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Abstract
The aim of this paper is to study singular solutions for a one-dimensional nonlinear
diffusion equation. Due to slow diffusion near singular points, there exists a solution
with a singularity at a prescribed position depending on time. To study properties of
such singular solutions, we define a minimal singular solution as a limit of a sequence
of approximate solutions with large Dirichlet data. Applying the comparison principle
and the intersection number argument, we discuss the existence and uniqueness of a
singular solution for an initial-value problem, the profile near singular points and large-
time behavior of solutions. We also give some results concerning the appearance of a
burning core, convergence to traveling waves and the existence of an entire solution.

Mathematics Subject Classification 35K67 · 35A21 · 35K15 · 35B40

1 Introduction

In this paper, we consider positive solutions of the nonlinear diffusion equation

ut = (um)xx , 0 < m < 1, (1.1)
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where x ∈ R is the spatial variable and t ∈ R is the time variable. Usually, this
equation is called the fast diffusion equation, because the diffusion rate is large for
small u > 0, although the diffusion rate becomes small if u > 0 is large.

Suppose that a solution of (1.1) is defined for x > ξ(t) and t on a subinterval of R,
and is singular at x = ξ(t), that is,

lim
x↓ξ(t)

u(x, t) = ∞,

where the singular point ξ(t) is a given smooth function of t . Then we are led to the
study of the fast diffusion equation on a half line

ut = (um)xx , x > ξ(t). (1.2)

When ξ(t) is constant (ξ(t) ≡ ξ(0)), the singularity is called “standing”. An example
(see [2], for instance) of a solution with a standing singularity is the self-similar
solution given by

ũ(x, t) := Dm

{
t

(x − ξ(0))2

} 1
1−m

, Dm :=
{
2m(1 + m)

1 − m

} 1
1−m

, (1.3)

where (x, t) ∈ (ξ(0),∞) × (0,∞). When ξ(t) depends on t , we say that the solution
has amoving singularity. An example (see [11]) of a solutionwith amoving singularity
is a traveling solution given by

u(x, t) := h(c)(x − ct)−
1

1−m , x ∈ (ct,∞), t ∈ R, (1.4)

where c > 0 and

h(c) :=
{

m

(1 − m)c

} 1
1−m

. (1.5)

To study more general singular solutions, we introduce the initial-value problem

{
ut = (um)xx , x > ξ(t), 0 < t < T ∈ (0,∞],
u(x, 0) = u0(x), x > ξ(0),

(1.6)

where u0(x) is assumed to be positive and continuous but not necessarily bounded in
x ∈ (ξ(0),∞). By a “singular” solution of (1.6), we mean a function u(x, t) with the
following properties:

(S1) u(x, t) satisfies (1.2) in the classical sense for t ∈ (0, T ).
(S2) u(x, t) → ∞ as x ↓ ξ(t) for every t ∈ (0, T ).
(S3) u(x, t) → u0(x) as t ↓ 0 uniformly in x on any closed interval in (ξ(0),∞).
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Solutions with moving singularities…

Such solutions are called “extended continuous solutions” in [3] and references therein,
since they are continuous with values in [0,∞].

In order to study singular solutions of (1.6), our key idea is to consider a sequence
of approximate problems and its limit. For every n ∈ N, let un be a regular solution
of the following problem with a cut-off initial value and a (large) boundary value at
x = ξ(t):

⎧⎪⎨
⎪⎩

ut = (um)xx , x > ξ(t), 0 < t < T ,

u(ξ(t), t) = n, 0 < t < T ,

u(x, 0) = min
{
u0(x), n

}
, x > ξ(0).

(1.7)

The existence and uniqueness of a solution of (1.7) follows from setting uε(x, 0) =
min

{
u0(x)+ ε, n

}
and applying the standard approximation argument based on [19].

Then the comparison principle implies that {un} is monotone increasing in n for every
x > ξ(t) and t > 0. We say that a solution u of (1.6) is a “minimal” singular
solution if un(x, t) → u(x, t) as n → ∞ for every x > ξ(t) and t > 0. In fact, the
minimal singular solution is smaller than any other singular solutions of (1.6) (see
Remark 2.11 (iii) in Sect. 2). We note that, if a singular solution of (1.6) exists, then
it is an upper bound for the approximating sequence, which implies the existence of a
minimal singular solution.

Let us notice here that theminimal singular solution is a uniquely determined object
which does not depend on the particular choice of an approximating sequence {un}
of regular solutions. It is not difficult to see that every sequence {un} converging to a
singular solution of (1.6) monotonically (in n) from below produces the sameminimal
singular solution. In other contexts, minimal solutions occur in various studies of
unbounded solutions. They are sometimes called “proper” solutions (see [10, 30] for
example). The advantage of minimal solutions consists in their uniqueness and in the
fact that they inherit intersection-comparison properties of classical solutions via their
approximating sequences.

The main aim of this paper is to discuss the existence and uniqueness of singular
solutions of (1.6), their profile near ξ(t), appearance of a zone where {un} tends to
infinity (burning core), as well as the large-time behavior of solutions. We also give
some results concerning the existence and stability of solutions that travelwith constant
speed (traveling semi-wavefronts), and the existence of a solution which exists for all
t ∈ R (entire solution). In summary, in the terminology of [3], we develop a theory
of extended continuous solutions with moving strong singularities in one dimension
as stated among new directions in [3, p. 178]. Both, one space-dimension and moving
singularities are mentioned there separately.

As far as we know, all previous studies of moving singularities concern the higher
dimensional case when ξ(t) is a curve (or some other time-dependent set) in RN with
N ≥ 2. See [5–8, 20] for the fast diffusion equation, [16, 17, 27] for the linear heat
equation and [12, 13, 17, 18, 21–25, 28] for semilinear heat equations. Results on
standing singularities for the fast diffusion equation can be found in [2, 3, 7, 14, 15,
26, 30], for example.
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This paper is organized as follows. In Sect. 2, we summarize our main results. In
Sect. 3, we prove the existence of a singular solution for the initial-value problem
(1.6). In Sect. 4, we study the profile of singular solutions near ξ(t). Sect. 5 is devoted
to uniqueness for the initial-value problem (1.6) under some additional conditions. In
Sect. 6, we show the appearance of a burning core in the case where ξ(t) decreases. In
Sect. 7, we discuss the existence of traveling solutions, and study their properties. In
Sect. 8, we study the large-time behavior of singular solutions, and prove the asymp-
totic stability of traveling solutions. In Sect. 9, we prove the existence of an entire
solution.

2 Main results

Main results of this paper are listed as follows. Our first result is concerning the
existence of a singular solution of the initial-value problem (1.6) in the case where
ξ(t) is nondecreasing.

Theorem 2.1 If ξ(t) is nondecreasing in t ∈ [0, T ), then there exists a singular solution
of (1.6).

The next result shows that the profile of a singular solution near ξ(t) is in some
range for t > 0 and the leading term as x ↓ ξ(t) depends crucially on ξ ′(t) > 0.

Theorem 2.2 Assume that ξ(t) is nondecreasing in t ∈ [0, T ). Let u be any singular
solution of (1.6) defined on (0, T ).

(i) If c(τ − t) > ξ(τ)−ξ(t) for t ∈ [0, τ )with some constant c > 0 and τ ∈ (0, T ),
then there exists α(τ) > 0 such that

u(x, τ ) ≥ α(τ){x − ξ(τ )}− 1
1−m , x ∈ (ξ(τ ), ξ(τ ) + 1).

In particular, if ξ(t) ≡ ξ(0), then

u(x, t) ≥ ũ(x, t) = Dm

{
t

(x − ξ(0))2

} 1
1−m

, (x, t) ∈ (0,∞) × [0, τ ],

where ũ is the self-similar solution given by (1.3).
(ii) For any τ ∈ (0, T ) with ξ(τ ) > ξ(0), there exists β(τ) > 0 such that

u(x, τ ) ≤ β(τ){x − ξ(τ )}− 2
1−m , x ∈ (ξ(τ ), ξ(τ ) + 1).

(iii) If ξ(t) is differentiable at τ ∈ (0, T ) and ξ ′(τ ) > 0, then

u(x, τ ) = {h(ξ ′(τ )) + o(1)}{x − ξ(τ )}− 1
1−m , x ↓ ξ(τ ).

We note that α(τ), β(τ) > 0may become small or large depending on initial values
when x−ξ(0) > 0 is small, and that the strength of the singularity of u(x, t) for t > 0
may be different from that of u0(x).

123



Solutions with moving singularities…

Sincewe impose a rathermild condition (S2) at ξ(t), it becomes anontrivial question
to ask about uniqueness of a singular solution for (1.6). First we give a simple sufficient
condition.

Theorem 2.3 Assume that ξ(t) is nondecreasing in t ∈ (0, T ). If u0(x) is nonincreas-
ing in x ∈ (ξ(0),∞), then there exists at most one singular solution of (1.6).

In the case where u0(x) is not monotone in x ∈ (ξ(0),∞), we must impose the
following additional conditions on the initial data to prove the uniqueness:

(U1) There exists C0 ≥ 0 such that
{
u0(x)m

}′′ ≥ −C0 for all x ∈ (ξ(0),∞).
(U2) u0(x) → ∞ as x ↓ ξ(0), and there exist x1 ∈ (ξ(0),∞) and δ ∈ (0, x1 − ξ(0))

such that u0(x) is nonincreasing in x ∈ (ξ(0), x1 + δ) and strictly decreasing in
x ∈ (x1 − δ, x1 + δ).

(U3) There exist x2 ∈ (x1,∞) and δ ∈ (0, x2 − x1) such that u0(x) is nonincreasing
in x ∈ (x2 − δ,∞) and strictly decreasing in x ∈ (x2 − δ, x2 + δ).

