above, are listed in
the following lemma.

Lemma 2.5 (Fluid potential) For fixed δ > 0 the function Hδ satisfies the following
for some cδ > 0.

H1: Hδ is bounded from below;
H2: Hδ is strictly convex, i.e. H ′′

δ (�) ≥ cδ > 0 for all � > 0;
H3: Hδ has β-growth, i.e., we have

Hδ(�) ≥ cδ(�
β − 1) for all � ∈ [0,∞).

2.2 Function spaces on variable domains

For a given deformation η : Q → � we parametrise the deformed fluid domain by

�η := �\η(Q).

If η : I × Q → � is additionally taken to be time-dependent, this defines a deformed
space-time cylinder I × �η := ⋃

t∈I {t} × �η(t) ⊂ I × �. To save on notation, we
will sometimes define shorter notation in the presence of indices and parameters, e.g.

�
(h)
l (t) := �

η
(h)
l (t)

.

Recall that the moving part of the boundary of �η(t) is given by η(t)|M : M → �.
The corresponding function spaces for variable domains are defined as follows.

Definition 2.6 (Function spaces) For I = (0, T ), T > 0, and η ∈ C(I × Q;�)

defining a changing domain �(t) := �\η(t, Q) we define for 1 ≤ p, r ≤ ∞

L p(I ; Lr (�(·)) :=
{
v ∈ L1(I × �η) : v(t,·)∈Lr (�η(t)) for a.e. t,

‖v(t,·)‖Lr (�η(t))
∈L p(I )

}
,

L p(I ; W 1,r (�(·))) := {
v ∈ L p(I ; Lr (�(·))) : ∇v ∈ L p(I ; Lr (�(·)))} .

Function spaces of vector- or matrix valued functions are defined accordingly. We
now give a definition of convergence in variable domains. Convergence in Lebesgue
spaces follows from an extension by zero.
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Definition 2.7 Let (ηi ) ⊂ C(I × Q;�) with ηi → η uniformly in I × Q. Let p ∈
[1,∞] and k ∈ N0.

(a) We say that a sequence (gi ) ⊂ L p(I , Lq(�ηi )) converges to g in L p(I , Lq(�η))

strongly with respect to (ηi ), in symbols gi →η g in L p(I , Lq(�η)), if

χ�ηi
gi → χ�η g in L p(I , Lq(Rn)).

(b) Let p, q < ∞. We say that a sequence (gi ) ⊂ L p(I , Lq(�ηi )) converges to g in
L p(I , Lq(�η))weaklywith respect to (ηi ), in symbols gi⇀

ηg in L p(I , Lq(�η)),

if

χ�ηi
gi⇀χ�η g in L p(I , Lq(Rn)).

(c) Let p = ∞ and q < ∞. We say that a sequence (gi ) ⊂ L∞(I , Lq(�ηi ))

converges to g in L∞(I , Lq(�η)) weakly∗ with respect to (ηi ), in symbols
gi⇀

∗,ηg in L∞(I , Lq(�η)), if

χ�ηi
gi⇀

∗χ�η g in L∞(I , Lq(Rn)).

Next we state a compactness lemma from [4, Lemma 2.8] which gives a variant of
the classical result by Aubin–Lions for PDEs in variables domains. It allows to pass
to the limit in the product of two weakly converging sequences provided one is more
regular in space and the other one in time. Let us list the required assumptions.

(A1) The sequence (ηi ) ⊂ C(I × Q;�) satisfies ηi → η uniformly in I × Q and for
some α > 0

ηi → η in Cα(I × Q).

(A2) Let (vi ) be a sequence such that for some p, s ∈ [1,∞) we have

vi⇀
ηv in L p(I ; W 1,s(�η)).

(A3) Let (ri ) be a sequence such that for some m, b ∈ [1,∞) we have

ri⇀
ηr in Lm(I ; Lb(�η)).

Assume further that (∂t ri ) is bounded in the sense of distributions, i.e., there is
c > 0 and k ∈ N such that

ˆ
I

ˆ
�ηi

ri ∂tφ dx dt ≤ c

(ˆ
I
‖φ‖m′

W k,2(�ηi )
dt

) 1
m′

uniformly in i for all φ ∈ C∞
0 (I × �ηi ).

In [4, Lemma 2.8] the corresponding version of (A3) assumes k = 2. But the very same
argument is also valid in the general case as in the classical Aubin–Lions argument.
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Lemma 2.8 Let (ηi ), (vi ) and (ri ) be sequences satisfying (A1)–(A3) where 1
s∗ + 1

b =
1
a < 1 (with s∗ = ns

n−s if s ∈ (1, n) and s∗ ∈ (1,∞) arbitrarily otherwise) and
1
m + 1

p = 1
q < 1. Then there is a subsequence with

vi ri⇀
ηvr weakly in Lq(I , La(�η)). (2.2)

Corollary 2.9 In the case ri = vi we find that

vi →η v strongly in L2(I , L2(�η)).

2.3 Weak solutions and themain theorem

In this session we make the concept of a weak solution to (1.1)–(1.11) rigorous. We
begin with the function spaces to which the triple (η, v, �) belongs.

• For the solid deformation η : I × Q → � we consider the space

Y I := {ζ ∈ W 1,2(I ; W 1,2(Q;Rn)) ∩ L∞(I ; E) }.

• Given η ∈ Y I , for the fluid velocity v : I × �η → R
n we define the space

X I
η := L2(I ; W 1,2(�η;Rn)).

• Given η ∈ Y I , for the fluid density � : I × �η → [0,∞) we define the space

Z I
η := Cw(I ; Lγ (�η)),

where the subscript w refers to continuity with respect to the weak topology.

A weak solution to (1.1)–(1.11) is a triple (η, v, �) ∈ Y I × X I
η × Z I

η that satisfies
the following.

• The momentum equation holds in the sense that2

ˆ
I

d

dt

ˆ
�(t)

�v · b dx −
ˆ

�(t)
(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+
ˆ

I

ˆ
�(t)

S(∇v) : ∇b dx dt −
ˆ

I

ˆ
�(t)

pδ(�) div b dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DE(η), φ〉 + 〈D2R(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�(t)

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (2.3)

2 Clearly, it holds
´

I
d
dt

´
�(t) w dx dt = ´

�(t) w(t) dx
∣∣t=T
t=0 , where it turned out be useful to work with

the first expression.
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for all (φ, b) ∈ L2(I ; W 2,q(Q;Rn)) ∩ W 1,2(I ; L2(Q;Rn)) × C∞
0 (I × �;Rn)

with3 φ(t) = b(t) ◦ η(t) in Q and b(t) = 0 on P for a.a. t ∈ I . Moreover, we
have (�v)(0) = q0, η(0) = η0 and ∂tη(0) = η1 as well as ∂tη(t) = v(t) ◦ η(t) in
Q, η(t) ∈ E and v(t) = 0 on ∂� for a.a. t ∈ I .

• The continuity equation holds in the sense that

ˆ
I

d

dt

ˆ
�(t)

�ψ dx dt −
ˆ

I

ˆ
�(t)

(�∂tψ + �v · ∇ψ) dx dt = 0 (2.4)

for all ψ ∈ C∞(I × R
3) and we have �(0) = �0.

• The energy inequality is satisfied in the sense that

−
ˆ

I
∂tψ E dt +

ˆ
I
ψ

ˆ
�(t)

S(∇v) : ∇v dx ds + 2
ˆ

I
ψ R(η, ∂tη) ds

≤ ψ(0)E (0) +
ˆ

I

ˆ
�(t)

� f f · v dx dt +
ˆ

I
ψ

ˆ
Q

fs ∂tη dy dt (2.5)

holds for any ψ ∈ C∞
0 ([0, T )). Here, we abbreviated

E (t) =
ˆ

�(t)

(
1

2
�(t)|v(t)|2 + H(�(t))

)
dx +

ˆ
Q

�s
|∂tη|2
2

dy + E(η(t)).

Remark 2.10 Due to the bulk setting, it is possible to extend the fluid variables onto
the fixed domain � using their solid counterparts. We will do so quite often for the
velocity, where it is convenient to set v(t, η(t, y)) := ∂tη(t, y) for all y ∈ Q, as this
results in the complete Eulerian velocity v ∈ L2(I ; W 1,2

0 (�;Rn)). For the density, one
can similarly consider pushing the solid density forward onto� using η. However, this
is less useful in practice as the resulting function will still have a jump at the interface
between solid and fluid. Instead, it is often more convenient to keep the inertial effects
of the solid in their Lagrangian description and to think of � as extended by 0 onto
�, as this allows for the removal of most of the time-dependent domains in the weak
formulation.

We are finally in the position to state our main result in a complete form.

Theorem 2.11 Assume that the assumptions from Sect2.1 are satisfied and

|q0|2
�0

∈ L1(�η0), �0 ∈ Lγ (�η0), η0 ∈ E, η1 ∈ L2(Q;Rn),

f f ∈ L2(0, T ; L∞(Rn;Rn)), fs ∈ L2((0, T ) × Q);Rn).

(2.6)

Then there is a weak solution (η, v, �) ∈ Y I × X I
η × Z I

η to (1.1)–(1.11) in the sense of
(2.3)–(2.5). Here, we have I = (0, T∗), where T∗ < T only if the time T∗ is the time
of the first contact of the free boundary of the solid body either with itself or ∂� (i.e.,
η(T∗) ∈ ∂E).

3 By ◦ we denote a purely spatial composition, i.e. b(t) ◦ η(t) = b(t, η(t, ·)).
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As will be apparent by the analysis we will show that the renormalised continuity
equation is satisfied in the sense of Di Perna and Lions, cf. [8, 17].

Definition 2.12 (Renormalized continuity equation) Let η ∈ Y I and v ∈ X I
η . We say

that the function � ∈ Z I
η solves the continuity equation (2.4) in the renormalized sense

if we have

ˆ
I

d

dt

ˆ
�(t)

θ(�)ψ dx dt −
ˆ

I

ˆ
�(t)

(θ(�)∂tψ + θ(�)v · ∇ψ) dx dt

= −
ˆ

I

ˆ
�(t)

(�θ ′(�) − θ(�)) div v ψ dx dt (2.7)

for all ψ ∈ C∞(I ×R
3) and all θ ∈ C1(R) with θ(0) = 0 and θ ′(z) = 0 for z ≥ Mθ .

2.4 The damped continuity equation in variable domains

Here we present some results concerning the continuity equation in moving domains.
Some of the results are direct consequences of our previous papers [4, 5], but
Lemma 2.14 below is new and contains some improvements.

We assume that the moving boundary is prescribed by a function η : I × Q → �.
For a given function w ∈ L2(I ; W 1,2(�η;Rn)) with ∂tη(t) = w(t) ◦ η(t) in M for
a.a. t ∈ I and some ε > 0 we consider the equation

∂t� + div(�w) = ε�� in I × �η,

�(0) = �0 in �η(0), ∂νη�
∣∣
∂�η

= 0 on I × ∂�η.
(2.8)

A weak solution to (2.8) satisfies

ˆ
I

d

dt

ˆ
�η

�ψ dx dt −
ˆ

I

ˆ
�η

(�∂tψ + �w · ∇ψ) dx dt

= −
ˆ

I

ˆ
�η

ε∇� · ∇ψ dx dt (2.9)

for all ψ ∈ C∞(I × R
3). We have the following version of [4, Thm. 3.1].

Lemma 2.13 Let η ∈ L2(I ; W 1,∞(Q;Rn)) be the function describing the boundary.
Assume that w ∈ L2(I ; W 1,2(�η;Rn)) with ∂tη(t) = w(t) ◦ η(t) in M and w(t) = 0
in ∂�\η(P) for a.a. t ∈ I and �0 ∈ L2(�η(0)). Assume also that there is a weak
solution � to (2.8) such that

� ∈ L∞(I ; L2(�η)) ∩ L2(I ; W 1,2(�η)).

a) The solution � is unique in the class � ∈ L∞(I ; L2(�η)) ∩ L2(I ; W 1,2(�η)).
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b) Let θ ∈ C2(R+;R+) be such that θ ′(s) = 0 for large values of s and θ(0) = 0.
Then the following holds:

ˆ
I

d

dt

ˆ
�η

θ(�)ψ dx dt −
ˆ

I×�η

θ(�) ∂tψ dx dt

= −
ˆ

I×�η

(
�θ ′(�) − θ(�)

)
divw ψ dx +

ˆ
I×�η

θ(�)w · ∇ψ dx dt

−
ˆ

I×�η

ε∇θ(�) · ∇ψ dx dt −
ˆ

I×�η

εθ ′′(�)|∇�|2ψ dx dt (2.10)

for all ψ ∈ C∞(I × R
3).

c) Assume that �0 ≥ 0 a.e. in �η(0). Then we have � ≥ 0 a.e. in I × �η.

Proof The proof follows by the lines of [4, Thm. 3.1], where much stronger conditions
on the regularity of η and also sightly more on w is assumed. One easily checks that
these assumptions are only used there to prove the existence of a solution, which we do
not claim here. The statements from a)–c) do not require it. Note that the assumption
η(t) ∈ W 1,∞(Q;Rn) for a.a. t ∈ I is needed to guarantee the existence of an extension
operator W 1,2(�η;Rn) → W 1,2(Rn;Rn). The latter is required for the proof of b). ��
Lemma 2.14 Let the assumptions of Lemma 2.13 be satisfied and suppose additionally
that w ∈ L2(I ; W k0,2(�η)) and η, ∂tη ∈ L2(I ; W k0,2(Q)) for some k0 > n

2 + 2 and
η0 ∈ W 2,q(Q;Rn).

(a) We have

inf
�η(0)

�0 exp

(
−
ˆ T

0
‖ divw‖L∞(�η) dt

)

≤ �(t, x) ≤ sup
�η(0)

�0 exp

( ˆ T

0
‖ divw‖L∞(�η) dt

)

for a.a. (t, x) ∈ I × �η.
(b) We have

� ∈ L∞(I ; W 1,2(�η)) ∩ L2(I ; W 2,2(�η))

and it holds

sup
t∈I

ˆ
�η

|∇�|2 dx +
ˆ

I

ˆ
�η

|∇2�|2 dx dt

≤ c(ε) exp

(ˆ T

0

(‖w‖2L∞(�η) + ‖∂tη‖2L∞(Q)

)
dt

)

×
( ˆ

�η

(|∇�0|2 dx + c
ˆ T

0
‖ divw‖2L∞(�η)‖�‖2L2(�η)

dt

)
.
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Proof Let us initially suppose that η,w and � are sufficiently smooth and � is strictly
positive such that all the following manipulations are justified.

Ad (a). Multiplying (2.8)1 by θ ′(�) shows

∂tθ(�) + w · ∇θ(�) + divw�θ ′(�) = ε div
(
θ ′(�)∇�

) − εθ ′′(�)|∇�|2

as well as

d

dt

ˆ
�η

θ(�) dx +
ˆ

�η

(�θ ′(�) − θ(�)) divw dx = −ε

ˆ
�η

θ ′′(�)|∇�|2 dx

using Reynold’s transport theorem, ∂νη� = 0 and w(t) ◦ η(t) = ∂tη(t) in M for a.a.
t ∈ I . If θ ′′ ≥ 0 and |θ ′(z)z| ≤ cθ |θ(z)| for z ≥ 0 we clearly get

d

dt

ˆ
�η

θ(�) dx ≤
ˆ

�η

(θ(�) − �θ ′(�)) divw dx

≤ (cθ + 1)‖ divw‖L∞(�η)

ˆ
�η

θ(�) dx .

