
Mathematische Annalen
https://doi.org/10.1007/s00208-024-02874-0 Mathematische Annalen

Flux and symmetry effects on quantum tunneling

Bernard Helffer1 · Ayman Kachmar2 ·Mikael Persson Sundqvist3

Received: 29 July 2023 / Revised: 5 April 2024 / Accepted: 7 April 2024
© The Author(s) 2024

Abstract
Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we
introduce an abstract framework for the spectral reduction of a self-adjoint operator
to a hermitian matrix. We illustrate this framework by three applications, firstly the
electro-magneticLaplacianwith constantmagnetic field and three equidistant potential
wells, secondly a pure constant magnetic field and Neumann boundary condition in
a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a
smoothed triangle. Flux effects are visible in the three aforementioned settings through
the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian
setting with double well radial potential, we rule out an artificial condition on the
distance of the wells and extend the range of validity for the tunneling approximation
recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022),
Helffer & Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-
magnetic tunneling under constantmagnetic field and a sumof translated radial electric
potentials.
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1 Introduction

1.1 Tunneling and flux effects

The tunneling induced by symmetries is an interesting phenomenon in spectral the-
ory featuring an exponentially small splitting between the ground state and the next
excited state energies. The magnetic flux has an effect on the eigenvalue multiplicity
which can lead to oscillatory patterns in the spectrum: as the magnetic flux varies,
the eigenvalues may cross and split infinitely many times. Hence it is interesting to
look at the interaction between symmetry and flux effects. We explore this question by
investigating examples of operators involving the magnetic Laplacian (−ih∇ − A)2

perturbed in various ways by an electric potential, a boundary condition or a mag-
netic field discontinuity. We observe interesting flux effects, manifested in endless
eigenvalue crossings, when adding symmetry assumptions on the electric potential,
the boundary of the domain or the magnetic field discontinuity set.

A braid structure in the distribution of the low lying eigenvalues was predicted
heuristically [11, Sec. 15.2.4] and confirmed numerically [4] for the magnetic Lapla-
cian on an equilateral triangle with Neumann boundary condition and constant
magnetic field. We confirm this prediction by giving a proof for smoothed equilat-
eral triangles and for other examples on the full plane (electro-magnetic Laplacian
and magnetic steps).

Let us introduce a mathematical definition of (semi-classical) braid structure of
lowest eigenvalues. Consider a family of unbounded self-adjoint operators (Th)h∈(0,1]
on aHilbert space H . Let us assume that, for every h ∈ (0, 1], Th is semi-bounded from
below and denote by λ1(Th), λ2(Th), · · · the discrete eigenvalues below the essential
spectrum of Th , counted with multiplicity. In practical examples, the parameter h will
be the semi-classical parameter, which tends to 0 and can result as the inverse of the
magnetic field’s intensity in problems involving strong magnetic fields.

Definition 1.1 The lowest eigenvalues of Th , λ1(Th) and λ2(Th), are said to have a
braid structure, if

∀ ε > 0, ∃ hε, h
′
ε ∈ (0, ε),

{
λ2(Thε )− λ1(Thε ) > 0

λ2(Th′ε )− λ1(Th′ε ) = 0
.

According to Definition 1.1, the eigenvalues λ1(Th) and λ2(Th) exhibit infinitely
many crossings and splittings as the parameter h varies in a right neighborhood of
0 (see Fig. 1). This phenomenon has also been observed in non-simply connected
domains when considering a magnetic Laplacian and assuming an Aharonov–Bohm
magnetic potential. Furthermore, it has been proven in [23] that these crossings and
splittings occur in response to variations in the magnetic flux.

For the semi-classical magnetic Laplacian on a simply connected domain with
Neumann boundary conditions, the spectrum is related with the spectral properties of
an operator which is defined on the boundary. Hence we actually work on another non-
simply connected domain (i.e. the boundary) and therefore flux effects are expected
to exhibit crossings and splittings of eigenvalues. However, this is not the case when

123



Flux and symmetry effects on quantum tunneling

Fig. 1 A schematic figure of eigenvalues with a braid structure, occurring in the presence of trilateral
symmetry. The ground state energy has multiplicity 2 infinitely many times. Observe also that the energy
of the second state may have multiplicity 2 while the ground state energy is a simple eigenvalue

the boundary curvature has for example a unique non-degenerate maximum. In this
case the eigenvalues split in the semi-classical limit [12]. It is when non-degenerate
minima are exchanged in the presence of symmetries (like in the case of an ellipse or
a smoothed equilateral triangle), that eigenvalue crossings are expected to occur along
with tunneling effects [6, 11]. We will also prove such a behavior for the electro-
magnetic Laplacian with ‘potential’ wells located on the vertices of an equilateral
triangle, which to our knowledge is quite novel.

1.2 Electro-magnetic tunneling

The analysis in this paper yields new results on the electro-magnetic Laplacian onR
2,

Lh,b = (−ih∇ − bA)2 + V ,

where b, h are positive parameters, A = 1
2 (−x2, x1) is the vector field generating the

unit uniform magnetic field, curlA = 1, and V is a smooth function.
What we call thewells are the points where V attains itsminimum. The pure electric

case where b = 0 was settled for any number of wells n in [21]. We would like to
address the case where b > 0 and n ≥ 2. For n = 2, this problem was considered
in [22, 25] and revisited recently in [10, 17]. The article [22] follows a perturbative
approach (i.e. considers the case b relatively small) and assumes the analyticity of the
electric potential V , while the results in [10, 17] hold for any b > 0 but under the
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assumption that V is non-positive and defined as a superposition of radially symmetric
compactly supported functions.

1.2.1 Double wells

Suppose that the electric potential V is as follows

V (x) = v0(|x − z1|)+ v0(|x − z2|) (1.1)

where v0 ∈ C∞(R+) vanishes on [a,+∞), negative-valued on [0, a) and has a unique
and non-degenerate minimum at 0. The wells of V are then z1 and z2. We prove the
following theorem that, in particular, rules out eigenvalue crossings for double wells.

Theorem 1.2 Assuming b > 0 is fixed and V is given as in (1.1) with z1 = 0, z2 =
(L, 0) and L ≥ 4a, then there exists a positive constant Eb,L(v0) such that

h ln
(
λ2(Lh,b)− λ1(Lh,b)

) ∼
h↘0

−Eb,L(v0). (1.2)

Moreover

Eb,L(v0) ∼
b↘0

2
∫ L/2

0

√
v0(ρ)− vmin

0 dρ,

where vmin
0 = minr≥0 v0(r).

Remark 1.3 i) The asymptotics in (1.2) was obtained earlier in [17] for b = 1 but
under the assumption that

L > 4
(√

|vmin
0 | + a

)
. (1.3)

ii) The use of (1.3) in [17] was technical. In fact, assuming (1.3), it is proved in [10]
that

λ2(Lh,1)− λ1(Lh,1) ∼
h↘0

ch(v0, L) (1.4)

where ch(v0, L) is the hopping coefficient that will be introduced in (3.15) later
on. The accurate approximation of ln ch(v0, L) was then carried out in [17].

iii) For b �= 1, by a change of semi-classical parameter, the condition in (1.3) reads
as follows

L > 4
(
b−1

√
|vmin

0 | + a
)
.

Clearly, this is a very strong condition on L which in particular prevents us from
considering the limit b ↘ 0. The novelty in Theorem 1.2 is in improving the
previous condition which could appear as artificial. However, it is still an open
question whether (1.2) holds for 2a < L < 4a. We provide a sufficient condition
on (L, a, v0) that allows for L to be slightly below 4a; see Assumption 3.6.
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iv) The dependence on b in the expression of Eb,L(v0) can actually be made more
explicit. We have indeed

Eb,L(v0) = b S(b−2v0, L) ,

where S(·, L) will be introduced in (3.18) later on.
The leading term of Eb,L(v0) in the limit b ↘ 0 was calculated in [17, Rem.
1.3], and it is consistent with the existing results [20, 29] without a magnetic
field, b = 0, thereby showing a sort of continuity of the tunneling estimate with
respect to the magnetic field’s strength. Studying the transition from b = 0 to
b > 0 when b = b(h) could be an interesting question.

1.2.2 Three wells and eigenvalue crossings

Suppose now that the electric potential V is as follows

V (x) = v0(|x − z1|)+ v0(|x − z2|)+ v0(|x − z3|) (1.5)

where v0 is the same function as in (1.5) and that the wells z1, z2, z3 are located on
the vertices of an equilateral triangle with side length L . We prove then the existence
of a braid structure in the sense of Definition 1.1.

Theorem 1.4 Assuming b > 0 is fixed and V is given as in (1.5) with

|z1 − z2| = |z2 − z3| = |z3 − z1| = L > 4a,

then the lowest egigenvalues of Lh,b has a braid structure. Moreover,

lim sup
h↘0

(
h ln

(
λ2(Lh,b)− λ1(Lh,b)

)) = −Eb,L(v0)

with Eb,L(v0) the same positive quantity as in Theorem 1.2.

Not only Theorem 1.4 establishes the existence of infinitely many eigenvalue
crossings and splittings, but it also establishes an accurate estimate for the magnetic
tunneling induced by three symmetric potential wells, thereby extending the recent
results of [10, 17] on double wells.

1.3 Geometrically induced braid structure

Wepresent here results on the puremagnetic Laplacianwhere the eigenvalue crossings
are induced by a combination of the geometry and the flux in the semi-classical limit.
We shall describe the results when � is a smoothed triangle (see Fig 2). That is, �
is a simply connected domain, invariant under rotation by 2π/3, with three points of
maximum curvature that are equidistant with respect to the arc-length distance on the
boundary.
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Fig. 2 Illustration of the domain
�: a smoothed triangle invariant
under the rotation by 2π/3

1.3.1 The magnetic Neumann Laplacian under constant magnetic field

In the Hilbert space L2(�), we consider the magnetic Neumann Laplacian L N
h =

(−ih∇−A)2 on�, with uniform magnetic field curlA = 1 and (magnetic) Neumann
condition

ν · (−ih∇ − A)u|∂� = 0.

Theorem 1.5 Let the domain� be a smoothed triangle, invariant under the rotation by
2π/3 (see Fig. 2). The lowest eigenvalues of the operatorL N

h have a braid structure.

The presence of the Neumann boundary condition plays a vital role in the preceding
theorem. This condition is responsible for the semi-classical localization of the bound
states near the boundary of� and this is this localization that gives rise to the observed
flux effects.

1.3.2 The Landau Hamiltonian under a magnetic step

We consider here the Landau Hamiltonian L B
h = (−ih∇ − A)2 on R

2 with the
discontinuous magnetic field

B = curlA =
{
1 on �,

ϑ ∈ (−1, 0) on R
2 \�.

Such magnetic fields have been called ‘magnetic steps’ in the literature, and the semi-
classical limit for the operator LB

h has been studied recently in [3, 13] (and in [14] for
ϑ = −1). The bound states of the system become increasingly concentrated along the
discontinuity of B in the semi-classical limit. Consequently, we expect the emergence
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of flux effects, and they are indeed realized when� is a smoothed triangle with 3-fold
symmetry.

Theorem 1.6 Assume that � is a smoothed triangle, invariant under the rotation by
2π/3 (seeFig. 2). The lowest eigenvalues of the operatorL B

h have in the semi-classical
limit a braid structure.

We therefore have an example where the eigenvalues of the Landau Hamiltonian on
the full plane cross and split infinitely many times. This is the consequence of having
a sign changing magnetic field with a discontinuity along a simple smooth curve.

Recently, an estimate for the tunneling induced by a smooth magnetic field that
vanishes non-degenerately along a smooth curve has been established in [1]. It seems
natural to expect the existence of a braid structure in that setting too when adding
symmetry assumptions.

1.4 Organization

The paper is organized as follows. Since we work with various symmetry configura-
tions, Section 2 is devoted to an abstract spectral reduction to a hermitian matrix (so
often called the interaction matrix in the literature on tunneling effects [16, 20]). This
provides us with a robust methodology when analyzing tunneling effects in various
settings. Loosely speaking, all we need is the construction of adequate quasi-modes.

