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Abstract
In this paper, we consider the Cauchy problem for semilinear classical wave equations

utt − �u = |u|pS(n)μ(|u|)

with the Strauss exponent pS(n) and a modulus of continuity μ = μ(τ), which
provides an additional regularity of nonlinearities in u = 0 comparing with the power
nonlinearity |u|pS(n). We obtain a sharp condition on μ as a threshold between global
(in time) existence of small data radial solutions by deriving polynomial-logarithmic
type weighted L∞

t L∞
r estimates, and blow-up of solutions in finite time even for

small data by applying iteration methods with slicing procedure. These results imply
a conjecture for the critical regularity of source nonlinearities for semilinear classical
wave equations. We verify this conjecture in the 3d case.
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1 Introduction

In the last 40 years, the Cauchy problem for semilinear classical wave equations with
power nonlinearity, namely,
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{
utt − �u = |u|p, x ∈ R

n, t > 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
n,

(1)

with p > 1, has been deeply studied by themathematical community. For example, the
questions on global (in time) existence of solutions, blow-up of solutions in finite time
and sharp lifespan estimates of solutions were of interest. In particular, the critical
exponent for the semilinear Cauchy problem (1) is given by the so-called Strauss
exponent pS(n), which was proposed by Strauss in [24]. Nowadays, the correctness
of the Strauss exponent is well-known. The Strauss exponent pS(n) is the positive root
of the quadratic equation

(n − 1)p2 − (n + 1)p − 2 = 0 (2)

for n � 2, that is,

pS(n) := n + 1 + √
n2 + 10n − 7

2(n − 1)
when n � 2,

and we put pS(1) := +∞. On one hand, for blow-up results when 1 < p � pS(n),

we refer interested readers to the classical papers [8, 11–13, 22, 23, 27, 28] and
the new proofs proposed in [10, 26]. On the other hand, concerning global (in time)
existence results when p > pS(n),we refer to [7, 9, 12, 20, 25] and references therein.
Summarizing these known results, in the scale of power nonlinearities {|u|p}p>1, the
critical exponent p = pS(n) for semilinear classical wave equations (1) has been
found, to be the threshold condition between global (in time) existence of solutions
and blow-up of local (in time) solutions with small initial data.

Nevertheless, to determine the critical nonlinearity or the critical regularity of non-
linearities, it seems too rough to restrict the consideration of semilinear wave equations
(1) to the scale of power nonlinearities {|u|p}p>1. The question of the critical regular-
ity of nonlinearities for semilinear classical wave equations is completely open as far
as the authors know. For this reason, our contribution of this paper is to give an answer
to this question for a class of modulus of continuity. Furthermore, we will suggest a
candidate for the general critical nonlinearity via our derived results.

In this manuscript, we consider the following Cauchy problem for semilinear clas-
sical wave equations with modulus of continuity in the nonlinearity:

{
utt − �u = |u|pS(n)μ(|u|), x ∈ R

n, t > 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
n,

(3)

for n � 2 (due to pS(1) = +∞), where pS(n) stands for the Strauss exponent,
and μ = μ(τ) is a modulus of continuity. To be specific, a function μ : [0,+∞) →
[0,+∞) is called amodulus of continuity, ifμ is a continuous, concave and increasing
function satisfying μ(0) = 0. The additional term of modulus of continuity provides
an additional regularity of the nonlinear term in u = 0 in the Cauchy problem (3)
comparing with the power nonlinearity |u|pS(n). Note that the critical nonlinearity
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has been studied recently in semilinear classical damped wave equations [6] and the
corresponding weakly coupled systems [5]. Nevertheless, due to the lack of crucial
damping mechanisms, the study of the semilinear Cauchy problem (3) is not a gen-
eralization of those of [5, 6], e.g. the usual test function methods and the Matsumura
type L p − Lq estimates do not work for our model (3).