We may replace (U3) with the following alternative condition:

(U3’) There exists a constant C1 > 0 such that u0(x) ≥ C1 for all x ∈ (ξ(0),∞).

Theorem 2.4 Assume that ξ ′(t) ≥ 0 for t ∈ [0, T ). If u0(x) satisfies (U1), (U2), and
(U3) or (U3’), then there exists at most one singular solution of (1.6).

Remark It seems that the condition (U1)can be relaxed somewhat. Indeed, it would
be possible to extend Theorem 2.4 to more general initial values that can be well
approximated by some smooth initial values satisfying (U1). However, since the class
of initial values satisfying (U1), (U2), and (U3) or (U3’) is rather wide, we will not
pursue this possibility in this paper.

In the case where ξ(t) decreases, we will show that a burning core (a region where
a solution becomes infinite in some sense) appears for x ∈ (ξ(t), ξ(0)].
Theorem 2.5 Assume that ξ(t) < ξ(0) for t ∈ (0, T ). If u0(x) → ∞ as x ↓ ξ(0),
then the approximating sequence {un} defined by (1.7) has the following properties:

(i) For every t ∈ (0, T ), un(x, t) → ∞ as n → ∞ uniformly in x ∈ (ξ(t), ξ(0)].
(ii) For every t ∈ (0, T ), un(x, t) → ũ(x, t) as n → ∞ uniformly in x ∈ [ξ(0) +

ρ,∞), where ρ > 0 is an arbitrary constant, and ũ(x, t) is the minimal singular
solution of (1.6) with ξ(t) replaced by ξ̃ (t) ≡ ξ(0) and ũ(x, 0) = u0(x) for
x > ξ(0).

When the singular solution of (1.2) exists globally in time, we are interested in
its large-time behavior. The following theorem shows that any two singular solutions
attract each other, and which implies that the large-time behavior of singular solutions
of (1.2) is independent of initial values.

Theorem 2.6 Assume that ξ ′(t) is uniformly continuous in t ∈ [0,∞) and satisfies
c1 ≤ ξ ′(t) ≤ c2 for t ∈ [0,∞) with some constants c1, c2 > 0. Let u1(x, t), u2(x, t)
be any positive singular solutions of (1.2) such that u1(x, 0), u2(x, 0) → L ≥ 0 as
x → ∞. Then these solutions satisfy

∣∣u1(x, t) − u2(x, t)
∣∣ → 0 as t → ∞ uniformly

in x ∈ [ξ(t) + ρ,∞), where ρ > 0 is an arbitrary constant.
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When ξ(t) moves with a constant speed, we expect the existence of a solution
of (1.2) which travels without changing its waveform. The existence and stability of
travelingwave solutions for parabolic PDEs has been studied extensively in the context
of reaction-diffusion equations (see [11, 29] and the references cited therein). When
a traveling solution is defined on a half-line and is not extendable for all x ∈ R such
as the solution given by (1.4), it is called a (strict) semi-wavefront solution (see [11,
Sect. 2.1]). Although the existence of unbounded semi-wavefronts is discussed in [11,
Chapter 11] including more general equations than (1.1), only little is known about
their stability.

The following two theorems are concerning the existence and stability of a two-
parameter family of traveling semi-wavefronts.

Theorem 2.7 Assume ξ(t) = ct for t ∈ R with some constant c > 0. Then for any
constant L ≥ 0, there exists a positive singular solution of (1.2) for t ∈ R of the form
u = ϕ(z), where ϕ(z) = ϕ(z; c, L) is a positive function of z = x − ct ∈ (0,∞) with
the following properties:

(i) (ϕm)′′ + cϕ′ = 0 for z > 0.
(ii) ϕ′(z) < 0 for z ∈ (0,∞), ϕ(z) → ∞ as z ↓ 0 and ϕ(z) → L as z → ∞.

(iii) max {h(c)z−
1

1−m , L} ≤ ϕ(z) ≤ h(c)z−
1

1−m + L for z > 0, where h(c) > 0 is
given by (1.5).

(iv) ϕ(z) = ϕ(z; c, L) is continuous in (c, L) ∈ (0,∞) × [0,∞) for every z > 0,
and ϕ(z; c, L) is decreasing in c ∈ (0,∞) and increasing in L ∈ [0,∞).

Theorem 2.8 Assume that ξ ′(t) ≥ 0 for t ∈ [0,∞). Let ρ > 0 be an arbitrary
constant.

(i) If ξ ′(t) → c > 0 as t → ∞ and u0(x) → L ≥ 0 as x → ∞, then the singular
solution of (1.6) satisfies u(x, t) → ϕ(x − ct; c, L) as t → ∞ uniformly in
x ∈ [ξ(t) + ρ,∞), where ϕ is as in Theorem 2.7.

(ii) If ξ ′(t) → 0 as t → ∞, then the singular solution of (1.6) satisfies u(x, t) → ∞
as t → ∞ uniformly in x ∈ (ξ(t), ξ(t) + ρ].

(iii) If ξ ′(t) → ∞ as t → ∞ and u0(x) → L ≥ 0 as x → ∞, then the singular
solution of (1.6) satisfies u(x, t) → L as t → ∞ uniformly in x ∈ [ξ(t)+ρ,∞).

Any solution of (1.2) that is defined for all t ∈ R is called an entire (in time) solution.
The following result gives a sufficient condition for the existence of an entire singular
solution. (Some properties of this entire solution will be given in Proposition 9.1.)

Theorem 2.9 Assume that ξ(t) satisfies c1 ≤ ξ ′(t) ≤ c2 for t ∈ R, where c1, c2 > 0
are constants. Then for any L ≥ 0, there exists a positive solution of (1.2) defined for
all t ∈ R such that u(x, t) → ∞ as x ↓ ξ(t) and u(x, t) → L as x → ∞ for every
t ∈ R.

One of the main tools to prove these theorems is a comparison method. A nonneg-
ative function u+(x, t) (resp. u−(x, t)) defined on a domain in (x, t)-space is called a
supersolution (resp. subsolution) if it satisfies

(u+)t ≥ {
(u+)m

}
xx (resp. (u−)t ≤ {

(u−)m
}
xx )
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(in the sense of distribution) on a space-time domain. We note that the minimum
of two supersolutions is a supersolution, and the maximum of two subsolutions is a
subsolution. The standard comparison principle holds for (1.1), but wemust be careful
when we consider a singular solution or a singular supersolution.

We will use the following lemma frequently in the subsequent sections.

Lemma 2.10 Let u(x, t) be a (not necessarily singular) solution of (1.6). Let u+(x, t)
be a supersolution of (1.1) defined for x ∈ (η(t),∞) and t ∈ [0, τ ) with some
τ ∈ (0, T ] such that u+(x, t) → ∞ as x ↓ η(t) for every t ∈ [0, τ ). Assume that
ξ(t) ≤ η(t) < ∞ for t ∈ [0, τ ) and u0(x) ≤ u+(x, 0) for x ∈ (η(0),∞). Then the
inequality u(x, t) ≤ u+(x, t) holds for x ∈ (η(t),∞) and t ∈ [0, τ ) if one of the
following conditions is satisfied:

(C1) There exist constants C > 0 and ρ > 0 such that u(x, t) ≤ C for any x ∈
(ξ(t), ξ(t) + ρ) and t ∈ [0, τ ).

(C2) u(x, t) is a minimal singular solution for t ∈ (0, τ ).
(C3) ξ(t) < η(t) for t ∈ [0, τ ).

Proof First we assume (C1). We take C > 0 sufficiently large, and define

ũ+(x, t) :=
{

C, x ∈ [ξ(t), ξ(t) + ρ̃(t)],
u+(x, t), x ∈ (ξ(t) + ρ̃(t),∞),

t ∈ [0, τ ),

where

ρ̃(t) := inf{ρ > 0 : u+(ξ(t) + ρ, t) < C} ∈ (0,∞).

Since u ≡ C satisfies (1.1), ũ+(x, t) is a supersolution of (1.1) defined for x ∈
[ξ(t),∞) and t ∈ [0, τ ). Thenwe can apply the standard comparison principle to show
that u(x, t) ≤ ũ+(x, t) for x ∈ [ξ(t),∞) and t ∈ (0, τ ). Since ũ+(x, t) ≤ u+(x, t)
for x ∈ (η(t),∞) and t ∈ [0, τ ), the proof in the case of (C1) is completed.

Next, we assume (C2). Let {un} be the approximate sequence defined by (1.7).
Since un(x, t) is bounded as x ↓ ξ(t), we have un(x, t) < u+(x, t) for every n ∈ N.
Letting n → ∞, we see that the minimal solution satisfies u(x, t) ≤ u+(x, t) for
x ∈ (η(t),∞) and t ∈ (0, τ ).

In the case of (C3), if we restrict the spatial domain of u(x, t) to [η(t),∞), then
we can apply the case of (C1) to show that u(x, t) < u+(x, t) for x ∈ (η(t),∞) and
t ∈ [0, τ ). 
�
Remark 2.11 (i) In the case of ξ(t) ≡ η(t), the comparison principle may not hold

for a non-minimal solution of (1.6).
(ii) If a supersolution is defined on a bounded interval (η(t), ζ(t)) and satisfies

u(x, t) → ∞ as x ↓ η(t) and u(x, t) → ∞ as x ↑ ζ(t), then the same
argument as above at ζ(t) shows that a similar result to Lemma 2.10 holds for
x ∈ (η(t), ζ(t)) and t ∈ (0, τ ).

(iii) By Lemma 2.10 with (C1), the solution of (1.7) is smaller than any singular
solution of (1.6). This implies that the minimal singular solution is smaller than
any other singular solutions (if they exist).
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The next lemma can be proved in a similar manner to Lemma 2.10. So we omit the
proof.

