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Abstract

This paper studies the stability of the stationary solution of the compressible Navier—
Stokes equation in the 3D whole space with an external force which decays at spatial
infinity. We obtain the global existence result of the non-stationary problem under the
smallness assumptions on the initial perturbation around the small stationary solution.
We also derive the time decay rates of the perturbations under the smallness assumption
on the initial perturbations, and show the optimality of the time decay rates. The
proofs are based on the combination of the spectral analysis and energy method in
the framework of Besov spaces. The time-space integral estimate for the linearized
semigroup around the constant state in some Besov spaces plays a crucial role in the
proofs.

1 Introduction

We consider the Cauchy problem for the compressible Navier—Stokes equation:

9 p + div(pv) =0,

1
3 (pv) + div(pv ® v) = uAv + (u + 1 )Vdive — VP(p) + pF (x), M

with initial data (p, v)|;=0 = (po, vo) and the boundary condition (p, v)(t,x) —
(o, 0) as |[x| — oco. Heret > 0, x € R3, v = (v1, v2, v3) is the fluid velocity, p is
the fluid density, poo is a given positive constant, P is a given pressure, i and p’ are
given viscosity coefficients and F' = (Fy, F2, F3) is a given stationary external force.
We assume that  and p are constants that satisfy u > 0 and 2u/3 + ¢/ > 0, and
P is a smooth function of p in a neighborhood of ps, with P’(pso) > 0. As F is a
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stationary external force, we introduce the corresponding stationary problem:

div(p*v*) =0, 2
div(p*v* ® v*) = uAV* + (u + p)Vdivo* — VP(p*) + p*F(x),
with the boundary condition (p*, v*)(x) = (pcc, 0) as |x| = oo.
It was shown by Shibata and Tanaka [17] that if the stationary external force F has
the form F = divF; + F> where F; is a 3 x 3-matrix valued function and F> is a
3-vector valued function and F is small in the quantity:

3
WEI =Y 1A+ D VEF 2+ (4 XD F
k=0

+ 1L+ 1xD? Fillzee 4+ | Fall 1,

then there exists a unique stationary solution (p*, v*) = (0™ + peo, v*) Which satisfies
the decay properties

8 8 8
') S = IV S 5, 0" S —5, (3)
x| x| | x|
as |x| — oo with § = || F|||, and the smoothness property

I+ XD Vo™ 2 + 1L+ [x) VI %) 2 <8

for any 0 < j < 4. In addition, Shibata and Tanaka [17] proved that if the initial
perturbation (pg— p*, vo—v*) belongs to H 3 and is small in H? norm, then there exists
a unique solution (p, v) = (o + p*, w + v*) of (1) such that & € C°([0, 00); H3) N
C'([0, 00); H?), w € C°([0, o00); H3) N C'([0, 00); H') and

t
sup (o, w)(D)I3,5 + f IVo (@13, + IV 3 + 8w ()I3,.dT
0

0<t<oo

2
S o — p*, v0 — V)33

In [18], Shibata and Tanaka then derived the decay rates of the perturbations

(o = p*. v — vl g1 Se (1407200 — p*, vo — v @)

LSnm?’
where € > 0 is an arbitrary constant. Here, H* denotes the homogeneous Sobolev
space whose definition is given in Sect. 2 below.

On the other hand, when the external force F' = 0, the corresponding stationary
solution is the motionless state (o, 0), and the time-decay estimates of its perturba-
tion are given by

s 1

_s_3(1_1
(o = ooy VIOl s S (L +1) * 2<” 2)Il(/Oo — Poos V) |l Lrnms )
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forO <s <2and 1 < p < 2.(Cf. [11-13, 15].) Note that the decay rates in (4) are
slower than in (5) with s = 1, p = 6/5. Since the stationary solution (p*, v*) is close
to the motionless state (oo, 0), one could expect that the decay estimate (5) would
also hold for the perturbation of (p*, v*). However, it is not straightforward to see this
since the spatial decay of the stationary velocity field v* is slow as is written in (3).

The aim of this paper is the following twofold. The first is to derive the optimal
decay rate of the perturbations of the stationary solution (p*, v*) under the smallness
assumptions on the initial perturbation of (p*, v*). We prove that there holds the decay
estimate

_s_3(1_1
(o —p* v =)D llgs Ssp (L+1) 7 2(” )II(,Oo— 00 = V) Lrams,
(6)

where —3/2 <s <3/2and 1 < p <2withs/2+3/2(1/p—1/2) > 0ors = 0and
p = 2, which especially shows that the decay estimate (5) with0 < s < 3/2and 1 <
p < 2 hold for the perturbation of (p*, v*). In fact, we will derive the decay estimate
(6) for the stationary solutions (p*, v*) inalarger class than that studied in [17, 18]. The
second is to establish the global existence result of the non-stationary problem under
the smallness assumptions on the initial perturbation around the stationary solution
(p*, v*), without assuming that the initial perturbation (pg — p*, vg — v*) belongs
to L2. In fact, we shall construct the global solution when the initial perturbation
(po — p*, vo — v*) belongs to Bl/2 N H? with small norm. Here, B;, denotes the
homogeneous Besov space whose deﬁmtlon is given in Sect. 2 below. Note that the
velocity v* of the stationary solution is not necessarily in L but in Bl/ > NH3, ; and so
our result claims the global existence of solutions of problem (1) for a class of initial
data which contains not only the stationary solution obtained in [17] but also the one
constructed in this paper. We shall consider the stationary solutions obtained in the
following theorem.

.3 .
Theorem 1.1 There exists a constant §g > 0 such that if F € BZ.go N H? and

||F|| 3 . =,
H3

ZX)

then the stationary problem (2) has a unique solution (p*,v*) = (6™ + oo, V™)
satisfying

o™l v+ e S . )
B, 2nH* 22 NHS

In the proof of the existence of stationary solutions, there is a difficulty in that the
convection term div(o *v*) causes a loss of derivative. This difficulty is overcome by
rewriting the equation by using the Helmholtz decomposition as in Lemma 3.2 below
and regularizing the convection term div(o *v*). Theorem 1.1 shows the existence of
stationary solutions for data F in a larger class than that of [17].
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Let us now state our main theorem, which derives the global existence of (1) and
the decay rates of the perturbations.

Theorem 1.2 Let (p*, v*) be the stationary solution satisfying (7) with | F | , 4/201_13

sufficiently small. Then, there exists a constant § > 0 such that if the initial perturba-

tion (pg — p* ,vo—v*)eBzooﬂH3and

oo = p* 00 =0l 1 <8, ®)
B} NH3

then the compressible Navier—Stokes equation (1) with initial data (pg, vo) has a
unique global solution (p, v) satisfying (p — p*, v — v*) € C°([0, 00); le/ozo N H3)
and

sup [[(p =t v =Dy S, ©
By NH3

0<t<oo

In addition, if (pg — p*, vo — V*) € B;?oofor some —3/2 < 5o < 1/2, then the decay
estimate

IGo = p* v = 0Dz Ss 1+ D™ (o — p*. v — VIl aps (10)

holds for =3/2 < s < 3/2 withsy < s andt > 0.

Remark 1.3 The time decay estimate of the perturbation when the initial perturbation
belongs to B 5’ with some negative so has already been studied by Danchin and Xu
[9], Xu [20] for the case (p*, v*) = (pso, 0). They derived the decay estimate of the
solution constructed in the L7 critical regularity framework.

Remark 1.4 The time decay estimate in Theorem 1.2 can be derived without an addi-
tional smallness assumption of the initial perturbation in B Ooo In fact, we will
show the following type estimate. (See Propositions 5.2 and 5.5 below.) For any
—3/2<s50<1/2,e >0and T > 0, let

n=sg
Deso(T) = sup sup (1+1)"2 |[(p — p*, v — v*)(t)llgzn
—3/24€<n<3/2—e, 0<t<T o0
SO=1n
We then have

De,so(T) SE I (oo — )0*, vy — v*)”B;OOO

+(sup = p" v =vION A IF s ) Pesy (T,
Bz,Oo NH3

0<t<oo
and hence, we arrive at

sup D¢ 5, (T) < 00
T>0
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if ||F||1_L-3273/zmﬁl3 and || (po — p*, vo — U*)||321/2 3 are small enough.
,O0 ,00

We also have the following estimate for the perturbation.

Theorem 1.5 Let (p*, v*), (p, v) be as in Theorem 1.2, with

(oo = p* w0 =V 1 +IIF|| -
B

Zwﬂ w

sufficiently small. If the initial perturbation (py — p*, vg — v*) € LP for some 1 <
p <2, then the decay estimate

_s_3(1_1
(o= p" v=v)YOllgs Ss A +1) 2 2<" >||(/00— 00 = V) Lraps
(11)

holds for —3/2 < s < 3/2withs/2+3/2(1/p—1/2) > 0ors =0and p = 2.

Here, we mention that in the case where the external force F' = 0, the time decay
of the perturbation was derived by Xu [20] when the initial perturbation belongs to
Besov space with some negative exponents. We also mention that the smallness of the
initial perturbation in B « Or L? are not needed in Theorems 1.2 and 1.5, since by
using Lemma 5.3 below the nonlinear estimates in the proof of decay estimate can be
done under the smallness assumption in (9).

We obtain the following results regarding the optimality of the estimates in Theo-
rem 1.5.

Theorem 1.6 Let (p*, v*) be the stationary solution satisfying (7) with IE I g=3/2 3
2,00

sufficiently small. Then, the following hold:

(i) There exists an initial perturbation (py— p*, vo —v*) € L' N H? with sufficiently
small ||(pg — p*, vo — U*)”Bl/z AH? such that the corresponding global solution
2,00

(p, v) satisfies

—s_3
(o —p*, v = v Dl s ~5 L+DT27 (oo — p%, vo = V)l L1Am3,
where =3/2 <s <3/2andt > 1.

(i) Under the same assumption as in Theorem 1.5, if (pg — p*, vo — v*) € LP*° for
some 1 < p < 2, then the following estimate

s 3(L_1
(o —p* v =)Dl gs Ssop (L1 2 i )II(,Oo — 0% v0 — V) | Lpoonps
(12)

holds for —3/2 < s < 3/2 withs/2 +3/2(1/p — 1/2) > Oandt > 0. In
addition, there exists an initial perturbation (py — p*, vg — v*) € LP* N H?
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with sufficiently small || (pg — p™*, vo — v*)|| 312 A3 such that the corresponding
2,00

global solution (p, v) satisfies

s

_s_3(1_1
(o —p* v =0 Ol gs ~sp L+1) 2 2<” 2)”()00 — 0", v0 = V)| Lo g3,
where —3/2 <'s < 3/2 withs/2+3/2(1/p —1/2) > Oand t > 1.