In Sect. 3 we discuss the electro-magnetic Laplacian. Our investigation has two
ingredients, the first is to appply the abstract methodology in Sect. 2, and the second
is to control the errors produced by the interaction terms; the later task is achieved
by using the analysis in the recent work [17]. Section 3 concludes with the proofs of
Theorems 1.2 and 1.4.

In Sect. 4, we prove Theorem 1.5 by applying the results of Sect. 2. The control of
the error terms and the computation of the interaction term were done in [6].

Finally, in Sect. 5, we prove Theorem 1.6 by applying the constructions in Sect. 2.
We will be more succinct here since the analysis is similar to Sect. 4. The control of
the error terms and the asymptotics of the interaction terms were done in [13] and are
actually rather close to those in [6].

2 Abstract framework for a spectral reduction to a hermitianmatrix

The strategy of reducing the spectral analysis of Schrödinger operators to that of a
hermitian matrix goes back to [20]. It was presented in the survey works [9, 16],
and was adapted to other type of operators [6, 18, 19]. Nevertheless, it should be
emphasized that the scheme of proof (as described for example in [9]) can not be
immediately transposed to some of the cases considered in our applications, due to
the absence of optimal Agmon estimates.

In this section we consider a family of operators dependent on a positive semi-
classical parameter h � 1. Assuming the existence of certain quasi-modes (see
Assumption 2.1 below), we can approximate the eigenvalues of the operator with those
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of the matrix of its restriction on a specific basis (Proposition 2.4 below). Assuming
an additional symmetry hypothesis (Assumption 2.6 below) we can relabel the eigen-
values and spot their possible crossings and splittings as the semi-classical parameter
approaches 0 (Eqs. (2.20), (2.21) and Paragraphs 2.4.2, 2.4.3).

2.1 Preliminaries

Consider a Hilbert space H endowed with an inner product 〈·, ·〉 and a family of self-
adjoint unbounded operators Th : Dh → H , h ∈ (0, 1]. Assume furthermore that,
for every h ∈ (0, 1], Th is semi-bounded from below and has a sequence of discrete
eigenvalues

λ1(h) ≤ λ2(h) ≤ λ3(h) ≤ . . . < 
h := inf σess(Th) ∈ R ∪ {+∞},

countedwithmultiplicity. By themin-max principle the eigenvalues can be represented
as

λn(h) = inf
M⊂Dh

dim(M)=n

⎛
⎝ max

φ∈M
‖φ‖=1

〈Thφ, φ〉
⎞
⎠ .

We will work under additional assumptions on the operators (Th)h∈(0,1].

Assumption 2.1 (n wells) Let n ≥ 2 be an integer. There exist positive constants
S1,S2,S3, c, p and h0 ∈ (0, 1] such that, for all h ∈ (0, h0], there exists a subspace
Eh = span(uh,1, . . . , uh,n) ⊂ Dh such that:

(1) max1≤i≤n ‖Thuh,i‖ = O(e−S1/h).

(2) 〈uh,i , uh, j 〉 =
{
1+O(e−S2/h) i = j,

O(e−S3/h) i �= j .
(3) λn+1(h) ≥ c h p.

It results from (2) above that dim(Eh) = n for h small enough. As a consequence
of Assumption 2.1, we now prove that the operator Th has precisely n eigenvalues
that are exponentially small in h, and there is a gap to λn+1(h), since it is at least of
polynomial size in h.

Proposition 2.2 Under Assumption 2.1, there exist positive constants C, h1 such that,
for h ∈ (0, h1],

λn(h) ≤ Ce−S1/h . (2.1)

In particular λn(h) < λn+1(h) for h sufficiently small.

Proof Since dim(Eh) = n, we can use the min-max principle. Let φ = ∑
j α j uh, j

be in Eh . Then, the triangle inequality and Cauchy–Schwarz inequality, together with
(1) and (2) from Assumption 2.1, provide the existence of constants A1 and A2, such
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that if h is small enough,

〈Thφ, φ〉 ≤
∑
j,k

|α j | · |αk | · ‖Thuh, j‖ · ‖uh,k‖ ≤ A1e
−S1/h(1+ A2e

−S2/h)
∑
j

|α j |2.

On the other hand, we can use (2) of Assumption 2.1 to bound the norm of φ from
below. We get indeed constants A3 and A4 such that, if h is small enough,

‖φ‖2 ≥ (1− A3e
−S2/h − A4e

−S3/h)
∑
j

|α j |2.

This gives the bound in (2.1). Combining this bound with (3) in Assumption 2.1 we
conclude that that λn+1(h) > λn(h) if h is sufficiently small. ��

We want to link the quasi mode constructions {uh, j } to the low-lying eigenvalues
of Th . To do this, we want to show that the symmetric matrix Uh = (u j,k),

u j,k = 〈Thuh, j , uh,k〉, (2.2)

does not differ much (component-wise) from the matrix Wh that will be constructed
as the restriction of Th to the eigenspace

Fh :=
n⊕
j=1

Ker(Th − λ j (h)), (2.3)

written in an orthonormal basis. We will do the approximation in two steps. We first
consider the projected functions

vh, j = �Fhuh, j

and show that the norms ‖vh, j − uh, j‖ are small. Since the span of {uh, j } is
n-dimensional by Assumption 2.1 (2), it will follow that the {vh, j } are linearly
independent, and thus constitute a basis for Fh .

Proposition 2.3 If Assumption 2.1 holds for Eh, then for h > 0 sufficiently small, we
have dim(Fh) = n, and the vectors

vh,i = �Fhuh,i (i ∈ {1, · · · , n}),

form a basis of Fh. Moreover they satisfy

max
1≤i≤n

‖vh,i − uh,i‖ = O(h−pe−S1/h). (2.4)

Proof Since we count multiplicities, we know in general that dim(Fh) ≥ n. However,
by (3) in Assumption 2.1, we get from Proposition 2.2 that dim(Fh) = n.

123



B. Helffer et al.

With vh,i = �Fhuh,i we note that uh,i − vh,i ∈ H � Fh . Since Th , restricted to
H � Fh is bounded below by ch p by Assumption 2.1 (3), we find that

‖T (uh,i − vh,i )‖ ≥ c h p‖uh,i − vh,i‖.

On the other hand, According to Assumption 2.1 (1) and (2), and Proposition 2.2,

‖T (uh,i − vh,i )‖ ≤ ‖Tuh,i‖ + ‖T vh,i‖ ≤ Ce−S1/h .

Combining these inequalities we get (2.4). From this and Assumption 2.1 (2), we find
that {vh,1, . . . , vh,n} are linearly independent, and hence a basis for Fh . ��

2.2 Reduction to amatrix through a suitable orthonormal basis

The aim in this subsection is to find an orthonormal basis for Fh such that the matrix of
the restriction of Th in this basis can be well approximated. Later in the applications to
multiple wells problems this matrix will be according to the previous literature called
the interaction matrix.

The basis {vh, j } of Fh that we just constructed will, in general, not be orthogonal.
We construct, by a symmetry-preserving Gram–Schmidt procedure an orthonormal
basis {wh, j }. The matrix Wh will be the matrix of Th restricted to Fh , written in this
new basis {wh, j }.

Let us denote byGh = (gi j (h))1≤i, j≤n theGrammatrix of the basis {vh,1, . . . , vh,n}
of Fh , where

gi j = 〈vh,i , vh, j 〉. (2.5)

Since the {vh, j } are linearly independent, the Gram matrix becomes positive definite,

so G−1/2
h is well defined and positive definite. We obtain an orthonormal basis Vh =

{wh,1, . . . , wh,n} of Fh as follows1

⎛
⎜⎝
wh,1
...

wh,n

⎞
⎟⎠ = G−1/2

h

⎛
⎜⎝
vh,1
...

vh,n

⎞
⎟⎠ . (2.6)

We consider the restriction of Th to the space Fh and denote byWh = (wi j )1≤i, j≤n

its matrix in the basis Vh , so wi j = 〈Thwh,i , wh, j 〉. The matrix Wh is hermi-
tian, with eigenvalues {λ1(h), . . . , λn(h)}. The next proposition controls how Wh is
approximated by the matrix Uh defined by (2.2).

1 We could have worked in the basis obtained by the standard Gram–Schmidt process but the downside is
that the Gram–Schmidt process does not respect the symmetry invariance that we will impose later.
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Proposition 2.4 Let

�h := ‖Th |Fh‖ = max
1≤i≤n

|λi (h)|,
Ch = h−pe−S1/h + e−min(S2,S3)/h,

εh = (�h + Ch)Ch .

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

Then the matrix Rh = (ri j ),
Rh := Wh − Uh, (2.8)

is symmetric, and satisfies
ri j = O(εh) . (2.9)

Proof Step 1. Proposition 2.3 says that

〈vh,i , vh, j 〉 = 〈uh,i , uh, j 〉 +O(h−pe−S1/h).

With I denoting the n × n identity matrix, we get from (2) in Assumption 2.1,

Gh = I+O(Ch)

so that

G−1/2
h = I+O(Ch).

It follows then that
‖wh,i − vh,i‖ = O(Ch),

‖Thwh,i − Thvh,i‖ = O
(
�hCh

)
}

(2.10)

where in the second estimate in (2.10), we simply combine the first estimate and the
definition of �h .

Step 2. We may write

wi j = 〈Thwh,i , wh, j 〉 = 〈Thvh,i , vh, j 〉
+〈Thvh,i , wh, j − vh, j 〉 + 〈Th(wh,i − vh,i ), wh, j 〉.

Using this identity, (2.10) and Proposition 2.3, we get

〈Thwh,i , wh, j 〉 = 〈Thvh,i , vh, j 〉 +O(�hCh). (2.11)

Then, we use

〈Thvh,i , vh, j 〉 = 〈Thuh,i , uh, j 〉 + 〈Thuh,i , vh, j − uh, j 〉 + 〈vh,i − uh,i , Thvh, j 〉.

By Proposition 2.3 and (1) in Assumption 2.1, we have

〈Thuh,i , vh, j − uh, j 〉 = O(h−pe−2S1/h) = O(C2
h) ,

〈vh,i − uh,i , Thvh, j 〉 = O(�hCh).
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So we get
〈Thvh,i , vh, j 〉 = 〈Thuh,i , uh, j 〉 +O(εh) , (2.12)

which together with (2.11) implies (2.9). ��
An immediate consequence of Proposition 2.4 is an improved lower bound on the

lowest eigenvalue λ1(h).

Corollary 2.5 If Assumption 2.1 holds, then there exist positive constants C, h1 such
that, for h ∈ (0, h1],

λ1(h) ≥ −Ce−min(S1,2S2,2S3)/h . (2.13)

Proof It follows from Hölder’s inequality and (1)–(2) in Assumption 2.1 that ui j =
O(e−S1/h), where ui j is introduced in (2.2). By Proposition 2.4, we have

�h ≤ ‖Wh‖ ≤ ‖Uh‖ + ‖Rh‖ = O(e−S1/h)+O(�hCh + C2
h)

which yields

(
1−O(Ch)

)
�h ≤ O(e−S1/h)+O(C2

h).

To conclude, we just notice that Ch = o(1). ��
As we will see in the next subsection, we can actually say much more about the

spectrum of these matrices, when we impose some symmetry condition involving Th
and the choice of the uh, j .

2.3 Implementing invariance assumptions

Our task in this subsection is to analyze the case when the matrixWh of Th |Fh enjoys
certain invariance properties. We shall see that this corresponds to what occurs in
the case of symmetric wells in the applications, starting from the double well case
as mathematically considered by E. Harrell [15] and later extended to the multiple
wells case in [20, 21, 28, 29]. Here we mainly follow in a more abstract way [21] and
the heuristic presentation given in [11]. We denote by Zn the cyclic group of order n
and by g �→ ρ(g) a faithful unitary representation of Zn in H . We denote by an its
generator, so ann = e where e is the identity element of the group.

In addition to the properties in Assumption 2.1, we assume

Assumption 2.6 (1) The operator Th commutes with ρ(g) for all g ∈ Zn .
(2) uh,i+1 = ρ(an)uh,i for 1 ≤ i ≤ n − 1.