The main purpose of this paper is to derive the critical regularity of nonlinearities
for the semilinear Cauchy problem (3), namely, the threshold condition for modulus
of continuity μ. First of all, by applying iteration methods with slicing procedure
(motivated by [1, 26]) for a new weighted functional, which contains a local (in time)
solution and a modulus of continuity, under some conditions of initial data, we will
prove a blow-up result in Sect. 3 when

lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (n) ∈ [cl ,+∞]

with a suitably large constant cl � 1. Next, we will study the three dimensional
Cauchy problem (3) with modulus of continuity satisfying

lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (3) = 0

in the radial case. By developing polynomial-logarithmic type weighted L∞
t L∞

r esti-
mates via refined analysis in the (t, r)-plane, we will demonstrate global (in time)
existence of small data radial solution in Sect. 4. A typical example is that for a
modulus of continuity μ = μ(τ) with μ(0) = 0 which satisfies

μ(τ) = cl

(
log

1

τ

)−γ

with cl � 1, when τ ∈ (0, τ0]. (4)

Our results of this paper ensure that the critical regularity of nonlinearities
|u|pS(3)μ(|u|) in semilinear classical wave equations with the modulus of continu-
ity satisfying (4) is described by the threshold

γ = 1

pS(3)
.

Namely, global (in time) existence of solutions holds when γ > 1
pS(3)

and blow-up of

solutions holds when 0 < γ � 1
pS(3)

.Other examples will be shown in Sect. 2. To end
this paper, we will give a conjecture for general conditions of the critical nonlinearity
for the semilinear Cauchy problem (3) as final remarks in Sect. 5.

Notation:Firstly, c andC denote some positive constants, whichmay be changed from
line to line. We write f � g if there exists a positive constant C such that f � Cg.
The relation f � g holds if and only if g � f � g. Moreover, BR(0) denotes the ball
around the origin with radius R. We denote 〈y〉 := 3 + |y| for any y ∈ R throughout
this manuscript.
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2 Main results

Before stating our blow-up result, we firstly introduce the notion of energy solutions
to the Cauchy problem (3) that we are going to use later.

Definition 2.1 Let u0 ∈ H1 and u1 ∈ L2. We say that u = u(t, x) is an energy
solution to the semilinear Cauchy problem (3) on [0, T ) if

u ∈ C([0, T ), H1) ∩ C1([0, T ), L2) such that |u|pS(n)μ(|u|) ∈ L1
loc([0, T ) × R

n)

fulfills the next integral relation:

∫
Rn

ut (t, x)φ(t, x)dx +
∫ t

0

∫
Rn

(∇u(s, x) · ∇φ(s, x) − us(s, x)φs(s, x)
)
dxds

=
∫
Rn

u1(x)φ(0, x)dx +
∫ t

0

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)φ(s, x)dxds (5)

for any φ ∈ C∞
0 ([0, T ) × R

n) and any t ∈ [0, T ).

Theorem 1 Let u0 ∈ H1 and u1 ∈ L2 be non-negative, non-trivial and compactly
supported functions with supports contained in BR(0) for some R > 0. Moreover, let
us consider a modulus of continuity μ = μ(τ) with μ(0) = 0 satisfying

lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (n) =: CStr ∈ [cl ,+∞] (6)

with a suitably large constant cl = cl(R, n) � 1. We assume that the function

g : τ ∈ R → g(τ ) := τ [μ(|τ |)] 1
pS (n) is convex on R. Finally, let

u ∈ C([0, T ), H1) ∩ C1([0, T ), L2) such that |u|pS(n)μ(|u|) ∈ L1
loc([0, T ) × R

n)

be an energy solution to the semilinear Cauchy problem (3) on [0, T ) for n � 2
according to Definition 2.1. Then, the energy solution u blows up in finite time.

Example 2.1 The hypothesis (6) and the supposed property for the function g = g(τ )

of Theorem 1 hold for the following functions μ = μ(τ) on a small interval [0, τ0]
with 0 < τ0 � 1:

• μ(0) = 0 and μ(τ) = (log 1
τ
)−γ with 0 < γ < 1

pS(n)
;

• μ(0) = 0 and μ(τ) = cl(log 1
τ
)
− 1

pS (n) with cl � 1;
• μ(0) = 0 and μ(τ) = (log 1

τ
)
− 1

pS (n) (logk 1
τ
)γ with γ > 0 and k � 2, here logk

denotes the iterated logarithm (k times application).