The difficulty in deriving the time-decay estimate of the perturbation (p—p*, v—v*)
arises from the slow spatial decay of the stationary solution. The spatial decay order
of Vv* is expected to be at most O(1/|x|?), so the linear term w - Vv* appearing in
the perturbation equation may need to be treated as the inverse-square potential term.
Indeed, Davies and Simon [10] showed that the inverse-square type potential term can
affect the asymptotic behavior of the solution of the heat equation. For this reason, it is
not straightforward that the linear term w - Vv™* is considered as a simple perturbation
of the linearized operator around the motionless state (o, 0). The same difficulty
arises in the analysis of the linear term v* - Vw, since the spatial decay order of v* is
O(1/]x)).

To overcome the difficulty arising from the linear terms v* - Vw and w - Vv*,
we shall formulate the decay problem in a framework of weak-type Besov spaces and
prove the estimate (10). The proof of decay estimate (10) is performed by decomposing
the perturbation into low- and high-frequency parts. The analysis of the low frequency
part is carried out by using the momentum formulation, while the analysis of the
high-frequency part is carried out by using the velocity formulation in order to avoid
the derivative loss. (Cf. [1, 19].) The low frequency part is estimated by spectral
analysis around the motionless state (o, 0). Here, a crucial role is played by the
time-space integral estimate established by Danchin [6]. (See Lemma 4.1 below.) A
similar analysis is found in Yamazaki [21] where the time-space integral estimate in
the Lorentz spaces is effectively employed to study the incompressible Navier—Stokes
equation under time-dependent external force. In this direction, we also mention that
the work by Chemin [4], where the time-space integral estimate in Besov spaces
was established for incompressible Navier—Stokes equation. The estimate of the high-
frequency part is established by the energy method in Besov spaces developed by
Danchin [6]. The proof of optimality in Theorem 1.6 is inspired by the argument in
Kawashima, Matsumura and Nishida [12]. We finally note that, in the case of F =0,
the decay rate of the perturbation of the motionless state (oo, 0) was studied in critical
spaces [5, 9, 14, 20]. It is also an interesting issue to consider the decay rate of the
perturbation of the stationary solution (p*, v*) in critical spaces.

Organization of the paper. In Sect. 2, we present the notation used throughout this
paper and the basic facts of the homogeneous Besov spaces. Section 3 is devoted
to the proof of existence of solutions to the stationary problem (2). In Sect. 4, we
construct a global solution under the smallness assumptions on an initial value and
an external force. In Sect. 5, we derive the decay rate of the perturbation under the
smallness assumptions on the initial perturbation. We also show the result regarding
the optimality of the estimates in Theorem 1.5.
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On the stability of stationary compressible...

2 Preliminary

The notation A <, B means that there exists a constant C depending on « such that
A < CB. The notation A ~, B means that A <, B and B <, A. We denote a
commutator by [X, Y] = XY — Y X. We write S for the set of all Schwartz functions
on R3, and we write S’ for the set of all tempered distributions on R3. The notations
%, F stand for the Fourier transform

aE) =Fu)E) = / e S u(x)dx,
R3

and the notation F~! denotes the inverse Fourier transform. The symbol PP denotes
the Helmholtz projection: Pu = u — A~™'Vdivu, u € S’. We denote the L*(R?)
inner product by (u, v) = fR3 uvdx. Let s € R. The homogeneous Sobolev space
HS = H* (R3) is the set of tempered distributions u# on R3 such that & € Llluc,
lull s = NIl - I*@ll ;2 < oo. The inhomogeneous Sobolev space H* = H*(R3) is the
set of tempered distributions # on R3 such that [lu|gs = ||(1 + | - DSall;2 < oo.
Let 1 < p < oo. The weak L? space LP-*®° = L”'OO(R3) is the set of measurable

functions on R3 such that

1
lullLp.co = suptm({x | u(x)| > t})r < oo,
t>0

where m is the Lebesgue measure on R3. Let I be an interval in R and let X be a
Banach space. The Bochner space L? (I; X) is the set of strongly measurable functions
u : I — X such that

1
P
lllzecrix) = ( f ||u<r>||§}dr) < co.
1

The rest of this section is devoted to introducing the homogeneous Besov spaces
and presenting some basic facts. These will be applied effectively throughout this
paper. To apply our analysis, we employ the squared dyadic partition of unity. Choose
¢ € C®(R3) supported in the annulus C = {&€ € R? | 3/4 < |£| < 8/3} such that

D ¢*2E)=1 for& #0.

JEZ
Define the dyadic blocks (A j) jez by the Fourier multiplier
Aju=FlP* 7 )il
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and the square-rooted dyadic blocks by A}/ y=F-1 [¢(277-)ir]. The homogeneous
low frequency cutoff operator is denoted by

Sju=Y_ Aju, jeL. (13)
J'<ij
At least formally, the decomposition
u = Z A]’M
JEZL

can be considered, which is called a Littlewood—Paley decomposition. We fix ¢g €
C5°(R3) satisfying ¢o(0) # O. ‘ ‘

Lets e R, 1 < p,r < oco. Then, the homogeneous Besov space B;yr = B;‘,’,(R3)
is given by

hS : —1 A .
By, ={ues | dim |17 g il =0, lulgy, < oo},

L= ISIIA .
Il gy, = | @7 1A ulzn)jez,

We state some basic facts on homogeneous Besov spaces, which are frequently
used in this paper.
Proposition 2.1 Lets,§ € R, 1 < p, p,r,7F <ooandu,v € S'.
(i) (Derivative) For any k > 0, | V¥ull g~ [lull joss.
p.r p.r

(ii) (Duality) Let p’ be a conjugate exponent of p and let r' be a conjugate exponent
of r. Let v € S. Then, we have the following duality estimates:

(0} S el gz, and Nl S suplo v,

where the supremum is taken over the Schwartz functions 1 with
1914, < 1and0 ¢ supp F.

(iii) (Inter;l;blation) Let s1 < s satisfy s = (1 — 0)s1 + 05y for some 0 < 6 < 1.
Then, the interpolation inequality

0 < L0 )
leely, 01,52 Maell gor” Metln (14)

holds.
(iv) (Fatou property) Assume s < 3/pors =3/p,r = 1. If {uy}, is a bounded
sequence in B;’r N Bf; 7> then there exists a subsequence of {un}n (without

relabeling) and u € B;‘,’, N B;; such that

lim u, =uinS an oo ~pi S liminf B AEE -
n—)ooun u S’ and ”u”B;‘rmB;}.F ~ S0 ”u””B;,_rﬂB’;;J-,
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(v) (Paralinearization) Let ® € C*(R®) and u, v € Bj, N By} with —3/2 < s <
3/20rs =3/2,r = 1. Then, we have

1P@) — ®W)llz; So (1411w, VI3 )l = vl .

BZ.]

(vi) (Bilinear estimate) Let s1, 52 € R satisfy s1,50 < 3/2 and s1 4+ sp > 0. Let
1 <r1,rp <oosatisfy 1/r1 + 1/ry = 1/r. Then, we have

”MUHBS'“Z% St ”u”B;,IM ||U||B;gr2-

2.r

In the cases s1 < 3/2, so < 3/2 with s1 + s2 > 0, we have

vl o3 S Ml gy M0l gz -

2,00

As for the proofs other than (v), see [2, Lemma 2.1, Proposition 2.22, 2.29, Theorem
2.25,2.47, 2.52 and Corollary 2.91] for example. The proof of Proposition 5 (v) is
same as in the proof of [6, Lemma 1.6 ii)].

Generalized Young’s inequality (see [16, pp.31-32] for example) implies that, for
any j € Zandanyu € L' 4+ L*,

3i(L_L . .
2 '/(”‘ ”2)||Aju||LP2 Sllullpn if 1 < pp < pr < o0,

—3./(i—i) . .
2R A jull e S ulpne B 1< pr < pa < 0.

This shows the following proposition.

Proposition 2.2 Ler 1 < p; < py < 00. Then, the space LP! is continuously embed-
ded in the space B;z%&/pl_l/pZ). In addition, if 1 < p1 < p» < oo, then the space

LP1:% s continuously embedded in the space B;Z%(OIO/ pi=1/p2),

We need the following commutator estimate. The proof is the same as that in [2,
Lemma 2.100].

Lemma2.3 Let —3/2 <5 < 5/2, 1 <r < 00 and ¢o € C°(R?) with supp ¢y C C’

for some annulus C' centered at the origin. Let us denote x jv = F! [4’0 Q- -)ﬁ]f()r
anyv € §', j € Z. Then, we have

Jjs .
H(z Iy hilulzz)

Ss.po IVAI 3 llullps
B} "

(Z) 1

where 1 <k <3 and u, h are scalar functions.
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3 Existence of stationary solutions

This section is devoted to proving the existence of the stationary solutions of (2). Let
k € Z>1. Set the function spaces X, ¥ and Z as

X=L*xH' Y=YonY, and Z=B,."nH"
where
.1 .1 . .
Yo=B,2 x B} . Yi=H"" x "2

Then, we have the following results.

Theorem 3.1 If || F ||z is sufficiently small, then there exists a unique stationary solu-
tion (p, v) = (0 + poo, V) of (2) such that (o, v) € Y and ||(o, v)|ly S| Fz.

To prove Theorem 3.1, we first reformulate the stationary problem (2). By rewriting
the stationary problem (2) using the Helmholtz decomposition, we obtain the following
lemma.

Lemma 3.2 A pair of function (p, v) = (6 + poo, V), (0, V) € Y is the solution to the
problem (2) if and only if (p,v) = (0 + poo, V), (0,Vv) € Y satisfies the following
equations:

o +ad1V (O'U) = ]/_Q'A_ldivg7 (15)
v — ,3A7]Va = —u51A72Vdivg - M”A”IP’g,
where j1g = 2u + 1, & = 110/ (P (po) poc)s B = P'(poc) /o, ¥ = P'(psc)!/? and

g(o,v) = —div(pv ® v) — (P'(p) — P'(pss)) Vo + pF.