Remark 2.7 In the applications considered in this article, the Hilbert space will be
H = L2(�) where � is a domain in R

2. We first consider the unitary representation
ρ0 of Zn as the group Gn of the n-fold rotations, i.e. the representation such that

ρ0(an) := gn

is the rotation in R
2 by 2π/n around the origin in R

2.
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We let the rotation gn act on functions as

(
M(gn)u

)
(x) = u(g−1

n x). (2.14)

This gives by extension to any element of Gn a representation of Gn in L2(�) if
� ⊂ R

2 is a domain invariant by Gn and we then define ρ by

ρ(g) = M(ρ0(g)) .

Equivalently to Assumption 2.6, we can then write in this case

Assumption 2.8 (1) � ⊂ R
2 is a domain invariant by Gn and H = L2(�).

(2) The operator Th commutes with M(gn).
(3) uh,i+1 = M(gn)uh,i = uh,1(g−i

n x) for 1 ≤ i ≤ n − 1.

Assumption 2.6 permits to treat more general situations which for example occur in
the case of manifolds or in the case of higher dimension.

Remark 2.9 If n = 2 we can define another group of symmetry G̃ defined by the
reflection g̃2

( x1
x2

) = (−x1
x2

)
. We can then consider a variant of Assumption 2.6 by

instead assuming that the domain � is invariant by the reflection g̃2 and that uh,2 =
M(g̃2)uh,1. This symmetry invariance was assumed by the papers considering the
magnetic tunneling induced by the geometry of the domain [1, 6, 13, 24]. Notice that
M(g̃2) does not commute with Th and that we have consequently to compose M(g̃2)
with the complex conjugation � in order to get

Th�M(g̃2) = �M(g̃2)Th .

Proposition 2.10 If Assumption 2.6 holds, then the orthonormal basis Vh

= {wh,1, . . . , wh,n} of Fh satisfies,

wh,i+1 = ρ(an)wh,i (1 ≤ i ≤ n − 1).

Proof Recall that {wh,1, . . . , wh,n} is defined in (2.6) by theGrammatrix starting from
the basis consisting of the vectors vh,i = �Fhuh,i , 1 ≤ i ≤ n. It suffices to observe
that the projector�Fh on the eigenspace Fh commutes with ρ(an). Actually, since Th
commutes with ρ(an) = M(gn), we get, for every z in the resolvent set of Th , that
(z − Th)−1ρ(an) = ρ(an)(z − Th)−1, and consequently, the identity �Fhρ(an) =
ρ(an)�Fh follows from Cauchy’s formula.

Let us give amore hands-on argument for this commutativity. If {wh,1, . . . , wh,n} is
an orthonormal basis of Fh consisting of eigenvectors of Th , then, since Th commutes
with ρ(an), we get that ρ(an)wh,1, . . . , ρ(an)wh,n are eigenvectors of Th and form an
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orthonormal basis of Fh . Consequently

�Fhρ(an)u =
n∑

k=1

〈ρ(an)u, ρ(an)wh,k〉ρ(an)wh,k

=
n∑

k=1

〈u, wh,k〉ρ(an)wh,k = ρ(an)�Fhu.

��
The matrix of ρ(an) in the basis Vh is the same as the matrix of the shift operator

τ on �2(Z/nZ), whose matrix is given by

τ j,k = δ j+1,k for 1 ≤ j, k ≤ n (2.15)

where δi,k denotes the Kronecker symbol, with i computed in Z/nZ. When n = 2 and
n = 3, the matrix τ is respectively given by

(
0 1
1 0

)
and

⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠ .

We observe that

τ n−1 = τ−1 = τ ∗ .

The property that the operator Th commutes with ρ(a) implies that the matrixWh (of
Th |Fh in the basis Vh) commutes with τ , i.e., τWh = Whτ . Note that this invariance
condition yields that

Wh =
n−1∑
k=0

Ik(h)τ
k, (2.16)

for some coefficients I0(h), . . . , In−1(h) ∈ C. Here τ 0 denotes the identity matrix.
The Hermitian property of Wh gives, in addition,

I0(h) ∈ R , Ik(h) = In−k(h) for k = 1, . . . , n − 1 . (2.17)

Notice that the matrix Uh introduced in (2.2) satisfies the same properties as Wh .
Hence we can also write

Uh =
n−1∑
k=0

Jk(h)τ
k , (2.18)

for some coefficients J0(h), . . . , Jn−1(h) ∈ C and the Hermitian property of Uh also
implies

J0(h) ∈ R , Jk(h) = Jn−k(h) for k = 1, . . . , n − 1 . (2.19)

123



Flux and symmetry effects on quantum tunneling

All these invariant matrices (Wh or Uh) share the property to be diagonalizable in
the same orthonormal basis of eigenfunctions ek (k = 1, . . . , n)whose coordinates in
our selected basis are given by

(ek)� = ω(k−1)�
n , with ωn := exp(2iπ/n) .

It is then easy to compute the corresponding eigenvalues.
In particular, we get an explicit representation of the eigenvalues of Wh which

illustrates when n = 3, 4, the possibility of eigenvalue crossings (i.e. change of
multiplicity).

• When n = 2, Wh assumes the form

(
I0 I1
I1 I0

)
with I1 real. This matrix has two

eigenvalues
λ1 = I0 − |I1| , λ2 = I0 + |I1| . (2.20)

• When n = 3, Wh assumes the form

Wh =
⎛
⎝I0 I1 I1
I1 I0 I1
I1 I1 I0

⎞
⎠

with I1 = ρeiθ , ρ ≥ 0, θ ∈ [0, 2π). This matrix has three eigenvalues

μk = I0 + 2ρ cos

(
θ + (k − 1)

2π

3

)
, k ∈ {1, 2, 3}. (2.21)

• When n = 4, we meet the matrix

Wh =

⎛
⎜⎜⎝
I0 I1 I2 I1
I1 I0 I1 I2
I2 I1 I0 I1
I1 I2 I1 I0

⎞
⎟⎟⎠

with I2 real and I1 = ρeiθ , ρ ≥ 0, θ ∈ [0, 2π). We refer to [11] for a further
discussion of this case. Figure 3 illustrates the braid startucture of the eigenvalues
of the matrix Wh .

2.4 Applications

2.4.1 Additional hypothesis

We can strengthen the estimate of �h in (2.7) if we assume additionally that2

2 We shall see in the applications that the rough estimate of Jk (h) by Hölder’s inequality and (1)–(2) in
Assumption 2.1 is not sufficient to the accurate estimate of tunneling.
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Fig. 3 A schematic figure of four eigenvalues with a braid structure in the case of a rotational symmetry of
order 4

Assumption 2.11 There exists a positive constant S such that

S < 2 min
1≤ j≤3

S j , (2.22)

Jk(h) =
h↘0

O(e−S/h) (k = 0, · · · , n − 1), (2.23a)

and
|J1(h)| =

h↘0
e−(S+o(1))/h . (2.23b)

Proposition 2.12 There exist positive constants C, h0 > 0 such that, if Assump-
tions 2.1 and 2.11 hold, then for all h ∈ (0, h0], the symmetric matrix Rh = (ri j )
introduced in (2.8) satisfies

‖Rh‖ =
h↘0

O
(
e−3S/2h) = o

(|J1(h)|).
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Proof This follows by applying Proposition 2.4 (the same argument as in Corol-
lary 2.5). Indeed, we have by the first identity in (2.23),

�h = O(e−S/h)+O(C2
h) . (2.24)

Inserting (2.24) into the definition of εh in (2.7), we obtain that

εh = O(δh) where δh = Che
−S/h + C2

h = O(e−3S/2h). (2.25)

We can improve the bounds (2.9) of the symmetric matrix Rh into ri j = O(δh). To
finish the proof, we observe that, by the second identity in (2.23), δh = o(|J1(h)|). ��

2.4.2 The case n = 2

A first consequence of the previous analysis is a full understanding of the case corre-
sponding to n = 2 where the symmetry g2 reads (x1, x2) �→ (−x1,−x2). Assuming
that Assumptions 2.8 and 2.11 hold, we get from (2.20) and Proposition 2.12

λ2(h)− λ1(h) = 2|J1(h)| + o
(|J1(h)|). (2.26)

2.4.3 The case n = 3, braid structure of eigenvalues

Suppose that Assumptions 2.8 and 2.11 hold with n = 3. Let I0(h), I1(h) be as
in (2.16) and let us write

I1(h) = ρ(h)eiθ(h) where ρ(h) ≥ 0 and θ(h) ∈ [0, 2π).

Then, by (2.21), we have a relabeling μ1(h), μ2(h), and μ3(h) of the eigenvalues
λ1(h), λ2(h), and λ3(h) of Th with ρ = ρ(h) and θ = θ(h). Moreover,

I0(h) = J0(h)+O(δh), I1(h) = J1(h)+O(δh) ∼ J1(h) (2.27a)

with δh = o
(
J1(h)

)
defined in (2.25) and

J0(h) = 〈Thuh,1, uh,1〉, J1(h) = 〈Thuh,1, uh,2〉. (2.27b)

Notice that there is possibility for eigenvalue crossings between

• μ1(h) and μ2(h) if θ(h) ∈ {2π/3, 5π/3};
• μ2(h) and μ3(h) if θ(h) ∈ {0, π};
• μ1(h) and μ3(h) if θ(h) ∈ {π/3, 4π/3}.
The point is then to seek an accurate approximation of θ(h). Notice that (2.27) yields

I1(h) ∼
h↘0

J1(h). Defining θ1(h) by J1(h) = ρ1(h)eiθ1(h), we can approximate θ(h)

by θ1(h) modulo 2πZ. This could confirm the predicted braid structure mentioned in
[4, 11]. We will consider in detail three models where such a phenomenon holds (see
Theorem 3.9, Section 4, and Section 5).
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3 Electro-magnetic tunneling

3.1 Introduction

In this section, the Hilbert space is H = L2(R2), and for given n ∈ N we consider
g = gn to be rotation around the origin by 2π/n, and M(g) to be as in (2.14). We are
interested in the spectrum of the electro-magnetic Schrödinger operator

Lh,b = (−ih∇ − bA)2 + V ,

where b, h > 0, and

A(x) = 1

2
(−x2, x1) . (3.1)

Notice that A generates the constant magnetic field curlA = 1. For the potential V
we assume that

V ∈ C∞(R2,R) , (3.2a)

V ≤ 0 , (3.2b)

V is invariant by the rotation gn . (3.2c)

Moreover, we assume that

The minimum of V is attained at n non-degenerate minima. (3.2d)

Then it results from the invariance property of V that these minima are n equidistant
points of R

2 \ {0}. We will refer to these points as the wells.
Notice that, when dealing with a fixed b > 0 we can reduce the analysis to the case

where b = 1 by introducing an effective semi-classical parameter � = b−1h so that

Lh,b = b2
(
(−i�∇ − A)2 + b−2V

)
. (3.3)

So we will assume henceforth that b = 1. To relate with the discussion in Sect. 2, our
operator Th is the electro-magnetic Laplacian shifted by a certain scalar λ(h).

Th := Lh − λ(h), Lh = (−ih∇ − A)2 + V . (3.4)

Note that the assumption in (3.2c) implies that Th commutes with M(g). Hence the
condition of invariance of the preceding section holds. The shift constant λ(h) in (3.4)
will be chosen as the ground state energy of a reference single well operator.

3.2 Single well ground states

Let us first discuss the one well operator.
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3.2.1 Preliminary discussion and assumptions

There are various possible approaches to create one well problems in the presence
of multiple wells. The approach considered in [20, 21] starts from a general electric
potential V and introduce suitable Dirichlet conditions to create an infinite barrier
leading to a one well problem. The so-called LCAO3 approach, frequently used in
Physics and Atomic Chemistry, and considered in [10, 17], particularly applies when
V is a superposition of single well potentials.

As in [10, 17], we consider a radial single well potential. More precisely, we assume
in this section that V = v0, where v0 ∈ C∞

c (R2) is a non-positive radial function
satisfying ⎧⎪⎪⎨

⎪⎪⎩
v0(x) = v0(|x |) & vmin

0 := min
r≥0

v0(r) < 0 ,

supp v0 ⊂ D(0, a) := {x ∈ R
2 : |x | ≤ a} ,

v−1
0 (vmin

0 ) = {0} & v′′0 (0) > 0 .