Note that the modulus of continuity in the last cases can be continued to τ ∈ [0,+∞)

in such a way that μ = μ(τ) is a continuous, concave and increasing function, for
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example, a smooth and concave continuation function with μ(0) = 0 such that

μ(τ) =

⎧⎪⎨
⎪⎩
cl(log 1

τ
)−γ when τ ∈ (0, 1

3 ],
strictly increasing when τ ∈ [ 13 , 3],
cl(log τ)γ when τ ∈ [3,+∞),

with a suitably large constant cl � 1 and 0 < γ � 1
pS(n)

. A counterexample for the
condition (6) in Theorem 1 is μ(τ) = τ ν with ν > 0. This is not surprising due to the
global (in time) existence results [7, 9, 12, 20, 25] for the semilinear classical wave
equations (1) with power nonlinearity |u|pS(n)+ν.

Remark 1 Concerning the semilinear wave equation (1) with the critical exponent
p = pS(n), by taking the additional term of modulus of continuity μ(|u|) fulfilling
(6) in the nonlinearity, Theorem 1 shows that the energy solutions still blow up in
finite time.

To indicate the sharpness of the condition (6), we next study the three dimensional
semilinear Cauchy problem (3) with a modulus of continuity satisfying (8). Before
showing our result, taking r = |x |, let us introduce a definition of radial solutions to
our aim model in three dimensions, namely,

{
utt − urr − 2

r ur = |u|pS(3)μ(|u|), r > 0, t > 0,

u(0, r) = u0(r), ut (0, r) = u1(r), r > 0.
(7)

Definition 2.2 The function u = u(t, r) is called a global (in time) mild solution to the
Cauchy problem (7) if u ∈ C([0,+∞) × R+) carrying its initial data, and satisfying
the following integral equality:

u(t, r) = E0(t, r) ∗(r) u0(r) + E1(t, r) ∗(r) u1(r)

+
∫ t

0
E1(t − s, r) ∗(r)

[|u(s, r)|pS(3)μ(|u(s, r)|)]ds.
In the above, E0 = E0(t, r) and E1 = E1(t, r) are the fundamental solutions to the
corresponding linear Cauchy problem to (7) with vanishing right-hand side.

We turn to the global (in time) existence of radial solutions in the subsequent theorem.

Theorem 2 Let us consider amodulus of continuityμ = μ(τ)withμ(0) = 0 satisfying

lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (3) = 0. (8)

Furthermore, with a sufficiently small τ0 it holds

μ(τ)

(
log

1

τ

) 1
pS (3)

�
(
log log

1

τ

)−1

when τ ∈ (0, τ0]. (9)
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Let ū0 ∈ C20 and ū1 ∈ C10 be radial. Then, there exists 0 < ε0 � 1 such that for any
ε ∈ (0, ε0), if u0 = εū0 and u1 = εū1, then the semilinear Cauchy problem (3) for
n = 3 admits a uniquely determined global (in time) small data radial solution in the
sense of Definition 2.2 such that u ∈ C([0,+∞) × R

3).

Remark 2 Since the assumption (9) implies (8) as τ → 0+, onemay drop the condition
(8) directly. Nevertheless, to emphasize the importance of the essential condition (8)
for the global (in time) existence result, we retain this condition. We conjecture that
the logarithmic type decay condition (9) is a technical restriction.

Example 2.2 The hypotheses (8) and (9) hold for the following functions μ = μ(τ)

on a small interval [0, τ0] with 0 < τ0 � 1:

• μ(τ) = τγ with γ ∈ (0, 1];
• μ(τ) = [log(1 + τ)]γ with γ ∈ (0, 1];
• μ(0) = 0 and μ(τ) = (log 1

τ
)−γ with γ > 1

pS(3)
;

• μ(0) = 0 and μ(τ) = (log 1
τ
)
− 1

pS (3) (log log 1
τ
)γ with γ � −1;

• μ(0) = 0 andμ(τ) = (log 1
τ
)
− 1

pS (3) (log log 1
τ
)−1(logk 1

τ
)γ with γ < 0 and k � 3.