Proof Let (p, v) = (0 + po, V) be a solution of the stationary problem (2). By letting
the Helmholtz projection [P and div act on the second equation of (2), respectively, we
obtain the following system of equations.

Ao — ops Adivy = y_zdiv g,
uAPv = —Pg,
Pocdiv v + div(ov) = 0.

Therefore, (o, v) satisfies (15). The rest can be shown in a similar way. O

We introduce the linear operator

Laonv) = |:c7 + adiv (017)] .

v— BAT Vo
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Then, the Eq. (15) is written as
Ly(o,v) = N(o,v),

where

y 2A~ldiv g(o, v)

Na(o,v) | = [— (ualA*ZVdiv ! A”P) ¢(o, v)j| :

N(o,v) = |:N1 (o, v)]

To solve (15), we first consider the following approximate problems:
L; j(o,v) = N(5,0), j€Z.
Here, L5 ; is the approximation operator

L; j(o,v) = [U +aS;div (av)i| , JjEZ,

v—BA" Vo
where S.,' is the low frequency cut-off operator defined in (13).

Lemma3.3 Lerv € LN Bg/lz If |Vl gs/2 is small, then for any j € Z, the map
' 2.1

ﬁg,j X=X
is bijective.

Proof Using Young’s inequality, we have ||deiv(oﬁ)||Lz < 27|zl || ;2. Thus,
L5, ;(X) C X. Fix small d > 0. We define the inner product of X by

((o1, V1), (02, 12))x = (01, 02) +d(Vv, Vu2),

where (o1, v1), (02, 12) € X.
By Young’s inequality and ||dive|| e < ||17||Bs/z, we have
2,1

(S ((divi)o), o)| < IS (divi)o) [ 2o ll 2 < ol lo 7.
1

o

By using Proposition 2.1(vi), Lemma 2.3 with s = 0 and the identity (v- Vo, o) =
—1/2(div v, ajz,) with oy = A},/za, we obtain

(8j(@- VD), o) S D Ay Vo), o)
J=j—1

S D U@ Vo0 + [{[A2, 5 Vo, ay)))
J'€Z
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1
.~ 2 AT~
S E (ldivolize<liojlizs + 1A, 0 Viel2llojll2)
Jj'eZ

lo 2. (16)

< ol
B 1

5
n2
2,
Thus, we have

($;div(3e), o) S 171 s llol2s

33
B2,I

Hence, if d and || 0| 5/2 are sufficiently small, then
2,1

(L3, (0, v), (0, v)x] 2 (o, V)%

forany (o, v) € X, where ||(o, v)||x = ((o, v), (0, v));(ﬂ. The Lax—Milgram theorem
completes the proof. O

We show the nonlinear estimate.

Lemma3.4 Let
(6,0), (61,01, (62, 12) € Ys = {(0,v) € Y | (0, )|y <6}
Then, for any 0 < 6 < 1, we have

lg@, Dz < 8*+IIF|z,
lg(@1, 01) = 82, D)1l _3 S G+ IFIDNG1 = G2, 01 = D)o

BZoo

Proof By Proposition 2.1(v), (vi),

~ =~ ~n2 ~ 12
Ig@. DI _3 SIBIZ, +I512, , +IFI
2.00 Bl 322,1032‘020 By %
2
S+ IF]z,
1G1. 50 — 8@ I3 S 8151 —Bally +8161 —Gall
2,00 BZ.oo BZ,oo

+lor—aall _yIIFI 1
2,00 BZ,I
S @+ IIFIDNG =62, 01 — 1) lyy-

Using Sobolev’s inequality and Proposition 2.1(vi), we have

Idiv (50 ® D)l g S IVFHHBE @ D)2 S (141G | st ) IV D54
I(P"(5) — P (poo))V& |l g = 1Q(6)G V& ||

@ Springer



On the stability of stationary compressible...

1
06) = /0 P’ (poo + 16)dt, S (10@) I + 1V Q@) 1) 16 1+
IoF | gre S (L4 N0l gl Fl g
Hence, we obtain

lg&, Dz S8+ IF|z.

By virtue of Lemmas 3.3 and 3.4, we can define the maps

®;6,0) = cgll.zv(&, %), (6.0)€Ys, jeL.
Lemma3.5 If 8 > 0 and | F| 2z are sufficiently small, then, for any j > 0, the map
& Ys — Yjsatisfies | (G, 0)|ly S 82+ |\|F ||z forany (6, D) € Ys. Furthermore,

there exists a constant ¢ > 0 such that the maps ®;, j > 0 are contraction mappings
in Yo norm with uniform Lipschitz constant cé, that is,

sup [P (01, V1) — @ (02, V2)lly, < cdl[(G1 — G2, V1 — V2)lly,
Jj=0

for any (61, V1), (62, V2) € V5.
Proof Let (o,v) = ®;(5,0), (6, 0) € Ys. Then, since

o =—$;div(o?d) + y 2A"div g(5, D),
we have the estimate

ol e S 1Sdivo D) | e + 1€ (6, D) e
Sj leelloliz + 8%+ IFlz,

where the last inequality is due to the fact that ||V” S o))l S 2" ||ov| > for any
n € Zso and Lemma 3.4. Thus, we have 0 € H k+1 We apply the argument for (16)
again, with o replaced by 9%0, |a| = k + 1, to obtain

($;div(3%0 ), 8%0)| < 1val 19%o 7.
1

Do

This gives
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ol = Y. (0.0%0) < Y. [Sdiv@lo 0¢PD), 0%0)]
| =k+1 la|=k+1, f<a

+ 1A div g(&, D)l st o || i

~ 2 ~ o~
S IVl grsrllo e + 186, Dl grllo |l g -

Thus, Lemma 3.4 shows || || i1 S 8]1(0, v)|ly + 82 + || F || z. By directly estimating
(0,0)" = (0,v)T = L5 j(0,v) + N(G, D), we obtain

loll 1 Sllovll 1 +118(5, 5)“3’%

32,020 327,00 2,00
~ 2 2
Slloll s ol 1 +6"+1Fliz S 8lio, v)lly +6° + 11 Fllz,
BZZ.I 322.00
~ ~ 2
ol v Slell o Fllg@, 0l 3 S8l vlly +87 + [1Fllz.
By NHK2 By LNHKH B, LNHFK

Then, we have ||(o, v)|ly < 82 + ||F||z for small § > 0. Let (07, v;) = ®; (64, Vi),
(0j,v;) € Ys, i = 1,2. Applying Lemma 3.4 for estimating

v — vy = BATIV (01 — 02) + Na(61, 1) — Na(62, 12)
we obtain

lor =2l Sllor—oall _y + G 01) — 8@ 0l _3
B

2,00 2,00 2,00

S oy — oo 1 +81(61 = G2, 11 = B2) Iy,
B

2,00

The rest is to estimate |jo] — O’2||B—1/2. For any n € Z, there holds
2,00
1An(o1r — 02)II72 = —(ApaS;div(o1V] — 0212), Ap(o1 — 02))
+ (Any A7 div(g(61, 1) — 8(62, 12)), Ay(o1 — 02).

Let xu,j0 = A,, A},/z, w = o1 — o2. Then, by using Proposition 2.1(vi), Lemma 2.3

and the identity

- | R
(U1 - Vxn, jo, xp, jro) = —z(dlvvl Xn, j'@s Xn, /@),
we have the estimate

(ALS;div(a1 D) — oaDn), Ayw)|

S Y (g 0 Viel 2l joll2 + (51 Vi o, xa. o))

J'<j. In—=j1=1
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+ (1A, dive @)l 2 + [ Apdiv((@) — 92)02)[112) | Apoll 12

-
S22 ol s llell 1 + ozl 3
BZZ,I . B22,|

01 = vall ) lAnwllg2
oo

2,00 BZ,

1 - - .
S 2875 (nwn B =Bl ) | Apel 2.
o0

B2,oc B2,

Thus, if § > 0 is sufficiently small, then we have

lor—ooll 1 S8lor—02ll 1 +11g(61, 01) — (62, 02)I 3
B, 2 2 B2

2,00 2,00 2,00
S Oll@1 — 02, U1 — 02) Iy,
O

Let (6, v) € Ysandlet$ > 0 be small enough. By Proposition 2.1(iv), the bounded
sequence {®;(G, 1)} ;>0 has a convergence subsequence in S’. Let (o, v) € S’ be
one of its convergent limits, and we write ® (6, v) = (o, v). Then, the following
proposition holds.

Proposition 3.6 If 6 > 0 and || F ||z are sufficiently small, then the map ® : Ys — Ys
is well-defined and is a contraction in the Y norm.

Proof Letus show the well-definedness of ®. Let (&, ) € Ys, andlet (o1, v1), (02, v2)
be convergent limits in S” of subsequences {®y,(;)(F, 0)};>0, {Py,(j)(@, V)}j>0,
respectively. By Proposition 2.1(iv) and Lemma 3.5, there exist subsequences of
{®y:(jy(@, D)} >0, I = 1,2 (without relabeling) such that

I(oi, vi)lly < liminf [|®y, ;)G D)y S8+ [Fllz, i=1,2.
j—o00

Thus, we have (0, v;) € Y5, i = 1,2 for small § > 0 and | F||z. By subtracting
Ls () Py (jy(0,0) = N(0,v), i = 1,2, we have

{ Ul,j — 0'2,]' + a3¢1(j)diV ((O‘l’j - 0'2,1')17) - a(SI/,Z(j) - Swl(j))div (O’z’jf)) = 0,

—1
vi,j — vz, — BAT V(o1,j —02,;) =0,

where (0;,j, vi,j) = Py, (j(G,0),i = 1,2, j = 0. Letting j — oo in §’, we obtain
the equalities

o1 — oy + adiv ((o; — 02)v) =0,
v — V) — ﬁA_IV(Ul —op) =0.

Then, letting n = 01 — 02, we have
. - o L
172 = —adiv(rd), n) = = (div i, n*) S Slnllg..
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Thus, if § > 0 is small, then we have 0y = 07 and v; = v;. Hence, the map
® : Ys — Y5 is well-defined.