(3.5)

We choose D(0, a) as the smallest closed disc containing supp v0, i.e.

a = a(v0) := inf{r > 0 : v0|[r ,+∞) = 0}. (3.6)

3.2.2 Preliminary inequalities

As in [17], we will encounter various errors of exponential order which are defined in
terms of the function v0 and the constant

L > 2a(v0) . (3.7)

With (v0, L) as above, a = a(v0) and with

d(r) = dv0(r) :=
∫ r

0

√
ρ2

4
+ v0(ρ)− vmin

0 dρ, (3.8)

we introduce the four constants (we will often skip the depends on v0 and L)

S0 = S0(v0, L) := d(L),

Sa = Sa(v0, L) := d(a)+ d(L − a),

Ŝa = Ŝa(v0, L) := d(L − a),

Ŝ = Ŝ(v0, L) := inf
0<r<a

[
Lr

2
+ d(r)+ d(L − r)

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.9)

3 for Linear Combination of Atomic Orbitals.
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Notice also that, since v0 vanishes on [a,+∞), we can express the constant Sa as
follows

Sa = 2
∫ a

0

√
r2

4
+ v0(r)− vmin

0 dr +
∫ L−a

0

√
r2

4
− vmin

0 dr .

It is important when comparing the errors to compare the three constants introduced
in (3.9).

Proposition 3.1 Assume that v0 and L satisfy (3.6) and (3.7). Then we have, with
a = a(v0),

Ŝa(v0, L) < Sa(v0, L) < Ŝ(v0, L) < min
(
S0(v0, L),

La

2
+ Sa(v0, L)

)
. (3.10)

Moreover, if v0 and L satisfy L ≥ 4a(v0), then 2Ŝa(v0, L) > Ŝ(v0, L).

Proof The inequality Ŝa < Sa is obvious. The other inequalities in (3.10) are proved
in [17, Prop. 3.3]. So assume that L > 4a and let us prove that 2Ŝa > Ŝ. Notice that
Sa = Ŝa + d(a) and Ŝ < La

2 + Sa , hence

2Ŝa − Ŝ > 2Ŝa − Sa − La

2
=
∫ L−a

a

√
ρ2

4
+ v0(ρ)− vmin

0
�����������������

≥ρ/2

dρ − La

2

≥ L2 − 4aL

4
> 0.

��

3.2.3 The one well approximate eigenfunction

Consider the single well operator

Lsw
h = (−ih∇ − A)2 + v0 (3.11)

whose ground state energy is
λ(h) = inf σ(Lh). (3.12)

Since v0 ≤ 0, Lsw
h is smaller (in the sense of comparison of self-adjoint operators)

than the Landau Hamiltonian (−ih∇−A)2. Hence we have by the min-max principle

λ(h) ≤ h . (3.13)

In light of the conditions on v0 in (3.5), we know from [17, Thm. 2.1] that λ(h) is
a simple eigenvalue and that Lsw

h has a positive radial ground state satisfying, for any
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relatively compact domain K of R
2,

uh(x) = uh(|x |),
∫

R
2
|uh(x)|2 dx = 1, ‖ed(|x |)/huh(x)‖H2(K ) = O(h−1/2),

(3.14)
An important term in the context of tunneling is the hopping coefficient defined in

[10, 17] (in the case n = 2) by

ch(v0, L) =
∫
D(0,a)

v0(x)uh(x)uh(x1 + L, x2)e
iLx2
2h dx (3.15)

where a = a(v0) (see (3.6)).
As observed in [10], the hopping coefficient is a negative real number and an

accurate estimate of it was established recently in [17, Sec. 4 & Eq. (4.32)], which we
recall below.4

Proposition 3.2 Assume that v0 and L satisfy (3.5) and (3.7). Then there exists a
positive constant S(v0, L) such that

lim
h↘0

(
h ln |ch(v0, L)|

) = −S(v0, L). (3.16)

Moreover,
Sa(v0, L) < S(v0, L) < Ŝ(v0, L) (3.17)

where Sa(v0, L) and Ŝ(v0, L) are introduced in (3.9).

We shall use Proposition 3.2 later on in the proof of Proposition 3.5 when dealing
with n potential wells (n ≥ 2). Let us recall the definition of S(v0, L) given in [17,
Eq. (4.25) and (4.26)]. We have

S(v0, L) := −F(v0)+ inf
r∈[0,a]

t∈(0,+∞)

�(r , t), (3.18)

where a = a(v0) is introduced in (3.6) and, with d introduced in (3.8),

F(v0) := a

4

√
a2 + 4|vmin

0 | + |vmin
0 |
2

ln

(√
a2 + 4|vmin

0 | + a
)2

4|vmin
0 | − d(a),

�(r , t) := d(r)+ r2 + L2

4
(2t + 1)+ |vmin

0 |
2

ln

(
1+ 1

t

)
− Lr

√
t(t + 1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(3.19)

The following proposition dealswith a term similar to the hopping coefficient and plays
a key role in the approximation of various error terms that we will encounter later, e.g.
when we verify Assumption 2.1 for an electro-magnetic Schrödinger operator with
multiple wells, as in Proposition 3.4.

4 Notice that the estimate of ch(v0, L) does not require the assumption L > 4
(
a(v0) +

√
vmin
0

)
imposed

in [10] (see also [17, Theorem 1.4]).
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Proposition 3.3 We have, as h → 0,

w :=
∫
D(0,L)

uh(x)uh(x1 + L, x2)e
iLx2
2h dx = O

(
e
−Sa+o(1)

h

)
,

where a = a(v0), L > 2a and Sa is defined in (3.9b).

Proof We can estimate w in the same way as the hopping coefficient ch(v0, L) was
estimated in [17, Prop. 3.5].

The only difference is that in the expression of ch(v0, L) (see (3.15)) we encounter
the potential energy term v0 in the integrand and the integral is consequently over the
smaller disc D(0, a). Hence the new term to estimate corresponds to w2 below, w3
being of the same type as w1 after a symmetry.

We decompose the integral defining w into three terms

w = w1 + w2 + w3 ,

w1 =
∫
D(0,a)

uh(x)uh(x1 + L, x2)e
iLx2
2h dx ,

w2 =
∫
D(0,L−a)\D(0,a)

uh(x)uh(x1 + L, x2)e
iLx2
2h dx ,

w3 =
∫
D(0,L)\D(0,L−a)

uh(x)uh(x1 + L, x2)e
iLx2
2h dx .

Step 1: Contribution of the integral in D(0, a).We express the integral defining
w1 in polar coordinates

w1 =
∫ 2π

0

∫ a

0
uh(r)uh

(√
r2 + L2 + 2Lr cos θ

)
e
iLr sin θ

2h r dr . (3.20)

In light of the decay property in (3.14), we get

w1 = O(h−1e−S̃/h),

where

S̃ = inf
0<θ<2π

{
inf

0<r<a

[
d(r)+ d(

√
r2 + L2 + 2Lr cos θ)

]}
.

Since
√
r2 + L2 + 2Lr cos θ > L − r and since r �→ d(r) is non-decreasing,

S̃ ≥ inf
0<r<a

(
d(r)+ d(L − r)

) = d(a)+ d(L − a) = Sa
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where Sa is introduced in (3.9b). Notice that the penultimate identity follows from the
fact that

d

dr
[d(r)+ d(L − r)] =

√
r2

4
+ v0(r)− vmin

0 −
√

(L − r)2

4
− vmin

0 < 0 (0 < r < a).

Therefore, we have that
w1 = O(h−1e−Sa/h). (3.21)

Step 2: Contribution of the integral in D(0, L) \ D(0, L − a). We argue as in
Step 1. Expressing the integral defining w3 in polar coordinates

w3 =
∫ 2π

0

∫ L

L−a
uh(r)uh

(√
r2 + L2 + 2Lr cos θ

)
e
iLr sin θ

2h r dr , (3.22)

we get

w3 = O(h−1e−S̃′/h),

where

S̃′ = inf
0<θ<2π

(
inf

L−a<r<L

(
d(r)+ d

(√
r2 + L2 + 2Lr cos θ

)))
≥ inf

L−a<r<L

(
d(r)+ d(L − r)

) = inf
0<t<a

(
d(t)+ d(L − t)

) = Sa .

Therefore, we have that
w3 = O(h−1e−Sa/h). (3.23)

Step 3: Contribution of the integral in D(0, L − a) \ D(0, a). We express the
integral defining w2 as follows

w2 =
∫ L−a

a
uh(r)

(∫ 2π

0
Kh(r , θ)dθ

)
r dr , (3.24)

where

Kh(r , θ) = uh
(√

r2 + L2 + 2Lr cos θ
)
e
iLr sin θ

2h .

Observing that for a < r < L − a, we have a < L − r < L − a and

ρ :=
√
r2 + L2 + 2Lr cos θ ≥ L − r > a,

so uh(ρ) has a nice integral representation [10, Eq. (2.9)]. Consequently, the integral
of Kh with respect to θ is computed as in [10, Prop. 5.1]. In fact, we have (see [17,
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Eq. (3.23)-(3.24)])

∫ 2π

0
Kh(r , θ)dθ = Ch exp

(
−r2 + L2

4h

)∫ +∞

0
Gh(r , t) dt , (3.25)

where

Gh(r , t) = exp

(
− (r2 + L2)t

2h

)
tα−1(1+ t)−α I0

(
Lr

√
t(t + 1)

h

)
, (3.26)

Ch, α are constants and z �→ I0(z) is the modified Bessel’s function of order 0 (see
[17, Lem. 5.2]).

Let η ∈ (0, 1) and observe that [17, Lem. 4.1],

∫ L−a

a
uh(r)

(
Ch exp

(
−r2 + L2

4h

)∫ η

0
Gh(r , t)dt

)
r dr

= O(ec
√
η/h)

∫ L−a

a
uh(r)uh(

√
L2 + r2)r dr .

By the decay properties of uh in (3.14), we get (using also (3.10) for the last estimate)

∫ L−a

a
uh(r)

(
Ch exp

(
−r2 + L2

4h

)∫ η

0
Gh(r , t)dt

)
r dr = O(e(c

√
η−S0)/h)

= O(e−Sa/h),

for sufficiently small η.
Now we deal with the following integral

∫ L−a

a
uh(r)

(
Ch exp

(
−r2 + L2

4h

)∫ +∞

η

Gh(r , t)dt

)
r dr ,

which is asymptotically equivalent to [17, Lem. 4.4]

m(v0)√
2πh

∫ L−a

a

√
r a0(r)

∫ +∞

η

g0(t) exp

(
−�(r , t)− F(v0)

h

)
dt dr ,

where F(v0),�(r , t) are introduced in (3.19) and m(v0), g0(t) are introduced in [17,
Eq. (3.17) and (4.5)] as follows

m(v0) =
√
1+ 2v′′0 (0)

2π

√
2a|vmin

0 |
π

(
a2 + 4|vmin

0 |)1/4√
a2 + 4|vmin

0 | + a
,

g0(t) = 1

t5/4(t + 1)1/4

(
1+ 1

t

) 1
2 (
√

1+2v′′0 (0)−1)

,
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and the function a0 is defined as follows

a0(r) = 1

2

√
1+ 2v′′0 (0)

π
exp

⎛
⎝−

∫ r

0

1

2

d ′′(ρ)
d ′(ρ)

+ 1

2ρ
−

√
1+ 2v′′0 (0)
2d ′(ρ)

dρ

⎞
⎠ .

Of importance to us is that

−F(v0)+ inf
(r ,t)∈[a,L−a]×R+

�(r , t) ≥ Sa,

which follows by the same argument as used in the proof of [17, Prop. 4.5]; for
convenience, we provide details in Appendix A.

We get eventually
w2 = O(e(−Sa+o(1))/h). (3.27)

With (3.21) and (3.23), this achieves the proof of the proposition. ��

3.3 Verifying Assumption 2.1—superposition of single well potentials

We study the specific case where the potential V is given by

V (x) =
n∑

k=1

v0(x − zk) , (3.28)

where v0 is the non-positive radial function satisfying (3.5) and (we identify C and
R
2)

zk := L√
2− 2 cos(2π/n)

e2ikπ/n, L > 0. (3.29)

The wells in this setting are the points {zk}1≤k≤n which are selected so that

dist(zk, zk+1) = L. (3.30)

Let us verify that V satisfies (3.2c). Our construction of the points zk is such that
zk+1 = gzk , for k ∈ Z/nZ. Since v0 is radial, we have

v0(g
−1x − zk) = v0(|g−1(x − gzk)|) = v0(x − zk+1).