Remark 3 By assuming additionally decay properties for initial data with respect to
the radial behavior, we also can derive some pointwise decay estimates for the global
(in time) radial solutions. More details will be given in Corollary 4.1 and in our proof
in Sect. 4.

Remark 4 The key tool to prove Theorem 2 is to derive polynomial-logarithmic type
weighted L∞

t L∞
r estimates. Concerning higher dimensional cases, one may recall

more general representations of radial solutions to the linear wave equation associated
with polynomial type weighted L∞

t L∞
r estimates (see [14, 16] for odd dimensions and

[17] for evendimensions). Furthermore, by setting suitable logarithmic factors to be the
additional part ofweighted functions, onemayderive someweighted L∞

t L∞
r estimates

to get a global (in time) existence result for higher dimensions n, nevertheless, this
purpose is beyond the scope of this manuscript.

Remark 5 Our proof of global (in time) existence of small data solutions in Theorem 2
is based on suitable weighted L∞

t L∞
r estimates for the inhomogeneous wave equation

in the three dimensional radial case. It is also interesting to remove the radial symmetry
assumption by developing some tools in the semilinearwave equation (3), for example,
some weighted Strichartz estimates with weights which are invariant under Lorentz
rotations as used in [7], and someweighted L2−L2 estimateswithMorawetzmultiplier
as used in [18]. One has to say, that, in general, more difficulties appear for handling
the modulus of continuity term in comparison with the power nonlinearity. In the
moment we are satisfied for verifying our conjecture for critical nonlinearity in 3d
case. To apply the above proposed tools is beyond the scope in this paper.

Remark 6 Let us summarize the given results in Theorems 1 and 2. We recall the
typical modulus of continuity proposed in Examples 2.1 and 2.2. In the consideration
of semilinear wave equations (3) for n = 3 with the modulus of continuity satisfying
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(4), we may conclude that the critical regularity of nonlinearities is described by the
threshold γ = 1

pS(3)
. This is one of the main contributions of this paper and it answers

the open question proposed in the introduction.

Remark 7 Motivated by the global (in time) existence condition (8) as well as the
blow-up condition (6), one may introduce the following possible quantity:

0 � CStr := lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (n)

, (10)

to describe the critical regularity of nonlinearities for semilinear wave equations (3).
The blow-up phenomenon occurs when CStr ∈ [cl ,+∞] in Theorem 1 and the global
(in time) existence result holds when CStr = 0 in Theorem 2. Explanations more in
detail will be provided in Sect. 5.

3 Blow-up of energy solutions

This section is organized as follows. In Sect. 3.1, we will introduce a test function,
and derive sharp estimates for it in L1(BR+t (0)). Then, thanks to some estimates for
auxiliary functions, the iteration frame and lower bound estimates for a time-dependent
functional will be established in Sects. 3.2 and 3.3, respectively. Finally, in Sect. 3.4,
we will demonstrate the lower bound of this functional blows up in finite time by using
iteration methods with slicing procedure.

3.1 Preliminaries and auxiliary functions

Let us set a non-negative parameter

q := n − 1

2
− 1

pS(n)
for n � 2. (11)

Next, we recall the following pair of auxiliary functions from [26]:

ξq(t, x) :=
∫ λ0

0
e−λ(R+t) cosh(λt)
(λx)λqdλ, (12)

ηq(t, s, x) :=
∫ λ0

0
e−λ(R+t) sinh(λ(t − s))

λ(t − s)

(λx)λqdλ, (13)

where λ0 is a fixed positive parameter and the test function 
 = 
(x) defined by


 : x ∈ R
n → 
(x) :=

∫
Sn−1

ex ·ωdσω for n � 2,
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was introduced by [27]. The test function
 is positive, smooth, and satisfies�
 = 


with


(x) � |x |− n−1
2 e|x | as |x | → +∞. (14)

By introducing the function with separate variables

� : (t, x) ∈ [0,+∞) × R
n → �(t, x) := e−t 
(x),

it is a solution to the free wave equation �t t − �� = 0 and has the next property.