Lemma 2.12 Let u(x, t) be any singular solution of (1.6). Let u−(x, t) be a subsolution
of (1.1) defined for x ∈ [ξ(t),∞) and t ∈ [0, τ ) such that u−(x, t) is bounded as
x ↓ ξ(t) for every t ∈ [0, τ ). Assume that u0(x) ≥ u−(x, 0) for x ∈ (ξ(0),∞). Then
the inequality u(x, t) ≥ u−(x, t) holds for x ∈ (ξ(t),∞) and t ∈ [0, τ ).

3 Existence of singular solutions

Throughout this section, we assume that ξ(t) is nondecreasing in t ∈ (0, T ). First, we
give a sufficient condition for the existence of a singular solution of (1.6).

Lemma 3.1 Suppose that the approximating sequence {un} defined by (1.7) is bounded
above by a continuous function u(x, t) defined for x ∈ (ξ(t),∞) and t ∈ (0, T ).
Then there exists a singular solution of (1.6) satisfying 0 < u(x, t) ≤ u(x, t) for
x ∈ (ξ(t),∞) and t ∈ (0, T ).

Proof The standard comparison principle with respect to initial values and boundary
conditions implies that the sequence {un} is monotone increasing in n for every (x, t).
Since the sequence is assumed to be bounded, there exists a limiting function u(x, t)
satisfying

u(x, t) := lim
n→∞ un(x, t) ≤ u(x, t).

Then the standard parabolic regularity implies that u(x, t) satisfies (S1).
Next we show that u(x, t) is singular at ξ(t). By the boundary condition and con-

tinuity, for every t ∈ (0, T ), there exists ρn(t) > 0 such that un(x, t) > n − 1
for x ∈ (ξ(t), ξ(t) + ρn(t)). Since {un} is monotone increasing in n, we have
u(x, t) > n− 1 for x ∈ (ξ(t), ξ(t)+ρn(t)). Since n ∈ N is arbitrary, this implies that
u(x, t) satisfies (S2).

It remains to show that u(x, t) satisfies the initial condition. Let ξ(0) < x0 < x1 <

x2 < x3 < ∞ be arbitrarily fixed. We take (large) n ∈ N and (small) δ ∈ (0, T ) such
that

u(x, t) < n, (x, t) ∈ [x0, x3] × (0, δ].

Let u+(x, t) be a solution of

(u+)t = {
(u+)m

}
xx , (x, t) ∈ (x0, x3) × (0, δ),

u+(x, 0) = u+
0 (x), x ∈ (x0, x3),

u+(x0, t) = n, u+(x3, t) = n, t ∈ (0, δ),
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where u+
0 (x) is a continuous function satisfying u+

0 (x) ≡ u0(x) for x ∈ [x1, x2],
u+
0 (x) ≥ u0(x) for x ∈ [x0, x3], and u+

0 (x0) = u+
0 (x3) = n. Since

un(x0, t) ≤ u(x0, t) ≤ u+(x0, t), un(x3, t) ≤ u(x3, t) = u+(x3, t), t ∈ (0, δ].

the standard comparison principle implies that

un(x, t) ≤ u+(x, t), (x, t) ∈ [x0, x3] × (0, δ].

Hence, letting n → ∞ , we obtain

u(x, t) ≤ u+(x, t), (x, t) ∈ [x0, x3] × (0, δ].

Thus we have shown

un(x, t) ≤ u(x, t) ≤ u+(x, t), (x, t) ∈ [x0, x3] × (0, δ].

Since un(x, t) → u0(x) and u+(x, t) → u0(x) as t ↓ 0 uniformly in x ∈ [x1, x2] ⊂
(x0, x3), we conclude that u(x, t) satisfies (S3). 
�

We introduce a useful way to construct a supersolution of (1.1).

Lemma 3.2 Assume that ua(x, t) and ub(x, t) satisfy (1.1), ua > 0, (ua)t ≥ 0, ub > 0
and (ub)t ≥ 0 for (x, t) ∈ I × (0, T ), where I is an open interval. Then

U+(x; t) := {
ua(x, t)

m + ub(x, t)
m} 1

m

satisfies

U+
t ≥ {

(U+)m
}
xx , (x, t) ∈ I × (0, T ).

Proof By direct computation, we have

U+
t = (U+)1−m{

(ua)
m−1(ua)t + (ub)

m−1(ub)t
}
.

Since (ua)t ≥ 0 and (ub)t ≥ 0 by assumption, and U+ > ua and U+ > ub, we
obtain

U+
t ≥ (ua)t + (ub)t = {

(ua)
m}

xx + {
(ub)

m}
xx .

Then by

{
(U+)m

}
xx = {

(ua)
m}

xx + {
(ub)

m}
xx ,

we obtain the desired inequality. 
�
Let us now show the existence of a singular solution of (1.6).
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Proof of Theorem 2.1 We construct a supersolution by modifying the explicit solution
given by (1.3). Define

U+(x, t; a, b) := {
ua(x, t)

m + ub(x, t)
m} 1

m , (x, t) ∈ (a, b) × (0, T ), (3.1)

where ua and ub are solutions of (1.1) given by

ua(x, t) := Dm

{
t + 1

(x − a)2

} 1
1−m

, ub(x, t) := Dm

{
t + 1

(x − b)2

} 1
1−m

,

respectively, and Dm is the constant given in (1.3). Since (ua)t > 0 and (ub)t > 0 for
(x, t) ∈ (a, b) × (0, T ), we can apply Lemma 3.2 to show that U+ satisfies

U+
t ≥ {

(U+)m
}
xx , (x, t) ∈ (a, b) × (0, T ).

Note that minx∈(a,b) U+(x, t; a, b) → ∞ as b − a → 0.
Now, fix τ ∈ (0, T ). Let {U+

k } be a set of functions defined by U+
k (x, t) :=

U+(x, t; ak, bk), k = 1, 2, 3, . . ., such that

ξ(τ ) < ak < bk < ∞,

∞⋃
k=1

(ak, bk) = (ξ(τ ),∞),

and U+
k (x, 0) ≥ u0(x) ≥ un(x, 0) for x ∈ (ak, bk). Then by Lemma 2.10 with (C2)

and Remark 2.11 (ii), we have

un(x, t) ≤ U+
k (x, t), (x, t) ∈ (ak, bk) × [0, τ ],

for every n ∈ N and k ∈ N. Hence we obtain

un(x, τ ) ≤ u+(x, τ ) := inf
k

U+
k (x, τ ), x ∈ (ξ(τ ),∞),

for every n ∈ N. This implies that the approximating sequence {un(x, τ )} is bounded
above by u+(x, τ ). Since τ ∈ (0, T ) can be arbitrarily chosen, Lemma 3.1 implies
the existence of a singular solution of (1.6) for t ∈ (0, T ). 
�

4 Asymptotic profile

Throughout this section, we assume that ξ(t) is nondecreasing in t ∈ (0, T ), and study
the profile of singular solutions near ξ(t). Before giving a proof of Theorem 2.2, we
give a useful way to construct a subsolution of (1.1).

123



Solutions with moving singularities…

Lemma 4.1 Assume that a function u(x, t) satisfies (1.1), u > 0 and ut ≥ 0 for
(x, t) ∈ I × (0, T ), where I is an open interval. Then for any constant d ≥ 0,

U−(x, t) := {
max {u(x, t)m − d, 0}} 1

m

is a subsolution for (x, t) ∈ I × (0, T ).

Proof If u(x, t)m ≥ d, we have

U−
t − {

(U−)m
}
xx = (U−)1−mum−1ut − (um)xx = {

(U−)1−m − u1−m}
um−1ut .

Since ut ≥ 0 by assumption and U− ≤ u, U− satisfies U−
t ≤ {

(U−)m
}
xx for

(x, t) ∈ I × (0, T ) in the sense of distribution. Hence U− is a subsolution.

We give a proof of Theorem 2.2 by using this lemma.

Proof of Theorem 2.2 First, modifying the traveling solution given by (1.4), we define

u−(x, t) := {
max {h(c)m

(
x − c(t − τ) − ξ(τ )

)− m
1−m − d, 0}} 1

m ,

where d > 0 is a constant. Then by Lemma 4.1, u− is a subsolution of (1.1). By the
assumption on τ and c in (i), we have −c(t − τ)− ξ(τ ) > −ξ(t) for t ∈ [0, τ ) so that
u−(x, t) → u−(ξ(t), t) < ∞ as x ↓ ξ(t). Moreover, since cτ − ξ(τ ) > −ξ(0), we
have

u−(x, 0) = {
max {h(c)m

(
x + cτ − ξ(τ )

)− m
1−m − d, 0}} 1

m ≤ u0(x), x ∈ (ξ(0),∞),

if d > 0 is sufficiently large. Hence we can apply Lemma 2.12 to show that u(x, τ ) ≥
u−(x, τ ) for x ∈ (ξ(τ ),∞). Hence there exists α(τ) > 0 such that

u(x, τ ) ≥ u−(x, τ ) ≥ α(τ){x − ξ(τ )}− 1
1−m , x ∈ (ξ(τ ), ξ(τ ) + 1).

In particular, if ξ(t) ≡ ξ(0) for t ∈ [0, τ ], then it follows from the comparison principle
that

u(x, t) ≥ ũ(x + ε, t) = Dm

{
t

(x − ξ(0) + ε)2

} 1
1−m

, (x, t) ∈ (ξ(0),∞) × [0, τ ],

where ũ is the self-similar solution given by (1.3) and ε > 0 is an arbitrary number.
By taking the limit as ε ↓ 0, the proof of (i) is completed.