Next, we show the map @ is a contraction in the Yy norm. Let (o}, v;) = ® (7, v;),
(0j,v;) € Ys, i = 1,2. Since the definition of ® does not depend on taking a
weakly convergent subsequence, there exits a subsequence {®y (j)}j>0 such that
@y (67, 0;) — (0j,v;) in 8" as j — oo, i = 1,2. By Proposition 2.1(iv) and
Lemma 3.5, there exists a subsequence of {®y(j)(6;, U;)} >0, i = 1,2 (without rela-
beling) such that

I(oi. v)lly < liminf |y (G D)y S 8%+ [Fllz. i=1,2,
j—o00

and

(o1 =02, v1 —v2)lyy S li/,rgioléf [Py )61, V1) — Py ()62, 12) v,
< cb|l(61 — 62, U1 — 12)lyy-

Therefore, if § > 0 and || F'||z are sufficiently small, then the map @ : Y5 — Y5 is
well-defined and is a contraction in the Yy norm. O

Let us now establish the proof of Theorem 3.1.

Proof of Theorem 3.1 Let § and || F||z be small. Then, by Proposition 3.6, the map
® : Y5 — Ys is well-defined and is a contraction in the Yy norm. The contraction
mapping principle and Proposition 2.1(iv) show that there exists a unique (o, v) € Y;
such that ® (o, v) = (o, v). This implies L, (o, v) = N (o, v), since Sj — 1in &' as
Jj — oo. Hence, Lemma 3.2 shows that (o, v) solves the stationary problem (2). O

4 Non-stationary problem

This section is devoted to proving the existence of the solutions of (1). Let us consider
the equations satisfied by the perturbation of the stationary solution. Let (p, v) be a
solution of (1) and let (p*, v*) = (6* 4 pxo, v*) be a stationary solution of (2). After
the rescaling

(p(t, x), v(t, X)) = (p(A*t, Ax), \v(A’t, Ax)),
(p*(x), v*(x)) = (p*(Ax), Av*(Ax)),

with A = poo/P'(pso)'/?, we assume without loss of generality that
Poo/ P'(ps0)'/? = 1. Then, the perturbation (o, w) = (p — p*, v — v*) satisfies
the following system of equations:

0:0 + yodivw = f(o, w),
0w — Aow + Vo = g(o, w), (17)

(o, w)|;=0 = (00, wo),
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where ¥ = P'(poo)'/?, vo = 11/ poc, V) = I/ poos Ao = VoA + (w0 + 1)) Vdiv,

(00, wo) = (po — p*, vo — v*); f and g are defined by the following:

flo,w) = —yodiv{(v* + w)o + o*w}, glo,w) = Zg

with

g'=—v" - Vw—w- -Vv* —w- Vuw,

g’ =—(®(*+0) — P(c*)Vo* — (P(c* +0) — ®(0)Vo,

g = (Vo +0) = V(") A" +w), g*= W) — ¥ (0)Aw,
P'(¢ + poo)

P()= —=>—"2 W) = .
® ¢+ P © { + pPoo

Next, we present some estimates for the solution to the linearized compressible
Navier—Stokes equation around the constant state (0o, 0):

o divu =0,
{ 0+ ydivu (18)

ou — Au +yVb =0,

where y > 0 and A = vA + (v +V)Vdiv with v > 0, 2v/3 + v’ > 0; a is a scaler
function and u is a 3-vector valued function. Let ¢’# be the semigroup associated with
the linear equation (18):

¢ = F 7 [ AOT |, Uo = Won,... . Up)T e S® (19)

where A(E ) is the matrix of the form:

~oo [0 —iy&T
A(E)‘[—ws gl —<v+v’>s®s} (20)

Here & = (£1.£.&)" € R}, £ ® £ = £&7 and I3 is the 3 x 3 identity matrix. By
direct calculation, the eigenvalues of A(&) are given by

2 2 N21g14 — 41212
A ) = ”2+”|g|i\/(”+”)'§' r7IEr

r(E) = —vIglr. 2D

We set Py (§):

Vi® V. . —ixTly e
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for |§| # 0, no, where nop = y/(v +v'/2), V4 - V@ = VjTEVi, and set the eigenpro-
jection Py(&):

0 0
PO(%-): 0 13_% .

Since Py (£) + P_(&) + Py(§) = 14, we have the spectral resolution

¢ O = AP (E) 4 T PL(E) + &M Py(E) for |E] # 0, np. (22)

If |€] = ng, then we have

—iyEr (1= wlePnEs

2 T
SJAE) _ ol [1 — wol€ 2t _iyETs
HE

} e Ry @), (23)

where vg = v+1’/2. This spectral resolution will be used in the proof of Theorem 1.6
in Sect. 5.3.

The following lemma shows some smoothing estimate for the low frequency part of
the semigroup ¢’ and its adjoint ¢’4” . This lemma has been proved in [2, Proposition
10.22]. (Cf. [4, 6, 21].)

Lemma4.1 Let jo € Z, s € R. Set e’LA = S’joe’A, e’
low frequency cut-off operator defined in (13).

A* t

— & AT S
= Sje'” , where S}, is the

(i) Forany Uy € 32Y , and o > 0, we have
tA . 1A* . < . -5 ) 24
e Uoll e llef" Uollggre Sanjo (1 +D 1ol g5, (24)

forany 1 <r < oo.
(ii) The following time-space integral estimate holds:

o0 o
tA A*
/0 ller Uollgﬁzdﬁ /o llef Uoll py2dt o 1ol g5 | (25)
forany Uy € B;l

4.1 Existence of non-stationary solutions

Let us prove the global existence result in Theorem 1.2. We shall prove the following
theorem.

Theorem 4.2 Let (p*,v*) be a stationary solution of (2) satisfying (7) with
I F||B‘3/2m-'13 sufficiently small. Then, there exists a constant§ > 0 such that if (o9, wo)
2,00
satisfy
lGo, woll 1. <8,
B2 N

3
2,00 H
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then the Eq. (17) with initial data (0, wo) has a global solution (o, w) satisfying
(0. w) € (0, 00); B,'2 N H) and

sup [[(o, w)(®)[| 1 S4.
>0 B2 _NH3

2,00
First, we show the a priori estimate for the perturbation.
Proposition 4.3 Let (p*, v*) be a stationary solution of (2) satisfying (7) with
.1 .
(bl BP0 sufficiently small. Let (o,w) € C°(0, T); By N HY, w €

lm([O T); H4) be a solution of (17) with initial value (oo, wg) for some T,
0 < T < 00. Then, there exist constants §1 > 0 and C1 > 0 such that if

sup |[[(o, )@ , . <4,
0<t<T mﬂH3
then we have
sup |[[(o, )@ , = Cillteo, wo)ll .1 . (26)
0=<t<T mﬁH3 Bf NH?

Proof Let us denote U = (o, w) and Uy = (09, wo). Fix jo € Z and decompose
U=UL+ Uy = (or,wr) + (0H, wH), (27)

where Uy, = (o, wr) = (S 00 S jow). In order to estimate the low frequency part
Uy, we shall rewrite the perturbation equation (17) in the momentum formulation. Let

m—m

Poo

m=pv, m*=p"v" and n=

Then, the pair of functions V = (o, n) = (p — p*, n) satisfies the system of equations:

or0 + y1divan =0,
(28)

dn—Ain+ynVo =h+y o F(x),

where y1 = P'(ps0)'/? = poo, Al = nA + (u + w/)Vdiv; h is defined by

h=3"n (29)

with
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k
hy = —div ("sz + 0 f’" 4y (Wt +0) — lIJ(a*))m*(X)m),

hy ==V (l(c*,0)0), h3=A (V(c*+0)—W¥(0)n),
ha =y A (¥ (" +0) — W(o*)m"),

1
(¢, = P14+ 600+ pso) — P (ps0)) dO, W(¢) = )
(€1, ) /O (P'(51 + 082 + poo) (Po)) ©) .

Let ¢4 be the semigroup defined in (19) with y = y; and A = A;. Then, the Duhamel
principle gives

VL) = AV + / = ”A[ }(r)dr, (30)

h+y o F(x)

where V; = SjOV, e’LA = S'joe’A and Vy = V(0). Thanks to Lemma 4.1, for any
V= 1,...,¥4)" € S?* we have

t
(VL(), ¥) = <e2Avo,w>+/0 <[ ](r) e\mA w>dr

o
SIVoll v Il 3 + sup [lh 4y o F| ,,f lep vil. 3 drt

0
h + yl_loF

By By o0si<T By /0 B
S (00lly + sup Wy o Pl JIvi oy,
By 0<t<T 2,00 By |

where 0 <t < T. Then, Proposition 2.1(ii) implies that

sup IIVL(t)II SIIVOIIB% + sup [lh+y 'oF|

0<t<T 0<t<T

2,00 2,00 2,00
Applying the bilinear estimate in Proposition 2.1(vi), we have
Ity toFl 3 < (™ v ol y 3 HIFL IV
By 5 By B, By j By
Thus, if §1 > 0 is small enough, then
sup IIUL(t)II S ol 1 461 sup IIU(t)II
0<t<T 2,00 B;j & 0<t<T ,oo

_ Next, we estimate the high-frequency part Uy . For any u € S ', we denote u;, =
Sjuanduy = u— Sj,u. Since U = (o, w) satisfies the Eq. (17), for any multi-index
a1, o, we have the following identities:
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%%naﬁz“ Unllz, +vI0% Vwr 3, + 0+ )98 divwg |17,
= (09" f, 0% o) + (08 g, 0 wir),

%(a,‘:ZVoH, 3wh) + yolld%2Voyll3.
= yolld@2divwy |17, + (02 Awp, 98 Von)

=+ (3;)(2ny, agsz) =+ (8)‘2‘2gﬂ, 8)‘;‘2V0H).