Lemma 3.1 The test function � fulfills the estimates

K0(R)(R + t)
n−1
2 �
∫
BR+t (0)

�(t, x)dx � K1(R)(R + t)
n−1
2

for any t � 0 and n � 2 with positive constants K0 = K0(R) and K1 = K1(R).

Proof By using integration by parts, we arrive at

e−t
∫ R+t

0
ζ

n−1
2 eζdζ = (R + t)

n−1
2 eR − n − 1

2
e−t
∫ R+t

0
ζ

n−3
2 eζdζ

� CK1(R)(R + t)
n−1
2 .

Shrinking the domain of integration to [t, R + t], one notices

e−t
∫ R+t

0
ζ

n−1
2 eζdζ �

∫ R+t

t
ζ

n−1
2 dζ = 2

n + 1

(
(R + t)

n+1
2 − t

n+1
2

)
� CK0(R)(R + t)

n−1
2 .

Therefore, the previous estimates imply the desired statement because of (14) and

∫
BR+t (0)

�(t, x)dx �
∫
BR+t (0)

|x |− n−1
2 e|x |−tdx � e−t

∫ R+t

0
ζ

n−1
2 eζdζ.

The proof is completed. ��
Additionally, some useful estimates of ξq and ηq are stated in the following lemma,

whose proof can be found in [26, Lemma 3.1]. Note that our setting of q fulfills all
assumptions in Lemma 3.2. Moreover, we recall the notation 〈y〉 = 3 + |y|.
Lemma 3.2 There exists λ0 > 0 such that the following properties hold for n � 2:
(i) if q > −1, |x | � R and t � 0, then

ξq(t, x) � A0,

ηq(t, 0, x) � B0〈t〉−1;
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(ii) if q > −1, |x | � R + s and t > s � 0, then

ηq(t, s, x) � B1〈t〉−1〈s〉−q;

(iii) if q > n−3
2 , |x | � R + t and t > 0, then

ηq(t, t, x) � B2〈t〉− n−1
2 〈t − |x |〉 n−3

2 −q .

Here, A0 and Bk, with k = 0, 1, 2, are positive constants depending only on λ0, q
and R.

Finally, we include the following generalized version of Jensen’s inequality [21],
whose proof also has been shown in [6, Lemma 8].

Lemma 3.3 Let g = g(τ ) be a convex function on R. Let α = α(x) be defined and
non-negative almost everywhere on �, such that α is positive in a set of positive
measure. Then, it holds

g

(∫
�

v(x)α(x)dx∫
�

α(x)dx

)
�
∫
�
g(v(x))α(x)dx∫

�
α(x)dx

for all non-negative functions v = v(x) provided that all the integral terms are mean-
ingful.

3.2 Construction of an iteration frame

In order to prove Theorem 1, we are going to use an iteration argument to derive lower
bound estimates for the weighted space average of a local (in time) solution containing
modulus of continuity. For this reason, we first derive a nonlinear integral inequality
to get an iteration frame.

Proposition 3.1 Let u0 ∈ H1 and u1 ∈ L2 be non-negative, non-trivial and com-
pactly supported functions with supports contained in BR(0) for some R > 0. Let u
be an energy solution to the semilinear Cauchy problem (3) on [0, T ) according to
Definition 2.1. Then, the following integral identity holds:

∫
Rn

u(t, x)ηq(t, t, x)dx

=
∫
Rn

u0(x)ξq(t, x)dx + t
∫
Rn

u1(x)ηq(t, 0, x)dx

+
∫ t

0
(t − s)

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)ηq(t, s, x)dxds (15)

for any t ∈ (0, T ), where ξq and ηq are defined in (12) and (13), respectively.
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Proof From finite propagation speed for solutions of wave equations, u(t, ·) has com-
pact support contained in BR+t (0) for any t � 0. Therefore, we may employ (5) for
a non-compactly supported test function. We now define the test function

ψ = ψ(s, x) := y(t, s; λ)
(λx) with y(t, s; λ) := sinh(λ(t − s))

λ
.