Next, let U+(x, t; a, b) be the supersolution of (1.1) given by (3.1), where we
take a = ξ(τ ) > ξ(0) and b ∈ (ξ(τ ), ξ(τ ) + 1) sufficiently close to ξ(τ ) such that
U+(x, 0; ξ(τ ), b) ≥ u0(x) for x ∈ (ξ(τ ), b). Then by Lemma 3.2 and the comparison
principle, we obtain

u(x, τ ) ≤ U+(x, τ ; ξ(τ ), b), x ∈ (ξ(τ ), b).
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Since u(x, τ ) is continuous in x ∈ [b, ξ(τ )+1], for each τ ∈ (0, T ), there exists β(τ)

such that

u(x, τ ) ≤ β(τ){x − ξ(τ )}− 2
1−m , x ∈ (ξ(τ ), ξ(τ ) + 1).

This proves (ii).
Finally, we consider the case where ξ ′(τ ) > 0. Let ua be a semi-wavefront solution

given by

ua(x, t) := h(a){x − a(t − τ) − ξ(τ )}− 1
1−m ,

and let ub be another semi-wavefront solution of (1.4), which travels leftward, given
by

ub(x, t) := h(b){−x − b(t − τ − δ) + ξ(τ )}− 1
1−m ,

where a, b are constants satisfying 0 < a < ξ ′(τ ) < b. Then we take small δ > 0
such that a(τ − t) < ξ(τ) − ξ(t) for t ∈ [τ − δ, τ ).

Let us consider the behavior of u(x, t) for t ∈ [τ − δ, τ ]. By Lemma 3.2, we can
define a supersolution of (1.1) by

u+(x, t) := {
ua(x, t)

m + ub(x, t)
m} 1

m .

If we take b − a > 0 and δ > 0 small enough, then

u(x, τ − δ) ≤ u+(x, τ − δ), x ∈ (ξ(τ ) − aδ, ξ(τ ) + 2bδ),

and u+(x, t) has a singularity at η(t) = ξ(τ ) + a(t − τ) > ξ(t) for t ∈ [0, τ ). Hence
by Lemma 2.10 with (C3) and Remark 2.11 (ii), we obtain

u(x, τ ) ≤ u+(x, τ ), x ∈ (ξ(τ ), ξ(τ ) + bδ).

This implies that

lim sup
x↓ξ(τ )

{
x − ξ(τ )

} 1
1−m u(x, τ ) ≤ h(a).

Letting a ↑ ξ ′(τ ), we obtain

lim sup
x↓ξ(τ )

{
x − ξ(τ )

} 1
1−m u(x, τ ) ≤ h(ξ ′(τ )). (4.1)

Next, we fix c > ξ ′(τ ) arbitrarily, and define a subsolution of (1.1) by

u−(x, t) := {
max {h(c)m

(
x − c(t − τ) − ξ(τ )

)− m
1−m − d, 0}} 1

m .
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Then we can take small δ > 0 such that c(τ − t) > ξ(τ) − ξ(t) for t ∈ [τ − δ, τ ),
and take large d > 0 such that u(x, τ − δ) ≥ u−(x, τ − δ) for x ∈ (ξ(τ − δ),∞).
Then, by Lemma 4.1 and the comparison principle, we obtain u(x, τ ) ≥ u−(x, τ ) for
x ∈ (ξ(τ ),∞). Hence taking the limit as x ↓ ξ(τ ) and then letting c ↓ ξ ′(τ ), we
deduce that

lim inf
x↓ξ(τ )

{
x − ξ(τ )

} 1
1−m u(x, τ ) ≥ h(ξ ′(τ )). (4.2)

Therefore, (4.1) and (4.2) imply that

lim
x↓ξ(τ )

u(x, τ ){x − ξ(τ )}− 1
1−m = h(ξ ′(τ )).

This completes the proof of (iii). 
�

5 Uniqueness

In this section,weprove the uniqueness of a singular solution of (1.6).Wefirst prove the
uniqueness by assuming that the initial value u0(x) is nonincreasing in x ∈ (ξ(0),∞).

Proof of Theorem 2.3 Let u be the minimal singular solution of (1.6). If u0(x) is nonin-
creasing in x ∈ (ξ(0),∞), then for every n, the solution un(x, t) of (1.7) is decreasing
in x ∈ (ξ(t),∞) for t ∈ [0, T ). Hence u(x, t) is decreasing in x ∈ (ξ(t),∞) for
every t ∈ [0, T ). Then by the comparison principle, any singular solution ũ satisfies

u(x + μ, t) < ũ(x, t) < u(x − μ, t), x ∈ [ξ(t) + μ,∞), t ∈ [0, T ),

whereμ > 0 is an arbitrarily small constant. Lettingμ ↓ 0,weobtain ũ(x, t) ≡ u(x, t)
for x ∈ (ξ(t),∞) and t ∈ [0, T ). This proves the uniqueness. 
�

Next, we consider the case where the initial value u0(x) satisfies (U1), (U2), (U3)
or (U3’). We need to modify the above proof when u0(x) is increasing for some
x ∈ (ξ(0),∞). To this end, we show that the minimal singular solution of (1.6)
inherits the properties (U1), (U2), (U3) and (U3’).

Lemma 5.1 Assume that ξ(t) is nondecreasing in t ∈ (0, T ). Then the minimal singu-
lar solution of (1.6) has the following properties:

(i) If u0(x) satisfies (U1), then ut (x, t) > −C0 for all x ∈ (ξ(t),∞) and t ∈ (0, T ).
(ii) If u0(x) satisfies (U2), then there exist τ ∈ (0, T ]and δ0 > 0 such that ux (x, t) <

0 for x ∈ (ξ(t), x1 + δ0) and t ∈ (0, τ ).
(iii) If u0(x) satisfies (U3), then there exists τ ∈ (0, T ] and δ0 > 0 such that

ux (x, t) < 0 for x ∈ (x2 − δ0,∞) and t ∈ (0, τ ).
(iv) If u0(x) satisfies (U3’), then u(x, t) > C1 for all x ∈ (ξ(t),∞) and t ∈ (0, T ).
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Proof Let u(x, t) be the minimal solution of (1.6). For each k ∈ N, let ũk(x, t) be a
solution of (1.2) satisfying ũk(ξ(t), t) = k for t > 0 and

ũk(x, 0) :=
{

k − Ak{x − ξ(0)}, x ∈ (ξ(0), ξk],
u0(x), x ∈ (ξk,∞),

where Ak > 0 is a constant defined by

Ak = min{A ∈ R : k − A{x − ξ(0)} = u0(x) for all x > ξ(0)} > 0

and ξk is defined by

ξk := min{η > 0 : k − A{η − ξ(0)} = u0(η)}.

Let U+(x, t; a, b) be the supersolution given by (3.1) with ξ(T ) < a < b such
that U+(x, 0; a, b) > u0(x) for x ∈ (a, b). If k is sufficiently large, we can define
xk(t) > ξ(T ) uniquely by

U+(xk(t), t; a, b) = k, (U+)x (xk(t), t; a, b) < 0, t ∈ [0, T ).

Then by Lemma 2.10 with (C3) and Remark 2.11 (ii), ũk(x, t) satisfies ũk(x, t) ≤ k
for x ∈ [ξ(t), xk(t)] and ũk(x, t) < U+(x, t; a, b) for x ∈ [xk(t), b). This implies
that ũk(x, t) has a local maximum at x = ξ(t). Hence we obtain (ũk)x (ξ(t), t) ≤ 0
for t ∈ (0, T ).

Given any n ∈ N, we take k > n such that ũk(x, 0) ≥ un(x, 0) for x > ξ(0)
and (ũk)x (ξ(t), t) ≤ 0 for t ∈ (0, T ). Then by Lemma 2.10 with (C2), ũk satisfies
un(x, t) ≤ ũk(x, t) < u(x, t) for x > ξ(t) and t > 0. Since u(x, t) is minimal, we
have ũk(x, t) → u(x, t) as k → ∞. On the other hand, by differentiating (1.2) and
ũk(ξ(t), t) = k by t , we have {(ũk)t }t = m{(ũk)m−1(ũk)t }xx and

0 = d

dt
{ũk(ξ(t), t)} = (ũk)t (ξ(t), t) + (ũk)x (ξ(t), t)ξ ′(t) ≤ (ũk)t (ξ(t), t),

respectively. Hence wk(x, t) := (ũk)t (x, t) satisfies

(wk)t = m{(ũk)m−1wk}xx , x ∈ (ξ(t),∞), t ∈ (0, T ),

wk(ξ(t), t) ≥ 0, t ∈ (0, T ),

wk(x, 0) = {ũk(x, 0)m}′′ ≥ −C0, x ∈ (ξ(0),∞),

where (U1) is used for the last inequality. Then the maximum principle implies

wk(x, t) = (ũk)t (x, t) ≥ −C0, x ∈ (ξ(t),∞), t ∈ (0, T ).

Taking the limit as k → ∞, we obtain ut (x, t) ≥ −C0. Then the maximum principle
implies (i).
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Next, letU+(x, t; a, b) be the supersolution given by (3.1)with ξ(0) < a < b < x1
such that U+(x, 0; a, b) > u0(x) for x ∈ (a, b). We take τ ∈ (0, T ] such that
ξ(τ ) < a, and take M > 0 and x̃1 ∈ (a, b) such that

M > min
x∈(a,b)

U+(x, τ ; a, b), U+(x̃1, τ ; a, b) = M, U+
x (x̃1, τ ; a, b) < 0.