Gronwall’s lemma yields

ˆ
�η

θ(�(t)) dx ≤ exp

(
Cθ

ˆ
I
‖ divw‖L∞(�η) dt

) ˆ
�η

θ(�0) dx,

where Cθ = cθ + 1. Choosing θ(z) = zm for m � 1 we get cθ = m and hence

(ˆ
�η

|�(t)|m dx

) 1
m

≤ exp

(
m + 1

m

ˆ
I
‖ divw‖L∞(�η) dt

)(ˆ
�η

|�0|m dx

) 1
m

for all t ∈ I . Passing with m → ∞ we obtain

sup
t∈I

‖�(t)‖L∞(�η(t)) ≤ ‖�0‖L∞(�η0 ) exp

(ˆ
I
‖ divw‖L∞(�η) dt

)
.

Similarly, choosing θ(z) = z−m , we have

ˆ
�η(t)

(�(t))−m dx ≤ exp

(
(m + 1)

ˆ
I
‖ divw‖L∞(�η) dt

)ˆ
�η0

(�0)
−m dx .

Taking the m-th root shows

(ˆ
�η(t)

(�(t))−m dx

) 1
m

≤ exp

(
m + 1

m

ˆ
I
‖ divw‖L∞(�η) dt

)(ˆ
�η0

(�0)
−m dx

) 1
m

.
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Passing with m → ∞ implies

sup
�η(t)

1

�(t)
≤ exp

(ˆ
I
‖ divw‖L∞(�η) dt

)
sup
�η0

1

�0

or, equivalently,

exp

(
−
ˆ

I
‖ divw‖L∞(�η) dt

)
inf
�η0

�0 ≤ inf
�η(t)

�(t).

Ad (b). Multiplying (2.8) by �� shows

−∂t� �� + ε|��|2 = ∇� · w �� + divw ���

as well as

1

2

d

dt

ˆ
�η

|∇�|2 dx + ε

ˆ
�η

|∇2�|2 dx

= 1

2

ˆ
∂�η

|∇�|2∂tη · νηdx +
ˆ

�η

∇� · w �� dx

+
ˆ

�η

divw ��� dx − ε

ˆ
∂�η

(∇νη)∇� · ∇� dx

=: I + II + III + IV

using Reynold’s transport theorem and ∂νη� = 0 (note that we used
´
�η

|��|2 dx =´
�η

|∇2�|2 dx + ´
∂�η

(∇νη)∇� · ∇� dx). The first and last term are estimated by

I + IV ≤ (c + ‖∂tη‖L∞(Q))‖∇�‖2L2(∂�η)

≤ c(1 + ‖∂tη‖L∞(Q))‖∇�‖L2(�η)‖∇2�‖L2(�η)

≤ c(ξ)(1 + ‖∂tη‖L∞(Q))
2‖∇�‖2L2(�η)

+ ξ‖∇2�‖2L2(�η)
,

where ξ > 0 is arbitrary and where we used the trace theorem (note that our assump-
tions and Sobolev’s embedding imply η ∈ L∞(I ; W 1,∞(Q;Rn))) together with an
interpolation argument. We also have

II ≤ c(ξ)‖w‖2L∞(�η)‖∇�‖2L2(�η)
+ ξ‖∇2�‖2L2(�η)

,

as well as

III ≤ c(ξ)‖ divw‖2L∞(�η)‖�‖2L2(�η)
+ ξ‖∇2�‖2L2(�η)

.
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Absorbing the ξ -terms and applying Gronwall’s lemma proves

sup
t∈I

ˆ
�η

|∇�|2 dx +
ˆ

I

ˆ
�η

|∇2�|2 dx dt

≤ c
ˆ

�η

|∇�0|2 dx + c
ˆ T

0
‖ divw‖2L∞(�η)‖�‖2L2(�η)

dt,

where the constant depends on
´

I ‖∂tη‖2L∞(Q) dt and
´

I ‖w‖2L∞(�η) dt .
Let us now remove the regularity assumptions on η,w and �. We can regularise

η and w by smooth approximation as follows. First, we extend w by ∂tη ◦ η−1 to �

and regularise w by a standard smooth approximation in space-time. This yields a
smooth sequence (w)ξ which converges to w in the L2(I ; W 2,∞(�;Rn))-norm. We
define (η)ξ as the solution to the ODE wξ(t, (η)ξ (·, x)) = ∂t (η)ξ (·, x) for each given
x ∈ Q with η(0, x) = (η0)ξ (x), where (η0)ξ is a regularisation of η0 in space. The
function (η)ξ (·, x) does indeed exist for all given x ∈ Q on the interval [0, T ] by the
Picard–Lindelöff theorem as

∥∥∇wξ

∥∥∞ is uniformly bounded (in dependence of ξ ). By
its equation one directly deduces that (η)ξ is smooth. Now [5, Theorem 3.3] applies
to the regularised problem and we obtain a solution �ξ with �ξ ∈ C1(I × �η) and
∇2�ξ ∈ C(I × �η). Also �ξ is stricly positive (as long as �0 is). One easily checks
that the estimates derived above do not depend on ξ . It remains to pass to the limit
ξ → 0. Since η0 ∈ W 2,q(Q;Rn) by assumption and q > n we have (η0)ξ → η0
in W 1,∞(Q;Rn). Hence, (using the ODE, the properties of (w)ξ and Gronwall’s
lemma) one deduces that (η)ξ → η as ξ → 0 uniformly in Q. Actually, for this
purpose convergence of w in the L2(I ; W 1,∞(�;Rn))-norm is sufficient. Since we
have convergence in L2(I ; W 2,∞(�;Rn)) we have similarly ∇(η)ξ → ∇η as ξ → 0
uniformly in Q. Also, passing to the limit with the ODE implies that ∂t (η)ξ → ∂tη

in L2(I ; L∞(Q;Rn)). These convergences are sufficient to pass to the limit in the
estimate. Since (2.8) is linear the limit procedure ξ → 0 in (2.9) is straightforward
and the limit is indeed the unique solution (see Lemma 2.13 a)). ��

3 The time delayed problem

Following [1] we begin constructing a solution to a time-delayed problem, where the
material derivative in the momentum equation and its solid counterpart are discretised
at level h > 0, but all other variables are already continuous. We initially solve only
on the interval [0, h] and then iterate this in the next section to a time-delayed solution
on I by decomposing it into intervals [0, h], [h, 2h], . . . . As it is common in the
literature on the compressible Navier–Stokes system we use an artificial diffusion in
the continuity equation and an approximate pressure. As it turns out this alone does
not yield sufficient regularity to pass to the limit in the time-step h, which we are going
to do in the next section. In order to overcome this problem we add additional terms
and set for κ > 0 and k0 ∈ N large enough

Eκ(η) = E(η) + κ‖∇k0η‖2L2(Q)
, Rκ(η, b) = R(η, b) + κ‖∇k0b‖2L2(Q)

.
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In the model for the bulk we replace E by Eκ and R by Rκ respectively. Additionally,
we add κ

´
�(t) |∇k0v|2 dx to the dissipation of the fluid. Similar terms are also used

in [1] with h instead of κ . Hence there they disappear already in the limit h → 0,
simultaneously with turning the differential quotient into the material derivative. In
our case this is split into two limit procedures.

Given suitable initial state �0, η0, �0 := �\η0(Q), a previous solid velocity ζ :
[0, h] × Q → R

n and a corresponding quantity w : [0, h] × �0 → R
n for the fluid,4

we call a triple (η, v, �) solution to the time delayed problem in [0, h] provided
• The time delayed momentum equation holds, that is we have

〈DEκ(η(t)), φ〉 −
ˆ

�(t)
pδ(�) div b dx

+ 〈D2Rκ (η, ∂tη) , φ〉 +
ˆ

�(t)
S(∇v) : ∇b dx + κ

ˆ
�(t)

∇k0v : ∇k0b dx

+ 1

h

ˆ
Q

�s(∂tη − ζ ) φ dy + 1

h

ˆ
�(t)

(�v − √
�
√
det∇�−1w ◦ �−1) · b dx

=
ˆ

Q
fs φ dy +

ˆ
�(t)

� f f · b dx (3.1)

for almost any t ∈ [0, h] and all φ ∈ Cc([0, h]; W k0,2(Q;Rn)), b ∈
Cc([0, h]; W k0,2

0 (�;Rn)) satisfying φ|P = 0 and

b ◦ η = φ and v ◦ η = ∂tη in Q,

here we have set �(t) = �\η(t, Q) and � : [0, h] × �0 → �(t) solves ∂t� =
v ◦� and�(0, ·) = id where ◦ is meant with respect to space (i.e. (v ◦�)(t, x) :=
v(t,�(t, x))).

• The approximate equation of continuity holds, that is we have

∂t� = − div(v�) + ε�� (3.2)

in (0, h)×�(t) and ∂ν(t)�(t) = 0 in ∂�(t) for all t ∈ (0, h) as well as �(0) = �0.
• The energy balance holds in the sense that

Eκ(η(t1)) + U δ
η (�(t1)) + h

ˆ t1

0

ˆ
�(t)

|∇k0v|2 dx dt

+
ˆ t1

0

(
2Rκ (η, ∂tη) +

ˆ
�(t)

S(∇v) : ∇v dx + ε

ˆ
�(t)

H ′′
δ (�)|∇�|2 dx

)
dt

4 Due to the dissipation of density in the equation of continuity, we cannot simply work with the previous
fluid velocity. Additionally, we need to deal with the transport effects inherent in the Eulerian description
of the fluid. As a result, the natural quantity w(t) turns out to be

√
�(t − h)v(t − h) transported forward

along the flow to the domain �0 at time t = 0. This will become more apparent in the subsequent section,
when we extend the problem to [0, T ] and perform the limit h → 0. For the purpose of the current section,
all terms involving w can be thought of as a given force term.
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+
ˆ t1

0

1

2h

[
�s

ˆ
Q

|∂tη|2 dy +
ˆ

�(t)
� |v|2 dx

]
dt

≤ Eκ(η0) + U δ
η0

(�0) +
ˆ t1

0

1

2h

[
�s

ˆ
Q

|ζ |2 dy +
ˆ

�0

|w|2 dx

]
dt

+
ˆ t1

0

[ˆ
Q

∂tη fs dy +
ˆ

�(t)
�v · f f dx

]
dt (3.3)

for a.a. t1 ∈ (0, h), where U δ
η (�) = ´

�η
Hδ(�) dx .

We have the following result.

Theorem 3.1 Suppose that there are

ζ ∈ L2(0, h; L2(Q;Rn)), w ∈ L2(0, h; L2(�0;Rn)),

η0 ∈ E ∩ W k0,2(Q;�), �0 ∈ L∞(�0), essinf
�0

�0 > 0,

fs ∈ C([0, h]; L2(Q;Rn)), f f ∈ C([0, h]; L2(�;Rn)).

Then there is a triple (η, v, �) with

η ∈ L∞(0, h; E) ∩ W 1,2(0, h; W k0,2(Q;Rn)),

v ∈ L2(0, h; W k0,2(�;Rn)),

� ∈ L∞(0, h; Lβ(�η)) ∩ L2(0, h; W 2,2(�η))

which solves the time delayed problem in the sense of (3.1)–(3.3).

The rest of this section is devoted to the proof of Theorem 3.1. Some aspects are
reminiscent to Theorem 4.2 and its predecessors Theorems 2.2 (for the FSI) and 3.5
(for the time delayed terms) in [1] to which we refer when possible. The main effort
is to understand the contribution of � and its behaviour.

In order to construct a solution we now split [0, h] again into small time-steps of
length τ � h and discretise in time. For each of these steps we solve a stationary
minimisation problem (the iterative problem), prove a discrete version of the energy
inequality and finally pass to the limit τ → 0 with the resulting piecewise constant
and affine approximations.

3.1 The iterative approximation

Assume that τ, h, κ, ε, δ > 0 are fixed and that the forces f f and fs as well as

ζk := ffl τ(k+1)
τk ζ dt : Q → R

n and wk := ffl τ(k+1)
τk w dt : �0 → R

n are given.
Suppose that also ηk : Q → �,�k := �\ηk(Q), �k : �k → R and a diffeomorphism
�k : �0 → �k are known. Then we define ηk+1 : Q → �, vk+1 : �k → R

n and
�k+1 : �k+1 → R to be a minimizing triple (not necessarily unique) of

(η, v, �) �→ Eκ(η) + U δ
η (�)
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+ τ

[
Rκ

(
ηk,

η−ηk
τ

) +
ˆ

�k

1

2
S(∇v) : ∇v dx + κ

2

ˆ
�k

|∇k0v|2 dx

]

+ τ

2h

[
�s

ˆ
Q

∣∣ η−ηk
τ

− ζk
∣∣2 +

ˆ
�k

∣∣∣∣√�kv −
√
det∇�−1

k wk ◦ �−1
k

∣∣∣∣
2

dx

]

− τ

ˆ
Q

η − ηk

τ
· fs(τk) dy − τ

ˆ
�k

�kv · f f (τk) dx, (3.4)

where we require η ∈ E ∩ W k0,2(Q), v ∈ W k0,2(�k;Rn) with v|∂� = 0 and subject
to the coupling of velocities

η − ηk

τ
= v ◦ ηk in M . (3.5)

For the fluid, we require a regularised condition for mass transport, that is � and v are
related through

� ◦ �v = (id − τε�)−1�k

det∇�v

. (3.6)

Here and in the future �v := id + τv is a helpful shorthand and (id − τε�)−1 is to
be understood as the solution operator to the respective Neumann problem on �k , i.e.
(id − τε�)−1�k is the unique function �̃k : �k → R solving

{
�̃k − τε��̃k = �k in �k,

∂ν�̃k = 0 on ∂�k .
(3.7)

Clearly, there is a unique solution �̃k ∈ W 2,β(�k) since �k can be assumed to be
in Lβ(�k) and �k is a C1,α-domain.5 Furthermore, due to the fact that v uniquely
determines � through (3.6) we can rewrite (3.4) as a minimisation problem in (η, v)

only. Specifically, we can write

U δ
ηk+1

(�) =
ˆ

�k+1

Hδ(�) dx =
ˆ

�k

Hδ(�(�v(y))) det∇�v(y) dx

=
ˆ

�k

Hδ

(
(id − τε�)−1�k

det(I + τ∇v)

)
det(I + τ∇v) dx =: Ũ δ,ε

ηk ,�k
(v). (3.8)

Finally, we update �k to �k+1 by setting

�k+1 = �vk+1 ◦ �k .

5 In fact, we can infer from Lemma 3.2 that �̃k ∈ W 3,β (�k ), but note that this cannot be iterated for
increasing k, as the �vk+1 appearing in the definition of �k+1 presents an upper limit to regularity.
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Lemma 3.2 Suppose that ηk and �k are given, where

ηk ∈ E ∩ W k0,2(Q;�), �k ∈ Lβ(�k), essinf
�k

�k > 0,

wk ∈ L2(�0;Rn), ζk ∈ L2(Q;Rn), fs(τk) ∈ L2(Q;Rn), f f (τk) ∈ L2(�k;Rn).