Let « > 0 be small enough. We set

1
EO =5 Y I UnOIL+ Y k02Vou ), 8 wn ().

o1 |=3 o2 |=2

Then, we have the following inequality

d ~
TEOHED S YO a0 on) + (0" g, O wi)

lat|=3

+ Y KV f, 02wy) + (0028w, 922 Voy), (1)

lora|=2

where 0 <t < T and

En= Y (v||a;” Vwr )2, + v 4+ v) 02 div wH(t)||%2)
jo11=3
+ >« (||a;g‘2v6,q(t)||i2 + 1922 div wH(r)niz) .

|2|=2

We also have

EO) ~ o wi) O3, EO ~ejo lon 125 + lwa (113

for 0 < < T. Let us estimate the right-hand of (31). For any «; with |«1| = 3, by
Proposition 2.1(vi), we have the following estimate

(v VU 0) g, 3% om) S v - Va¥loy, 8% o) + (v - Valop |2

- Vayo) Ll 2) 197 omll 2

. 2
Sio ldivollzellof omll7> + IIUIIB

3 195 ol 20105 om 2,
2,

1

where v = v* 4+ w. For any o with || = 3, the above estimate leads us to
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(05" fu, 07 on)
=((v-Voy'o)y, 0y on) + (((divv)dy' o)y, 07 om)
+ Y (div@fv o Po)y, 0 on) + (00 div(oFw) k. 0 on)
0<B=ai

. 2
S ldivollzellog om 72 + (vl 3.3 85 o Il 21107 or Il 2
2185
+ Vol gslIVoll g2 ll0g orlip2 + IV | g3l Vwll g3 107 om 2

<8Ny +llwlga)ld®onll. SSIUIR,  +8E.
B O B i3

2,00

We also have

(02 fy, 0%2wy) < 811UJ% +8,E for |an| = 2.
B2 N

By Proposition 2.1(i), (v) and (vi), we have

0% gn. P wr) + > k(0%2gn. 02Voy) SHIUIE,  +8E

2 73
a1 |=3 o |=2 B; oNH

Thus, if §1 > 0 is sufficiently small, then there exits a constant ¢p > 0 such that

d ~
—E@t) 4 coE(t) S8 NUD|? forO<r<T.
dt B2 NE3

2,00

Since £ Sj, &, we have the estimate

d
—E@M) + €M) <8IUMDN? for0 <t <T.
dt B2 NH3

Then, Gronwall’s inequality shows that

t
U@ S e NUR O + 81 / OINU@IP, dr
0 BZ NP
Sl +81 sup (U@,
0<t<T B} NH?
for 0 <t < T. Thus, if §; > 0 is small enough, then the estimate (26) holds. O

Next, we show the following local existence result. The proof of Proposition 4.4

.1 .
below is inspired by the argument in Danchin [8]. Since (p* — pxo, v*) isin B22,oo NH?3,
it suffices to show the following proposition to prove the local existence of (17).
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Proposition 4.4 There exist constants Ty > 0, 82,0 > 0 and C > 0 such that if an
external force F(x) and an initial value (pg, vo) = (bo + Poo, Vo) Satisfy

F
17y

3
200 NH

00

o, vo)ll 1 <8 (32)
H? B}

with 8» < 83, then there exists a unique solution (p,v) = (b + peo, V) of (1)
1

on [0, To) x R* satisfying (b, v)|i=o = (bo, vo). (b, v) € C°([0, To): B; ., N H),
v e L2((0, To); H*) and

sup |(b, )1 = Cada.
B} NH3

0<t<Ty

Proof Let0 < Tp < 1, and let 0 < & < 82,0 < 1 be satisfying (32). We denote the
function spaces X, and Y7, by

.1 .
X7, = {(b, v) € C([0, To); B; o, N H?)

v e L2((0, Tp); H“)} ,

Y, = {(b, v) € C°([0, Tp); Bjoo)

.3
v e CY([0, Ty); B;’m)}

with norms
1D, V)lIxg, = 1B, V)l 1 F vl 4y
o CO0.To): B2 ") 1O o)
(B, V)llys, = [1(b, V)] N 3
CO(10,To); B ) CO(10.T0): B o)

We denote the norm of the Chemin-Lerner space i;>°((o, To); H 3) by

— 301 A
)z 0oy = | 208l eqo.yaohie -

(Cf. [3].) The Minkowski inequality implies the estimate
Heell e 0. 70): 5%y = Metll £9o 0, ;)
Let us construct the approximation sequence
{Undnz—1 = {(bu, v) =1 C X1
as follows: The sequence {U,},>—1 defined by (b1, v—1) = (0, 0) and

8lbn—i-l + vy, - Vbn—H = fO(bns Un),
O Vpt1 — Aovpt1 = 80(bn, vn), (33)
(bn+1, Vur D=0 = (bo, vo),
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where vo = 1/ poc, V) = 1'/Poo and Ag = voA + (vo + vy) Vdiv; fo and go are
defined by the following:

fo(bv U) = IOOOdiVU + (le U)b, 80(b7 U) = go,l(bv U) + g0,2(ba U)a
80,1(b,v) = =P (B)Vb —v - Vv, goa(b,v) = (¥ (b) — ¥(0)Aov + F,
P'(¢ + peo)

P(f) = ——5, V(@) = .
© ¢+ pPo 2 {+ poo

Here, the solutions of the first equation of (33) is given by

t
but1(t, x) = bo(¥, ' (2, x)) + /0 Fo(bu, va) (T, Y (T, ¥ (2, X)),

where ¥, is the solution of the ordinal differential equation:

0P (t, x) = va (2, Y (2, x)),
Yn (0, x) = x.

We shall prove by induction that if 7y > 0 and 829 > 0 are small enough, then for
any n > 1,

WUl 7, + NUnll poe 0 1yesi) S 82 (34)

1
1Un = Un—tllvgy < 51Un=1t = Un—2llyy,- (35)

Let n > 1 and assume that the inequalities (34), (35) hold for 1 < k < n.
Since Upy1 = (bus1, vng1)' is a solution of (33), for any j € Z, we have the
energy estimates

d . . . .
EIIA,/vnHII%z + ol VAjvps1ll72 S (Ajgo(bu. vn). Ajvpsr)
S27A jgobn, vi) I 2 IV A jupi 2,
where co > 0 is a constant, and

d .
—IvA ibntill7a

(=V(A;(y - Vbui1)) + VA folby, va), VA jbyi1)
|

<
S UV(Aj W - Vbus1)), VA by 1) + IVA fobu, vi)ll 2 IV A byt |l 2.

Forany 0 <t < Tp, by Proposition 2.1(v), (vi) and Lemma 2.3, there exists a sequence
{dj()}jez with [|[{d; ()} s2z) < 1 such that

147801 (B, va) DI 2 S 272 dj(0)180.1(Bns v) (D 2 S 272 d(1)83,
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14j80.2(bn, v)ll2 < 27 d; ) l1g0.2(Bn. vm) D)l 2

S 27294, (160 Ol 107 10 Ol g gzs + 1 Fllz2)

S 272d; 0820l s + 27 d; (053 +27d; (03,
IVA; folbn. un)O)ll2 S 272 dy O lon )l 1 loa Ol s

< 27Ud; (08 lon() | s + 272 d; ()83

and

V(A j(n - Vbuy1)), VA jbyy1) ()]
SHA vn - VIVhu O 21V A b1 (D) 12 + 1divo, () | L IV A jbug1 (0172
+ 272 di (O U051 s IV A b1 (02
S 27 d; )8 (1bas1 (Dl g5 + 82)IVA b1 (Dl 2 + 821V A jbus1 ()17

Here, we use the identities:
i ) 1 . )
(Un - VORAjbyit1, 0k Ajbyyy) = —E(le Vp Ok A jbyy1, Ok A jbuyt)
for 1 < k < 3. Thus, if Ty > 0 is small enough, we have the estimate

1
|Un+1 ”I:?C((O,TO);I-'I3) + llvn+1 ”L,z(((),To);H“) Sé+ 522 1Un+1 ”XTO .

By the Duhamel principle, we may rewrite the second equation of (33) by
t
vn1 (1) = €A0ug + f =P g0 by, va) (T)d .
0

We use the following estimate for the semigroup e’ Ao O

Lemmad4.5 Lets e R, 1 <r < oocanda > 0. For any {| € Bzvr Yo € 351 we
have

t
o
e A0y || gove S 172V gs ey yoradt < IWallgs  fort > 0.
2.r 2.r B2I 2,1
) 8 0 Y )

As for the proof, see [4, Proposition 2.1], [7, Corollary 2.7] for example.
By Proposition 2.1(v), (vi) and Lemma 4.5, for any 0 < ¢t < Ty, we have

Ao <
lle vollé% NIIUOIIB%,

2,00 2,00
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t
H / DA g0(byy, vp) (x)dT
0

t
1
1 §/ T 2 lgobn, va) (I, _1dT

BZ,oo 0 BZ o]

1
S 702 (IWnllx, + 10l +IF1 _y)-

200
Let us write go(by, v) — go(bn—1, vu—1) = &1 + &2 + &3 with

g1 =—(Wby) —Y(bp-1)Vby, — (vy — vy—1) - VU,
g2 =W,V —by—1) —vy—1- V(v —vp_1),
g3 = g0,2(bns Up) — g0,2(bn—lv Up—1).

By Proposition 2.1(v), (vi) and Lemma 4.5, for any 0 < ¢ < Ty, we have

t
‘ / e=DA05 (1)dt

0

t
1
| 3 5/ T 2g1(MIl _1 1 dt
) 0 B22 2

n2 2
BZ,meZ,oc ,00 2,00

S T A+ 1(Un, Un—0)llx7,) sup [[(Un —Un+1)(f)||

0<t<Ty 2,00

and

!
Y
/ (1— T)Aogz(r)d‘r 1 5/ T 21220l _1dt
0 ; X

BZ,OO 0 2,00

1
STy (L + 11U, Un—1)llxg) sup  [[(Un — Un+1)(f)”3%

0<t<Tph 500

For any ¥ € S and 0 < ¢t < Tp, by Proposition 2.1(ii), (v), (vi) and Lemma 4.5, we
have

t
< /O g (), w>5 sup (122011 - /O leowll y d
21

0<t<Ty 200

S MNUn, Un—Dlixg, sup (U — n—l)(t)”B% IWII 3

0<t<T) 2,00 21
and

t
< f 1m0 g (n)d, w>

0

A
S s a1y [l e
0<7<Tp B, 2nB, 2 Jo B;+B5,

S 1(Un, Un—l)”XTO( sup |[(Un — Un—l)(f)”[g%
2,00

0<t<T)

+ s o = w13 )WLy
0<t<Ty 2 Bz,l +Bz,l
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Hence, by Proposition 2.1(ii) and the induction hypothesis,

sup o1y <6,
B

0<t<Ty .00

1
sup  |[[(vp41 — V)OIl | 1 STy + 8)Uy = Untillyy, -

3
2 2
0=t<Ty BZ,oomBZ.oo

To estimate SUPg<; <7, ||b,,+1(t)||1-32|/z and SUPo<; <7, 1(brt1 — bn)(t)||32|/z , wWe use
00 ,00
the following lemma.