(5.1)

Let un(x, t) be the solution of (1.7) with sufficiently large n. By (U2), un(x, 0)
crosses the level line u ≡ M exactly once. Moreover, for t ∈ (0, τ ), un(x, t) satisfies
un(x, t) > M if x − ξ(t) > 0 is sufficiently small and un(x̃1, t) < U+(x̃1, t; a, b) <

M . Since the intersection number of un(x, t)with u ≡ M in (ξ(t), x̃1) is nonincreasing
in t > 0, un(x, t) intersects with u ≡ M exactly once in (ξ(t), x̃1) for every t ∈ [0, τ ).
(See [1] for the nonincreasingprinciple of the intersection number.) This property holds
for any M satisfying (5.1). Hence un(x, t) is decreasing in x ∈ (ξ(t), x̃1] for every
large n and t ∈ [0, τ ). Taking the limit as n → ∞, we conclude that the minimal
solution u(x, t) is nonincreasing in x ∈ (ξ(t), x̃1] for t ∈ [0, τ ). Then the maximum
principle implies (ii). The assertion (iii) can be proved in the same manner.

Finally, since u ≡ C1 satisfies (1.2), the maximum principle implies (iv). 
�
We say that a singular solution of (1.6) is “maximal” if it is larger than any other

solutions. Let us show that the minimal singular solution of (1.6) is also maximal for
small t > 0.

Lemma 5.2 Assume that ξ(t) is nondecreasing in t ∈ (0, T ). If u0(x) satisfies (U1),
(U2), (U3) or (U3’), then the minimal singular solution of (1.6) is maximal for small
t > 0.

Proof First we consider the case where (U1), (U2) and (U3) are satisfied. We shall
construct supersolutions of (1.6) in an inner region (ξ(t), x1 + δ), an outer region
(x2 − δ,∞) and an intermediate region (x1 − δ, x2 + δ) separately, and glue them at
some points in (x1 − δ, x1 + δ) and (x2 − δ, x2 + δ).

Let u(x, t) be the minimal solution of (1.6), and let τ > 0, C0 ≥ 0, x1 and x2 be
as in Lemma 5.1. We take δ > 0 smaller if necessary so that Lemma 5.1 (ii) and (iii)
hold for δ0 = δ. We take a constant C1 > 0 such that

u(x, t) > C1, (x, t) ∈ (x1 − δ, x2 + δ) × (0, τ ), (5.2)

and set

C2 := max
s∈[0,1]

(1 + s)
1
m −1 − 1

s
= max

{ 1

m
− 1, 2

1
m −1 − 1

}
> 0. (5.3)

Let d := (x1 + x2)/2, and define

ψ(x, t) := σept cosh(q(x − d)), (x, t) ∈ (ξ(0),∞) × (0,∞),
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where σ, p, q > 0 are constants. In the intermediate region, we define

uint (x, t) := {
u(x, t)m + ψ(x, t)

} 1
m , (x, t) ∈ (x1 − δ, x2 + δ) × [0, τ ).

(5.4)

In the inner region and the outer region, we define

uin(x, t) : = u(x − μ1, t), x ∈ (ξ(t), x1 + δ), t ∈ (0, τ ),

uout (x, t) : = u(x − μ2, t), x ∈ (x2 − δ,∞), t ∈ (0, τ ),

whereμ1, μ2 > 0 are constants.We note that u+
in(x, t) and u

+
out (x, t) satisfy (1.1). Let

ε > 0 be a small parameter. Then by (U2), μ1, μ2 > 0 can be determined uniquely
by

u0(x1 − μ1)
m − u0(x1)

m = ε = u0(x2 − μ2)
m − u0(x2)

m, (5.5)

and satisfy μ1, μ2 ↓ 0 as ε ↓ 0.
Later, it will be shown that by imposing some appropriate conditions on uin , uint

and uout , the following matching conditions are satisfied at some points γ1(t) ∈
(x1 − δ, x1 + δ) and γ2(t) ∈ (x2 − δ, x2 + δ):

uin(γ1(t), t) = uint (γ1(t), t), (5.6)

uint (γ2(t), t) = uout (γ2(t), t), (5.7)

respectively. Then we can define a function

u+(x, t) :=

⎧⎪⎨
⎪⎩

uin(x, t), x ∈ (ξ(t), γ1(t)),

uint (x, t), x ∈ [γ1(t), γ2(t)],
uout (x, t), x ∈ (γ2(t),∞),

that is continuous in x ∈ (ξ(t),∞) for t ∈ [0, τ ).
We shall show that u+(x, t) becomes a supersolution if τ, δ, σ, p, q > 0 satisfy the

following conditions:

pC1−m
1

m
− q2 > C0C

−m
1 C2, (5.8)

C−m
1 σepτ cosh(q(x1 − d − δ)) < 1, (5.9)

σ cosh(q(x1 − d)) = ε, (5.10)

−q
√

ε2 − σ 2 < {(u0)m}′(x1 − μ1) − {(u0)m}′(x1), (5.11)

σ cosh(q(x2 − d)) = ε, (5.12)

q
√

ε2 − σ 2 > {(u0)m}′(x2 − μ2) − {(u0)m}′(x2). (5.13)

If ε > 0 is sufficiently small, then we can find such constants in the following order:
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• We take σ ∈ (0, ε) and q > 0 satisfying (5.10). Then (5.12) also holds by d−x1 =
x2 − d.

• We take q > 0 larger and σ > 0 smaller to satisfy (5.11) and (5.13).
• We take p > 0 satisfying (5.8).
• We take δ > 0 smaller and τ > 0 smaller to satisfy (5.9). (Recall that C0,C1,C2
can be taken independently of small τ > 0 and δ > 0.)

Now let us consider the intermediate region. By (5.4), we have

(uint )t − {(uint )m}xx = 1

m

(
um + ψ

) 1
m −1{

mum−1ut + ψt
} − (um)xx − ψxx

= {(
um + ψ

) 1
m −1

um−1 − 1
}
ut + 1

m

(
um + ψ

) 1
m −1

ψt − ψxx .

The first term in the right-hand side is estimated as follows. By (5.2) and (5.9), we
have

u−mψ < C−m
1 σepτ cosh(q(x1 − d − δ)) < 1, (x, t) ∈ [x1 − δ, x2 + δ] × [0, τ ),

so that

(
um + ψ

) 1
m −1

um−1 − 1 = (
1 + ψu−m) 1

m −1 − 1 > 0.

Hence by Lemma 5.1 (i), we obtain

{(
um + ψ

) 1
m −1

um−1 − 1
}
ut ≥ −C0

{(
um + ψ

) 1
m −1

um−1 − 1
}
.

Moreover, by u−mψ < 1 and (5.3), we have

(
um + ψ

) 1
m −1

um−1 − 1 = (
1 + u−mψ

) 1
m −1 − 1 < C2u

−mψ < C−m
1 C2ψ.

Hence the first term is estimated as

{(
um + ψ

) 1
m −1

um−1 − 1
}
ut > −C0C

−m
1 C2ψ.

On the other hand, the second term satisfies

1

m

(
um + ψ

) 1
m −1

ψt = p

m

(
um + ψ

) 1
m −1

ψ >
p

m
u1−mψ >

pC1−m
1

m
ψ,

and the third term satisfies −ψxx = −q2ψ . Thus by (5.8), we obtain

(uint )t − {(uint )m}xx >

(
− C0C

−m
1 C2 + pC1−m

1

m
− q2

)
ψ > 0.
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Next, we consider the inner region. By (5.5) and (5.10), we have

uint (x1, 0) = {u0(x1)m + ψ(x1, 0)} 1
m

= {u0(x1)m + σ cosh(q(x1 − d))} 1
m = {u0(x1)m + ε} 1

m

= u0(x1 − μ1) = uin(x1, 0).

Hence the matching condition (5.6) is satisfied at t = 0 if γ1(0) = x1. On the other
hand, by (5.10), (5.11) and q(x1 − d) < 0, we have

(umint )x (x1, 0) = {(u0)m}′(x1) + ψx (x1, 0) = {(u0)m}′(x1) + σq sinh(q(x1 − d))

= {(u0)m}′(x1) − q
√

σ 2{cosh2(q(x1 − d)) − 1}
= {(u0)m}′(x1) − q

√
ε2 − σ 2

< {(u0)m}′(x1 − μ1) = (umin)x (x1, 0).

Hence we obtain

(uin)x (x1, 0) > (uint )x (x1, 0).

These imply that uin(x, 0) and uint (x, 0) intersect transversally at x1. Hence uin(x, t)
and uint (x, t) also intersect transversally near x1 if t > 0 is small. More precisely,
if τ > 0 is sufficiently small, then there exists a continuous function γ1(t) ∈ (x1 −
δ, x1 + δ) such that

uin(γ1(t), t) = uint (γ1(t), t), (uin)x (γ1(t), t) > (uint )x (γ1(t), t), t ∈ [0, τ ).

Finally, we consider the outer region. In the same manner as the inner region, we
have uint (x2, 0) = uout (x2, 0) by (5.5) and (5.12), and (uint )x (x2, 0) > (uout )x (x2, 0)
by (5.12) and (5.13). Hence for sufficiently small τ > 0, there exists a continuous
function γ2(t) ∈ (x2−δ, x2+δ) satisfying the matching condition (5.7) together with

(uint )x (γ2(t), t) > (uout )x (γ2(t), t), t ∈ [0, τ ).

Thus it is shown that u+(x, t) is a supersolution of (1.6) for t ∈ [0, τ ). Hence any
other singular solution ũ of (1.6) must satisfy

u(x, t) ≤ ũ(x, t) ≤ u+(x, t), x ∈ (ξ(t),∞), t ∈ (0, τ ).

Here u+(x, t) ↓ u(x, t) as ε ↓ 0 uniformly in x ∈ (ξ(t) + ρ,∞) and t ∈ (0, τ ),
where ρ > 0 is an arbitrary constant. Hence we conclude that u(x, t) is maximal for
small t > 0.
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In the case where (U3’) is assumed instead of (U3), we define ψ(x, t) := σept−qx

and

u+(x, t) :=
{

uin(x, t), x ∈ (ξ(t) + μ1, γ1(t)], t ∈ [0, τ ).

uint (x, t), x ∈ (γ1(t),∞), t ∈ ([0, τ ).