Then the minimisation problem (3.4)–(3.6) has a solution (ηk+1, vk+1, �k+1), where

ηk+1 ∈ E ∩ W k0,2(Q;�), vk+1 ∈ W k0,2(�k;Rn), �k+1 = �\ηk+1(Q),

�k+1 ∈ Lβ(�k+1), essinf
�k+1

�k+1 > 0, inf
�k

det(I + τ∇vk+1) > 0.

Proof We argue by the direct method in the calculus of variation. The functional is
clearly well-defined by the choice of the function spaces. Using Young’s inequality to
estimate the force terms we can also show that it is bounded from below in each term.
Inserting (ηk, 0, �̃k) as a candidate shows that the minimiser must have a finite value.
Using (3.8) we can rewrite the problem as a minimisation in (η, v) only. Coercivity in
the relevant functional spaces is now obvious, recalling Assumption 2.1 S4. However,
we still need to verify that any limit obeys the lower bounds.

A standard application of theminimumprinciple6 to (3.7) implies that inf�k �̃k > 0.

Since τ
∥∥∇k0v

∥∥2
�k

is part of the functional, we know that ‖∇v‖Cα(�k) is uniformly
bounded along anyminimising sequence. Thus det(I+τ∇v) is trivially bounded from
above, which gives us inf�k � > 0 for any � of finite energy in the functional.

Additionally, by the growth condition H3 of Lemma 2.5 and (3.8) we find the
following bound

U δ
ηk+1

(�) = Ũ δ,ε
ηk ,�k

(v) ≥ c

(ˆ
�k

det(I + τ∇v)−β dx − 1

)

in dependence on the lower bound of �̃k . Combining this with the Cα bound on ∇v

and choosing β sufficiently large, we get a nonzero lower bound on det(I + τ∇v) by
[1, Prop. 2.24 (S2)], which ultimately goes back to [13]. Note that together with the
uniform C1,α-bounds on η, this also implies that id+τv is a diffeomorphism up to the
boundary of the fluid domain, which in turn implies that there cannot be a collision.

The final point which needs clarification is lower semi-continuity, which for most
terms does not differ from the analysis in the incompressible case and for thesewe refer
to [1, Propositions 2.13 and 4.3]. For the new term Ũ δ,ε

�k
, however, weak convergence

in W k0,2(�k) implies strong convergence in C1(�k). Since the functional Ũ δ,ε
�k

is

continuous on C1(�) (as det(I + τ∇v) is strictly positive for all velocities for which
the functional is of finite value) the proof is complete. ��

Next we calculate the corresponding Euler–Lagrange equation, which will give us
the discrete, time-delayed momentum-balance. Assuming that (ηk+1, vk+1) is in the

6 Here we use the assumption that ρk is strictly bounded from above and below. Due to the Neumann
boundary conditions, we find that ρ̃k satisfies the same upper and lower bounds as ρk .
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interior of the admissible set (i.e. the solid has no collisions and det∇�vk > 0), we
can vary with (φ, b

τ
) such that b◦ηk = φ in Q. For the fluid potential we now calculate

δŨ δ,ε
ηk ,�k

(vk+1)

(
b

τ

)

= d

ds

ˆ
�k

Hδ

(
(id−τε�)−1�k

det(I+τ∇vk+1+s∇b)

)
det(I + τ∇vk+1 + s∇b) dx

∣∣∣∣
s=0

= −
ˆ

�k

tr(∇b · cof(∇�vk+1)
�)

H ′
δ

(
(id−τε�)−1�k
det(∇�vk+1 )

)
det(∇�vk+1)

(id − τε�)−1�k dx

+
ˆ

�k

tr(∇b · cof(∇�vk+1)
�)Hδ

(
(id−τε�)−1�k
det(∇�vk+1 )

)
dx

= −
ˆ

�k

tr(∇b · ∇�−1
vk+1

)H ′
δ

(
(id−τε�)−1�k
det(∇�vk+1 )

) (id − τε�)−1�k

det∇�vk+1

det∇�vk+1 dx

+
ˆ

�k

tr(∇b · ∇�−1
vk+1

)Hδ

(
(id−τε�)−1�k
det(∇�vk+1 )

)
det∇�vk+1 dx

= −
ˆ

�k+1

div(b ◦ (�vk+1)
−1)

(
H ′

δ(�k+1)�k+1 − Hδ(�k+1)
)
dx

= −
ˆ

�k+1

div(b ◦ (�vk+1)
−1) pδ(�k+1) dx

using the definition of Hδ in the last step. The integral on the right-hand side is the
discrete version of the pressure term. Furthermore, we note that a short calculation
reveals

δ
(τ

2
S(∇vk+1) : ∇vk+1

)(
b

τ

)
= S(∇vk+1) : ∇b

Referring to [1, Propositions 4.3] for the remaining terms in the Euler–Lagrange
equation we then conclude:

Corollary 3.3 Suppose that the assumptions of Lemma 3.2 hold. Any solution of the
minimisation problem (3.4)–(3.6) satisfies

〈DEκ (ηk+1), φ〉Q −
ˆ

�k+1

∇ · (b ◦ (�vk+1)
−1)pδ(�k+1) dy

+
〈
D2Rκ

(
ηk ,

ηk+1−ηk
τ

)
, φ

〉
Q

+
ˆ

�k

S(∇vk+1) : ∇b dx+κ

ˆ
�k

∇k0vk+1 : ∇k0b dx

+ 1

h

ˆ
Q

�s

(
ηk+1−ηk

τ
−ζk

)
φ dy+ 1

h

ˆ
�k

(
�kvk+1−√

�k

√
det∇�−1

k wk ◦�−1
k

)
·b dx

=
ˆ

Q
fs(τk) · φ dy +

ˆ
�k

�k f f (τk) · b dx (3.9)

for a.a. t ∈ [0, h] and all φ ∈ W k0,2(Q;Rn), b ∈ W k0,2
0 (�;Rn) satisfying φ|P = 0

and b ◦ ηk = φ in Q.
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3.2 The discrete energy inequality

Akey in the analysis is the energy inequality.We start with a discrete energy inequality
for the solution of the minimisation problem (3.4)–(3.6).7

Lemma 3.4 Suppose that η0, v0 and �0, as well as w, ζ , f f and fs are given, where

η0 ∈ E ∩ W k0,2(Q;Rn), v0 ∈ W k0,2(�0;Rn), �0 ∈ Lβ(�0),

ζ ∈ L2([0, h] × Q;Rn), w ∈ L2([0, h] × �0;Rn),

fs ∈ C([0, h]; L2(Q;Rn)), f f ∈ C([0, h]; L2(�;Rn)).

Then the solutions (ηk, vk, �k)
N
k=1 to minimisation problem (3.4)–(3.6) satisfy

Eκ (ηN ) + U δ
ηN

(�N ) +
N−1∑
k=0

τ
κ

2

ˆ
�k

|∇k0vk+1|2 dx

+
N−1∑
k=0

τ

[
Rκ

(
ηk ,

ηk+1−ηk
τ

)
+ 1

2

ˆ
�k

S(∇vk+1) : ∇vk+1 dx + ε

ˆ
�k

H ′′
δ (�̃k)|∇�̃k |2 dx

]

+
N−1∑
k=0

τ

2h

[
�s

ˆ
Q

∣∣∣ ηk+1−ηk
τ − ζk

∣∣∣2 dy +
ˆ
�k

∣∣∣∣√�kvk+1 −
√
det∇�−1

k wk ◦ �−1
k

∣∣∣∣
2
dx

]

≤ Eκ (η0) + U δ
η0

(�0) +
N−1∑
k=0

τ

2h

[
�s

ˆ
Q

|ζk |2 dy +
ˆ
�0

|wk |2 dx

]

+
N−1∑
k=0

τ

[ˆ
Q

ηk+1−ηk
τ · fs(τk) dy +

ˆ
�k

�kvk+1 · f f (τk) dx

]

Proof We compare the value of the actual minimizer in (3.4) with the value at
(η, v, �) = (ηk, 0, �̃k), where �̃k := (id − τε�)−1�k . Thus we get

Eκ(ηk+1) + U δ
ηk+1

(�k+1) + τ

[
Rκ

(
ηk,

ηk+1−ηk
τ

)
+ 1

2

ˆ
�k

S(∇vk+1) : ∇vk+1 dx

]

+ τ
κ

2

ˆ
�k

|∇k0vk+1|2 dx + τ

2h

[
�s

ˆ
Q

∣∣∣ ηk+1−ηk
τ

− ζk

∣∣∣2 dy

]

+ τ

2h

[ˆ
�k

∣∣∣∣√�kvk+1 −
√
det∇�−1

k wk ◦ �−1
k

∣∣∣∣
2

dx

]

−
ˆ

Q

ηk+1−ηk
τ

· fs(τk) dx −
ˆ

�k

�kvk+1 · f f (τk) dx

7 Note that this inequality is not optimal; one would expect an additional factor of two in front of all
dissipation terms. Using a more involved argument, one can indeed derive an improved inequality at this
point. But since there is no qualitative improvement on the resulting estimates and this inequality will be
replaced by a more correct, continuous energy inequality afterwards, there is no need to do so here.
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≤ Eκ(ηk) + U δ
ηk

(�̃k) + τ

2h

[
�s

ˆ
Q

|ζk |2 dy +
ˆ

�0

|wk |2 dx

]
. (3.10)

We are now going to estimate the error between U δ
ηk

(�̃k) and U δ
ηk

(�k). Since Hδ

belongs to C2((0,∞)) and is convex we have

Hδ(�̃k − ετ��̃k) ≥ Hδ(�̃k) − H ′
δ(�̃k)ετ��̃k

and thus

U δ
ηk

(�̃k) − U δ
ηk

(�k)

=
ˆ

�k

(Hδ(�̃k) − Hδ(�k)) dx =
ˆ

�k

(Hδ(�̃k) − Hδ(�̃k − ετ��̃k)) dx

≤
ˆ

�k

H ′
δ(�̃k)ετ��̃k dx = −

ˆ
�k

ετ H ′′
δ (�̃k)|∇�̃k |2 dx

using also (3.6) and the Neumann boundary condition for �̃k . Plugging this into (3.10)
and summing over k ∈ {0, . . . , N − 1} yields the claim. ��

Next we construct piecewise constant and piecewise continuous interpolations of
all our quantities by setting

η̄(τ )(t, y) = ηk+1(y) for τk ≤ t < τ(k + 1), y ∈ Q

η(τ)(t, y) = ηk(y) for τk ≤ t < τ(k + 1), y ∈ Q,

η̃(τ )(t, y) = τ(k+1)−t
τ

ηk(y) + t−τk
τ

ηk+1(y) for τk ≤ t < τ(k + 1), y ∈ Q,

v(τ)(t, x) = vk+1(x) for τk ≤ t < τ(k + 1), x ∈ �k,

v(τ)(t, x) = ηk+1−ηk
τ

◦ (ηk)
−1 for τk ≤ t < τ(k + 1), x ∈ �\�k,

�(τ)(t, x) = �k(x) for τk ≤ t < τ(k + 1), x ∈ �0

�̄(τ )(t, x) = �k+1(x) for τk ≤ t < τ(k + 1), x ∈ �k,

�(τ)(t, x) = �k(x) for τk ≤ t < τ(k + 1), x ∈ �k,

�̃(τ )(t, x) = �̃k(x) for τk ≤ t < τ(k + 1), x ∈ �k,

ζ (τ)(t, y) = ζk(y) for τk ≤ t < τ(k + 1), y ∈ Q,

w(τ)(t, x) = wk(x) for τk ≤ t < τ(k + 1), x ∈ �0,

as well as �(τ)(t) = �k for τk ≤ t < τ(k + 1). Note that from this point on, we
extend v to all of �, using the corresponding solid velocity, cf. Remark 2.10.

Lemma 3.4 implies the following corollary for the interpolated quantities by setting
t = τ N :
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Corollary 3.5 Under the assumptions of Lemma 3.4 we have

Eκ(η̄(τ )(t1)) + U δ
η(τ) (�̄

(τ )(t1)) + κ

2

ˆ t1

0

ˆ
�(τ)(t)

|∇k0v(τ)|2 dx dt

+
ˆ t1

0

[
Rκ

(
η(τ), ∂t η̃

(τ )
)

+
ˆ

�(τ)(t)

1

2
S(∇v(τ)) : ∇v(τ) dx

]
dt

+ ε

ˆ t1

0

ˆ
�(τ)(t)

H ′′
δ (�̃(τ ))|∇�̃(τ )|2 dx dt +

ˆ t1

0

1

2h
�s

ˆ
Q

|∂t η̃
(τ ) − ζ (τ)|2 dy dt

+
ˆ t1

0

1

2h

ˆ
�k

∣∣∣∣
√

�(τ)v(τ) −
√
det∇(�(τ))−1w(τ) ◦ (�(τ))−1

∣∣∣∣
2

dx dt

≤ Eκ(η0) + U δ
η0

(�0) +
ˆ t1

0

1

2h

[
�s

ˆ
Q

|ζ (τ)|2 dy +
ˆ

�0

|w(τ)|2 dx

]
dt

+
ˆ t1

0

[ˆ
Q

∂t η̃
(τ ) · fs(τk) dy +

ˆ
�k

�(τ)v(τ) · f f (τk) dx

]
dt

for all t1 ∈ τN ∩ [0, h].
Absorbing the forcing terms into the left-hand side by means of Young’s inequality
we obtain the following estimates

‖∂t η̃
(τ )‖2

L2([0,h];W k0,2(Q))
+ sup

t∈(0,h)

‖η̄(τ )‖2
W k0,2(Q)

+ sup
t∈(0,h)

(
‖η(τ)‖2

W k0,2(Q)
+ ‖η̃(τ )‖2

W k0,2(Q)

)
≤ c, (3.11)

‖∇v(τ)‖2L2((0,h)×�(τ))
+ ‖∇k0v(τ)‖2L2((0,h)×�(τ))

≤ c, (3.12)

sup
t∈(0,h)

(
‖�̄(τ )‖β

Lβ (�(τ))
+ ‖�(τ)‖β

Lβ(�(τ))

)

+ ε‖(∇�̃(τ ),∇(�̃(τ ))β/2)‖2L2((0,h)×�(τ))
≤ c. (3.13)

They are uniform in τ but may depend on the other parameters h, κ, ε and δ. Note also
that (3.12) implies

N∑
k=1

τ‖vk‖2C1,α(�k−1)
≤ c (3.14)

for some α > 0 using Sobolev’s embedding.
Let us finally deduce uniform bounds for det∇�k . Note the even though the general

idea stays the same as in [1, Prop. 4.6], the estimate is slightly different sincewe cannot
use that div v = 0 in the compressible regime.
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Lemma 3.6 (Bounds on �) There exists constants c, C > 0 such that for all small
enough h and τ

exp

(
−c

ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)

≤ det∇�k ≤ exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)
, (3.15)

as well as

‖∇�k‖L∞(�0) ≤ C and ‖∇2�k‖L∞(�0) ≤ C (3.16)

uniformly in k, τ and h.