Lemma 4.6 Let v, f € Xy, and let b be a solution of the linear transport equation
a%b+17-Vb=f onl0,Tp) x R>.

Then, there exists a constant C > 0 such that

t
Iy e (nb(mn.; + / O FOl dr),
By, By 0 By oo

forany O <t < Ty, where Ej(t) = f(; ||Vf)(r)||33/2dt.
2,1

This lemma is a special case of [7, Theorem 2.5]. Hence, we omit the proof.
Since Ey, (To) < 1, by Lemma 4.6, we have

sup [bnr1 N1 S kol v +To sup [ folbu, va) (DIl 1
0<1<Tp B3 B 0<1<Tp B}

and
sup |[(bny1 — b))l 1 < To sup (II((vn = Un—1) - Vo) . 1
0<1<Tp B 0<1<Tp B2

+ [1Cfon, va) = fobu—1, va—1)) (D]

i)

1

2
2,00
Then, Proposition 2.1(vi) and the induction hypothesis show that

sup [ba+1N 1 < b2,
B

0<t<Ty 5 00
sup [|Gnr1 = L) 1 S TollUn — Un—illyy,-
0<t<T B}
=10 2,00

If To > 0 and 67,0 > O are small enough, then we have

1Un+1 ||XT0 + 1 Un+1 ”[1?0((010);[;3) S, 52,

1
||Un+l - Un”YTO = EHUn - Un—1||YTO~
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Therefore, by induction, we have the estimates (34) and (35) for any n > 1. The
estimate (35) implies that U,, converges to some U € Yp, asn — oo. Then, for any
j €Zand ¢ € C((0, Tp) x R?),

(AjUy, ¥) — (A;U,¥) asn — oo.

For any j € Z, there exists a sequence {w}’(nj)}mezzo C C§°((0, Tp) x R?) such that

sup,, ”Wrgp ||L;1((07T0);L2) < 1land
(AJU, 1,0,51])> —> ||A,/U||L?o((O,T());L2) asm — OQ.
Thus, by Fatou’s lemma, we obtain

m—0o0 n—>0o0

2(2)
. . . . <
< llnm inf ||U"”L;’°((0,To);H3) < 6.

Since U € C°((0, Ty); le’/ozo), for any j € Z, the low frequency part S'jU belongs to

CO(0, To); By~ N H?). By U € L*((0, To); H?), we have

U — SjU”L;)c((O‘TO);[_'p) — 0 asj — oo.

Then, we have U € CO([O, T0); H3). Since U, satisfy the relation (33), (p, v) = U +
(poo, 0)isasolution of (1) suchthat Ul|;—o = (bo, vo), U € X7, v € L,z((O, To); H'N
H*) and

(14 + ||v||L,2((0,T0);HlﬂH4) <162,

1
CO([0,Tp); B ,NH?)

where ¢; > 0 is a constant. Let us show the uniqueness. Let U= (15, ) be a solution
of (1) satisfying

Ul + ||ﬁ||L,2((O,T0);I:IlﬂH4) <c16.

1
CO([0,T0); B} ,NH?)
Then, by the proof of (34), the estimate

- 1 -
IU = Ullyr, = 51U = Ullyy,

holds. Hence, U = U.
The rest of this section is devoted to proving Theorem 4.2.
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Proof of Theorem 4.2 Let (p*, v*) be the stationary solution satisfying (7). By Propo-
sition 4.4 and (7), there exist 620 > 0, Tp > 0 and C2 > 1 such that if an initial
perturbation (o, wg) = (pg — p*, vo — v*) and F (x) satisfy

(G0, wolll .1+ IIFIl . =820,
B} NH? 32 NH3

2,00 00

then there exists a unique solution (o, w) = (p — p*, v — v*) of (17) on [0, 27p) such
that (o, w)(0) = (09, wp), (0, w) € CO([O 2To); H3 ) and

sup |[(o, w)(D)]| i3 < Ca(lltoo, wo)ll .1 +||F|I -3 3 ).
0<t<2Tp B JNH? B} NH? mm

2,00 2,00

Let C1 > 1 and §; > 0 be constants appearing in Proposition 4.3. We take an initial
perturbation (op, wo) and F'(x) such that

) 81
Cill(oo, wolll v +IIFI 3 | Smln{320,
B} NH3 B, 2nH3 G

.1 .
Let N > 1, and let (0, w) = (p — p*,v —v*) € C°([0, NTy); B] ., N H?) be a
solution of (17) on [0, N Tp) with initial value (o9, wo) satisfying

sup o w0l 1 = Cilleo, wo)ll

0<r<NTp By NH By NH3

Since

(o, w) (N =DTo)l .1 +IFI. 5 . =<éo,
B2 _nH3 B, 2nH3

2,00 2,00

by Proposition 4.4, there exists a unique (¢, w) € CO([0, 2Tp); B : N H 3) such that
(6, w) is a solution of (17) with (¢, w)(0) = (o, w)((N — 1)T}) satlsfymg

sup 1G, DD 1 _5@0@wMN—mwg .+WM_>
By NH3 B} NH3 H3

0=<t<2Ty

2,00 2,00

< (Clll(do,wo)ll,l . +||F|| 3 ,>S31.
BZ NH3 mH3

2,00 2,00

Let (o, w)(t) = (6, w)(t — NTp), t € [NTy, (N + 1)Tp). Then, (o, w) is a solution
of (17) on [0, (N + 1)Tp) and, by Proposition 4.3, we have

sup [, w1 = Cill(oo, wolll 1 .
0<t<(N+DTpy By JNH? By NH3
Hence, the proof is completed by induction on N. O
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5 The proof of decay estimates

Throughout this section, we fix the stationary solution (p*, v*) = (6* + poo, V)
obtained in Theorem 1.1 and the perturbation (o, w) = (p — p*, v — v*) obtained in
Theorem 4.2. From now on, we denote the real numbers 1, §> and § by

Sr=lo*l 1
B, 2

2,00

* _
e ”Bz% s 82 = sup || (o, w)(t)”z‘zzlfjomm

oo t>0

and § = 81 + 8. In order to prove the time decay estimates (10), (11) and (12), we
show the following weak-type decay estimate.

Theorem 5.1 Let —3/2 < 5o < 1/2.If § = & + 8, is small enough, then, for any

—3/2 < s < 3/2 with sy <s, we have

)
(o, wy Ol gy Ss (L+0)777 (oo, wo)llggoocmgz- (36)

The proof of Theorem 5.1 is performed by decomposing the perturbation into
low- and high-frequency parts with respect to the Fourier space. We decompose the
perturbation (o, w) into low- and high-frequency components for fixed jo € Z:

(o, w) = (o, wr) + (og, wy), 37

where (o, wr) = ($},0, Sjw).

5.1 Estimate for the low frequency part

Let us establish the time decay estimate for the low frequency part of the perturbation
(or, wr).

Proposition 5.2 Ler —3/2 < so < 1/2, andlet € > 0 be a small number. If§ = 81+ 82
is sufficiently small, then, for any T > 0, we have

sup (1407 | (or. wr) Ol 4

Sejo 1000, wo)llgo  +8De 5o (T),  (38)
0<t<T 2,00

S
2,00

where —=3/2+¢€ < s < 3/2—e€ withsy < s. Here, the quantity D 5, (T) is defined by

n-sg
De sy (T) = sup sup (1412 [l(o, w)(®)ll 37 (39
—3/2+€<n<3/2—e, 0<t<T g
S0=n

Proof Letn = (m — m*)/peo With m = pv, m* = p*v*. Then, (o, n) satisfies the
Eq. (28). By the definition of n, we have n = yl_l w+yi(ov—o*w).Letn; = Sjn.
Then, for any —3/2 < s < 3/2, Proposition 2.1(vi) shows

lwillay | Sonelgy +8l g .
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Thus, to prove Proposition 5.2, it is sufficient to show the inequalities

sup (1+0) 2 oL, nL) Ol g Se.p.jo 1000, wo)llgso  + 8De 5o (T),
0<t<T 2,00

where —3/2 +€ < s < 3/2 — € with sg < 5. Let ¢'A be the semigroup associated
with the left-hand side of (28). Then, the Duhamel principle gives

t
00 (t—1)A 0
mo=a [l L i ore] e

where e!4 = §;,¢' and the function / is defined in (29). Let us denote Vo = (09, no)",
V = (o,n)". Then, according to Proposition 2.1(vi), Lemma 4.1(i), we have the
following estimate for the first term in the right-hand side of (40):

Vol S 07T Mol S A0 lon w0y @D

To estimate the second term in (40), we use the following lemma. O

Lemma5.3 Let —5/2 < B < —1/2. Then, we have

1l ze SBan 31||VI|B/3+2 + VI ,+UIIVI|Bﬁ+2 VI ,_nllVllBﬁ+2+n (42)

200 2I
forany O <n <min{g +5/2, -8 —1/2, 1}.

Admitting Lemma 5.3 for a moment, we continue the proof of Proposition 5.2. Let
us denote the second term in (40) by

t
_ (t—1)A (t—7)A 0
Np(t) = /0 ey |: i| (v)dr +/ |:y110F(x):| (v)drt

= N.(t) + N3 (1). (43)

We estimate the term N i (). We first treat the case —1/2 < s < 3/2 — € with
so < s. In this case, we estimate N 11‘ (t) by using the duality argument. Let ¢ =
Wy, ¢4)T € S8*. Fix a real number o satisfying s —so < a9 < s — sp + 2 and
s+ 1/24+€ <ap <s+45/2 — €. This «g can be taken if € < 1. Proposition 2.1(ii)
then yields

(M. v) / 1O g2 ey Yl gz s dr

A*
+ f 1) g llef ™ Wl g diT.
0 .