Then the maximality can be proved in the same way as above. 
�
Now we are in a position to prove the uniqueness.

Proof of Theorem 2.4 ByLemma 5.2, theminimal singular solution of (1.6) ismaximal
for t ∈ (0, τ ), which implies the uniqueness at least for small t > 0. Suppose that the
singular solution is unique for t ∈ (0, tm] but is not unique for t > tm . By Lemma 5.1,
the minimal solution u(x, t) inherits the properties (U1), (U2), (U3) and (U3’) for
every t ∈ (0, T ). Hence by applying Lemma 5.2 to the initial value u(x, tm), it is
shown that the singular solution of (1.6) is unique if t − tm > 0 is sufficiently small.
This contradiction proves the uniqueness of a singular solution of (1.6) for t ∈ (0, T ).


�

6 Burning core

In this section, we show the appearance of a burning core by assuming that ξ(t) < ξ(0)
for t ∈ (0, T ).

Proof of Theorem 2.5 We assume 0 < T < ∞ without loss of generality, and define

U (x, t) := (T − t)
1

1−m g(x),

where g is a positive C2-function. Since

Ut = − 1

1 − m
(T − t)

m
1−m g(x), (Um)xx = (T − t)

m
1−m

{
g(x)m

}′′
,

u = U (x, t) satisfies (1.1) if g satisfies the equation

(gm)′′ + 1

1 − m
g = 0. (6.1)

For this equation, we impose the initial condition

g(ξ(0)) = k ∈ N, g′(ξ(0)) = −Ck < 0,

where Ck > is a (large) constant such that

u0(x) > T
1

1−m
{
k − Ck(x − ξ(0))

}
, x ∈ (ξ(0), ξ(0) + k/Ck).
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Since gm is concave by (6.1) and (gm)′(ξ(0)) < 0, g(x)must vanish at some x > ξ(0).
On the other hand, integrating (6.1) on [x, ξ(0)], we obtan

(gm)′(x) = (gm)′(ξ(0)) + 1

1 − m

∫ ξ(0)

x
g(s)ds.

Since g(s) > g(ξ(0)) = k for s ∈ (x, ξ(0)) if g′(s) < 0 for s ∈ (x, ξ(0)), the right-
hand side of this equality must vanish at some x < ξ(0). Hence there exist ak, bk ∈ R

with ak < ξ(0) < bk such that g(x) is decreasing in x ∈ (ak, bk), g′(ak) = 0 and
g(bk) = 0. Now we define a subsolution of (1.1) by

u−
k (x, t) :=

⎧⎪⎪⎨
⎪⎪⎩

(T − t)
1

1−m g(ak), (x, t) ∈ (−∞, ak] × (0, T ),

(T − t)
1

1−m g(x), (x, t) ∈ (ak, bk) × (0, T ),

0, (x, t) ∈ [bk,∞) × (0, T ).

Let un be the solution of (1.7) with n ≥ T
1

1−m g(ak). Then we have u−
k (x, 0) ≤

un(x, 0) for x ∈ (ξ(0),∞) and u−
k (ξ(t), t) ≤ n = un(ξ(t), t) for t ∈ (0, T ). Hence

by the comparison principle, we obtain

u−
k (x, t) ≤ un(x, t), x ∈ (ξ(t),∞), t ∈ (0, T ). (6.2)

Here, since u−
k (x, t) is nonincreasing in x ∈ R, we have

u−
k (x, t) ≥ (T − t)

1
1−m g(ξ(0)) = (T − t)

1
1−m k, (x, t) ∈ (−∞, ξ(0)] × [0, T ).

Hence u−
k (x, t) → ∞ as k → ∞ uniformly in x ∈ (−∞, ξ(0)] for every t ∈ (0, T ).

Since {un} is increasing in n, we see from (6.2) that un(x, t) → ∞ as n → ∞
uniformly in x ∈ (ξ(t), ξ(0)] for every t ∈ (0, T ). This proves (i).

Let {ũn} be a sequence of solutions of (1.7) with ξ(t) replaced by ξ̃ (t) ≡ ξ(0),
and let ũ(x, t) be the corresponding minimal singular solution of (1.2) with a standing
singularity at ξ(0). Fix τ ∈ (0, T ) arbitrarily, and take j, k, n ∈ N with j ≤ (T −
τ)

1
1−m k and n ≥ T

1
1−m k. Then we have

ũ j (ξ(0), t) = j ≤ (T − τ)
1

1−m k ≤ (T − t)
1

1−m k

= u−
k (ξ(0), t) ≤ n = un(ξ(0), t), t ∈ [0, τ ].

Hence, by the comparison principle, we obtain

ũ j (x, t) ≤ un(x, t) ≤ ũ(x, t), (x, t) ∈ [ξ(0),∞) × [0, τ ].

Here, letting j → ∞, we see that un(x, t) → ũ(x, t) as n → ∞ uniformly in
x ∈ [ξ(0) + ρ,∞) for every t ∈ [0, τ ], where ρ > 0 is an arbitrary constant. Since
τ ∈ (0, T ) is arbitrary, the proof of (ii) is complete. 
�
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7 Traveling semi-wavefronts

In this section, we consider the existence of a two-parameter family of traveling semi-
wavefronts and their properties.

Proof of Theorem 2.7 If u = ϕ(z) > 0, z = x − ct , satisfies (1.2) with ξ(t) = ct , then
ϕ must satisfy

(ϕm)′′ + cϕ′ = 0, z > 0. (7.1)

Suppose that this equation has a decreasing solution such that ϕ(z) → ∞ as z ↓ 0
and (ϕ(z), ϕ′(z)) → (L, 0) as z → ∞. Then, integrating (7.1) on (z,∞), we have

(ϕm)′ + cϕ = cL, z > 0. (7.2)

Rewriting this equation as

ϕ′

ϕ1−m(ϕ − L)
+ c

m
= 0, (7.3)

and integrating this on (0, z), we obtain

∫ ∞

ϕ(z)

1

s1−m(s − L)
ds = cz

m
. (7.4)

Since the function

F(ϕ) :=
∫ ∞

ϕ

1

s1−m(s − L)
ds

satisfies F(ϕ) → ∞ as ϕ ↓ L , F(ϕ) → 0 as ϕ → ∞ and F ′(ϕ) < 0, it follows
from the implicit function theorem that a smooth positive function ϕ(z) from (0,∞)

to (L,∞) is defined by (7.4), and ϕ satisfies (7.1), (7.2) and ϕ′(z) < 0 for z >

0. Moreover, it is easy to see from (7.3) and (7.4) that ϕ(z) → ∞ as z ↓ 0 and
(ϕ(z), ϕ′(z)) → (L, 0) as z → ∞. Thus it is shown that there exists a unique ϕ

satisfying (i) and (ii). The properties of ϕ in (iv) are easily derived from (7.4).
It remains to prove (iii). By (7.3) and ϕ(z) > L ≥ 0, we have

{ϕ(z) − L}′
{ϕ(z) − L}2−m

≤ − c

m
.

Integrating this on (0, z], we have

− 1

(1 − m){ϕ(z) − L}1−m
< −cz

m
,
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so that

ϕ(z) ≤
{
c(1 − m)

m
z

}− 1
1−m + L = h(c)z−

1
1−m + L, z > 0.

Similarly, integrating

ϕ′(z)
ϕ(z)2−m

≥ − c

m

on (0, z], we obtain

ϕ(z) ≥
{
c(1 − m)

m
z

}− 1
1−m = h(c)z−

1
1−m , z > 0.

Since ϕ(z) > L , (iii) is proved. 
�

8 Large-time behavior

In this section, we shall show that all singular solutions of (1.2) attract each other if
they have a common limit L as x → ∞. This particularly means that the large-time
behavior of singular solutions is independent of initial values, and is determined only
by ξ(t) and L . In order to prove this,we introduce amoving frame (z, t) = (x−ξ(t), t),
and rewrite (1.2) as

vt = (vm)zz + ξ ′(t)vz, z > 0, (8.1)

where v(z, t) := u(z + ξ(t), t). In the following, we frequently use the following
lemma.

Lemma 8.1 Let ϕ(z; c, L) be the function as in Theorem 2.7.

(i) Assume that ξ ′(t) ≥ c for t ∈ [0, T ). Then for any constants a, b ≥ 0,

V+(z) := {
ϕ(z − a; c, L)m + b

} 1
m , z ∈ (a,∞), t ∈ [0, T ),

is a supersolution of (8.1).
(ii) Assume that 0 < ξ ′(t) ≤ c for t ∈ [0, T ). Then for any constants a, b ≥ 0,

V−(z) := {
max{ϕ(z + a; c, L)m − b, 0}} 1

m , z ∈ (0,∞), t ∈ [0, T ),

is a subsolution of (8.1).
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Proof By ξ ′(t) ≥ c and ϕ′ < 0, we have

{
(V+)m

}
zz + ξ ′(t)(V+)z = (ϕm)′′ + ξ ′(t)

{
(ϕm + b)

1
m
}
z

= −cϕ′ + ξ ′(t)(1 + bϕ−m)
1
m −1ϕ′

≤ −c(1 + bϕ−m)
1
m −1ϕ′ + ξ ′(t)(1 + bϕ−m)

1
m −1ϕ′

= {ξ ′(t) − c}(1 + bϕ−m)
1
m −1ϕ′ ≤ 0.

Hence V+ is a supersolution of (8.1). Similar computations show that V− is a subso-
lution of (8.1). 
�

Now we are in a position to prove Theorem 2.6.