Consequently, (3.2c) holds and Th commutes with M(g). We still have to check that
Assumption 2.1 holds with the choice in Assumption 2.8 (3).

We introduce the functions

uh,k(x) = χ(x − zk)uh(x − zk)e
−izk ·A(x)/h (1 ≤ k ≤ n), (3.31)

where
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• (zk)1≤k≤n are the points introduced in (3.29);
• A is the vector field introduced in (3.1);
• χ ∈ C∞

c (R2; [0, 1]) is a radial cut-off function satisfying χ = 1 on D(0, L) and
suppχ ⊂ D(0, L + η) with η ∈ (0, 1) fixed arbitrarily.

The phase term in (3.31) is due to the effect of magnetic translation, which ensures
that ψh,k(x) = uh(x − zk)e−izk ·A(x)/h satisfies

Lsw
h,kψh,k = λ(h)ψh,k where Lsw

h,k := (−ih∇ − A)2 + v0(· − zk). (3.32)

The above constructions ensures that Assumption 2.8 (3) holds (since z · A(g−1
n x) =

(gnz) · A(x)). Moreover, the next proposition shows that Assumption 2.1 holds too.

Proposition 3.4 Let Th and λ(h) be as in (3.4) and (3.12) respectively. The conditions
in Assumption 2.1 hold with the following choices:

(a) {uh,1, . . . , uh,n} are as in (3.31);
(b) any constants S1,S2,S3, p satisfying

S1 ∈ (0, Ŝa), S2 ∈ (0, 2Ŝa), S3 ∈ (0, Ŝa), p ∈ (0, 1], (3.33)

where Ŝa is introduced in (3.9).

Proof Step 1. We have by (3.31) and (3.32),

rh,k :− Thuh,k =
(
−h2(�χk)+ 2ih(∇χk) · (−ih∇ − A)+ χk

∑
i �=k

v0(x − zi )
)
ψh,k,

(3.34)
where χk(x) = χ(x − zk).

Since rh,k is supported in D(zk, L + η) \ D(zk, L − a), we get by using (3.14) and
the decay of the ground state uh that

‖rh,k‖ = O(h−1/2e−Ŝa/h). (3.35)

Step 2. We have

‖uh,k‖2 = ‖uh‖2 −
∫

R
2
(1− χ2)|uh |2 dx .

Since 1− χ2 is supported in R
2 \ D(0, L), we get by the decay of uh that

‖uh,k‖2 = 1+O(h−1e−2S0/h)

where S0 is introduced in (3.9a).
Let us now consider i �= j . We first inspect the case where |zi − z j | = L , which

occurs only if j = i ± 1. By a change of variable, we check that (thanks to the
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invariance by rotation)

〈uh,i , uh, j 〉 =
{
〈uh,1, uh,2〉 if j = i + 1

〈uh,1, uh,2〉 if j = i − 1.

By (3.31), the function uh,1uh,2 is supported in D(z1, L + η) ∩ D(z2, L + η). Then,
we perform the following decomposition

〈uh,1, uh,2〉 = E1 + E2 + E3

where,

E1 :=
∫
D(z1,L)

uh(x − z1)uh(x − z2)e
−i(z1−z2)·A(x) dx,

E2 := −
∫
|x−z1|<L

(1− χ(x − z2))uh(x − z1)uh(x − z2)e
−i(z1−z2)·A(x) dx

= O(h−1/2e−S0/h)

E3 :=
∫
L<|x−z1|<L+η
0<|x−z2|<L+η

uh,1(x)uh,2(x) dx = O(h−1/2e−S0/h).

In fact, in D(z1, L) ∩ D(z2, L + η), we have

uh,1(x)uh,2(x) = χ(x − z2)uh(x − z1)uh(x − z2)e
−i(z1−z2)·A(x) ,

with uh a radial function. By a change of variable (the translation x �→ x−z1 followed
by the rotation by the angle α defined by z1 − z2 = |z1 − z2|eiα), we get

|E1| =
∣∣∣∣
∫
D(0,L)

uh(x)uh(x1 + L, x2)e
iLx2
2h dx

∣∣∣∣,
and by Proposition 3.3, we get

E1 = O(h−1/2e−(Sa+o(1))/h)+O(h−1/2e−S0/h) = O(e−Ŝa/h),

where in the last step we used the inequalities Ŝa < Sa < S0 from Proposition 3.1.
If |zi − z j | �= L , then 〈uh,i , uh, j 〉 = O(h−1/2e−(Sa+o(1))/h)+O(h−1/2e−S0/h) by

a similar argument.
Step 3. Let us now estimate λn+1(h) from below. Consider a partition of unity on

R
2,
∑n

k=0 ζ
2
k = 1, where

for 1 ≤ k ≤ n, ζk = 1 on D

(
zk,

L

2

)
, supp ζk ⊂ D(zk, L − a) ,
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and

supp ζ0 ⊂ �0 := R
2 \

n⋃
k=1

D

(
zk,

L

2

)
.

Then, we have,

v0(x − zi )ζk(x) = 0 for i �= k , 1 ≤ k ≤ n ,

and

v0(x − zi )ζ0(x) = 0 for 1 ≤ i ≤ n .

Pick a function f in the domain of Lh . We have the decomposition formula

〈Th f , f 〉 =
n∑

k=1

〈Lsw
h (ζk fh), ζk fh〉 + 〈(−ih∇ − A)2(ζ0 fh), ζ0 fh〉

−h2
n∑

k=0

‖|∇ζk | fh‖2 − λ(h).

By the min-max principle, we have

∀ j ≥ 1, λ j (h) ≥ λ j

(
(−ih∇ − A)2

⊕
⊕n

k=1Lsw
h

)
− λ(h)− M0nh

2,

where

M0 = max
0≤k≤n

‖∇ζk‖2∞.

Finally, we use the well known asymptotics (see [17, Prop. A.1])

λ(h) = λ1(Lsw
h ) = vmin

0 + E1h +O(h3/2), λ2(Lsw
h ) = vmin

0 + E2h +O(h3/2),

where E1 =
√
1+ 2v′′0 (0) and E2 > E1, and we conclude that

λn+1(h) ≥ (E2 − E1)h +O(h3/2).

��
The next proposition allows us to verify Assumption 2.11.

Proposition 3.5 With J0(h) = 〈Thuh,1, uh,1〉 and J1(h) = 〈Thuh,1, uh,2〉 we have

J0(h) = O(h−1e−2Ŝa(v0,L)/h)

123



Flux and symmetry effects on quantum tunneling

and

J1(h) = e−iφn/2hch(v0, L)+O(h−1e−S0(v0,L)/h),

where ch(v0, L) is the hopping coefficient introduced in (3.15), Ŝa(v0, L)and S0(v0, L)
are introduced in (3.9) and

φn = − L2 sin(2π/n)

2− 2 cos(2π/n)
.

Moreover,

h ln |J1(h)| ∼
h↘0

−S(v0, L),

where S(v0, L) is introduced in (3.18).

Proof From (3.34), we have

J0(h) = 〈(Lh − λ(h))uh,1, uh,1〉 =
∫
L−a≤|x−z1|≤L+η

rh,1(x)uh,1(x) dx

= O(h−1e−2Ŝa/h).

We now move to estimate J1(h). First let us recall that the symmetry relations in
Assumption 2.8 (3) imply that uh,1 = M(g)uh,n and5

J1(h) = 〈Thuh,1, uh,2〉 = 〈Thuh,n, uh,1〉 = 〈Thuh,1, uh,n〉.
Similarly to the previous estimate of J0(h), by (3.32) and (3.34) we have

J1(h) = J app1 (h)+O(h−1e−S0/h),

where

J app1 (h) =
∫
D(zn ,a)

v0(x − zn)uh(x − z1)uh(x − zn)e
−i(zn−z1)·A(x)/h dx .

Notice that (zn − z1) · A(x) = (zn − z1) · A(x − zn + z1). By a translation, we get

J app1 (h) = e−i(zn−z1)·A(z1)/h
∫
D(0,a)

v0(y)uh(y + zn − z1)uh(y)e
−i(zn−z1)·A(y)/h dy.

With �n = L√
2−2 cos(2π/n)

, we have zn = (�n, 0) and z1 = (
�n cos(2π/n), �n

sin(2π/n)
)
. Hence

(zn − z1) · A(z1) = zn · A(z1) = φn

2
.

5 This formulation will be helpful since zn lies on the x-axis.
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Observing that |zn− z1| = L , we write zn− z1 = Leiβn where βn ∈ (0, π ]. We denote
by Rβn the rotation by βn around the origin. Noticing that

u · A(Rβnv) = (R−1
βn

u) · A(u) (u, v ∈ R
2),

we get that

(zn − z1) · A(Rβn x) =
(
L
0

)
·
(−x2/2

x1/2

)
= − Lx2

2
.

The change of variable y �→ x = R−1
βn

y yields

J app1 (h) = e−iφn/2h
∫
D(0,a)

v0(x)uh(x1 + L, x2)uh(x)e
iLx2/h dy

where we used that the functions v0, uh are radial and that

|Rβn x + zn − z1| = |x + R−1
βn

(zn − z1)| = |(x1 + L, x2)|.

Now we have that e−iφn/2h J app1 (h) = ch(v0, L) and by Proposition 3.2

h ln |J app1 (h)| ∼
h↘0

−S(v0, L).

The same asymptotics holds for |J1(h)| because S0(v0, L) > S(v0, L). ��

From now on, we work under the following assumption on (v0, L).

Assumption 3.6 With a = a(v0) introduced introduced in (3.6) and L > 2a, the func-
tion v0 satisfies 2Ŝa(v0, L) > S(v0, L), where Ŝa(v0, L) and S(v0, L) are introduced
in (3.9) and (3.18) respectively.

Remark 3.7 By Proposition 3.1, Assumption 3.6 holds if L ≥ 4a(v0).

We fix the choice ofS1,S2,S3 as in (3.33) but with the additional condition that

S(v0, L) < 2 min
1≤ j≤3

S j .

This is possible under Assumption 3.6 since S(v0, L) < 2Ŝa(v0, L). Therefore, (2.22)
holds with S = S(v0, L) and Proposition 3.5 ensures that the other conditions in
Assumption 2.11 hold too6.

6 This is explicitly done for n = 2, 3 and can be easily justified for n ≥ 4.
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3.4 The case n = 2: Double wells

We choose here V to be the double well potential defined by (3.28) for n = 2. We
therefore have two wells

z1 =
(
− L

2
, 0
)
, z2 =

( L
2
, 0
)
, L > 2a > 0. (3.36)

A straightforward application of (2.26), Propositions 3.4 and 3.5 (and Section 2.4.2)
yields the following.

Theorem 3.8 Assuming the conditions in (3.5) and in Assumption 3.6 are fulfilled,
then the following asymptotics holds,

h ln
(
λ2(h)− λ1(h)

) ∼
h↘0

−S(v0, L), (3.37)

where S(v0, L) is the constant introduced in (3.18).

3.4.1 Discussion

Let us introduce the following classes7 of admissible (v0, L), where v0 satisfies the
conditions in (3.5), and

A = {(v0, L) : L > 2a(v0) and (3.37) holds},
A FSW = {(v0, L) : L > 4(a(v0)+

√
|vmin

0 |)},
A

HKS = {(v0, L) : v0 satisfies Assumption 3.6}
A HKS = {(v0, L) : L ≥ 4a(v0)}.

By Proposition 3.1, we have

A HKS ⊂ A
HKS

and by Theorem 3.8

A
HKS ⊂ A .

The earlier results in [10, 17] yield that

A FSW ⊂ A .

However, our results are much stronger since A FSW is a proper subset of A HKS.

7 A FSW is the admissible class introduced by Fefferman-Shapiro-Weinstein and HKS refers to the
admissible classes introduced in this paper.
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3.4.2 Proof of Theorem 1.2

In light of (3.3), it suffices to apply Theorem 3.8 with the effective semi-classical
parameter � = b−1h and the effective potential defined by b−2v0. We then obtain
Eb,L(v0) = bS(b−2v0, L).