As
 is an eigenfunction of the Laplacian and y(t, s; λ) solves (∂2s −λ2)y(t, s; λ) = 0
with the end-points y(t, t; λ) = 0 and ys(t, t; λ) = −1, the functionψ solves the free
wave equation ψss − �ψ = 0 and satisfies

ψ(t, x) = 0, ψ(0, x) = λ−1 sinh(λt)
(λx),

ψs(t, x) = −
(λx), ψs(0, x) = − cosh(λt)
(λx).

Applying the test function ψ in (5) with an integration by parts once more, we may
derive∫

Rn
u(t, x)
(λx)dx

= cosh(λt)
∫
Rn

u0(x)
(λx)dx + t
sinh(λt)

λt

∫
Rn

u1(x)
(λx)dx

+
∫ t

0
(t − s)

sinh(λ(t − s))

λ(t − s)

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)
(λx)dxds.

Multiplying both sides of the last equality by e−λ(R+t)λq , integrating the resultant with
respect to λ over [0, λ0] and applying Tonelli’s theorem, we complete the derivation
of (15). ��

Hereafter until the end of this section, we shall assume that u0, u1 satisfy the
assumptions from Theorem 1. Let u be an energy solution to the semilinear Cauchy
problem (3) on [0, T ). Inspired by the modulus of continuity in its nonlinearity, let us
introduce the non-negative time-dependent functional (due to ηq(t, t, x) � 0)

U : t ∈ [0, T ) → U(t) :=
∫
Rn

|u(t, x)|[μ(|u(t, x)|)] 1
pS (n) ηq(t, t, x)dx � 0 (16)

with the parameter q defined in (11).
A further step is to derive some estimates involving U = U(t) both in the left-

and right-hand sides, which will establish an iteration frame. According to (15) and
non-negativity of initial data, we may claim

∫
Rn

u(t, x)ηq(t, t, x)dx �
∫ t

0
(t − s)

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)ηq(t, s, x)dxds.

(17)
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Using Hölder’s inequality, we arrive at

U(s) �
(∫

Rn
|u(s, x)|pS(n)μ

(|u(s, x)|)ηq(t, s, x)dx
) 1

pS (n)

×
⎛
⎜⎝∫

BR+s

[ηq(s, s, x)]p′
S(n)

[ηq(t, s, x)]
p′S (n)

pS (n)

dx

⎞
⎟⎠

1
p′S (n)

.

Remark that p′
S(n) denotes Hölder’s conjugate of pS(n).With the aid of the properties

(ii) and (iii) in Lemma 3.2 (both q > n−3
2 and q > −1 are always fulfilled), we obtain

∫
BR+s

[ηq(s, s, x)]p′
S(n)

[ηq(t, s, x)]
p′S (n)

pS (n)

dx � 〈t〉
p′S (n)

pS (n) 〈s〉
p′S (n)

pS (n)
q− n−1

2 p′
S(n)
∫
BR+s

〈s − |x |〉( n−3
2 −q)p′

S(n)dx

� 〈t〉
p′S (n)

pS (n) 〈s〉
q

pS (n)−1− n−1
2 p′

S(n)
∫
BR+s

〈s − |x |〉−1dx

� 〈t〉
p′S (n)

pS (n) 〈s〉
p′S (n)

pS (n) log〈s〉,

due to our choice of q in (11) and

q

pS(n) − 1
− n − 1

2
p′
S(n) + n − 1

= p′
S(n)

pS(n)

(
n − 1

2
− 1

pS(n)
− n − 1

2
pS(n) + (n − 1)

(
pS(n) − 1

))

= p′
S(n)

pS(n)

[
1

pS(n)

(
n − 1

2
p2S(n) − n + 1

2
pS(n) − 1

)
+ 1

]
= p′

S(n)

pS(n)
.