@ Springer



N. Deguchi

By Proposition 2.1(vi),

V@l S A+ U@L DWWl WOl @

2,1

where U = (o, w)T. Then, Lemma 5.3 with 8 = s — 2 and n = 0 shows

Ih@lgg2 S G +IU@I 1 OIU@ g SSIU@ g

5001 B3 1

By using the time-space integral estimate
oo G
/ ler”™ ¥l ga—s dv S Ml s
0 2,1 2,1
which follows from Lemma 4.1(ii), we obtain

t t
t—1)A* t—7)A*
[ Ih @ g2l ™ il gz dr 558 / U@y lley ™" Wl de
3 > ' 3 ‘ ’

§—5 0 *
Sy +07 7 [ 1 g e
0 .

_57%
Sj() 8De,so(T)(1 +1) 72 ”Vf”Bﬂ

Lemma 5.3 with 8 = s — «p, n = 0 shows

IRl gs—e0 S\ HNU@N 1 3 ) IU@ gs-aor2 S SINU @) ys-ag+2-
2,00 B 2%1 2,00 2,00

LocNB
By using the time decay estimate

t—1)A _%
ler ™ Wl goo—s S At =D 2 Wl

which follows from Lemma 4.1(i), we obtain

t
2 *
) (t—1)A )
/0 ||h(f)||B;;:o ey, w”B;‘ﬂﬂ dt
t

2 F—T)A*
S8 [ 1@ gl ™ Wl gy e
0 2,00 2,1

s—so+

2—a 17
T 14+t— r)_Todt

:
D DIy [+

_57%0
Seuo 8Deso (DA +07 2 [l .
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As Y is arbitrary, applying Proposition 2.1(ii), we obtain the inequality
5750
INL@Il g5 Sevio Densy(T) (1 +10)7 72 (45)

for —1/2 <5 <3/2—¢€, =3/2 <509 < 1/2 with sg < 5.

Next, we show the inequalities (45) for —3/2 +¢ <s < —1/2, =3/2 <59 < 3/2
with so < s. We take €] > 0 which satisfies €; < 1/2. Then, using Lemma 4.1(i) with
o =245 — € and Lemma 5.3 with 8 = —2 + ¢ and n = 0, we have

t
_1 _
INLOllay S / (41 =0 D) v dr
,00 0 Ne'e)

t
< 5/ 1+t — t)—%(2+s—61)”U(T)”B§1 dt
0 , 00
_sx
Serp 8Desg(T) (1 +1)" 7 .

Let us estimate N,% (t). By Proposition 2.1(vi), Lemma 4.1(i) with @ = s + 3/2, we
have

t
_s_3
INZ @) 35 s,-of<1+r—r> i o()F | _ydr
,00 0 B

2,00
t

_s_3
SAFI ., [ 4r=07 o) 5 ar
Byi  JO By

oo
s—50

Se 0D sy (TY (L +1)" 72,
where —3/2 +¢€ <s <3/2 —€, —3/2 < 59 <3/2 with sp < 5. Hence, we obtain
)}
INLOI gy Sejo SDeso(T) (1 +1)772 (46)
for —3/2+e <s <—1/2, =3/2 <s9 <3/2withsg <s.

It remains to prove Lemma 5.3.

Proofof Lemma 5.3 Let W(¢) = 1/(¢ + poo). By using Proposition 2.1(i), (vi), we
obtain

n®@m m*QRn
_l’_

||]’l]||B£5Oo ,S HT +V]_1 (\IJ(O'*—{—U)—\IJ(O'*))m*@m

B B+1
BJY
Span 1@, vl 1 MUl e HNUN 3 U g2,

B5 2,00 B 2,00

2,00

since 0 < n < 1. We also have bounds for &, as

hollop S |TI(0™, 0)o| 4541 < ||o* ol ; o O || 5p+2-n.
[ 2||B§OON|| (0", 0) ||B§§N|| ”B% Il ||B§1—o2+|| ”B%M” ”B;Zj"

2,00 2,00
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By Proposition 2.1(i), (v), (vi), we obtain bounds for g3, g*as

I3l gp < (U™ +0) = W) Vil g
[V (90" + o) — @) n] oo

< * . .
Son o5 gz + 1015, WU jgezen

2,00
hall gy S (Y™ +0) = W) V| gy
Y (¥ o)~ wio™) m|

llorll -2

Spon Im*1l
B 1

3
2
2,
since —3/2 < B, B £ n < —1/2. Therefore, we have the desired estimate (42). O

Proposition 2.2 implies the continuous inclusions

-3(1-1 .3 .
LP® s Bz’ogp J forl<p<2 L'<>B,2 and L>< BY .

Then, by Lemma 4.1(i), we have the estimate for the first term in the right-hand side
of (40),

s _3(1 1
e’LAVOHBS <Sip (1+0)72 D vl i1 <p <2, 47)
2,00

1.1

], s+ 0 g, wp =2 (48)
2,00

where s € Rand 1 < p <2 withs/2+3/2(1/p — 1/2) > 0. Thus, by the estimate
(46), we obtain the following proposition.

Proposition 5.4 Let € > 0 be a small number. If § = 81 + 8> is sufficiently small, then,
forany T > 0, we have

sp3(1_1 ~
sup (1+41)? 1 2>||(0L, w)Ollgy  Sep.jo 1000, wo)lla, +8De, p(T),
0<t<T %0

(49)

where =3/2 + € <s <3/2—¢€,1 < p <2withs/2+3/2(1/p —1/2) = 0. Here,
the quantity De ,(T) is defined by

~ g+§(1_1)

De, p(T) = sup sup (1+1)* >\ */(o, )z,
—3/24€<n<3/2—e, 0<t<T 2,00
n/24+3/2(1/p—1/2)=0
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and the function space A is defined by

A LP®@R3Y) ifl <p <2,
P lLr@®®  ifp=1,2.

5.2 Estimate for the high frequency part

The estimate of the high frequency part of the perturbation (oy, wy) is proved as
follows.

Proposition 5.5 If§ = 81 + & is small enough, then we have the following estimate
forall T > 0 and small € > 0,

sup (1+t) =t II(UH,wH)(t)IIBs N 100, woll gy + 8De 5 (1), (50)
0<t<T e

where § = 81 + 62, —3/2+€ <s <3/2—¢€, =3/2 <s9 < 1/2withsy <s. Here,
De 5o (T) is the quantity defined in (39).

Proof Since ||(oy, wH)(t)IIBn Sio o, wH)(t)||sz fors; < sy, itis sufficient to
show that the estimate (50) W1th the highest order case s = 3/2 — €. Since (o, w) satis-

fies Eq. (17), we have the following identities for (o, w;, f;, g;) = A jlo,w, f,8),

where A are the dyadic blocks,

L Vo, wp s + v V2w 12, + v+ )| Vv wj 2

T oj, wilj.+v wjlljs+ @+ vw;lly,
:(ij,VOj)+<ng,ij),

d .
T (Vo wj) + YIIVe;l3, = ylldivw; |7, + (Aw;, Vo) +(V f;, wj)+(g;. Vo).

Hence, there exists a constant ¢cp > 0 such that for sufficiently small ¥ > 0,
4\ 2 \% Voi|? Viw;i|?
TV wplga + (Vo w))) + co (el Voy 7 + 197w

4
SV 5. Vo) + .V w) + Y (k(gh. Vo) + (Vgh, Vw;)),
i=1

where gj- = Ajgi . By using Proposition 2.1(i), (vi) and Lemma 2.3, forany j > jo—1,
we have

(V£j,Voj) = —(VA;div((v* + w)o + o*w), Vo)
S22 A (diviv* + w)o + Va* - w2 Vo)l 2
+2/I[A;, W* +w) - Vo +[A;, o*div]w| 2 Vol 2

@ Springer



N. Deguchi

— (V((v* +w) - Voj), Vo;) — (V(e*divw;), Vo)

—j(s—1
Sejo 2775V 0, v, w)|
B

3 1@ Wl 1V0)l2
2,

1

+ VOl Vo7, + 1(6%, Vo*, o, Vo)l [ Vw;ll 211 Vo | 12
S 8270 V@ wllgy Vol +81(Voy. V2w,

where we use the identities:
(v* - Voo, ko)) = —§<le V0o, ko) forl <k <3.

Using Proposition 2.1(i), (v) and (vi), we have

(V. wj) £ 27707V div (0* + w)o + o™ w)| go1 [V 2

—j(s—1
S279 @ 0 v g e wllgy IVw)lle
2.1 '

S 82770 V@ wll gy IVw;l 2

Similarly to the estimate of (V f;, w;), by applying Proposition 2.1(v), we have, for
any j = jo— 1,

2
Y (k(gh. Vo) + (Vg Vw;))
i=1

S 827707 V0wl gy _N1(Voy Vw2 + 811 (Yo, Vw))ll .

We next consider bounds for/c(gi, Voj)+ (Vg?, Vw;j). Let W(¢) = 1/(¢ + poo). If
€ > 0 is sufficiently small, then, by Proposition 2.1(v), (vi), we have

k(g. Voj) + (Vg}. Vw;)
S 27787V (W (o™ 4+ 0) — W () AW + w)|

2
sy (V05 V2wl 2

S 8270 Vlallgy N1(Vos, Vi)l .

To estimate x (g;!, Voj)+ (Vg?, Vwj), we introduce the function 2 = W(c*) — W (0).
By Proposition 2.1(iii), (v), (vi) and Lemma 2.3, we have

/c(g;!, Vo) + (Vg;!, Vw;)
= (Aj(hAw), kVo; — Aw;) < (2/’||[A,, WVl 2 + IV (hVw;) |12

+ Y A @ch dw) ||Lz)||(Va,-,v2wj>||Lz
1<k,1<3

@ Springer



On the stability of stationary compressible...

—jGs—1 2
Sejo 277670 <||0*|| s llwllgy 410", Vo)L=V wj||L2>
Bf 2,00

2,1

x (Vo V2wpll2 + 277670 37 flach dywll gy-11(Voy, Vw2
1<k,I1<3 '

<8270 Vlwlzy 1(Voy Vw2 +81(Voy Viw))ls.
Let x = k(jo) > 0 be small enough. Then, for any j > jo — 1, we have
Ej(t) = V(oy, wj)”%z +x(Voj, wj) ~j IIV(oj, wj)”iz- (51)
It then follows that there exists a constant ¢c; = ¢1(jp) > 0 such that

d ~ ~1
Egj + 2015/’ < djgj 2,

Whereg} = [[(Voj, Vzwj)”%z, dj = §2776=D (g, w)||3.2rm. From Young’s inequal-

ity and the fact that £; <, 5] for any j > jo — 1, we deduce that
d 2
Egj +C15j Sjo dj.
Therefore, Gronwall’s inequality and the relation (51) ensure that
2255 (o, w2,
t
Sl )l +8° [ e @, dr
2,00 0 2,00
t
S e (00, woll s+ 87 Desy(T)? f e 114 )"0 0ar
2,00 0
—(s— 2
S L+ 077000, wo)ll gy + 8D,y (1)),
where j > jo. Hence, we obtain
55
(A +0 7 o wi) Ol Sio 100, wlll gy +8Desy(T):

m}

Propositions 5.2 and 5.5 derive the weak-type estimate (36). This completes the
proof of Theorem 5.1.