3.5 The case n = 3: Three wells and flux effects

Let us assume that n = 3 so that V defined by (3.28) is a potential with three wells

z1 = L

2
√
3
(−1,

√
3), z2 = L

2
√
3
(−1,−√

3), z3 = L√
3
(1, 0),

which are located on the vertices of an equilateral triangle with side length L and let

D ⊂ R
2 be its interior. The area of D is then

√
3
4 L2. The flux of the magnetic field in

D is

� := 1

2π

∫
D
curlA dx =

√
3L2

8π
. (3.38)

By Proposition 3.5, we have and

J0(h) = O(e−2Ŝa/h) with S(v0, L) < 2Ŝa .

and

|J1(h)| ∼
h↘0

|ch(v0, L)| = exp

(
− S(v0, L)+ o(1)

h

)
.

Recall that it was proved in [10] that ch(v0, L) is a negative real number. So we infer
from Proposition 3.5,

e−2π i�/h J1(h) ∼
h↘0

ch(v0, L) and ch(v0, L) ∼
h↘0

−|J1(h)|.

Therefore, we conclude that

J1(h) ∼
h↘0

−|J1(h)|e2π i�/h = |J1(h)|e2π i�/h+iπ , |J1(h)|

=
h↘0

exp

(
− S(v0, L)+ o(1)

h

)
.

Recall that by (2.27),
I1(h) ∼

h↘0
J1(h), (3.39)

and that I1(h) = |I1(h)|eiθ(h), with θ(h) ∈ [0, 2π). It results from (3.39) that |I1(h)| ∼
|J1(h)|, and also

eiθ(h)−2π i�/h−iπ ∼ 1. (3.40)
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If for a given constant c0 ∈ (0, 1) we introduce the set

N(c0) =
{
h ∈ (0, 1], dist

(
�

h
+ 1

2
,Z

)
≥ c0

}
, (3.41)

then

∀h ∈ N(c0), 0 < c0 ≤ �

h
+ 1

2
−
⌊
�

h
+ 1

2

⌋
≤ 1− c0 < 1,

and it results from (3.40) that (since θ(h) ∈ [0, 2π) in the definition of I1(h))

θ(h) =
h↘0

h∈N(c0)

2π

(
�

h
+ 1

2
−
⌊
�

h
+ 1

2

⌋)
+ o(1). (3.42)

Now by paragraph 2.4.3 we get crossing of eigenvalues quantified via the following
functions

a(x) = cos

(
x + 2π

3

)
− cos (x) ,

b(x) = cos

(
x + 4π

3

)
− cos

(
x + 2π

3

)
.

(3.43)

Theorem 3.9 Assume that the conditions in (3.5) are fulfilled and that V is defined
by (3.28) with n = 3. If Assumption 3.6 holds, then there is a relabeling
μ1(h), μ2(h), μ3(h) of the eigenvalues λ1(h), λ2(h), λ3(h) of the electro-magnetic
Schrödinger operator Lh such that the asymptotics

μ2(h)− μ1(h) =
h↘0

(
a(�/h)+ o(1)

)
exp

(−S(v0, L)+ o(1)

h

)

μ3(h)− μ2(h) =
h↘0

(
b(�/h)+ o(1)

)
exp

(−S(v0, L)+ o(1)

h

) (3.44)

hold for all L > 2a(v0).
Moreover, there exists a sequence

(
h1(k), h2(k), h3(k)

)
k≥k0

which converges to 0
such that, for all k ≥ k0 we have

0 < h1(k + 1) < h3(k) < h2(k) < h1(k) < 1

and

μ1
(
h1(k)

) = μ3
(
h1(k)

)
, μ1

(
h2(k)

) = μ2
(
h2(k)

)
, μ2

(
h3(k)

) = μ3
(
h3(k)

)
.

Proof To get the asymptotics in (3.44), we use the computations in Paragraph 2.4.3
and (3.39). Then we approximate |J1(h)| by Proposition 3.5.

As indicated in (3.42), the function h �→ θ(h) will not be continuous on any open
right neighborhood of 0, since, as h decreases towards 0, it will necessarily make
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infinite many jumps of size 2π . Given ε > 0 we can, however, avoid the jumps by
restricting θ to the union of an infinite number of small disjoint intervals Ik , k ∈ N,
with the right endpoint of Ik+1 is less than the left endpoint of Ik , and moreover such
that θ maps each such interval continuously onto the interval (ε, 2π−ε). This follows
from (3.40) and the fact that h �→ I1(h) is continuous. In each interval Ik we can find
h1(k), h2(k) and h3(k) such that

θ(h1(k)) = π

3
, θ(h2(k)) = 2π

3
, θ(h3(k)) = π.

In fact, since h �→ �/h + 1/2 is strictly monotone and since π/3, 2π/3 and π are
well separated, we can, eventually by starting our counting on a larger k (which means
that we consider smaller h), impose that h1(k) > h2(k) > h3(k) holds. We conclude
that we get the eigenvalue crossings as indicated in Paragraph 2.4.3. ��

4 Smoothed triangles and Neumann boundary condition

4.1 Introduction

4.1.1 Geometric setting

In this section,� is a bounded open set of R
2 withC∞ boundary �. The Hilbert space

is H = L2(�) and we will assume (see below for the invariance assumption) that we
are in the situation considered in Remark 2.7.

We assume that� is a simple curve and denote its length by |�| = 2L . LetR/2LZ �
s �→ γ (s) be the arc-length parameterization of � such that the unit tangent vector
τ(s) := γ̇ (s) turns counterclockwise. Let us denote by k the curvature along� defined
as follows

γ̈ (s) = k(s)ν(s)

where ν(s) is the unit normal to � at γ (s) pointing inward �.

Definition 4.1 We introduce the maximal curvature along � as follows

kmax = max
s∈R/2LZ

k(s) (4.1)

and call a point z0 ∈ � a curvature well if z0 = γ (s0) and k(s0) = kmax. The point
z0 is said to be a non-degenerate curvature well if furthermore k′′(s0) < 0. We denote
by �0 the set of curvature wells.

Consider a positive integer n and the rotation by 2π/n denoted by gn . We assume
that

� is invariant by the rotation gn (4.2a)
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and that we have n non-degenerate curvature wells

�0 = {z1 = γ (s1), · · · , zn = γ (sn)} (4.2b)

with8

s j = ( j − 1)
2L

n
, k′′(s j ) < 0 (1 ≤ j ≤ n). (4.2c)

The symmetry assumption yields that

z j+1 = gnz j (1 ≤ j ≤ n − 1). (4.2d)

and

γ

(
s + 2L

n

)
= gnγ (s), k

(
s + 2L

n

)
= k(s) (s ∈ R/2πZ). (4.2e)

4.1.2 The magnetic Neumann Laplacian

We are interested in the magnetic Neumann Laplacian L N
h = (−ih∇ − A)2, in the

Hilbert space L2(�), where the magnetic field B = curlA = 1 is uniform9 and
generated by the magnetic potential A introduced in (3.1). The operator L N

h acts on
functions u ∈ H2(�) satisfying the (magnetic) Neumann condition

ν · (−ih∇ − A)u|� = 0.

The case of double curvature wells corresponding to n = 2 was treated in [6], where
the symmetry was generated by the reflection g̃2 (see Remark 2.9). Here we focus
on the case with n ≥ 3 curvature wells and where the symmetry is generated by a
rotation. When n = 3, a typical example is the smoothed triangle (Fig. 2). When � is
an equilateral triangle the heuristic discussion is given in [11] but no rigorous result
can be given since the authors were unable to have a sufficiently accurate control of
the tunneling. Numerically, this has been computed in [4] which in particular gives
the enlightening picture predicting eigenvalue crossings (Fig. 4). We refer to [5, Sec.
5] for rigorous analysis in the case of polygons and to [27] for a comprehensive study
of the magnetic Laplacian.

The investigation ofL N
h can be connectedwith Section 2 after shifting by a constant

�(h) and taking the operator Th as follows

Th = L N
h − �(h). (4.3)

The shift constant �(h) will be defined by the ground state energy of an operator with
a single curvature well.

8 We identify R/2LZ and [0, 2L).
9 We can handle any magnetic field intensity b > 0 by a change of semi-classical parameter.
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Fig. 4 Eigenvalue crossings in an equilateral triangle

Two constants are important in our analysis. First wemeet a magnetic flux like term
that controls the eigenvalue crossings and is defined by

�0 = |�| − |�|ξ0 = |�| − 2Lξ0, (4.4a)

Secondly the following constant controls the strength of the tunneling and is defined
by

Sn =
√

2C1

(μN
1 )′′(ξ0)

∫ 2L/n

0

√
kmax − k(s) ds. (4.4b)

The definition of �0 and Sn involves universal constants related to the deGennes
model.We recall that, for ξ ∈ R,μN

1 (ξ) denotes the lowest eigenvalue of theNeumann
realization of the Harmonic oscillator on the semi-axis R+:

hN [ξ ] = − d2

dτ 2
+ (ξ + τ)2 (4.5a)

Minimizing over ξ ∈ R we get the deGennes constant

!0 = inf
ξ∈R

μN
1 (ξ) = μN

1 (ξ0), where ξ0 = −√!0 . (4.5b)

Denoting by u0 the positive L2- normalized ground state of hN [ξ0], the constant C1
appearing in (4.4b) is defined by

C1 = |u0(0)|2
3

. (4.5c)
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4.2 Reduction to tubular domain

In a tubular neighborhood of the boundary, we can work with adapted coordinates
(s, t) ∈ R/2LZ × R+ that are linked to Cartesian coordinates as follows

(x1, x2) = T (s, t) := γ (s)− tν(s). (4.6)

There exists a geometric constant ε0 > 0 such that the above transformation is
invertible when 0 < t < ε0; the image of � is the tubular neighborhood of �

�(ε0) = {x ∈ � : dist(x, ∂�) < ε0} (4.7)

and for x ∈ �(ε0), (s, t) = T −1(x) means that s is the arc-length coordinate of the
projection of x on � and t is the normal distance from x to �. We will refer to s as the
tangential variable and to t as the normal variable.

Let us understand the action of the operator in (2.14) in these adapted coordinates.
Let u be supported in �(ε0) and v = M(g)u. Then by (4.2e), ṽ(s, t) = v ◦T satisfies

ṽ(s, t) = ũ

(
s − 2L

n
, t

)
, ũ = u ◦T . (4.8)

The Hilbert space L2(�(ε0)) is transformed to the weighted space

L2((R/2LZ)× (0, ε0); a ds dt
)
, a(s, t) = 1− tk(s).

After a gauge transformation to eliminate the normal component ofA, see [11,App. F],
the action of the operator L N

h is transformed into

L̃h := −h2a−1∂t a∂t + a−1
(
−ih∂s + γ0 − t + k(s)

2
t2
)

× a−1
(
−ih∂s + γ0 − t + k(s)

2
t2
)

where

γ0 = |�|
2L

= π

L
� (4.9)

and

� = 1

2π

∫
�

B dx is the magnetic flux in � .

The change of variables, t = h1/2τ and s = σ , transforms R/2LZ × (0, ε0) and the
measure to a ds dt to

�̃h = (R/2LZ) × (0, ε0h
−1/2) and ãh(σ, τ ) = 1− h1/2τk(σ ).
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Moreover, it transforms the Hilbert space L2
(
(R/2LZ) × (0, ε0); a ds dt

)
to the

Hilbert space L2
(
�̃h; ãh dσ dτ

)
, and the operator L̃h to h ˜Nh where

˜Nh = −ã−1
h ∂τ ãh∂τ + ã−1

h

(
−ih1/2∂σ + h−1/2γ0 − τ + h1/2

k(σ )

2
τ 2
)

×ã−1
h

(
−ih1/2∂σ + h−1/2γ0 − τ + h1/2

k(σ )

2
τ 2
)
. (4.10)

Let us consider ˜Nh , in L2
(
�̃h; ãh dσdτ

)
, with domain10

Dom( ˜Nh) = {u ∈ L2(�̃h; dσdτ
) : ∂2τ u, ∂

2
σu ∈ L2(�̃h; dσdτ

)
,

∂τu|τ=0 = 0, u|τ=ε0h−1/2 = 0}.

The study of the eigenvalues ofL N
h , can then be compared with those of ˜Nh (see [6,

Prop. 2.7]).