Proof of Theorem 2.6 Let L ≥ 0 and c ∈ [c1, c2] be fixed, and let vc be the minimal
singular solution of (8.1) with the initial condition vc(z, 0) = ϕ(z; c, L). Since c1 ≤
ξ ′(t) ≤ c2 by assumption, ϕ(z − ε; c1, L) and ϕ(z + ε; c2, L) with ε > 0 are a
supersolution and a subsolution of (8.1), respectively. Moreover, by Theorem 2.7 (ii)
and (iv), we have

vc(z, 0) = ϕ(z; c, L) < ϕ(z; c1, L) < ϕ(z − ε; c1, L), z ∈ (ε,∞),

vc(z, 0) = ϕ(z; c, L) > ϕ(z; c2, L) > ϕ(z + ε; c2, L), z ∈ (0,∞).

Hence it follows from Lemma 2.10 with (C3) and Lemma 2.12 that

vc(z, t) < ϕ(z − ε; c1, L), (z, t) ∈ (ε,∞) × [0,∞),

vc(z, t) > ϕ(z + ε; c2, L), (z, t) ∈ (0,∞) × [0,∞).

Letting ε ↓ 0, we obtain

ϕ(z; c2, L) ≤ vc(z, t) ≤ ϕ(z; c1, L), (z, t) ∈ (0,∞) × [0,∞). (8.2)

We define

v+(z, t; θ) := {
vc(z − θ, t)m + θ

} 1
m , z ∈ (θ,∞), t ∈ [0,∞),

where θ > 0 is a parameter. Since {vc(z, 0)}′′ = ϕ′′(z; c, L) > 0 for all z > 0, it
follows from Lemma 5.1 (i) with C0 = 0 that uc(x, t) := vc(x − ξ(t), t) satisfies

0 < (uc)t (x, t) = (vc)t (x − ξ(t), t) − ξ ′(t)(vc)z(x − ξ(t), t)

= (vc)t (z, t) − ξ ′(t)(vc)z(z, t), (z, t) ∈ (0,∞) × (0,∞).
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Hence v+ = {
(vc)m + θ

} 1
m satisfies

(v+)t − {(v+)m}zz − ξ ′(t)(v+)z

= {
(vc)m + θ

} 1
m −1

(vc)m−1(vc)t − {
(vc)m + θ

}
zz

− ξ ′(t)
{
(vc)m + θ

} 1
m −1

(vc)m−1(vc)z .

=
[{
1 + θ(vc)−m} 1−m

m − 1
]{

(vc)t − ξ ′(t)(vc)z
}

> 0.

Namely, v+(z, t; θ) is a supersolution of (8.1).
Let v be any singular solution of (8.1) satisfying v(z, 0) → L as z → ∞. If

θ > 0 is sufficiently large, then 0 < v(z, 0) < v+(z, 0; θ) for z ∈ (θ,∞). Then by
Lemma 2.10 with (C3), we obtain

0 < v(z, t) < v+(z, t; θ), (z, t) ∈ (θ,∞) × [0,∞).

Therefore, by (8.2), v satisfies

0 < v(z, t) <
{
ϕ(z − θ; c1, L)m + θ

} 1
m , (z, t) ∈ (θ,∞) × [0,∞). (8.3)

Here we define

θ+(t) := inf
{
θ > 0 : v(z, t) ≤ v+(z, t; θ) for z ∈ (θ,∞)

} ≥ 0.

Then for each t > 0, we have

0 < v(z, t) ≤ v+(z, t; θ+(t)), z ∈ (θ+(t),∞). (8.4)

Again by Lemma 2.10 with (C3), we have

v(z, t + τ) ≤ v+(z, t + τ ; θ+(t)), z ∈ (θ+(t),∞), τ ∈ [0,∞),

which implies θ+(t + τ) ≤ θ+(t) for τ ≥ 0. Hence we conclude that θ(t) is nonin-
creasing in t ∈ [0,∞).

We shall show that θ+(t) ↓ 0 as t → ∞. Suppose on the contrary that θ+(t) ↓
θ∞ > 0 as t → ∞. For any d > θ∞,

V−(z) := {
max{ϕ(z − θ∞; c, L)m − d, 0

}} 1
m , (z, t) ∈ (θ∞,∞) × (0,∞),

is a subsolution of (8.1) and satisfies V−(z) ≤ v+(z, 0; θ∞) for z ∈ (θ∞,∞). Hence
by Lemma 2.12, we have

V−(z) ≤ v+(z, t; θ∞), (z, t) ∈ (θ∞,∞) × [0,∞).
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On the other hand, by Theorem 2.7 (iii), we can take x1, x3 > 0 such that 0 < x1 <

θ∞ < x3 and

v(z, 0) ≤ V+
1 (z) := {

ϕ(z − x1; c, L)m + x3
} 1
m , z ∈ (x1,∞).

Then there exists ρ1 ∈ (x1,∞) such that

v(z, t) ≤ V+
1 (z) < V−(z) ≤ v+(z, t; θ∞), (z, t) ∈ (θ∞, ρ1) × [0,∞). (8.5)

Similarly, we can take x2, x4 > 0 such that 0 < x4 < θ∞ < x2 and

v(z, 0) < V+
2 (z) := {

ϕ(z − x2; c, L)m + x4
} 1
m , z ∈ (x2,∞).

Then there exists ρ2 ∈ (x2,∞) such that

v(z, t) ≤ V+
2 (z) < V−(z) ≤ v+(z, t; θ∞), (z, t) ∈ (ρ2,∞) × [0,∞).

(8.6)

Since θ∞ ≤ θ+(t), by (8.5) and (8.6), there exists z+(t) ∈ [ρ1, ρ2] such that

v(z+(t), t) = v+(z+(t), t; θ+(t)) (8.7)

at some z+(t) ∈ [ρ1, ρ2]. Moreover, we see from (8.4) that v(z, t) and v+(z, t; θ+(t))
must be tangent at z = z+(t) ∈ [ρ1, ρ2].

Now, by the uniform continuity of ξ ′(t), we can apply the Ascoli–Arzelà theorem to
show that there exists an increasing sequence {ti } such that ti → ∞ and ξ ′(t + ti ) →
ξ ′∞(t) as i → ∞ uniformly in t ∈ [0, 1], where ξ∞(t) is a differentiable function of
t ∈ [0, 1]. Let [σ1, σ2] be an interval with 0 < σ1 < ρ1 < ρ2 < σ2. By (8.2) and (8.3),
vc(z, t), vcz (z, t), v(z, t) and vz(z, t) are bounded for (z, t) ∈ [σ1, σ2]×[0,∞). Hence
there exists a subsequence of {ti } (still denoted by {ti }) such that v+(z, t+ti ; θ+(t)) and
v(z, t + ti ) converge to their limiting functions v+∞(z, t) and v∞(z, t), respectively, as
i → ∞ uniformly in (z, t) ∈ [σ1, σ2] × [0, 1]. Then the standard parabolic regularity
implies that v∞(z, t) and v+∞(z, t) satisfy

(v∞)t = {(v∞)m}zz + ξ ′∞(t)(v∞)z, (z, t) ∈ [σ1, σ2] × [0, 1],

and

(v+∞)t ≥ {(v+∞)m}zz + ξ ′∞(t)(v+∞)z, (z, t) ∈ [σ1, σ2] × [0, 1],

respectively. Furthermore, by (8.4) and (8.7), v∞(z, 0) and v+∞(z, 0) satisfy v∞(z, t) ≤
v+∞(z, t) for z ∈ [σ1, σ2] and are tangent at some z ∈ [ρ1, ρ2] for every t ∈ [0, 1].
Since v∞(z, t) < v+∞(z, t) for z ∈ [σ1, ρ1)∪(ρ2, σ2] by (8.5) and (8.6), the maximum
principle implies

v∞(z, t) < v+(z, t; θ∞), (z, t) ∈ [ρ1, ρ2] × (0, 1].
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Then by continuity, if i is sufficiently large, then

v(z, t + ti ) < v+(z, t + ti ; θ+(t + ti )), (z, t) ∈ [ρ1, ρ2] × [0, 1].

However, this contradicts the fact that v(z, ti+t) and v+(z, ti+t; θ+(ti+t)) are tangent
at some z ∈ [ρ1, ρ2]. Thus it is shown that θ+(t) ↓ 0 and v+(z, t; θ+(t)) → vc(z, t)
as t → ∞ uniformly in [ρ,∞), where ρ > 0 is an arbitrary constant.

Similarly, if we define

v−(z, t; θ) := {
max{v(z + θ, t)m − θ, 0}} 1

m , (z, t) ∈ (0,∞) × (0,∞),

and

θ−(t) := inf
{
θ > 0 : v(z, t) > v−(z, t) for z ∈ (0,∞)

} ∈ [0,∞),

then we can show that θ−(t) ↓ 0 as t → ∞. Hence v−(z, t; θ−(t)) → vc(z, t) as
t → ∞ uniformly in [ρ,∞). Since

v−(z, t; θ−(t)) ≤ v(z, t) ≤ v+(z, t; θ+(t)), z ∈ (θ+(t),∞), t ∈ [0,∞),

we conclude that v(z, t) → vc(z, t) as t → ∞ uniformly in z ∈ [ρ,∞).
Now, let u1(x, t), u2(x, t) > 0 be singular solutions of (1.2) such that u1(x, 0), u2

(x, 0) → L ≥ 0 as x → ∞, and set v1(z, t) := u1(z + ξ(t), t) and v2(z, t) :=
u2(z + ξ(t), t), respectively. Then we have

∣∣u1(x, t) − u2(x, t)
∣∣ = ∣∣v1(z, t) − v2(z, t)

∣∣ ≤ ∣∣v1(z, t) − vc(z, t)
∣∣

+∣∣v2(z, t) − vc(z, t)
∣∣ → 0

as t → ∞ uniformly in x = z + ξ(t) ∈ [ξ(t) + ρ,∞). This completes the proof of
Theorem 2.6. 
�

Next, we consider the case where ξ ′(t) → c as t → ∞. Applying Theorem 2.6,
we obtain the following proposition.