Proof We obtain as in [1, Lemma A.1]

det∇�k =
k∏

i=1

[det(I + τ∇vi )] ◦ �i−1 =
k∏

i=1

[
1 +

n∑
l=1

τ l Ml(∇vi )

]
◦ �i−1,

where Ml are the polynomials of order l stemming from the expansion of the
determinant. Estimating the arithmetric mean by the geometric mean yields

det∇�k ≤
(
1 + 1

k

k∑
i=1

τ

n∑
l=1

τ l−1|Ml(∇vi ◦ �i−1)|
)k

≤ exp

(
c

k∑
i=1

τ

n∑
l=1

τ l−1‖∇vi‖l
L∞(�i )

)

where we now note that by throwing away almost all terms in the energy estimate,
Lemma 3.4 we get τ‖∇vi‖2L∞(�i )

≤ cτ‖∇k0vi‖2L2(�i )
< c1, with the last constant

only depending on initial data and κ and thus can further estimate

≤ exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ))

n∑
l=1

c
l−1
2

1 τ
l−1
2 dt

)

≤ exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)
.

In order to get a similar bound from below we use (1 + a)−1 ≤ 1 + 2|a| for |a| � 1
as well as uniform boundedness of

√
τ‖∇v(τ)‖L∞(�

η(τ) ) which we used in the last
estimate. We then can infer similarly to the above

(det∇�k)
−1 =

k∏
i=1

[det(I + τ∇vi )]
−1 ◦ �i−1 =

k∏
i=1

[
1 +

n∑
l=1

τ l Ml(∇vi )

]−1

◦ �i−1

123



Compressible fluids interacting with 3D visco-elastic...

≤
(
1 + 2

k

k∑
i=1

τ

n∑
l=1

τ l−1|M(∇vi ◦ �i−1)|
)k

≤ exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)
(3.17)

In total we arrive at (3.15). Arguing in the same way, we can show

‖∇�k‖L∞(�0) ≤ exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)
≤ C

uniformly in k, τ and h using also (3.12).
Similarly to the above we can also control second order derivative of �k . It holds

∇2�
(τ)
k = ∇

(
k∏

i=1

(I + τ∇vi ) ◦ �i

)

=
k∑

j=1

∇ (
(I + τ∇v j ◦ � j

)∏
i �= j

(I + τ∇vi ) ◦ �i

=
k∑

j=1

τ∇2v j ◦ � j∇� j

∏
i �= j

(I + τ∇vi ) ◦ �i

such that, using (3.16),

‖∇2�k‖L∞(�0) ≤ c
k∑

j=1

τ

∥∥∥∇2v j

∥∥∥
L∞(� j )

(
1 + 1

k

k∑
i=1

τ‖∇vi‖L∞(�i )

)k

≤ c‖∇2v(τ)‖L2(0,h;L∞(�(τ))) exp

(
c
ˆ h

0
‖∇v(τ)‖L∞(�(τ)) dt

)

≤ C (3.18)

uniformly in k by (3.12) provided we choose k0 large enough. Again c is independent
of τ and h. ��

3.3 The limit � → 0

Estimates (3.11)–(3.13) give rise to

η̄(τ ), η(τ), η̃(τ )⇀∗η in L∞(0, h; W k0,2(Q;�)), (3.19)

∂t η̃
(τ )⇀∂tη in L2(0, h; W k0,2(Q;Rn)), (3.20)

v(τ)⇀v in L2(0, h; W k0,2
0 (�;Rn)), (3.21)
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�(τ), �̄(τ )⇀∗,η� in L∞(0, h; Lβ(�η)), (3.22)

�(τ)⇀η� in L2(0, h; W 1,2(�η)), (3.23)

at least for a (non-relabelled) subsequence. As in [1, Prop. 2.20] we also have

η̃(τ ) → η in C0([0, h]; C1,α(Q)) (3.24)

for some α > 0. Furthermore, the definition of �k and (3.15) imply

‖�k − �k−1‖2L2(�0)
= τ 2‖vk ◦ �k−1‖2L2(�0)

≤ cτ 2‖vk‖2L2(�k−1)
. (3.25)

Combining this with (3.16) we conclude that

�(τ) → � in C0([0, h]; C1,α(�0)), (3.26)

where the limit �(t) now maps �0 to the limit fluid domain �(t). We want to obtain
a similar statement for the function �vk = id+ τvk and write �vk = �k ◦�−1

k−1. This
motivates the definition

�(τ)(t) = �(τ)(t) ◦ �τ (t − τ)−1 = id + τv(τ).

Due to (3.15) and (3.16) we also have

(�(τ))−1 → �−1 in C0([0, h]; Cα(�(τ))) (3.27)

in addition to (3.26). Combining (3.26) and (3.27) shows

�(τ) → id in C0([0, h]; Cα(�(τ))). (3.28)

By definition we have ∇�(τ) − I = τ∇v(τ) such that we also have

�(τ) → id in L2(0, h; W 1,2(�(τ))) (3.29)

by (3.21). The aim is now to pass to the limit in order to obtain (3.1)–(3.3). As far as
the momentum equation is concerned, we rewrite Eq. (3.9) as

ˆ h

0

〈
DEκ(η̄(τ )), φ(τ)

〉
dt −

ˆ h

0

ˆ
�(τ)(t+τ)

div(b ◦ (�(τ))−1)pδ(�̄
(τ )) dx dt

+
ˆ h

0

[〈
D2Rκ

(
η(τ), ∂t η̃

(τ )
)

, φ(τ)
〉
+
ˆ

�(τ)

S(∇v(τ)) : ∇b dx

]
dt

+ κ

ˆ h

0

ˆ
�(τ)

∇k0v(τ) : ∇k0b dx dt + 1

h

ˆ h

0

ˆ
Q

�s

(
∂t η̃

(τ ) − ζ (τ)
)

φ(τ) dy dt

+ 1

h

ˆ h

0

ˆ
�(τ)

(
�(τ)v(τ) −

√
�(τ)

√
det∇(�(τ))−1w(τ) ◦ (�(τ))−1

)
· b dx dt
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=
ˆ h

0

ˆ
Q

fs · φ(τ) dy dt +
ˆ h

0

ˆ
�(τ)

�(τ) f f · b dx dt .

Note that due to the coupling condition, which involves η(τ), we cannot pick the same
pair of test-functions for all τ . Instead, we fix ξ ∈ C0([0, h]; C∞

0 (�;R3)) and then
derive φ(τ) := ξ ◦ (η(τ))−1 from there.

We only have to prove that the terms involving the density converge to their correct
counterparts, that is

ˆ h

0

ˆ
�(τ)(t+τ)

div(b ◦ (�(τ))−1)pδ(�̄
(τ )) dx dt →

ˆ h

0

ˆ
�(t)

div b pδ(�) dx dt,

(3.30)

1

h

ˆ h

0

ˆ
�(τ)(t)

(
�(τ)v(τ) −

√
�(τ)

√
det∇(�(τ))−1w(τ) ◦ (�(τ))−1

)
· b dx dt

→ 1

h

ˆ h

0

ˆ
�(t)

(
�v − √

�
√
det∇(�)−1w ◦ �−1

)
· b dx dt (3.31)

ˆ h

0

ˆ
�(τ)(t)

�(τ) f f · b dx dt →
ˆ h

0

ˆ
�(t)

� f f · b dx dt, (3.32)

as τ → 0. The limit in the remaining terms can be performed as in [1, Section 4.1].
The convergence in (3.32) follows directly from (3.22) and (3.24), whereas (3.30) and
(3.31) require strong convergence of the density. Using (3.6) and (3.7) we can write

ˆ
�k

�k+1(x + τvk(x)) − �k(x)

τ
ψ(x) dx

= −
ˆ

�k

ε(∇�̃k)(x) · ∇ψ(x) dx −
ˆ

�k

1

τ

(
1 − 1

det(∇�vk )

)
�̃k(x)ψ(x) dx (3.33)

for allψ ∈ W 1,2(�k). Nowwe choose a parabolic cylinder J ×B such that 2B � �η(τ)

for all τ small enough. This is possible due to (3.24). We obtain for ψ ∈ W 1,2
0 (B)

ˆ
B

�(τ)(t + τ, x) − �(τ)(t, x)

τ
ψ(x) dx

= −
ˆ

B

�(τ)(t + τ, x + τv(τ)(x)) − �(τ)(t + τ, x)

τ
ψ(x) dx

−
ˆ

B
ε∇�̃(τ )(t, x) · ∇ψ(x) dx

−
ˆ

B

1

τ

(
1 − 1

det(∇�(τ))

)
�̃(τ )(t, x)ψ(x) dx

= −
ˆ

B

ˆ 1

0
∇�(τ)(t + τ, x + sτv(τ)(x)) ds · v(τ)ψ(x) dx
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−
ˆ

B
ε∇�̃(τ )(t, x) · ∇ψ(x) dx

−
ˆ

B

div v(τ) + o(τ )

1 + τ div v(τ) + o(τ )
�̃(τ )(t, x)ψ(x) dx .

Here the quantity o(τ ) is such that o(τ )/τ vanishes in the L2(J ; L∞(B))-norm as
a consequence of (3.21). Using (3.6) we may deduce from the regularity of v(τ) in
(3.11)–(3.13) as well as the uniform lower bound for det∇�k from (3.15) that

�(τ) ∈ W 1,2(I ; W −1,2(B)) ∩ L2(I ; W 1,2(B))

uniformly in τ . Combining this with (3.23) we conclude that

�(τ)⇀� in W 1,2(I ; W −1,2(B)) ∩ L2(I ; W 1,2(B)),

and �(τ) → � in L2(J × B).
(3.34)

This together with (3.29) yields

�̃(τ ), �̄(τ ) → � in L2(J × B). (3.35)

Using (3.13) and arbitrariness of J × B, the convergences in (3.34)2 and (3.35) even
hold in Lq((0, h)×�(τ)) for all q < β+ 4

n . This in combination with (3.24) and (3.29)
is enough to prove the convergence (3.30). Taking into account also (3.21), (3.26) and
(3.27) proves (3.31) (note also the uniform lower bound for det∇�k from (3.15)). We
thus conclude that (3.1) holds.

Now we take a look at the continuity equation. We use a test-function ψ ∈
C∞

c ((τ, h − τ) × �) and obtain similarly to (3.33)

ˆ h

0

ˆ
�(τ)

�̃(τ )(t + τ) ◦ �(τ) − �̃(τ )(t)

τ
ψ(t + τ) ◦ �(τ) dx dt

= −
ˆ h

0

ˆ
�(τ)

ε∇�̃(τ ) ◦ �(τ) · ∇(ψ(t + τ) ◦ �(τ)) dx dt

−
ˆ h

0

ˆ
�(τ)

1

τ

(
1 − 1

det(∇�(τ))

)
�̃(τ )ψ(t + τ) ◦ �(τ) dx dt,

which we denote by I = II + III. The term I on the left-hand side can be rewritten as

I =
ˆ h

0

ˆ
�(τ)

�̃(τ )(t)
ψ(t) − ψ(t + τ) ◦ �(τ)

τ
dx dt

−
ˆ h

0

ˆ
�(τ)

div v(τ)(t + τ) + o(τ )

1 + τ div v(τ (t + τ)) + o(τ )
�̃(τ )(t)ψ(t) dx dt

=: I1 + I2
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with o(τ ) as above. Due to (3.26), (3.34), the smoothness of ψ and (3.25) we find

I1 →
ˆ h

0

ˆ
�(t)

� (∂tψ + v · ∇ψ) dx dt .

On the other hand,

I2 → −
ˆ h

0

ˆ
�(t)

div v(t)�(t)ψ(t) dx dt

using (3.21), (3.24) and (3.34). Similarly,

III → −
ˆ h

0

ˆ
�(t)

div v(t)�(t)ψ(t) dx dt

which cancels with I2. Finally, we have

II → −
ˆ h

0

ˆ
�(t)

ε∇� · ∇ψ dx dt,

which yields

−
ˆ h

0

ˆ
�(t)

� (∂tψ + v · ∇ψ) dx dt = −
ˆ h

0

ˆ
�(t)

ε∇� · ∇ψ dx dt (3.36)

for all ψ ∈ C∞
c ((0, h) × �). We have shown (3.2).

Finally, for the energy inequality (3.3), we note that we cannot simply pass to the
limit in Lemma 3.4, as this is missing a factor 2 in front of the dissipation terms.
Instead, we obtain it as in [1, Lemma 4.8] by testing (3.1) with (∂tη, v). The only
substantial addition here is the pressure term which reads as

−
ˆ

�(t)
div v(H ′

δ(�)� − Hδ(�)) dy

=
ˆ

�(t)

(− div(v�)H ′
δ(�) + v · ∇�H ′

δ(�) + div vHδ(�)
)
dy

=
ˆ

�(t)

(
∂t�H ′

δ(�) + div(vHδ(�))
)
dy −

ˆ
�(t)

ε��H ′
δ(�) dy

= d

dt

ˆ
�(t)

Hδ(�) dy + ε

ˆ
�(t)

H ′′
δ (�) |∇�|2 dy

using (3.2) and Reynold’s transport theorem (due to Lemma 2.14 (b) the density is
smooth enough to rigorously perform these computations). For the inertial term we
now have

ˆ
�(t)

(
�(t)v(t) − √

�(t)
√
det∇�−1w(t) ◦ �−1

)
· v(t) dx
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=
ˆ

�(t)

(
�(t) |v(t)|2 −

√
det∇�−1w(t) ◦ �−1 · √�(t)v(t)

)
dx

≥
ˆ

�(t)

(
�(t)

2
|v(t)|2 − det∇�−1

2

∣∣∣w(t) ◦ �−1
∣∣∣2
)

dx

=
ˆ

�(t)
�(t)

|v(t)|2
2

dx −
ˆ

�0

|w(t)|2
2

dx

by Young’s inequality and a change of variables. This also shows the need for the
factor

√
det∇�−1 in the equations.

4 Inertial problem (h → 0)

The aim of the present section is to pass to the limit h → 0 in (3.1)–(3.3) and to
obtain a solution to the regularised system (where κ, ε and δ are fixed). We begin with
a definition of the latter.

We introduce the function spaces

Y I
k0 := {ζ ∈ W 1,2(I ; W k0,2(Q;Rn)) ∩ L∞(I ; E) },

X I
η,k0 := L2(I ; W k0,2(�η;Rn)),

Ẑ I
η := Cw(I ; W 1,2(�η;Rn) ∩ Lβ(�η)),

which replace the spaces Y I , X I
η and Z I

η (defined in Sect. 2.3) on the κ and ε-level
respectively.

A weak solution to the regularised system is a triple (η, v, �) ∈ Y I
k0

× X I
η,k0

× Ẑ I
η,ε

that satisfies the following.