Proposition 4.2 Let N ∈ N and Sn be the constant introduced in (4.4b). There exist
K > Sn, C, h0 > 0 such that, for all h ∈ (0, h0] and 1 ≤ k ≤ N, we have,

λk(L
N
h )− Ce−K/h

1
4 ≤ hλk( ˜Nh) ≤ λk(L

N
h )+ Ce−K/h

1
4
,

where λk(L
N
h ) and λk(Ñh) are the k-th eigenvalues, counting multiplicity, of the

operators L N
h and ˜Nh, respectively.

Recall that we are interested in applying the results in Sect. 2 to the operator Th
obtained by shifting the operator L N

h (see (4.3)). Effectively, that is related to the

operator obtained by doing the corresponding shift to the operator ˜Nh ,

T̃h = ˜Nh − h−1�(h). (4.11)

Our next task is to verify Assumptions 2.1 and 2.8 (they will both hold for T̃h and Th)
and this will require the construction of certain quasi-modes (uh,i )1≤i≤n . Let us make
the following two observations:

(i) The assumption in (4.2a) implies that T̃h commutes with M(gn), hence the
condition of invariance by rotation holds.

(ii) For every fixed labeling n, the eigenfunctions of T̃h corresponding to the n’th
eigenvalue decay exponentially in the (rescaled) tangential variable; more pre-
cisely, given an eigenfunction fn of T̃h with corresponding eigenvalue λn(T̃h ,
there exist positive constants Cn, hn, αn such that

∀ h ∈ (0, hn],
∫
�̃h

eαkτ
(|∂τ fn|2 + | fn|2

)
ds dτ ≤ Ck

∫
�̃h

| fn|2 ds dτ.

10 Since ãh = O(ε0‖k‖∞), and ε0 � 1, the vector space with weighted measure L2
(
�̃h; ãh dσdτ

)
is the

same as the space with the flat measure L2
(
�̃h; dσdτ

)
with equivalent norm.
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The relevance of (i) above is that we can construct quasi-modes of T̃h obeying
the symmetry invariance properties as in Assumption 2.8, and in turn we can use
these quasi-modes to produce quasi-modes for the initial operator Th in (4.3). The
observation in (ii) asserts that the eigenfunctions of T̃h , once rescaled to the initial
tangential variable t = h1/2τ , can be ignored in the interior of the domain �.

The expression of the operator ˜Nh (and hence T̃h) involves the effective semi-
classical parameter � := h1/2. This leads us to adjust our setting by working with the
operators

T� = N� − λ(�) (4.12)

and

N� = −a−1
�

∂τa�∂τ + a−1
�

(
−i�∂σ + �

−1γ0 − τ + �
k(σ )

2
τ 2
)

×a−1
�

(
−i�∂σ + �

−1γ0 − τ + �
k(σ )

2
τ 2
)

(4.13)

where

a�(σ, τ ) = 1− �τk(σ ) = ãh(σ, τ ), λ(�) = h−1�(h) .

4.3 The single well problem

4.3.1 Definition of the operator

Let us recall that by (4.2a) and (4.2b), we have on the interval (−2L/n, 2L/n) a
single non-degenerate maximum, s1 = 0, of the curvature k(s). Let us fix a positive
η < min( 14 ,

L
4n ) and consider the following set

�̃
(1)
�,η

=
(
−2L

n
+ η,

2L

n
− η

)
× (0, ε0�

−1).

Now we consider the operator

N (1)
�

= −a−1
�

∂τa�∂τ + a−1
�

(
−i�∂σ + �

−1γ0 − τ + �
k(σ )

2
τ 2
)

×a−1
�

(
−i�∂σ + �

−1γ0 − τ + �
k(σ )

2
τ 2
)

(4.14)

with domain

Dom(N (1)
�

) = {u ∈ L2(�̃(1)
�,η

; dσdτ) : ∂2τ u, ∂
2
σu ∈ L2(�̃(1)

�,η
; dσdτ),

∂τu|τ=0 = 0, u|τ=ε0h−1/2

= 0, u|σ=±(2L/n−η) = 0}.
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We denote by λ(�) the ground state energy of the operatorN (1)
�

; it is simple and can
be expanded as follows [7, 12]

λ(�) ∼
�→0

!0 − 3C1kmax� + C1!
1/4
0

√
3|k2|
2

�
3/2 +

∑
j≥4

δ1, j�
j/2. (4.15a)

where (δ1, j ) j≥1 are real constants and k2 = k′′2 (0) < 0. Moreover there exist real
constants (δ2, j ) j≥1 such that the second eigenvalue satisfies

λ2(�) ∼
�→0

!0 − 3C1kmax� + 3C1!
1/4
0

√
3|k2|
2

�
3/2 +

∑
j≥4

δ2, j�
j/2 (4.15b)

and there is a spectral gap

λ2(�)− λ(�) ∼
�→0

2C1!
1/4
0

√
3|k2|
2

�
3/2.

Functions in the domain ofN (1)
�

can be extended to the full half-plane R
2+ = R×R+

after multiplication by a suitable cutoff function. We could have considered the single
well problem in an alternative manner by truncating the curvature and extending it by
0 outside �̂

(1)
�,η

and also the weight function a� to get an operator in R
2+. Due to the

exponential decay of bound states, the spectra agree up to exponentially small errors
that are negligible compared with the estimate of the tunneling [6, Prop. 2.7].

4.3.2 Approximation of ground states

The ground states of N (1)
�

concentrate near the curvature well s1 = 0 [6, Corol.6.1]
and one can expand them in a WKB form.

Let φ�,1 be a normalized ground state of N (1)
�

. We introduce the function

�1(σ ) =
√

2C1

(μN
1 )′′(ξ0)

∫
[0,σ ]

√
kmax − k(ς) dς, (4.16)

where [0, σ ] is the segment joining 0 to σ oriented counter-clockwise; in particular∫
[0,σ ] =

∫ 0
σ
if σ < 0 and

∫
[0,σ ] =

∫ σ

0 if σ > 0. The ground state φ�,1 is approximated

as follows. Let K ⊂ (− L
2n + η, L

2n − η
)
be a compact interval, then we have [6,

Prop. 6.3 & Eq. (2.5)]

∥∥∥〈τ 〉e�1/
√

�
(
φ�,1 − e−iγ0σ/�2ψ�,1

)∥∥∥
C1(K ;L2(R+))

= O(h∞), (4.17a)

where 〈τ 〉 = (1+ |τ |2)1/2 and γ0 is introduced in (4.9).
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The function ψ�,1 is defined as follows

ψ�,1 = χ��,1 (4.17b)

where χ ∈ C∞(R; [0, 1]) satisfies

χ = 1 on
(
− L

2n
+ 2η,

L

2n
− 2η

)
, suppχ ⊂

(
− L

2n
+ η,

L

2n
− η

)
(4.17c)

and the function ��,1 has the following expansion [6, Thm. 2.8]

e�1(σ )/�
1
2 e−iσξ0/���,1(σ, τ ) ∼

�→0
�
− 1

8
∑
j≥0

b j (σ, τ )�
j
2 , (4.17d)

where

b0(σ, τ ) = f0(σ )u0(τ )

and the sequence of functions (b j (σ, τ )) j≥1 can be constructed by recursion [7,
Thm. 5.6].

4.4 Construction of quasi-modes

Now we can introduce the following quasi-modes for T�

φ̃�,1 := χφ�,1, φ̃�,2 := Mnφ̃�,1, . . . φ̃�,n := Mnφ̃�,n−1, (4.18)

where (see (4.8))

Mnu(σ, τ ) = u

(
σ − L

2n
, τ

)
. (4.19)

Notice that φ̃�,i is supported in �̃
(i)
�,η

defined as follows

�̃
(i)
�,η

=
(
(i − 2)

2L

n
+ η, i

2L

n
− η

)
× (0, ε0�

−1/2).

This yields quasi-modes for the operator T̃h in (4.3) obtained from T� by the change
of parameter � = h1/2; more precisely, we introduce

ũh,i = φ̃�,i (� = h1/2, 1 ≤ i ≤ n). (4.20)

Notice that by (4.17a),

e�2(σ,τ )/
√

�
(
ũ�,2(σ, τ )− e2iγ0L/n�

2
e−iγ0σ/�2ψ̃�,1(σ − 2L/n, τ )

) = O(h∞),
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and by (4.2e),

�2(σ ) = �1

(
σ − 2L

n

)
on �̃

(2)
�,η

�2(σ )+�1(σ ) =
√

2C1

(μN
1 )′′(ξ0)

∫ σ

σ− 2L
n

√
kmax − k(ς) dς

= Sn on �̃
(2)
�,η

∩ �̃
(1)
�,η

where Sn is introduced in (4.4b).
To obtain quasi-modes for the operator Th in (4.3), we truncate, re-scale and pull

back the quasi-modes ũh,i to the Cartesian coordinates via the transformation in (4.6)
and finally renormalize. More precisely, we introduce

uh,i (x) = h−1/4χ0
(
t(x)/h1/2

)
ũh,i

(
s(x), h−1/2t(x)

)
(4.21)

whereχ0 ∈ C∞
c (R; [0, 1]) satisfies suppχ0 ⊂ (−ε0, ε0) andχ0 = 1on [−ε0/2, ε0/2].

4.5 Estimates of interaction coefficients

We need to estimate

J0(h) = 〈Thuh,1, uh,1〉 and J1(h) = 〈Thuh,1, uh,2〉.

By the exponential decay of uh,1 and uh,2, we may write

J̃0(h) = h J̃0 +O(e−K ′/h1/4), J1(h) = h J̃1 +O(e−K ′/h1/4)

where K ′ > Sn and

J̃0 = 〈T�φ̃�,1, φ̃�,1〉, J̃1 = 〈T�φ̃�,1, φ̃�,2〉

The term J̃0 is estimated as O(e(−2Sn+cη)/�1/2) where c is a positive constant
independent of � and η. We fix now the choice of η � 1 so that 2Sn − cη > Sn .

The term J̃1 is calculated as in [6, Sec. 7.2.1] (see also [8, 26])

J̃1 = e2i(γ0−ξ0)L/n�e−Sn/�1/2
(
�
5/4C∗ +O(�7/4)

)
where C∗ ∈ C \ {0} is a constant independent of �.

Writing C∗ = |C∗|eiα0 and recalling the definition of �0 in (4.4a) and the relation
� = h1/2, we get

J1(h) ∼
h↘0

|C∗|h13/8eiα0+2i�0/nh1/2e−Sn/h1/4 (4.22a)
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and
J0(h) =

h↘0
o
(
J1(h)

)
. (4.22b)

4.6 Application when n = 3.

Let us assume that n = 3. The functions uh,i introduced in (4.21) satisfy the conditions
in Assumptions 2.1, 2.8 (in Remark 2.7) and 2.11. In fact,

• By (4.18) and (4.20), we check that the symmetry invariance in Assumption 2.8
is respected.

• The symmetry invariance and (4.17a) ensure that uh,i satisfy the conditions in
Assumption 2.1 with S1,S2,S3 ∈ (0, Sn) arbitrarily close to Sn ; we fix the
choice so that Sn < 2min1≤ j≤3S j .

• The estimates in (4.22) ensure that Assumption 2.11 holds with S = Sn .

Applying (2.21), we get a similar result to Theorem 3.9 (by following exactly the
same argument). In fact, there is a relabeling μ1(h), μ2(h), μ3(h) of the eigenvalues
λ1(h), λ2(h), λ3(h) of the Neumann magnetic Laplacian LN

h with the asymptotics

μ2(h)− μ1(h) =
h↘0

(
a(�0/3

√
h + α0)+ o(1)

)|C∗| exp
(−S3
h1/2

)

μ3(h)− μ2(h) =
h↘0

(
b(�0/3

√
h + α0)+ o(1)

)|C∗| exp
(−S3
h1/2

) (4.23)

where a(·) and b(·) are introduced (3.43).
Moreover, there exists a sequence

(
(h1(k), h2(k), h3(k)

)
k≥k0

which converges to
0 such that, for all k ≥ k0 we have

0 < h1(k + 1) < h3(k) < h2(k) < h1(k) < 1

and

μ1
(
h1(k)

) = μ3
(
h1(k)

)
, μ1

(
h2(k)

) = μ2
(
h2(k)

)
, μ2

(
h3(k)

) = μ3
(
h3(k)

)
.