Note that log〈s〉 � log 3 > 0. Plugging the previous estimates in (17), it leads to

∫
Rn

u(t, x)ηq (t, t, x)dx �
∫ t

0
(t − s)[U(s)]pS (n)

⎛
⎜⎝∫

BR+s

[ηq (s, s, x)]p′
S (n)

[ηq (t, s, x)]
p′S (n)

pS (n)

dx

⎞
⎟⎠

− pS (n)

p′S (n)

ds

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS (n)

(log〈s〉)pS(n)−1
ds. (18)

Moreover, thanks to the support condition of u(t, ·), let us apply Lemma 3.3 with
� = BR+t (0), α = ηq(t, t, x), v = u(t, x) and the convex function g = g(τ ) =
τ [μ(|τ |)] 1

pS (n) from our assumption in Theorem 1 to deduce
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g

(∫
BR+t (0)

u(t, x)ηq(t, t, x)dx∫
BR+t (0)

ηq(t, t, x)dx

)
�
∫
BR+t (0)

u(t, x)[μ(|u(t, x)|)] 1
pS (n) ηq(t, t, x)dx∫

BR+t (0)
ηq(t, t, x)dx

� U(t)∫
BR+t (0)

ηq(t, t, x)dx
.

In other words,

∫
BR+t (0)

u(t, x)ηq(t, t, x)dx

�
∫
BR+t (0)

ηq(t, t, x)dx g−1

(
U(t)∫

BR+t (0)
ηq(t, t, x)dx

)
. (19)

Note that the function g = g(τ ) is strictly monotonic from the monotonically increas-
ing property of μ = μ(|τ |). After combining (18) and (19) it follows

1∫
BR+t (0)

ηq(t, t, x)dx
〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

� g−1

(
U(t)∫

BR+t (0)
ηq(t, t, x)dx

)
.

The action of the mapping g on both sides of the last estimate yields

U(t) �
∫
BR+t (0)

ηq (t, t, x)dx g

[
1∫

BR+t (0)
ηq (t, t, x)dx

〈t〉−1

×
∫ t

0
(t − s)〈s〉−1 [U(s)]pS (n)

(log〈s〉)pS(n)−1
ds

]

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS (n)

(log〈s〉)pS(n)−1
ds

×
[
μ

( ∣∣∣∣∣ 1∫
BR+t (0)

ηq (t, t, x)dx
〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS (n)

(log〈s〉)pS(n)−1
ds

∣∣∣∣∣
)] 1

pS (n)

.

Employing the non-negativity of U(t) stated in (16) as well as

∫
BR+t (0)

ηq(t, t, x)dx � 〈t〉− n−1
2

∫ R+t

0
ζ n−1〈t − ζ 〉 n−3

2 −qdζ

� 〈t〉 n−1
2

∫ R+t

0
〈t − ζ 〉−1+ 1

pS (n) dζ

� C−1
1 〈t〉 n−1

2 + 1
pS (n) (20)
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from Lemma 3.2, in conclusion, we obtain the iteration frame

U(t) � C0〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

×
[
μ

(
C1〈t〉−

n−1
2 − 1

pS (n)
−1
∫ t

0

t − s

〈s〉
[U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

)] 1
pS (n)

(21)

for any t ∈ [0, T ), with positive constants C0 and C1 = C1(R).

3.3 Derivation of a first lower bound estimate

By applying (17) and the property (ii) in Lemma 3.2, we may arrive at

∫
Rn

u(t, x)ηq(t, t, x)dx � 〈t〉−1
∫ t

0
(t − s)〈s〉−q

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)dxds.