Proposition 8.2 Assume that ξ ′(t) is nonnegative, bounded and uniformly continuous
in t ∈ [0,∞), and that u0(x) → L ≥ 0 as x → ∞. Let ϕ(z; c, L) be the function as
in Theorem 2.7, and ρ > 0 be an arbitrary constant.

(i) If lim supt→∞ ξ ′(t) ≤ c, then there exists α(t) > 0 such that α(t) → 0 as
t → ∞ and the singular solution of (1.6) satisfies

u(x, t) ≥ ϕ(x − ξ(t); c, L) − α(t), x ∈ [ξ(t) + ρ,∞), t ∈ (0,∞).

(ii) If lim inf t→∞ ξ ′(t) ≥ c, then there existsβ(t) > 0 such thatβ(t) → 0 as t → ∞
and the singular solution of (1.6) satisfies

u(x, t) ≤ ϕ(x − ξ(t); c, L) + β(t), x ∈ [ξ(t) + ρ,∞), t ∈ (0,∞).
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Proof Given ε > 0 and ρ > 0, we take z0 > ρ such that ϕ(z0; c, L) < L + ε. Then
we have

ϕ(z; c + δ, L) > L > ϕ(z0; c, L) − ε > ϕ(z; c, L) − ε, z ∈ [z0,∞).

On the other hand, by Theorem 2.7 (iv), if δ > 0 is sufficiently small, we have

ϕ(z; c + δ, L) > ϕ(z; c, L) − ε, z ∈ [ρ, z0].

Hence there exists δ > 0 such that

ϕ(z; c + δ, L) > ϕ(z; c, L) − ε, z ∈ [ρ,∞). (8.8)

By the assumption in (i), we can take t1 > 0 such that ξ ′(t) ≤ c+δ for t ∈ [t1,∞),
and denote by uc(x, t) a solution of (1.2) with uc(x, t1) = ϕ(x − ξ(t1); c, L). Since

u−(x, t) := ϕ(x − ξ(t); c + δ, L), x ∈ (ξ(t),∞), t ∈ [t1,∞),

is a subsolution of (1.2), we have

uc(x, t) ≥ ϕ(x − ξ(t); c + δ, L), x ∈ (ξ(t),∞), t ∈ [t1,∞). (8.9)

On the other hand, by Theorem 2.6, there exists t2 > t1 such that

|u(x, t) − uc(x, t)| < ε, x ∈ (ξ(t) + ρ,∞), t ∈ [t2,∞).

Hence by (8.8) and (8.9), we obtain

u(x, t) ≥ uc(x, t) − ε ≥ ϕ(x − ξ(t); c + δ, L) − ε

> ϕ(x − ξ(t); c, L) − 2ε, x ∈ (ξ(t) + ρ,∞), t ∈ [t2,∞).

Since ε > 0 is arbitrary, (i) is proved.
Similarly, for any ε > 0 and ρ > 0, there exists a small δ > 0 such that ϕ(z; c −

δ, L) < ϕ(z; c, L) + ε for z ∈ [ρ,∞). By the assumption in (ii), we can take t1 > 0
such that ξ ′(t) ≥ c − δ for t ∈ [t1,∞). Then there exists t2 > t1 such that

u(x, t) ≤ uc(x, t) + ε ≤ ϕ(x − ξ(t); c − δ, L) + ε

< ϕ(x − ξ(t); c, L) + 2ε, x ∈ (ξ(t) + ρ,∞), t ∈ [t2,∞).

Since ε > 0 is arbitrary, (ii) is proved. 
�
Proof of Theorem 2.8 First,we consider the casewhere ξ ′(t) → c ∈ (0,∞) as t → ∞.
By Proposition 8.2, the singular solution of (1.6) satisfies

ϕ(x − ξ(t); c, L) − α(t) ≤ u(x, t) ≤ ϕ(x − ξ(t); c, L) + β(t),

x ∈ [ξ(t) + ρ,∞), t ∈ (0,∞).
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where α(t), β(t) → 0 as t → ∞ and ρ > 0 is an arbitrary constant. This proves
Theorem 2.8 (i).

Next, we consider the case where ξ ′(t) → 0 as t → ∞. Fix c > 0 arbitrarily. Let
u be the singular solution of (1.6). For a function η(t), let û be a solution of

{
ût = (ûm)xx , x > η(t), 0 < t < T ,

u(x, 0) = û0(x), x > η(0) = ξ(0),

where û0(x) ≥ u0(x) and û′
0(x) ≤ 0 for x > η(0). Then ûx (x, t) < 0 for all

x ∈ (η(t),∞) and t ∈ (0,∞). If η(0) = ξ(0) and η′(t) ≥ ξ ′(t) for t > 0, then

u−(x, t) := û(x + η(t) − ξ(t), t)

is a a subsolution of (1.6), because

(u−)t − {(u−)m}xx = {η′(t) − ξ ′(t)}ûx + ût − (ûm)xx

= {η′(t) − ξ ′(t)}ûx ≤ 0, x ∈ (ξ(t),∞), t ∈ (0,∞).

Moreover, if η(t) → c as t → ∞, then by Proposition 8.2 (i), û satisfies

û(x, t) ≥ ϕ(x − η(t); c, L) − α(t), x ∈ (η(t),∞), t ∈ (0,∞).

Thus we obtain

u(x, t) ≥ u−(x, t) = û(x + η(t) − ξ(t), t) ≥ ϕ(x − ξ(t); c, L)

−α(t), x ∈ (ξ(t) + ρ,∞), t ∈ (0,∞).

Here, by Theorem 2.7 (iii), ϕ(z; c, L) → ∞ as c ↓ 0 uniformly in z ∈ [ρ,∞), and
α(t) → 0 by Proposition 8.2 (i). Since c > 0 is arbitrary and û(x, t) is decreasing in
x ∈ (ξ(t),∞), the proof of Theorem 2.8 (ii) is complete.

Similarly, if 0 ≤ η′(t) ≤ ξ ′(t) and η′(t) → c as t → ∞, then

u+(x, t) := û(x + η(t) − ξ(t), t)

is a supersolution of (1.6) so that

u(x, t) ≤ u+(x, t) ≤ ϕ(x − ξ(t); c, L) + β(t).

Since c > 0 is arbitrary, Theorem 2.7 (iii) and Proposition 8.2 (ii) imply Theo-
rem 2.8 (iii). 
�
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9 Entire solution

In this section, we prove the following proposition concerning the existence of an
entire solution and its properties. (We note that Theorem 2.9 follows immediately
from this proposition.)

Proposition 9.1 Assume that ξ(t) satisfies c1 ≤ ξ ′(t) ≤ c2 for all t ∈ R, where
c1, c2 > 0 are constants. Then for each L ≥ 0, there exists a positive solution of (1.2)
defined for all t ∈ R with the following properties:

(i) u(x, t) → ∞ as x ↓ ξ(t) and u(x, t) → L as x → ∞ for every t ∈ R.
(ii) ut (x, t) > 0 and ux (x, t) < 0 for all x > ξ(t).

(iii) h(c2){x − ξ(t)}− 1
1−m ≤ u(x, t) ≤ h(c1){x − ξ(t)}− 1

1−m for all x > ξ(t).

Proof Let ϕ(z; c, L) be as in Theorem 2.7. We define

u+(x, t) := ϕ(x − ξ(t); c1),
u−(x, t) := ϕ(x − ξ(t); c2),

x ∈ (ξ(t),∞), t ∈ R.

Then we have u−(x, t) ≤ u+(x, t) for x ∈ (ξ(t),∞) and t ∈ (0,∞) by Theo-
rem 2.7 (iv). We compute

u+
t (x, t) − {(u+)m}xx = −ξ ′(t)ϕ′(x − ξ(t); c1) − {

ϕ(x − ξ(t); c1)m
}
xx

= {c1 − ξ ′(t)}ϕ′(x − ξ(t); c1) ≥ 0,

u−
t (x, t) − {(u−)m}xx = −ξ ′(t)ϕ′(x − ξ(t); c2) − {

ϕ(x − ξ(t); c2)m
}
xx

= {c2 − ξ ′(t)}ϕ′(x − ξ(t); c2) ≤ 0.

Hence u+ and u− are a supersolution and a subsolution of (1.1), respectively, defined
for all t ∈ R.

Let {ti } be a decreasing sequence such that ti → −∞ as i → ∞, and let ui denote
the unique singular solution of the initial-value problem

{
(ui )t = {

(ui )
m}

xx , x > ξ(t), t > ti ,

ui (x, ti ) = u−(x, ti ), x > ξ(ti ).

Then by the comparison principle, we have

u−(x, t) ≤ ui (x, t) ≤ u+(x, t), x ∈ (ξ(t),∞), t ∈ (ti ,∞).

These inequalities imply that the sequence {ui (x, t)} is increasing in i and is bounded
above by u+(x, t). Then by the same argument as in [4, 9] (see also [5, Sect. 4]),
we can show that {ui (x, t)} converges to an entire solution of (1.2) as i → ∞, and
the entire solution lies between u−(x, t) and u+(x, t) for all t ∈ R. Moreover, since
(ui )x (x, ti ) < 0 and

{
(ui )m

}
xx (x, ti ) > 0 for x ∈ (ξ(ti ),∞), the entire solution

satisfies ux (x, t) < 0 and ut (x, t) > 0 for all x ∈ (ξ(t),∞) and t ∈ R. This
completes the proof. 
�
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