• The momentum equation holds in the sense that

ˆ
I

d

dt

ˆ
�η

�v · b dx −
ˆ

�η

(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+ ε

2

ˆ
I

ˆ
�(t)

∇� · (∇vb + ∇bv) dx dt +
ˆ

I

ˆ
�η

S(∇v) : ∇b dx dt

+ κ

ˆ
I

ˆ
�η

∇k0v : ∇k0b dx dt −
ˆ

I

ˆ
�η

pδ(�) div b dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DEκ(η), φ〉 + 〈D2Rκ(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�η

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (4.1)

for all (φ, b) ∈ W 1,2(I ; W k0,2(Q;Rn))×C∞
c (I ×�;Rn)with b(t)◦η(t) = φ(t)

in Q and φ(t) = 0 on P . Moreover, we have (�v)(0) = q0, η(0) = η0 and
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∂tη(0) = η1 we well as ∂tη(t) = v(t) ◦ η(t) in Q, η(t) ∈ E and v(t) = 0 on ∂�

for a.a. t ∈ I .
• The continuity equation holds in the sense that

∂t� + div(�v) = ε�� (4.2)

holds in I × �η and we have �(0) = �0 as well as ∂νη� = 0.
• The energy inequality is satisfied in the sense that

−
ˆ

I
∂tψ Eδ,κ dt +

ˆ
I
ψ

ˆ
�η

(
S(∇v) : ∇v + κ|∇k0v|2

)
dx dt

+ 2
ˆ

I
ψ Rκ(η, ∂tη) ds + ε

ˆ
I
ψ

ˆ
�η

H ′′
δ (�)|∇�|2 dx dt

≤ ψ(0)Eδ(0) +
ˆ

I

ˆ
�η

� f f · v dx dt +
ˆ

I
ψ

ˆ
Q

fs ∂tη dy dt (4.3)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

Eδ,κ (t) =
ˆ

�η(t)

(
1

2
�(t)|v(t)|2 + Hδ(�(t))

)
dx +

ˆ
Q

�s
|∂tη|2
2

dy + Eκ(η(t)).

Theorem 4.1 Assume that we have for some α ∈ (0, 1)

|q0|2
�0

∈ L1(�η0), �0 ∈ C2,α(�η0), η0 ∈ E, η1 ∈ L2(Q;Rn),

f f ∈ C([0, T ]; L2(Rn;Rn)) ∩ L2(I ; L∞(R3;Rn)), fs ∈ L2(I × Q).

Furthermore suppose that �0 is strictly positive. Then there is a solution (η, v, �) ∈
Y I

k0
× X I

η,k0
× Ẑ I

η to (4.1)–(4.3). Here, we have I = (0, T ), where T ∈ (0,∞) is
arbitrary.

4.1 A priori analysis

Weproceed as follows. Firstweneed toproduce anh-approximationon thewhole inter-
val I . For h � 1 we decompose the interval I into subintervals (0, h), (h, 2h), . . . .
For any given h we obtain from Theorem 3.1 the existence of a solution to (3.1)–(3.3)
in (0, h). We will then use the resulting η(h), �(h), ∂tη and a suitably modified version
of v ◦ �(t) ◦ �(h)−1 as η0, �0 ζ and w on (h, 2 h). We can prove that these are valid
initial data, because of the energy inequality (3.3). We repeat this procedure on the
following time-intervals to get a global solution (ηh, vh, �h) which solves a variant of
(3.1) in I .

Specifically, given a solution (η
(h)
l , v

(h)
l , �

(h)
l ,�

(h)
l ) to (3.1)–(3.3) on the interval

[0, h] (note that later this will correspond to [(l − 1)h, lh] in I , but for now, we will
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consider each of these intervals as [0, h] and distinguish them by the index l), we apply
Theorem 3.1 with

η
(h)
l (h) as η0

�
(h)
l (h) as �0 (defined on �\η(h)

l (h, Q) = �\η0(Q) =: �0)

∂tη
(h)
l (t) as ζ(t) for all t ∈ [0, h]

and

(√
�

(h)
l (t)v(h)

l (t)

)
◦ �

(h)
l (t) ◦ �

(h)
l (h)−1

√
det∇(�

(h)
l (t) ◦ �

(h)
l (h)−1)

as w(t) for all t ∈ [0, h] (defined on �\η(h)
l (h)(Q) = �0). We also write as usual

�
(h)
l (t) := �\η(h)

l (t, Q).
These assignments are obvious, except for w. Here one should keep in mind that

w(t) needs to be defined on the new initial fluid domain �0, but needs to correspond
to the quantity

√
�v for the matching fluid particle at an earlier time. We thus employ

the flow map to move it there. As this flow map was only defined with respect to the
previous reference configuration, we take a slight detour there, resulting in �(t) ◦
�(h)−1 and finally we need to correct the distortion due to the extra term ε�� in the
continuity equation such that, in particular,

ˆ
�0

|w(t)|2 dx =
ˆ

�
(h)
l (t)

�
(h)
l (t)

∣∣v(h)
l

∣∣2 dx

From the energy inequality (3.3) applied to the previous solution, we can con-
clude that our new initial data fulfills the conditions for Theorem 3.1. The solutions
constructed by this theorem will then be denoted by (η

(h)
l+1, v

(h)
l+1, �

(h)
l+1,�

(h)
l+1).

With these solutions at hand, we can now construct an h-approximation on the
whole interval I . Specifically, we set

η(h)(t) := η
(h)
l (t − (l − 1)h)

v(h)(t) := v
(h)
l (t − (l − 1)h)

�(h)(t) := �
(h)
l (t − (l − 1)h)

�(h)(t) := �
(h)
l (t − (l − 1)h) = �\η(h)(t, Q)

for t ∈ [(l − 1)h, lh] as well as a redefined flow map for t ∈ [(l − 1)h, lh]

�(h)
s (t) := �

(h)
l (s + t − (l − 1)h) ◦ �

(h)
l (t − (l − 1)h)−1

�(h)
s (t) := �

(h)
l+1(s + t − lh) ◦ �

(h)
l (h) ◦ �

(h)
l (t − (l − 1)h)−1

�(h)
s (t) := �

(h)
l−1(s + t − (l − 2)h) ◦ �

(h)
l−1(h) ◦ �

(h)
l−1(t − (l − 1)h)−1
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for t + s ∈ [(l − 1)h, lh], t + s ∈ [lh, (l + 1)h] and t + s ∈ [(l − 2)h, (l − 1)h],
respectively, and so on. Here the new flow map needs to be read in the style of semi-
groups, i.e. �(h)

s (t) maps the fluid domain at time t to the fluid domain at time t + s,
in such a way that we follow the fluid flow. Note that in concert with the uniform
(only κ-dependent) bounds on det∇�(t) derived in the last section in (3.15) and the
C1-regularity of η, this also implies that �(t) is a diffeomorphism up to the boundary
and thus there cannot be a collision.

If we now translate (3.1)–(3.3) into this new notation, then we have that the h-
approximation fulfills the following:

• The momentum equation (3.1) translates to

〈
DEκ(η(h)(t)), φ

〉
−
ˆ

�(h)(t)
pδ(�

(h)) div b dx +
〈
D2Rκ

(
η(h), ∂tη

(h)
)

, φ
〉

+
ˆ

�(h)(t)
S(∇v(h)) : ∇b dx + κ

ˆ
�(h)(t)

∇k0v(h) : ∇k0b dx

+
ˆ

Q
�s

∂t η
(h)(t)−∂t η

(h)(t−h)
h · φ dy + 1

h

ˆ
�(h)(t)

�(h)(t)v(h)(t) · b dx

− 1

h

ˆ
�(h)(t)

√
�(h)(t)�(h)(t − h) ◦ �

(h)
−h det∇�

(h)
−hv(h)(t − h) ◦ �

(h)
−h · b dx

=
ˆ

Q
fs · φ dy +

ˆ
�(h)(t)

� f f · b dx . (4.4)

• The continuity equation (3.2) holds unchanged, i.e.,

∂t�
(h) = − div(v(h)�(h)) + ε��(h) (4.5)

in I ×�η and ∂ν(h)(t)�
(h)(t) = 0 in ∂�(h)(t) for all t ∈ (0, h) as well as �(h)(0) =

�0.
• The energy balance holds in the sense that

Eκ(η(h)(t)) + U δ
η (�(h))

+ κ

ˆ t1

0

ˆ
�(h)(t)

|∇k0v(h)|2 dx dt +
ˆ t1

0
2Rκ

(
η(h), ∂tη

(h)
)
dt

+
ˆ t1

0

(ˆ
�(h)(t)

S(∇v(h)) : ∇v(h) dx + ε

ˆ
�(h)(t)

H ′′
δ (�(h))|∇�(h)|2 dx

)
dt

+
ˆ t1

t1−h

1

2h

[
�s

ˆ
Q

|∂tη
(h)|2 dy +

ˆ
�(h)(t)

�(h)
∣∣v(h)

∣∣2 dx

]
dt

≤ Eκ(η0) + U δ
η0

(�0) + 1

2

[
�s

ˆ
Q

|η1|2 dy +
ˆ

�0

�0 |v0|2 dx

]
dt

+
ˆ t1

0

[ˆ
Q

∂tη
(h) fs dy +

ˆ
�(t)

�(h)v(h) · f f dx

]
dt (4.6)
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for a.a. t1 ∈ I .

Most of this is a straightforward replacement of the new definitions together with
a telescope argument for the energy balances. Note that in the intertial term of the
momentum-equation, the different flow maps from the equation and the definition of
w combine to �h , as do their Jacobian determinants.

Additionally, we recover the expected properties of the flow map:

Corollary 4.2 Let the assumptions of Theorem 4.1 be valid. For any t, t + s ∈ [0, T ],
�

(h)
s (t) is a diffeomorphism between �(h)(t) and �(h)(t + s) such that �

(h)
0 = id and

∂s�
(h)
s (t) = v(h)(t + s) ◦ �(h)

s (t).

As a consequence, we have

∂s det∇�(h)
s = div v(h)(t + s) ◦ �(h)

s det∇�(h)
s ,

which, in particular, implies

∂s

(
�(h)(t + s) ◦ �(h)

s (t)
)

=
(
ε��(h)(t + s) − �(h)(t + s) div v(h)(t + s)

)
◦ �(h)

s (t)

∂s

(
�(h)(t + s) ◦ �(h)

s (t) det∇�(h)
s (t)

)
= ε��(h)(t + s) ◦ �(h)

s (t) det∇�(h)
s (t).

Proof The first set of assertions follows directly from the definition and the properties
of the short-time solutions. Additionally, we can calculate

∂s det∇�(h)
s (t) = tr(∇∂s�

(h)
s (t) cof ∇�(h)

s (t))

= tr(∇(v(h)(t + s) ◦ �(h)
s (t))(∇�(h)

s (t))−1) det∇�(h)
s (t)

= tr(∇v(h))(t + s) ◦ �(h)
s (t) det∇�(h)

s (t)

= div v(h)(t + s) ◦ �(h)
s (t) det∇�(h)

s (t)

as well as

∂s

(
�(h)(t + s) ◦ �(h)

s (t)
)

= ∂t�
(h)(t + s) ◦ �(h)

s (t) + (∇�(h)(t + s)) ◦ �(h)
s (t) · (∂s�

(h)
s (t))

=
(
ε��(h)(t + s) − div(�(h)v(h))(t + s) + v(h)(t + s) · ∇�(h)(t + s)

)
◦ �(h)

s (t)

=
(
ε��(h)(t + s) − �(h)(t + s) div v(h)(t + s)

)
◦ �(h)

s (t)

using the continuity equation. Combining the two relations above results in the final
assertion. ��

From (4.6) we obtain the following uniform bounds:

‖∂t∇η(h)‖2L2(I×Q)
+ sup

t∈I
‖η(h)‖q

W 2,q (Q)
≤ c, (4.7)
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sup
t∈I

‖�(h)‖β

Lβ (�(h))
≤ c, (4.8)

‖∇v(h)‖2L2(I×�(h))
+ ‖∇�(h)‖2L2(I×�(h))

+ ‖∇(�(h))β/2‖2L2(I×�(h))
≤ c, (4.9)

‖v(h)‖2
L2(I ;W k0,2(�(h)))

+ sup
t∈I

‖η(h)‖2
W k0,2(Q)

+ ‖∂tη
(h)‖2

L2(I ;W k0,2(Q))
≤ c, (4.10)

which are uniform in h. As a consequence we have the following convergences for
some α ∈ (0, 1)

η(h)⇀∗η in L∞(I ; W k0,2(Q;�)), (4.11)

η(h)⇀η in W 1,2(I ; W k0,2(Q;Rn)), (4.12)

η(h) → η in Cα(I × Q;�), (4.13)

v(h)⇀ηv in L2(I ; W k0,2(�;Rn)), (4.14)

�(h)⇀∗,η� in L∞(I ; Lβ(�η)), (4.15)

�(h)⇀η� in L2(I ; W 1,2(�η)). (4.16)

after taking a (non-relabelled) subsequence. Taking further Lemma 2.14 into account
we have

�(h)⇀∗,η� in L∞(I ; W 1,2(�η)), (4.17)

�(h)⇀η� in L2(I ; W 2,2(�η)). (4.18)

Using this together with (4.14) in the equation of continuity we also have

∂t�
(h)⇀η∂t� in L2(I ; L2(�η)). (4.19)

Moreover, �(h) stays bounded and strictly positive, that is

� ≤ �(h)(t, x) ≤ � for a.a. (t, x) ∈ I × �(h) (4.20)

for some �, � > 0 which do not depend on h.
Finally, passing to the limit in (3.15)–(3.16) and using (4.14) yields uniform bounds

for �(h). In particular, we have

c ≤ det∇�(h)
s ≤ c (4.21)

for some c, c > 0 independent of h and s (however, diverging with T → ∞ or κ → 0)
as well as

�(h)
s → � in C0([0, T ]; C1,α(�0)) (4.22)

for a.a. s as h → 0.
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4.2 Strong convergence

To pass to the limit in (4.4)–(4.6), we need to improve some of the convergences from
the last subsection to strong convergence. First we will argue similarly to [1, Lem.
4.14, Prop. 4.15] and use (4.4) to estimate

Lemma 4.3 (W −m,2-estimates) There exists a constant C > 0 independent of h such
that for an m ∈ N large enough

∥∥∥∥∥
∂tη

(h) − ∂tη
(h)(· − h)

h

∥∥∥∥∥
L2(I ;W−m,2(Q))

≤ C, (4.23)

ˆ T

0

ˆ
�(h)(t)

√
�(h)v(h)−

√
�(h)(t−h) det∇�−hv(h)(t−h)

h ·
√

�(h)b dx dt ≤C ‖b‖L2(I ;W m,2(�)) .

(4.24)

for all b ∈ Cc(I ; W m,2
0 (�)).

Proof We need the following key estimate to correct the flow map. For any Lipschitz
continuous function a : I × � → R and any s ∈ [0, h] we have by Corollary 4.2 and
(4.21)

ˆ
�(t)

�(h)(t)
∣∣∣a(t) − a(t − s) ◦ �

(h)
−s

∣∣∣2 dx

=
ˆ

�(t)
�(h)(t)

∣∣∣∣s
 0

−s

d

dr

(
a(t + r) ◦ �(h)

r

)
dr

∣∣∣∣
2

dx

≤ cs2
ˆ

�(t)

 0

−s

∣∣∣∂t a(t + r) ◦ �(h)
r + (∇a(t + r) · v(h)(t + r)) ◦ �(h)

r

∣∣∣2 dr dx

≤ csh
 0

−h

ˆ
�(t+r)

(
(Lipt a)2 + |v(h)(t + r)|2 (Lipx a)2

)
dx dr

≤ shC(Lipt,x a)2, (4.25)

where we used boundedness of �h from (4.20) and the fact that

 r

r−h

ˆ
�(t)

∣∣v(h)
∣∣2 dx dr ≤ c

 r

r−h

ˆ
�(t)

�(h)
∣∣v(h)

∣∣2 dx dr

is uniformly bounded by the energy estimate. By Lipt , Lipx and Lipt,x we denote the
Lipschitz constants with respect to time, space and space-time respectively. Note that
this estimate varies from the corresponding estimate in [1] by the necessary inclusion
of the density, as the flow is no longer volume preserving.