Next, we show Theorem 1.5 and the decay estimate (12) in Theorem 1.6(ii). Since
we have the interpolation inequality (see Proposition 2.1(iii))

el Ssroso0 Nl el with's = (1= 6)s1 + 053, 6 € 0, 1), (52)
2,00 ,00
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Propositions 5.4 and 5.5 allow us to complete the proof of the estimate (11) when
(p,s) # (2,0) and the estimate (12) in Theorem 1.6(ii). The rest of the proof of
Theorem 1.5 is established by the following proposition.

Proposition 5.6 If 8 = &1 + 85 is small enough and (oo, wo) € L?, then the energy
estimate

t

(o, w)() 175 + fo (IVw (@35 + Vo (@132)dT < 100, vo) 13,
holds for any t > 0.
Proof Let x > 0 be sufficiently small. We set

=Y 1020, wOl7.+ Y (@2 Vo @), 2w()).

loep[<3 lea] <2

Since (o, w) satisfies Eq. (17), we have the following inequality

t t
a0 -0+ [(Ewdrs [ 3 (@000 + g ow)
0

0 JayI<3
+ > K ((02V f, 922w) + (9%2g. 9%V o)) d,

loa| <2

(53)
where ¢t > 0 and

Ew =Y (Vg Vu@l} + 0+ )0 div w3,

leer|<3

+ Y k(102 VoI + o divw®)]3, ).

loa| <2

We also have
E1O) ~ o WD, E1(0) ~ Vo @)% + IVw(®) |3

for + > 0. Next, we establish the estimate of the right-hand of (53). By Proposi-
tion 2.1(ii), (vi), we have

< 8.

~

(f,0) + KV f,w) S 1@ v )l g (Ve Vw, Vw)lf,
2,

o0

Using the identities

(div((v* + w)ad' o), 0% o) (div(v* + w)d¥' o, 37 o),

1
)

@ Springer



On the stability of stationary compressible...

forany 1 < |o1| < 3, we have

(@ f, 97 0)

1
= E(div(v* +w) d¥o, 3¢ o) + (0Y div(cFw), 371 o)
+ Z (div@? (v* + w) 8" Po), 9% o)
0<B=a;

< ldiv(v* + w)”L"C”VU”%p + llo* g IVwll g3 I Vo ll g2
FIVOH g2 IVo 12 + lwll g3 Vo 12, + IVwl gsllol g3 1 Vo | 2
< 8&. (54)

We also have
(0%2V f, 9%2w) <88 for 0 < |aa| < 2.

Similarly to the estimate of (54) by applying Proposition 2.1(v), we have

(@M. 0% w) + Y Kk(0%g, 92Va) S 8E).

oy [<3 lo2| <2

If § is sufficiently small, then

t
E1(1) — £1(0) +co/ El(v)dr <0,
0

where t > 0 and ¢¢ > 0 is a constant. Hence, we obtain

t
I, w) ()1 75 + / Vw5 + Vo (Dll32dT < ll(00. v0) 173
0
for any t > 0. O

5.3 The proof of optimality

This section is devoted to the proof of Theorem 1.6. We first show the following lemma
which derives the estimate of Ny defined in (43):

t t
_ t-0A |0 (—1)A 0
NL(t)_/O ¢! M (r)dt—i—/o el |:y1_10F(x):| (r)dt

= N} (t) + N3 ().
Recall that §; is given by

81 = IIU*IIB_% i + vl

2,00

1 .
4
By NH3
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Lemma 5.7 Let an initial perturbation Uy = (0p, wo) be sufficiently small in 32/2

H?3 norm. If Uy € L' and —3)2 < s < 3/2, then there exists a small d > 0 such that

3 s 3
INLO s Ssadvg S1(1+D7371 4 (141737179,

In the case 1 < p < 2, =3/2 <5 < 3/2withs/2+3/2(1/p—1/2) > 0, if
Uy € LP-*°, then there exists a small d > 0 such that

(

N\w
<=

_s_3(1_1 5 A
INLO e Sean 811+ 0 3672 44 3G,

Proof Theorem 1.5 and the decay estimate (12) in Theorem 1.6(ii) imply the decay
estimate of the perturbation U = (o, w):

_s_3(1_1
Ul s Ssp L+1)2 1€ >||U0||A ,NH3

where —=3/2 <5 <3/2,1 < p <2withs/2+3/2(1/p —1/2) > 0, and A, is
the function space defined in Theorem 5.4. Let us denote so(p) = —3(1/p — 1/2).
Lety = (Y, ..., w4)T € S*. Fix a real number « that satisfies s — so(p) < ap <
s —so(p)+2,5s+1/2 <ag < s+ 5/2. Proposition 2.1(ii) then yields

(V. v) f IR gg2llef ™" Wl gz d

2 %
h(t oS — 0 e(tir)A cag—s dT.
+ [F @t ™ Vil

Lemmas 4.1(ii) and 5.3 imply thatif —1/2 <s < 3/2ands/2+3/2(1/p—1/2) > 0,
then for any small d, n > 0 with d < n, we have

(t—1)A*
/ 1A (Dl g2 ller Vil de
Ss 81/ U@y lley oA ¥l gz de
A*
/ ”U(T)” l+n B,,WHU(T)”BA ntwnIIe(l 2 10”13227lJ dt

200 2,00

Seanlo (61(1+z)—T +(1+r>‘T‘d)f lei Wl gas dr
0 s

Sod B+ A+ 2 Yl s
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By Proposition 2.1(vi), Lemmas 4.1(i) and 5.3, for any small d, n > 0 withd < n,
we have

t
A*
/ 1) oo lef " Wl goo—s dT
0 2,1

L

A*
< / 0@l gy-soralef ™ Wl gog-s e

A*
/ IO 3 MOl evsion e

2,00

_S=S0 _57%0 _
Ns,d(61<1+t) T+ (407 d)nwn;,;;.

W||B;ol—s drt

By Proposition 2.1(vi), Lemma 4.1(i) with « = s + 3/2, we have

IINf(t)III;i NJO/(l t—f)“—illa(f)Fll 3dr

200
Ser WFlag; [0 4= 07 H o5 _dv
©J0 .00
_ S50
Se,p 81(141)" 72

Since ¢ € S is arbitrary, we have
INLOgy  Sea61(14+07 2 + (1 +07 2~
By the interpolation inequality in Proposition 2.1(iii), we have

INLON s Sea 611+ + (1 +1" 24 (55)

for—1/2 <s <3/2,1 < p <2withs/2+4+3/2(1/p —1/2) > 0. As in the proof of
the inequality (46), we obtain the inequality (55) for —3/2 <s < —1/2, 1 <p <2
withs/24+3/2(1/p —1/2) > 0. O

Next, we prove Theorem 1.6. The proof of optimality in Theorem 1.6 below is
inspired by the argument in Kawashima et al. [12].

Proof of Theorem 1.6 Let an initial value Uy = (09, wo)' satisfy Uy € L' and

IUoll g3 < 82. Then, the decay estimate (11) with p = 1 holds. Lemma 5.7 ensures
that there exists a small d > 0 such that

U gs = lei? UoIIHa — INL@O s
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where —3/2 < s < 3/2. We recall the spectral resolution in (22), (23):

SO = PP (E) 4 PU(E) + Py (6).

Since A4 (&) ~ i|€| as & — 0, we have the asymptotic behavior of Py (€):

11 F5
Pi(£) ~ Q=(§) + O(E]) as ] — 0, Qi(s)=5[ ¢ sg@] (56)

Let
e Uy = $;,F " [(+1 Q4(6) + &' Q_(&) + ™' Py(£)) Ty ] .

where § j is the low frequency cut-off operator defined in (13). Then, there exist
constants ¢, c¢o > 0 such that

A _ 2 -]
(et — U 1%, sf E2CHD e g Ul 1 <jo (140772 Upll -

&1=co
As real orthogonal projections Q.+, Py satisfy

O+ +0-+P =L, Q0+0:=0:+P =0

and 06(5 ) is continuous at & = 0, we obtain the following estimate for sufficiently
small jy € Z,

tA 2
e Uol1%,

= 185, F 1" QL Uoll%, +I1S 1 F ™" Q- Tolll% +118j0 F ™ PoUol11%,
. . 2 =~ 2 e . 2 g3

2 8i0e" Vol s Zio.vo [T0O]” [ Sjoe™ 55 2 MU0)* (1 + 1)~ 2,

where M (Up) = |f Updx|, —3/2 < s < 3/2. Here, we use the identity
IVI>? = Q4 VI +|0_V|*> +|PyV|* forany V e C*.
Therefore, if §; = §1(Up) > 0 is sufficiently small, then we have
s_ 3
U gs Zs.up A +1)7273 fort > 1,

where —3/2 < s < 3/2. We next treat the case 1 < p < 2, =3/2 < s < 3/2 with
5/243/2(1/p —1/2) > 0. Let Uy = 805, (| - |7>/P)e; with e; = (1,0,0,0)" and

small 8o > 0. Then, we have Uy € L7 and ||Up|l g3 Sj, S0, since F(| - |73/Py ~
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|- |3/P=3. By (56), there exist constants ¢, co > 0 such that

==
|
D=
SN—"
|
—_

3 e
et - el < | 0T emene g <0 40

|€1=co

Let jo be sufficiently small. Then, there exists a constant ¢; > 0 such that

tA 2
et Uol1%,

= 18, F e Q1 Ul H18jo F 1" Q-T2 +11S o F e PoUo]ll3,,

~

< /m 6204373 e > (1 430G, (58)
<c|

Hence, the corresponding global solution U = (o, w)" satisfies

s 1
WU gs 2 (14+1) 2 2<" 2) for ¢t > 1.

O
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