In particular, this finishes the proof of Theorem 1.5.

5 Magnetic steps

5.1 Introduction

In this section, we work in the plane and the Hilbert space is H = L2(R2). Consider
a positive integer n and denote by g = gn the rotation in R

2 by 2π/n. We are then in
the setting of Remark 2.7 with the domain being all of R

2. Recall the definition of the
transformation

M(g)u(x) = u(g−1x) (u ∈ L2(R2)).
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Let � ⊂ R
2 be an open bounded subset of R

2 with C∞ boundary �. We assume
that � satisfies the conditions in (4.2).

Let A : R
2 → R

2 be a vector field such that

B := curlA =
{
1 on �

ϑ on R
2 \�

(5.1)

where −1 < ϑ < 0 is a fixed constant. The magnetic field B = Bϑ,� is a step
function, hence called a magnetic step ([3] and references therein). The boundary �

is the discontinuity curve of the magnetic step, and sometimes is called the magnetic
edge ([13] and references therein).

Consider the Landau Hamiltonian on R
2

L B
h = (−ih∇ − A)2 (5.2)

with semi-classical parameter h and magnetic field B as in (5.1). The symmetry con-
ditions in (4.2) allow us to prove that the eigenvalues ofL B

h exhibit a braid structure
in the semi-classical limit. The proof and the construction are very similar to those for
the Neumann problem in Section 4 modulo the following slight modifications:

i) Use the model operator on the full real line from [2].
ii) Introduce adapted coordinates on a curved strip defined by the boundary �, via

the signed normal distance to � and the tangential arc-length distance along �.
iii) Use a modified single well operator, with magnetic steps, analyzed in [3].
iv) Construct quasi-modes and apply the abstract results in Section 2.

Most of the computations were carried out in [3, 13] so we will be rather succinct
and just present the key constructions.

5.2 Model on the real line

On L2(R), consider the family of Schrödinger operators, parameterized by ξ ∈ R,

hϑ [ξ ] = − d2

dτ 2
+ Vϑ(ξ, τ ), (5.3)

where ξ ∈ R is a parameter and

Vϑ(ξ, τ ) =
(
ξ + bϑ(τ )τ

)2
, bϑ(τ ) = 1R+(τ )+ ϑ1R−(τ ) . (5.4)

We denote by μϑ(ξ) the ground state energy of hϑ [ξ ], and according to [2], we can
introduce the constants βς , ζϑ as follows

βϑ := inf
ξ∈R

μϑ(ξ) = μϑ(ζϑ) , (5.5)

where ζϑ < 0, is the unique minimum of μϑ(·) and we have μ′′
ϑ(ζϑ) > 0.
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Let φϑ be the positive L2-normalized ground state of hϑ [ζϑ ]. We introduce the
negative constant [2]

M3(ϑ) = 1

3

( 1
ϑ

− 1
)
ζϑφϑ(0)φ

′
ϑ(0). (5.6)

5.3 Adapted coordinates and single well problem

Recall that γ : R/2LZ → R
2 is a counter-clockwise oriented arc-length parameter-

ization of the curve � and that, for s ∈ R/2LZ, ν(s) is the unit normal to � at γ (s)
which points to the interior of the �. We can adjust the coordinates (s, t) introduced
in (4.6), by allowing t to have negative values. We therefore set

T (s, t) := γ (s)− tν(s) ((s, t) ∈ R/2LZ × R).

We introduce the curved strip

�̂(ε0) = {x ∈ R
2 : dist(x, �) < ε0}

and we choose ε0 > 0 so that T is one-to-one on R/2LZ× (−ε0, ε0) and that �̂(ε0)

is the image of R/2LZ × (−ε0, ε0) by T .
We assign to a function u defined on �̂(ε0) the function ũ = u ◦ T defined on

R/2LZ× (−ε0, ε0). The Hilbert space L2(�̂(ε0)) is then transformed to the weighted
space

L2((R/2LZ)× (−ε0, ε0); a ds dt
)
, a(s, t) = 1− tk(s)

and the action of the transformation M(g) is still given by (4.8).
Note that the action of L B

h on �̂(ε0) is transformed to (after, possibly, a gauge
transformation)

L̃ B
h := −h2a−1∂t a∂t + a−1

(
−ih∂s + γ0 − bϑ(t)t + k(s)

2
bϑ(t)t

2
)

×a−1
(
−ih∂s + γ0 − bϑ(t)t + k(s)

2
bϑ(t)t

2
)

where the constant γ0 and the function bϑ are introduced in (4.9) and (5.4) respectively.
We do the scaling (σ, τ ) = (s, h−1/2t) and introduce the effective semi-classical

parameter � = h1/2. We obtain the operator

N�,ϑ = −a−1
�

∂τa�∂τ + a−1
�

(
−i�∂σ + �

−1γ0 − bϑτ + �
k(σ )

2
bϑτ

2
)

×a−1
�

(
−i�∂σ + �

−1γ0 − bϑτ + �
k(σ )

2
bϑτ

2
)

(5.7)
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where11

a�(σ, τ ) = 1− �τk(σ ).

Our single well problem is defined as follows. Fix a positive η < min( 14 ,
L
4n ) and

consider

�̂
(1)
�,η =

(
−2L

n
+ η,

2L

n
− η

)
× (−ε0�

−1, ε0�
−1).

We introduce the operator on L2
(
�̂

(1)
�,η

; a� dσ dτ
)
,

N (1)
�,ϑ

= N�,ϑ (5.8)

with domain

Dom(N (1)
�,ϑ

) = {u ∈ L2(�̂(1)
�,η

; dσ dτ
) : ∂2τ u, ∂

2
σu ∈ L2(�̂(1)

�,η
; dσ dτ

)
,

u|τ=±ε0h−1/2 = 0, u|σ=±(2L/n−η) = 0}.

We denote by λ(�) the ground state energy of the operatorN (1)
�,ϑ ; it is simple and can

be expanded as follows [3, 13]

λ(�) ∼
�→0

βς + M3(ϑ)kmax� +
√
k2M3(ϑ)μ′′

ϑ(ζϑ)

4
�
3/2, (5.9)

and the splitting between λ(�) and the second eigenvalue λ2(�) is estimated as follows

λ2(�)− λ(�) ∼
�→0

√
k2M3(ϑ)μ′′

ϑ(ζϑ)

4
�
3/2.

5.4 Quasi-modes and application

In order to apply the results in Section 2 we introduce the operator

Th = L B
h − �(h)

and construct suitable quasi-modes. With � = h1/2, we choose �(h) = hλ(�), where
λ(�) is the ground state energy of the single well operator N (1)

�,ϑ
introduced in (5.8).

Let φϑ
�,1 be a normalized ground state of N (1)

�,ϑ and choose χ ∈ C∞(R; [0, 1])
satisfying (4.17c). We introduce the quasi-modes

φ̃ϑ
�,1 := χφϑ

�,1, φ̃ϑ
�,2 := Mnφ̃

ϑ
�,1, . . . φ̃ϑ

�,n := Mnφ̃
ϑ
�,n−1, (5.10)

11 The function bϑ now depends on the variable τ .
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where Mn is introduced in (4.19). We obtain quasi-modes for the operator Th by
truncation, re-scaling and pulling back to Cartesian coordinates; more precisely we
introduce

uϑ
h,i (x) = h−1/4χ0

(
t(x)/h1/2

)
ũϑ
h,i

(
s(x), h−1/2t(x)

)
(5.11)

where χ0 ∈ C∞
c (R; [0, 1]) is as in (4.21) and ũϑ

h,i = φ̃ϑ
�,i , with � = h1/2.

We move then to the calculation of the following two terms

J0(h) = 〈Thuϑ
h,1, u

ϑ
h,1〉 and J1(h) = 〈Thuϑ

h,1, u
ϑ
h,2〉.

That is essentially done in [13]. We introduce the following ‘distance’

Sn(ϑ) =
√
−2M3(ϑ)

μ′′
ϑ(ζϑ)

∫ 2L/n

0

√
kmax − k(s) ds

and the flux like term

�ϑ = |�| − 2Lζϑ .

We have

J0(h) = O(e(−2Sn(ϑ)+cη)/h1/4)

where c is a positive constant independent of � and η, and

J̃1(h) = e2i�ϑ/n�e−Sn(ϑ)/h1/4(C∗(ϑ)h13/8 +O(h15/8)
)

where C∗(ϑ) ∈ C \ {0} is a constant independent of �.
We fix now the choice of η � 1 so that 2Sn(ϑ) − cη > Sn(ϑ) and we write

C∗(ϑ) = |C∗(ϑ)|eiα0(ϑ). We get

J1(h) ∼
h↘0

|C∗(ϑ)|h13/8eiα0(ϑ)+2i�ϑ/nh1/2e−Sn(ϑ)/h1/4 (5.12a)

and
J0(h) =

h↘0
o
(
J1(h)

)
. (5.12b)

Let us now assume that n = 3, which corresponds to the setting in Theorem 1.6. The
functions uϑ

h,i introduced in (4.21) satisfy the conditions in Assumptions 2.1, 2.8 (in
Remark 2.7) and 2.11. Applying (2.21), we get a relabelingμ1(h), μ2(h), μ3(h) of the
eigenvalues λ1(h), λ2(h), λ3(h) of the Landau hamiltonianL B

h with the asymptotics

μ2(h)− μ1(h) =
h↘0

(
a(�ϑ/3

√
h + α0(ϑ))+ o(1)

)|C∗(ϑ)| exp
(−S3(ϑ)

h1/2

)

μ3(h)− μ2(h) =
h↘0

(
b(�ϑ/3

√
h + α0(ϑ))+ o(1)

)|C∗(ϑ)| exp
(−S3(ϑ)

h1/2

)
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where a(·) and b(·) are introduced (3.43).
Moreover, there exists a sequence

(
(h1(k), h2(k), h3(k)

)
k≥k0

which converges to
0 such that, for all k ≥ k0 we have

0 < h1(k + 1) < h3(k) < h2(k) < h1(k) < 1

and

μ1
(
h1(k)

) = μ3
(
h1(k)

)
, μ1

(
h2(k)

) = μ2
(
h2(k)

)
, μ2

(
h3(k)

) = μ3
(
h3(k)

)
.

In particular, this finishes the proof of Theorem 1.6.

Appendix A Minimizing the function9(r, t).

Let � be the function introduced in (3.19). Using the inequality
√
t(t + 1) ≤ t + 1

2
we get

�(r , t) ≥ d(r)+ |vmin
0 |
2

ln
(
1+ 1

t

)
+ (L − r)2

2

(
t + 1

2

)
. (A.1)

Consequently, the minimum of �(r , t) over [a, L − a] × R+ is attained at (r0, t0) ∈
[a, L − a] × R+. By [17, Remark 4.8],

inf
(r ,t)∈[a,L−a]×R+

�(r , t) ≥ inf

{
inf

(r ,t)∈[0,a]×R+
�(r , t), inf

t∈R+
�(L − a, t)

}
. (A.2)

Recalling F(v0) from (3.19), we have by [17, Eq. (4.18) and Prop. 4.5],

− F(v0)+ inf
(r ,t)∈[0,a]×R+

�(r , t) = S(v0, L) ≥ Sa (A.3)

where S(v0, L) and Sa are introduced in (3.9).
The function

G(t) := |vmin
0 |
2

ln
(
1+ 1

t

)
+ a2

2

(
t + 1

2

)

has a unique minimum on R+,

t∗ =
√
1

4
+ |vmin

0 |
a2

− 1

2
.
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By (A.1) (for r = L − a), we get

inf
t∈R+

�(L − a, t) ≥ d(L − a)+ G(t∗)

= d(L − a)+ a

4

√
a2 + 4|vmin

0 | + |vmin
0 |
2

ln

(√
a2 + 4|vmin

0 | + a

)2

4|vmin
0 | .

Consequently,

− F(v0)+ inf
t∈R+

�(L − a, t) ≥ d(L − a)+ d(a) = Sa . (A.4)

Collecting (A.3) and (A.4), we infer from (A.2) that

−F(v0)+ inf
(r ,t)∈[a,L−a]×R+

�(r , t) ≥ Sa .
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