Now we consider (with �(h) per convention extended by 0 to all of �)

ˆ T

0

ˆ
�

√
�(h)v(h)−

√
�(h)(t−h) det∇�

(h)
−hv(h)(t−h)

h ·
√

�(h)b dx dt
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=
ˆ T

0

ˆ
�

√
�(h)v(h)−

√
�(h)(t−h)◦�

(h)
−h det∇�

(h)
−hv(h)(t−h)◦�

(h)
−h

h ·
√

�(h)b dx dt

+
ˆ T

0

ˆ
�

√
det∇�

(h)
−h

(√
�(h)(t−h)◦�

(h)
−hv(h)(t−h)◦�

(h)
−h−

√
�(h)(t−h)v(h)(t−h)

)

h

√
�(h)b dx dt,

where the first term can be estimated using Eq. (4.4). For the second one we perform
a change of variables with �

(h)
h (t − h) in its first term to obtain

ˆ T

0

ˆ
�

√
det∇�

(h)
−h

(√
�(h)(t−h)◦�

(h)
−hv(h)(t−h)◦�

(h)
−h−

√
�(h)(t−h)v(h)(t−h)

)

h

√
�(h)b dx dt

=
ˆ T

0

ˆ
�

det∇�
(h)
h (t−h)

√
det∇�

(h)
−h◦�

(h)
h (t−h)�(h)(t−h)v(h)(t−h)

h

×
√

�(h) ◦ �
(h)
h (t − h)b ◦ �

(h)
h (t − h) dx

−
ˆ

�

√
det∇�

(h)
−h

√
�(h)(t−h)v(h)(t−h)

h

√
�(h)b dx dt

=
ˆ T

0

ˆ
�

√
det∇�

(h)
h (t−h)

√
�(h)◦�

(h)
h (t−h)b◦�

(h)
h (t−h)−

√
det∇�

(h)
−hb

h

×
√

�(h)

√
�(h)(t − h)v(h)(t − h) dx dt

=
ˆ T

0

ˆ
�

√
det∇�

(h)
−h

√
�(h) b◦�

(h)
h (t−h)−b

h

√
�(h)(t − h)v(h)(t − h) dx dt

+
ˆ T

0

ˆ
�

√
det∇�

(h)
h (t−h)

√
�(h)◦�

(h)
h (t−h)−

√
det∇�

(h)
−h

√
�(h)

h

× b ◦ �
(h)
h (t − h)

√
�(h)(t − h)v(h)(t − h) dx dt

=: I + II.

On account of (4.21) the absolute value of the first integral can be estimated by

|I| ≤
ˆ T

0

√ˆ
�

�(h)
∣∣v(h)

∣∣2 dx

√ˆ
�

�(h)

∣∣∣∣ b(t+h)◦�
(h)
h −b

h

∣∣∣∣
2

dx dt ≤ C Lipt,x b

by using that

ˆ T

0

ˆ
�

�(h)|v(h)|2 dx dt =
T /h−1∑

l=0

h
 (l+1)h

lh

ˆ
�

�(h)|v(h)|2 dx dt

consists of T /h terms uniformly bounded by a multiple of h, due to the energy-
inequality and by applying (4.25) with s = h and a = b
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For the second integral we have by Corollary 4.2

|II| =
∣∣∣∣
ˆ T

0

ˆ
�

 
t−h

∂s

(√
det∇�

(h)
s �(h) ◦ �s

)
ds b ◦ �h(t − h)

×
√

�(h)(t − h)v(h)(t − h) dx dt

∣∣∣∣
≤ ∥∥�(h)

∥∥
L2(I ;W 2,2(�))

∥∥�(h)
∥∥

L∞(I×�)
‖b‖L∞(I×�)

∥∥v(h)
∥∥

L2(I×�)

≤ C‖b‖L∞(I×�)

using (4.10), (4.18), (4.20) and (4.21). ��

Finally, we need to prove strong convergence of the density. For this purpose we
choose a parabolic cylinder J × B such that 2B � �(h)(t) for all t ∈ J and all h small
enough. This is possible due to (4.13). From the continuity equation (4.5) we obtain

∂t�
(h) ∈ L2(J ; W −1,2(B))

uniformly in h. This, in combination with the gradient estimate from (4.8), yields

�(h) → � in L2(J × B).

Using (4.20) and the arbitrariness of J × B we obtain

�(h) →η � in L p(I × �η) (4.26)

for some p > β. Using Theorem 2.13 (b) with θ(s) = s2 (which is admissible by
approximation) we obtain

ˆ
�(h)

|�(h)(t1)|2 dx +
ˆ t1

0

ˆ
�(h)

2ε|∇�(h)|2 dx dt

=
ˆ

�0

�2
0 dx −

ˆ t1

0

ˆ
�(h)

2�(h) div v(h) dx dt . (4.27)

Now we apply Theorem 2.13 (b) to the limit version of the continuity equation (that
is, Eq. (4.2)) which results in a counterpart of (4.27). On account of (4.26) all terms
converge except for

´ t
0

´
�

η(h)
2ε|∇�(h)|2 dx ds, which yields convergence of the latter.

Hence we obtain

�(h) →η � in L2(I ; W 1,2(�η)). (4.28)
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4.3 Derivation of thematerial derivative

We take the inertial term from (4.4) and shift its second half in time by a change of
variables. This gives us (note the symmetry of the

√
�-terms)

ˆ T

0

ˆ
�(h)

(
�(h)v(h) −

√
�(h)

√
�(h)(t − h) ◦ �

(h)
−h det∇�

(h)
−hv(h)(t − h) ◦ �

(h)
−h

)
· b dx dt

=
ˆ T

0

ˆ
�(h)

(
�(h)b−

√
�(h)

√
�(h)(t + h) ◦ �

(h)
h det∇�

(h)
h b(t + h) ◦ �

(h)
h

)
·v(h) dx dt

recalling that (�
(h)
h )−1(t, x) = �

(h)
−h(t + h, x)). Using the fundamental theorem of

calculus and Corollary 4.2 the integrand can be rewritten as8

−
ˆ h

0

√
�(h)(t)∂s

(√
�(h)(t+s) ◦ �

(h)
s (t) det∇�

(h)
s (t)b(t + s)◦�(h)

s (t)

)
· v(h)(t) ds

= −
ˆ h

0

√
�(h)(t)

∂s

(
[�(h)(t+s) det∇�

(h)
s (t,x)]◦�

(h)
s (t)

)

2
√

�(h)(t+s)◦�
(h)
s (t) det∇�

(h)
s (t,x)

b(t + s) ◦ �(h)
s (t) · v(h)(t) ds

−
ˆ h

0

√
�(h)(t)

[√
�(h)(t + s) det∇�

(h)
s (t, x)∂t b(t + s)

]
◦ �(h)

s (t) · v(h)(t) ds

−
ˆ h

0

√
�(h)(t)

[√
�(h)(t + s) det∇�

(h)
s (t, x)v(h)(t + s) · ∇b(t + s)

]

◦ �(h)
s (t) · v(h)(t) ds

= −
ˆ h

0

√
�(h)(t)

[√
det∇�

(h)
s (t, x)

ε��(h)(t+s)

2
√

�(h)(t+s)
b(t + s)

]
◦ �(h)

s (t) · v(h)(t) ds

−
ˆ h

0

√
�(h)(t)

[√
det∇�

(h)
s (t, x)

√
�(h)(t + s)∂t b(t + s)

]
◦ �(h)

s (t) · v(h)(t) ds

−
ˆ h

0

√
�(h)(t)

[√
det∇�

(h)
s (t, x)

√
�(h)(t + s)v(h)(t + s) · ∇b(t + s)

]

◦ �(h)
s (t) · v(h)(t) ds

=: −(I)h − (II)h − (III)h .

Wecannowdealwith eachof these termsone after the other.Using (�
(h)
s )−1(t, x) =

�
(h)
−s (t + s) and ∂ν(h)(t)�

(h)(t) = 0 on ∂�(h)(t) we find

ˆ T

0

1

h

ˆ
�(h)

(I)h dx dt

=
ˆ T

0

 h

0

ˆ
�(h)(t+s)

√
�(h)(t) ◦ �

(h)
−s (t + s, x)

√
det∇�

(h)
−s (t, x)

8 Note that det∇�
(h)
s (t, x) signifies that this term is always evaluated at x , while most other terms (those

at time t + s) are evaluated at �(h)
s (t, x). In general, all terms are evaluated at their “natural” point.
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× ε��(h)(t+s)

2
√

�(h)(t+s)
b(t + s) · v(h)(t) ◦ �

(h)
−s (t + s, x) ds dx dt

=
ˆ T

0

 h

0

ˆ
�(h)(t+s)

(√
�(h)(t)◦�

(h)
−s (t+s,x)

√
det∇�

(h)
−s (t,x)

2
√

�(h)(t+s)
− 1

)

· ε��(h)(t + s)b(t + s) · v(h)(t) ◦ �
(h)
−s (t + s, x) ds dx dt

−
ˆ T

0

 h

0

ˆ
�(h)(t+s)

ε

2
∇�(h)(t + s)∇

(
v(h)(t) ◦ �

(h)
−s (t + s, x)

)
b(t + s) ds dx dt

−
ˆ T

0

 h

0

ˆ
�(h)(t+s)

ε

2
∇�(h)(t+s) · ∇b(t + s)v(h)(t) ◦ �

(h)
−s (t + s, x) ds dx dt

=: (IV)h + (V)h + (VI)h .

As h → 0 we have

(IV)h → 0

on account of (4.18), (4.20) and

ˆ
�(h)(t+s)

|v(h)(t) ◦ �
(h)
−s (t + s)|2 dx ≤ c

ˆ
�(h)(t)

|v(h)(t)|2 dx,

sup
l∈{0,...,T /h−1}

−
ˆ (l+1)h

lh

ˆ
�(h)

|v(h)|2 dx ≤ c,

the latter one being a consequence of (4.6) and (4.20). Moreover, it holds

(V)h → −
ˆ T

0

ˆ
�(t)

ε

2
∇�(t) · ∇v(t)b(t) dx dt

as well as

(VI)h → −
ˆ T

0

ˆ
�(t)

ε

2
∇�(t) · ∇b(t) · v(t) dx dt .

by (4.22), (4.26) and (4.28). We conclude that

ˆ T

0

1

h

ˆ
�(h)

(I)h dx dt → −
ˆ T

0

ˆ
�(t)

ε

2
∇�(t) · (∇b(t) · v(t) + ∇v(t)b(t)) dx dt .

(4.29)

Similarly, we have

ˆ T

0

1

h

ˆ
�(h)

(II)h dx dt →
ˆ T

0

ˆ
�(t)

�(t)v(t)∂t b(t) dx dt
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as h → 0. The remaining term involving (III)h is more critical since v(h), which is
based on our a-priori estimates only weakly converging, appears in a product with
itself. However, we may use the discrete time derivative for the momentum. It holds

∂t

 t+h

t

√
�(h)(s)

√
det∇�

(h)
s (t, x)v(h)(s) ds

=
√

�(h)(t + h)

√
det∇�

(h)
s (t, x)v(h)(t + h) − √

�(h)(t)v(h)(t)

h

such that

∂t

[√
�(h)(t)

 t+h

t

√
�(h)(s)

√
det∇�

(h)
s (t, x)v(h)(s) ds

]

=
√

�(h)(t)

√
�(h)(t + h)

√
det∇�

(h)
s (t, x)v(h)(t + h) − √

�(h)(t)v(h)(t)

h

+ ∂t�
(h)(t)

2
√

�(h)(t)

 t+h

t

√
�(h)(s)

√
det∇�

(h)
s (t, x)v(h)(s) ds.

For the first term we have a W −m,2-estimate given in (4.24). The second term can be
estimated in L1(I ; L2(�(h))) by (4.18), (4.19), (4.20) and (4.21). We conclude that

ˆ T

0

ˆ
�(h)(t)

∂t

[√
�(h)(t)

 t+h

t

√
�(h)(s)

√
det∇�

(h)
s (t, x)v(h)(s) ds

]
· b dx dt

≤ C ‖b‖L1(I ;W m,2(�))

uniformly in h. Thus, Lemma 2.8 yields

ˆ T

0

ˆ
�(h)(t)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)

×
[√

�(h)(t + s)v(h)(t + s) · ∇b(t + s)

]
· v(h)(t) ds dx dt

→
ˆ T

0

ˆ
�(t)

�(t)v(t) · ∇b(t)v(t) dx dt (4.30)

as h → 0 taking also (4.18), (4.22) and (4.26) into account. It remains to “add” the
shift

◦ �
(h)
s (t). For this purpose we decompose

ˆ T

0

ˆ
�(h)(t)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)

[
. . .

]
◦ �

(h)
s (t) · v(h)(t) ds dx dt

=
ˆ T

0

ˆ
�(h)(t)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)
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×
([

. . .
]
ξ

◦ �
(h)
s (t) −

[
. . .

]
ξ

)
· v(h)(t) ds dx dt

+
ˆ T

0

ˆ
�(h)(t)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)

([
. . .

]
ξ

−
[
. . .

])
· v(h)(t) ds dx dt

+
ˆ T

0

ˆ
�(h)(t)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)

[
. . .

]
· v(h)(t) ds dx dt

Here [·]ξ denotes a regularisation in space defined by an extension to the whole space9
and a mollification with a smooth kernel. In the above we use [. . . ] as a shorthand for

[
. . .

]
=

[√
�(h)(t + s)v(h)(t + s) · ∇b(t + s)

]
.

For fixed ξ we can use smoothness of [·]ξ to conclude that the first term vanishes as
h → 0. This is a consequence of (4.25) and the a priori estimates. Also, the second
term converges to zero as ξ → 0 (uniformly with respect to h, recall (4.17), (4.18)
and (4.20)) by standard properties of the mollification. The last term converges to the
expected limit as we have seen in (4.30). In conclusion, we have

ˆ T

0

ˆ
�(h)

 h

0

√
�(h)(t)

√
det∇�

(h)
s (t, x)

×
[√

�(h)(t + s)v(h)(t + s) · ∇φ(t + s)

]
◦ �(h)

s (t) · v(h)(t) dsdxdt

→
ˆ T

0

ˆ
�(t)

�(t)v(t) · ∇φ(t)v(t) dx dt

as h → 0, which finishes the proof of (4.1).

5 Removal of the remaining approximation parameters

In this section we pass to the limit in the approximate equations. For technical reasons
the limits κ → 0, ε → 0 and δ → 0 have to be performed independently from each
other. The limit κ → 0 is rather straightforward as the density remains compact for
ε > 0. For the greater part of this section we study the limit ε → 0 and only highlight
the differences in the δ-limit.

5.1 The limit system for � → 0

Recalling the definition of the function spaces fromSect. 2.3we seek a triple (η, v, �) ∈
Y I × X I

η × Ẑ I
η that satisfies the following.

9 Since ∂�(h) is a Lipschitz boundary uniformly in time by (4.7) standard results on the extension of
Sobolev functions apply.
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• The momentum equation holds in the sense that

ˆ
I

d

dt

ˆ
�(t)

�v · b dx −
ˆ

�(t)
(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+
ˆ

I

ˆ
�(t)

S(∇v) : ∇b dx dt −
ˆ

I

ˆ
�(t)

pδ(�) div b dx dt

+ ε

2

ˆ
I

ˆ
�(t)

∇� · (∇vb + ∇bv) dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DE(η), φ〉 + 〈D2R(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�(t)

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (5.1)

for all (φ, b) ∈ L2(I ; W 2,q(Q;�))∩W 1,2(I ; L2(Q;Rn))×C∞
c (I ×�;Rn)with

φ(t) = b(t)◦η(t) in Q and φ(t) = 0 on P , where�(t) := �\η(t, Q). Moreover,
we have (�v)(0) = q0, η(0) = η0 and ∂tη(0) = η1 as well as ∂tη(t) = v(t) ◦ η(t)
in Q, η(t) ∈ E and v(t) = 0 on ∂� for a.a. t ∈ I .

• The continuity equation holds in the sense that

ˆ
I

d

dt

ˆ
�(t)

�ψ dx dt −
ˆ

I

ˆ
�(t)

(�∂tψ + �v · ∇ψ) dx dt

= ε

ˆ
I

ˆ
�(t)

∇� · ∇ψ dx dt (5.2)

for all ψ ∈ C∞(I × R
3), ∂ν(t)�(t) = 0 in ∂�(t) for a.a. t ∈ I and we have

�(0) = �0.
• The energy inequality is satisfied in the sense that

−
ˆ

I
∂tψ Eδ dt +

ˆ
I
ψ

ˆ
�(t)

S(∇v) : ∇v dx ds

+ 2
ˆ

I
ψ R(η, ∂tη) ds + ε

ˆ
I
ψ

ˆ
�(t)

H ′′
δ (�)|∇�|2 dx ds

≤ ψ(0)Eδ(0) +
ˆ

I
ψ

ˆ
�(t)

� f f · v dx dt +
ˆ

I
ψ

ˆ
Q

gs ∂tη dy dt

(5.3)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

Eδ(t) =
ˆ

�(t)

(
1

2
�(t)|v(t)|2 + Hδ(�(t))

)
dx +

ˆ
Q

�s
|∂tη|2
2

dy + E(η(t)).

We have the following existence result.
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Theorem 5.1 Let ε, δ > 0 be given. Assume that we have for some α ∈ (0, 1)

|q0|2
�0

∈ L1(�η0), �0 ∈ C2,α(�η0), η0 ∈ E, η1 ∈ L2(Q;Rn),

f f ∈ L2(I ; L∞(�;Rn)), fs ∈ L2(I × Q;Rn).

Furthermore, suppose that �0 is strictly positive. There is a solution (η, v, �) ∈ Y I ×
X I

η × Ẑ I
η to (5.1)–(5.3). Here, we have I = (0, T∗), where T∗ < T only if the time T∗

is the time of the first contact of the free boundary of the solid body either with itself
or ∂� (i.e., η(T∗) ∈ ∂E ).

Proof First of all, we replace η0 by a suitable regularisation ηκ
0 which satisfies ηκ

0 ∈
W 2,k0(Q) and Eκ(ηκ

0 ) → E(η0) as κ → 0. For T > 0 to be fixed later and any
given κ > 0 we obtain a solution (η(κ), v(κ), �(κ)) to (4.1)–(4.3) by Theorem 4.1. In
particular, we have

ˆ
�(κ)

[
1

2
�(κ)|v(κ)(t1)|2 + Hδ(�

(κ)(t1))

]
dx +

ˆ
Q

�s
|∂t η

(κ)(t1)|2
2 dy + Eκ(η(κ)(t1))

+
ˆ t1

0

[ˆ
�(κ)

S(∇v(κ)) : ∇v(κ) dx + 2
ˆ

Q
R(η(κ), ∂tη

(κ)) dy

]
dt

+
ˆ t1

0

[
ε

ˆ
�(κ)

H ′′
δ (�(κ))|∇�(κ)|2 dx + κ

ˆ
�(κ)

|∇k0v(κ)|2 dx

]
dt

+ 2κ
ˆ t1

0

ˆ
Q

|∇k0η(κ)|2 dy dt +
ˆ

Q
κ|∇k0η(κ)(t1)|2 dy

≤
ˆ

�0

[
1

2
�0|v0|2 + Hδ(�0)

]
dx +

ˆ
Q

�s
|η1|2
2

dy + Eκ(ηκ
0 )

+
ˆ t1

0

[ˆ
�(κ)

�(κ) f f · v(κ) dx +
ˆ

Q
fs · ∂tη

(κ) dy

]
dt (5.4)

for almost all 0 ≤ t1 ≤ T , where �(κ) := �\η(κ)(t, Q). We deduce the bounds

‖∂t∇η(κ)‖2L2(I×Q)
+ sup

t∈I
‖∂tη

(κ)‖2L2(Q)
+ sup

t∈I
‖η(κ)‖q

W 2,q (Q)
≤ c,

(5.5)

sup
t∈I

‖�(κ)‖β

Lβ(�(κ))
+ sup

t∈I
‖�(κ)v(κ)‖

2β
β+1

L
2β

β+1 (�(κ))

≤ c,

(5.6)

‖∇v(κ)‖2L2(I×�(κ))
+ ‖∇�ε‖2L2(I×�(κ))

+ ‖∇(�(κ))β/2‖2L2(I×�(κ))
≤ c,

(5.7)

√
κ

(
‖v(κ)‖2

L2(I ;W k0,2(�(κ)))
+ sup

t∈I
‖η(κ)‖2

W k0,2(Q)
+ ‖∂tη

(κ)‖2
L2(I ;W k0,2(Q))

)
≤ c,

(5.8)
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where in particular the bound on ‖∂t∇η(κ)‖L2(I×Q) converges to 0 if we send T → 0.
Using [1, Prop. 2.7], we can then choose T small enough, so that there will be no
collision, even in the limit κ → 0.

Passing to a subsequence we obtain for some α ∈ (0, 1)

η(κ)⇀∗η in L∞(I ; W 2,q(Q;�)), (5.9)

η(κ)⇀∗η in W 1,∞(I ; L2(Q;Rn)), (5.10)

η(κ)⇀η in W 1,2(I ; W 1,2(Q;Rn)), (5.11)

η(κ) → η in Cα(I × Q;�), (5.12)

κη(κ)⇀∗0 in L∞(I ; W k0,2(Q;�)), (5.13)

κ∂tη
(κ)⇀0 in L2(I ; W k0,2(Q;Rn)), (5.14)

v(κ)⇀ηv in L2(I ; W 1,2(�η;Rn)), (5.15)

κv(κ)⇀η0 in L2(I ; W k0,2(�η;Rn)), (5.16)

�(κ)⇀∗,η� in L∞(I ; Lβ(�η)), (5.17)

�(κ)⇀η� in L2(I ; W 1,2(�η)). (5.18)

Clearly, the κ-terms in (4.1) vanish as κ → 0 as a consequence of (5.13), (5.14) and
(5.16). Arguing as in [1, Prop. 2.23] one can use assumption S6 to deduce

η(κ) → η in Lq(I ; W 2,q(Q;�)) (5.19)

such that for a.e. t ∈ I

DE(η(κ)(t)) → DE(η(t)) in W −2,q(Q;�). (5.20)

In order to pass to the limit in various terms in the equations we are concerned with the
compactness of �(κ). Due to (5.18) and (4.2) we can apply Corollary 2.9 to conclude

�(κ) →η � in L2(I ; L2(�η)). (5.21)

In combination with (5.7) this can be improved to

�(κ) →η � in L p(I ; L p(�η)), (5.22)

for some p > β. It is easy to see that (5.22) allows to pass to the limit in all nonlinear
terms of (4.1) and (4.2) except of

ε

2

ˆ
I

ˆ
�(κ)

∇�(κ) · (∇v(κ)φ + ∇φv(κ)) dx dt .

Due to (5.15) we obtain the expected limit as κ → 0 provided we have

∇�(κ) →η ∇� in L2(I ; L2(�;Rn)). (5.23)
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This can be proved exactly as in (4.28) using Theorem 2.13 (b). Finally we complete
proof of Theorem (5.1), by extending the solution in time: Assume that I = [0, T ) is
a maximal interval of existence with T < ∞. Then using the energy-inequality, we
conclude existence of limits η(T ), ∂tη(T ), �(T ) and v(T ). Now η(T ) has to have a
collision,which proves the theorem. otherwisewe could construct an extended solution
by applying the theorem with these as initial data, which would be a contradiction. ��

5.2 The limit system for " → 0

We wish to establish the existence of a weak solution (η, v, �) to the system with
artificial pressure in the following sense: We define

Z̃ I
η = Cw(I ; Lβ(�η))

as the function space for the density, whereas the other function spaces are defined
in Sect. 2.3. A weak solution is a triple (η, v, �) ∈ Y I × X I

η × Z̃ I
η that satisfies the

following.

• The momentum equation holds in the sense that

ˆ
I

d

dt

ˆ
�(t)

�v · b dx −
ˆ

�(t)
(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+
ˆ

I

ˆ
�(t)

S(∇v) : ∇b dx dt −
ˆ

I

ˆ
�(t)

pδ(�) div b dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DE(η), φ〉 + 〈D2R(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�(t)

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (5.24)

for all (φ, b) ∈ L2(I ; W 2,q(Q;Rn))∩W 1,2(I ; L2(Q;Rn))×C∞
c (I ×�;Rn)with

φ(t) = b(t)◦η(t) in Q and φ(t) = 0 on P , where�(t) := �\η(t, Q). Moreover,
we have (�v)(0) = q0, η(0) = η0 and ∂tη(0) = η1 as well as ∂tη(t) = v(t) ◦ η(t)
in Q, η(t) ∈ E and v(t) = 0 on ∂� for a.a. t ∈ I .

• The continuity equation holds in the sense that

ˆ
I

d

dt

ˆ
�(t)

�ψ dx dt −
ˆ

I

ˆ
�(t)

(�∂tψ + �v · ∇ψ) dx dt = 0 (5.25)

for all ψ ∈ C∞(I × �) and we have �(0) = �0.
• The energy inequality is satisfied in the sense that

−
ˆ

I
∂tψ Eδ dt +

ˆ
I
ψ

ˆ
�η

S(∇v) : ∇v dx dt + 2
ˆ

I
R(η, ∂tη) dt

≤ ψ(0)Eδ(0) +
ˆ

I
ψ

ˆ
�η

� f f · v dx dt +
ˆ

I
ψ

ˆ
Q

fs ∂tη dy dt (5.26)
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holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

Eδ(t) =
ˆ

�(t)

(
1

2
�(t)|v(t)|2 + Hδ(�(t))

)
dx +

ˆ
Q

�s
|∂tη|2
2

dy + E(η(t)).

We have the following existence result.

Theorem 5.2 Let δ > 0 be given. Assume that we have for some α ∈ (0, 1)

|q0|2
�0

∈ L1(�η0), �0 ∈ C2,α(�η0), η0 ∈ E, η1 ∈ L2(Q;Rn),

f f ∈ L2(I ; L∞(Rn)), fs ∈ L2(I × Q;Rn).

Furthermore, suppose that �0 is strictly positive. There is a solution (η, v, �) ∈ Y I ×
X I

η × Z̃ I
η to (5.24)–(5.26). Here, we have I = (0, T∗), where T∗ < T only if the time

T∗ is the time of the first contact of the free boundary of the solid body either with
itself or ∂� (i.e., η(T∗) ∈ ∂E ).

Lemma 5.3 Under the assumptions of Theorem 5.2 the continuity equation holds in
the renormalized sense as specified in Definition 2.12.

For a given ε > 0 we obtain a solution (ηε, vε, �ε) to (5.1)–(5.3) by Theorem 5.1.
In particular, we have

ˆ
�(ε)

[
1

2
�(ε)(t1)|v(ε)(t1)|2 + Hδ(�

(ε)(t1))

]
dx +

ˆ
Q

�s
|∂tη

(ε)(t1)|2
2

dy

+ E(η(ε)(t1)) +
ˆ t1

0

ˆ
�(ε)

S(∇v(ε)) : ∇v(ε) dx dt

+ 2
ˆ t1

0

ˆ
Q

R(η(ε), ∂tη
(ε)) ds + ε

ˆ t1

0

ˆ
�(ε)

H ′′
δ (�(ε))|∇�(ε)|2 dx dt

≤
ˆ

�0

[
1

2
�0|v0|2 + Hδ(�0)

]
dx +

ˆ
Q

�s
|η1|2
2

dy + E(η0) (5.27)

for any 0 ≤ t1 ≤ T , where �(ε) := �\η(ε)(t, Q). We deduce the bounds

‖∂t∇η(ε)‖2L2(I×Q)
+ sup

t∈I
‖∂tη

(ε)‖2L2(Q)
+ sup

t∈I
‖η(ε)‖q

W 2,q (Q)
≤ c, (5.28)

sup
t∈I

‖�(ε)‖β

Lβ(�(ε))
+ sup

t∈I
‖�(ε)v(ε)‖

2β
β+1

L
2β

β+1 (�(ε))

≤ c, (5.29)

‖∇v(ε)‖2L2(I×�(ε))
+ ε‖∇�(ε)‖2L2(I×�(ε))

+ ε‖∇(�(ε))β/2‖2L2(I×�(ε))
≤ c. (5.30)

Finally, we deduce from the equation of continuity (5.2) (using the renormalized
formulation from Theorem 2.13 (b) with θ(z) = z2 and testing with ψ ≡ 1)) that

ˆ
�(ε)(t)

�(ε)(t, ·) dx =
ˆ

�0

�0 dx, ‖√ε∇�(ε)‖L2(I×�(ε)) ≤ c. (5.31)
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Note that all estimates are independent of ε. Hence, we may take a subsequence such
that for some α ∈ (0, 1) we have

η(ε)⇀∗η in L∞(I ; W 2,q(Q;�)), (5.32)

η(ε)⇀∗η in W 1,∞(I ; L2(Q;Rn)), (5.33)

η(ε)⇀η in W 1,2(I ; W 1,2(Q;Rn)), (5.34)

η(ε) → η in Cα(I × Q;�), (5.35)

v(ε)⇀ηv in L2(I ; W 1,2(�η;Rn)), (5.36)

�(ε)⇀∗,η� in L∞(I ; Lβ(�η)), (5.37)

ε∇�(ε) →η 0 in L2(I ; L2(�η;Rn)). (5.38)

Arguing as in [1, Prop. 2.23] one can again benefit from assumption S6 to deduce

η(ε) → η in Lq(I ; W 2,q(Q;�)) (5.39)

such that for a.e. t ∈ I

DE(η(ε)(t)) → DE(η(t)) in W −2,q(Q;�). (5.40)

We observe that the a priori estimates (5.29) imply uniform bounds of �(ε)v(ε) in

L∞(I , L
2β

β+1 (�(ε))). Therefore, we may apply Lemma 2.8 with the choice vi ≡ v(ε),
ri = �(ε), p = s = 2, b = β and m sufficiently large to obtain

�(ε)v(ε)⇀η�v in Lq(I , La(�η;Rn)), (5.41)

where a ∈ (1, 2β
β+1 ) and q ∈ (1, 2). We apply Lemma 2.8 once more with the choice

vi ≡ v(ε), ri = �(ε)v(ε), p = s = 2, b = 2β
β+1 and m sufficiently large to find that

�(ε)v(ε) ⊗ v(ε)⇀η�v ⊗ v in L1(I ; L1(�η;Rn×n)). (5.42)

We also obtain

�(ε)v(ε) →η �v in Lq(I , Lq(�η;Rn)), (5.43)

�(ε)v(ε)⇀η,∗�v in L∞(I , L
2β

β+1 (�η;Rn)), (5.44)

for all q <
6β

β+6 . At this stage of the proof the pressure is only bounded in L1, so we
have to exclude its concentrations. The standard approach only works locally, where
the moving shell is not seen and we obtain the following Lemma (see [4, Lemma 6.3]
for details).
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Lemma 5.4 Let J × B � I × �(·) be a parabolic cube. The following holds for any
ε ≤ ε0(J × B)

ˆ
J×B

pδ(�
(ε))�(ε) dx dt ≤ C(J × B) (5.45)

with a constant independent of ε.

We still have to exclude concentrations of the pressure at the boundary, which is the
object of the following lemma.

Lemma 5.5 Let ξ > 0 be arbitrary. There is a measurable set Aξ � I × �(·) such
that we have for all ε ≤ ε0(ξ)

ˆ
I×�(ε)\Aξ

pδ(�
(ε))�(ε)χ�(ε) dx dt ≤ ξ. (5.46)

Proof The proof is exactly as in [4, Lemma 6.4] (which is inspired by [15]) provided
we know that

∂tη
(ε) ∈ L2(I ; L2(M;Rn))

uniformly in ε. This follows from (5.34) due to the trace theorem. ��
We connect Lemmas 5.4 and 5.5 to obtain the following corollary.

Corollary 5.6 Under the assumptions of Theorem 5.2 there exists a function p such
that

pδ(�
(ε))⇀η p in L1(I ; L1(�η)),

at least for a subsequence. Additionally, for ξ > 0 arbitrary, there is a measurable set
Aξ � I × �(·) such that p� ∈ L1(Aξ ) and

ˆ
(I×�(·))\Aξ

p dx dt ≤ ξ. (5.47)

Combining Corollary 5.6 with the convergences (5.32)–(5.40) we can pass to the limit
in (5.1) and (5.2) and obtain the following. There is

(η, v, �, p) ∈ Y I × X I
η × Z̃ I

η × L1(I × �η)

that satisfies v(t) = ∂tη(t) ◦ η(t) in Q, v(t) = 0 on ∂� for a.a. t ∈ I , the continuity
equation

ˆ
I

d

dt

ˆ
�(t)

�ψ dx dt −
ˆ

I

ˆ
�(t)

(�∂tψ + �v · ∇ψ) dx dt = 0 (5.48)
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for all ψ ∈ C∞(I × R
3) and the coupled weak momentum equation

ˆ
I

d

dt

ˆ
�(t)

�v · b dx dt −
ˆ

I

ˆ
�(t)

(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+
ˆ

�(t)
S(∇v) : ∇b dx dt −

ˆ
I

ˆ
�(t)

p div b dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DE(η), φ〉 + 〈D2R(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�(t)

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (5.49)

for all (φ, b) ∈ L2(I ; W 2,q(Q;�) ∩ W 1,2(L2(Q;Rn)) × C∞
c (I × R

3) with b(t) ◦
η(t) = φ(t) in Q, b(t) = 0 on P for a.a. t ∈ I . It remains to show strong convergence
of �(ε). The proof of strong convergence of the density is based on the effective viscous
flux identity introduced in [17] and the concept of renormalized solutions from [8].
Arguing locally, there is no difference to the standard setting. We consider a parabolic
cube J ×B with J ×B � A � I ×�(·). Due to (5.35)we can assume that A � I ×�(ε)

(by taking ε small enough). For non-negative ψ ∈ C∞
c (A) we obtain

ˆ
I×�

ψ
(

pδ(�
(ε)) − (λ + 2μ) div v(ε)

)
�(ε) dx dt

−→
ˆ

I×�

ψ (p − (λ + 2μ) div v) � dx dt
(5.50)

as ε → 0. The proof of Lemma 5.3 follows exactly as in [4, Lemma 6.2]. So, for
ψ ∈ C∞(I × �(·)) we have

ˆ
I

d

dt

ˆ
�(t)

θ(�)ψ dx dt −
ˆ

I

ˆ
�(t)

θ(�) ∂tψ dx dt

+
ˆ

I

ˆ
�(t)

(
�θ ′(�) − θ(�)

)
div v ψ dx dt

=
ˆ

I

ˆ
�(t)

θ(�)v · ∇ψ dx dt .

(5.51)

In order to deal with the local nature of (5.50) we use ideas from [10]. First of all,
by the monotonicity of the mapping � �→ p(�), we find for an arbitrary non-negative
ψ ∈ C∞

c (A)

(λ + 2μ) lim inf
ε→0

ˆ
I×Rn

ψ
(
div v(ε) �(ε) − div v �

)
dx dt

= lim inf
ε→0

ˆ
I×�

η(ε)

ψ
(

p(�(ε)) − p
) (

�(ε) − �
)
dx dt ≥ 0
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using (5.50) (together with the uniform bounds (5.29) and (5.30)). As ψ is arbitrary
we conclude

div v � ≥ div v � a.e. in I × �(·), (5.52)

where

div v(ε) �(ε)⇀ηdiv v � in L1(�; L1(�η)),

recall (5.36) and (5.37). Now, we compute both sides of (5.52) by means of the cor-
responding continuity equations. Due to Theorem 2.13 (b) on the interval [0, t1] with
θ(z) = z ln z and ψ = 1 we have

ˆ t1

0

ˆ
�(ε)

div v(ε) �(ε) dx dt

≤
ˆ

�0

�0 ln(�0) dx −
ˆ

�(ε)(t1)
�(ε)(t1) ln(�

(ε)(t1)) dx
(5.53)

for almost any 0 ≤ t1 < T . Similarly, Eq. (5.51) yields

ˆ t1

0

ˆ
�(t)

div v � dx dt =
ˆ

�0

�0 ln(�0) dx −
ˆ

�(t1)
�(t) ln(�(t)) dx . (5.54)

Combining (5.52)–(5.54) shows

lim sup
ε→0

ˆ
�(ε)(t1)

�(ε)(t1) ln(�
(ε)(t1)) dx ≤

ˆ
�(t1)

�(t1) ln(�(t1)) dx

for almost any t1 ∈ I . This gives the claimed convergence �(ε) → � in L1(I × R
3)

by convexity of z �→ z ln z. Consequently, we have p = p(�) and the proof of
Theorem 5.2 is complete.

5.3 Proof of Theorem 2.11

In this section we are ready to prove the main result of this paper by passing to the limit
δ → 0 in the system (5.24)–(5.26) from Sect. 5.2. Given initial data (q0, �0) belonging
to the function spaces stated in Theorem 2.11 it is standard to find regularised versions
q(δ)
0 and �

(δ)
0 such that for all δ > 0

�
(δ)
0 ∈ C2,α(�0), �

(δ)
0 strictly positive,

ˆ
�0

�
(δ)
0 dx =

ˆ
�0

�0 dx,
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as well as q(δ)
0 → q0 in L

2γ
γ+1 (�0;Rn), �(δ)

0 → �0 in Lγ (�0) and

ˆ
�0

(
1

2

|q(δ)
0 |2
�

(δ)
0

+ Hδ(�
(δ)
0 )

)
dx →

ˆ
�0

(
1

2

|q0|2
�0

+ H(�0)

)
dx,

as δ → 0. For a given δ we gain a weak solution (η(δ), v(δ), �(δ)) to (5.24)–(5.26) with
this data by Theorem 5.2. It is defined in the interval (0, T∗), where T∗ is restricted by
the data only. Exactly as in Sect. 5.2, we write �(δ)(t) := �(t)\η(δ)(t, Q) and deduce
the following uniform bounds from the energy inequality:

‖∂t∇η(δ)‖2L2(I×Q)
+ sup

t∈I
‖∂tη

(δ)‖2L2(Q)
+ sup

t∈I
‖η(δ)‖q

W 2,q (Q)
≤ c, (5.55)

sup
t∈I

‖�(δ)‖γ

Lγ (�(δ))
+ sup

t∈I
δ‖�(δ)‖β

Lβ(�(δ))
≤ c, (5.56)

sup
t∈I

∥∥∥�(δ)|v(δ)|2
∥∥∥

L1(�(δ))
+ sup

t∈I

∥∥∥�(δ)v(δ)
∥∥∥

2γ
γ+1

L
2γ

γ+1 (�(δ))

≤ c, (5.57)

∥∥v(δ)
∥∥2

L2(I ;W 1,2(�(δ)))
≤ c. (5.58)

Finally, we have the conservation of mass principle resulting from the continuity
equation, i.e.,

‖�(δ)(τ, ·)‖L1(�(δ)) =
ˆ

�
η(δ)

�(τ, ·) dx =
ˆ

�

�0 dx for all τ ∈ [0, T ]. (5.59)

Hence we may take a subsequence, such that for some α ∈ (0, 1) we have

η(δ)⇀∗η in L∞(I ; W 2,q(Q;�)) (5.60)

η(δ)⇀∗η in W 1,∞(I ; L2(Q;Rn)), (5.61)

η(δ)⇀∗η in W 1,2(I ; W 1,2(Q;Rn)), (5.62)

η(δ) → η in Cα(I × Q;�), (5.63)

v(δ)⇀ηv in L2(I ; W 1,2(�η;Rn)), (5.64)

�(δ)⇀∗,η� in L∞(I ; Lγ (�η)). (5.65)

Also, we obtain as before again that

DE(η(δ)(t)) → DE(η(t)) in W −2,q(Q;�). (5.66)

By Lemma 2.8, arguing as in Sect. 5.2, we find for all q ∈ (1, 6γ
γ+6 ) that

�(δ)v(δ)⇀η�v in L2(I , Lq(�η;Rn)) (5.67)

�(δ)v(δ) ⊗ v(δ) →η �v ⊗ v in L1(I ; L1(�η;Rn×n)). (5.68)
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√
�(δ)v(δ) →η √

�v in L1(I ; L1(�η)). (5.69)

As before in Proposition 5.4we have higher integrability of the density (see [4, Lemma
7.3] for the proof).

Lemma 5.7 Letγ > n
2 . Let J×B � I×�(·)be a parabolic cube and0 < � ≤ 2

n γ−1.
The following holds for any δ ≤ δ0(J × B)

ˆ
J×B

pδ(�
(δ))(�(δ))� dx dt ≤ C(J × B) (5.70)

with constant independent of δ.

In order to exclude concentrations of the pressure at the moving boundary we need
the stronger assumption γ >

2n(n−1)
3n−2 .

Lemma 5.8 Let γ >
2n(n−1)
3n−2 . Let ξ > 0 be arbitrary. There is a measurable set

Aξ � I × �(·) such that we have for all δ ≤ δ0

ˆ
I×�(δ)\Aξ

pδ(�
(δ))dx dt ≤ ξ. (5.71)

Proof The proof is exactly as in [4, Lemma 7.4] provided we know that for all q <
2(n−1)

n−2 (all q < ∞ if n = 2)

∂tη
(δ) ∈ L2(I ; Lq(M))

uniformly in δ (note that �(δ)v(δ) ∈ L2(I ; L
2nγ

γ (n−2)+2n (�δ)) uniformly in δ by (5.56)
and (5.58)). This follows from (5.62) due to the trace theorem. ��

Lemma 5.7 and Lemma 5.8 imply equi-integrability of the sequence pδ(�
(δ)). This

yields the existence of a function p such that (for a subsequence)

pδ(�
(δ))⇀p in L1(I × �), (5.72)

δ(�(δ))β + δ(�(δ))2 → 0 in L1(I × �). (5.73)

Similarly to Corollary 5.6 we have the following.

Corollary 5.9 Let ξ > 0 be arbitrary. There is a measurable set Aξ � I × �(·) such
that

ˆ
I×�(·)\Aξ

p dx dt ≤ ξ. (5.74)
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Using (5.72), (5.73) and the convergences (5.60)–(5.66) we can pass to the limit in
(5.24) and (5.25) and obtain

ˆ
I

d

dt

ˆ
�(t)

�v · b dx −
ˆ

�(t)
(�v · ∂t b + �v ⊗ v : ∇b) dx dt

+
ˆ

I

ˆ
�(t)

S(∇v) : ∇b dx dt −
ˆ

I

ˆ
�(t)

p div b dx dt

+
ˆ

I

(
−
ˆ

Q
�s∂tη ∂tφ dy + 〈DE(η), φ〉 + 〈D2R(η, ∂tη), φ〉

)
dt

=
ˆ

I

ˆ
�(t)

� f f · b dx dt +
ˆ

I

ˆ
Q

fs · φ dx dt (5.75)

for all test-functions (φ, b) with φ = b ◦ η, φ(T , ·) = 0 and b(T , ·) = 0. Moreover,
the following holds:

ˆ
I

d

dt

ˆ
�(t)

�ψ dx dt −
ˆ

I

ˆ
�(t)

(�∂tψ + �v · ∇ψ) dx dt = 0 (5.76)

for all ψ ∈ C∞(I × R
3).

It remains to show strong convergence of �(δ). We define the L∞-truncation

Tk(z) := k T
( z

k

)
z ∈ R, k ∈ N. (5.77)

Here T is a smooth concave function onR such that T (z) = z for z ≤ 1 and T (z) = 2
for z ≥ 3. We clearly have

Tk(�
(δ))⇀T 1,k in Cw(I ; L p(R3)) ∀p ∈ [1,∞), (5.78)(

T ′
k(�

(δ))�(δ) − Tk(�
(δ))

)
div v(δ)⇀T 2,k in L2(I × R

3), (5.79)

for some limit functions T 1,k and T 2,k . Now we have to show that
ˆ

I×�
η(δ)

(
pδ(�

(δ)) − (λ + 2μ) div v(δ)
)

Tk(�
(δ)) dx dt

−→
ˆ

I×�η

(p − (λ + 2μ) div v) T 1,k dx dt . (5.80)

As in [4, Subsection 7.1] one can first prove a localised version of (5.80) and then use
Lemma 5.8 and Corollary 5.9 to deduce the global version.

The next aim is to prove that � is a renormalized solution (in the sense of Defini-
tion 2.12). In order to do so it suffices to use the continuity equation and (5.80) again
on the whole space. Following line by line the arguments from [4, Subsection 7.2] we
have

∂t T
1,k + div

(
T 1,kv

) + T 2,k = 0 (5.81)

123



Compressible fluids interacting with 3D visco-elastic...

in the sense of distributions on I × R
n . Note that we extended � by zero to R

n . The
next step is to show for some q > 2

lim sup
δ→0

ˆ
I×Rn

|Tk(�
(δ)) − Tk(�)|q dx dt ≤ C, (5.82)

where C does not depend on k. The proof of (5.82) follows exactly the arguments
from the classical setting with fixed boundary (see [11]) using (5.80) and the uniform
bounds on v(δ) (with the only exception that we do not localise). Using (5.82) and
arguing as in [4, Sec. 7.2] we obtain the renormalised continuity equation. As in [4,
Sec. 7.3] we can use the latter one to show strong convergence of the density and as in
the end of Theorem 5.1 we then extend the existence interval until the first collision,
which finishes the proof.
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