An application of Hölder’s inequality gives

∣∣∣∣
∫
Rn

u(s, x)
[
μ
(|u(s, x)|)] 1

pS (n) �(s, x)dx

∣∣∣∣
pS(n)

�
∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)dx (∫

BR+s (0)
|�(s, x)|p′

S(n)dx

) pS (n)

p′S (n)

� (R + s)(n−1)(
pS (n)

2 −1)
∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)dx,

where we employed the next inequality (e.g. the proof was shown in [19, 27] by using
an integration by parts):

∫
BR+s(0)

|�(s, x)|p′
S(n)dx � (R + s)

(n−1)
(
1− 1

2 p
′
S(n)
)
.

That is to say

∫
Rn

u(t, x)ηq(t, t, x)dx

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1

∣∣∣∣
∫
Rn

u(s, x)
[
μ
(|u(s, x)|)] 1

pS (n) �(s, x)dx

∣∣∣∣
pS(n)

ds, (22)

due to the fact that

−q − (n − 1)

(
pS(n)

2
− 1

)
= − 1

pS(n)

(
n − 1

2
p2S(n) − n − 1

2
pS(n) − 1

)
= −1.
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Let us apply Lemma 3.3 again with g(τ ) = τ [μ(|τ |)] 1
pS (n) and α = �(s, x) to arrive

at

∫
Rn

u(s, x)
[
μ
(|u(s, x)|)] 1

pS (n) �(s, x)dx

�
∫
BR+s (0)

�(s, x)dx g

(∫
BR+s(0)

u(s, x)�(s, x)dx∫
BR+s(0)

�(s, x)dx

)
. (23)

A further step of integration by parts to (5) shows

∫
Rn

ut (t, x)φ(t, x)dx −
∫
Rn

u(t, x)φt (t, x)dx

= −
∫
Rn

u0(x)φt (0, x)dx +
∫
Rn

u1(x)φ(0, x)dx

−
∫ t

0

∫
Rn

u(s, x)
(
φss(s, x) − �φ(s, x)

)
dxds

+
∫ t

0

∫
Rn

|u(s, x)|pS(n)μ
(|u(s, x)|)φ(s, x)dxds.

Again, since u is supported in a forward cone, we may apply the definition of energy
solutions even though the test function is not compactly supported. Taking as test
function φ = φ(t, x) the function � = �(t, x), it holds

d

dt

∫
Rn

u(t, x)�(t, x)dx + 2
∫
Rn

u(t, x)�(t, x)dx �
∫
Rn

(
u0(x) + u1(x)

)

(x)dx

due to the non-negativity of nonlinearity and �t t = ��. By multiplying e2t on both
sides of the last inequality, we can find

∫
Rn

u(t, x)�(t, x)dx � 1

2

(
1 + e−2t

) ∫
Rn

u0(x)
(x)dx

+ 1

2

(
1 − e−2t

) ∫
Rn

u1(x)
(x)dx .

From our assumption on initial data, one gets

∫
BR+s(0)

u(s, x)�(s, x)dx � 1, (24)

where the unexpressed multiplicative constant may depend on u0 as well as u1. With
the aid of Lemma 3.1 and (24), we are able to estimate from (23) and (22) that
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∫
Rn

u(t, x)ηq(t, t, x)dx

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1

∣∣∣∣
∫
BR+s (0)

�(s, x)dx

∣∣∣∣
pS(n)

×
∣∣∣∣∣g
(∫

BR+s (0)
u(s, x)�(s, x)dx∫

BR+s (0)
�(s, x)dx

)∣∣∣∣∣
pS(n)

ds

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1(R + s)

(n−1)pS (n)

2

∣∣∣g (C2(R + s)−
n−1
2

)∣∣∣pS(n)

ds

� 〈t〉−1
∫ t

0
(t − s)〈s〉−1μ

(
C2(R + s)−

n−1
2

)
ds

with a positive constant C2 = C2(R). According to (19), we derive

〈t〉−1
∫ t

0
(t − s)〈s〉−1μ

(
C2(R + s)−

n−1
2

)
ds

�
∫
BR+t (0)

ηq(t, t, x)dx g−1

(
U(t)∫

BR+t (0)
ηq(t, t, x)dx

)
.

Furthermore, recalling the increasing property of μ and shrinking the interval of inte-
gration [0, t] to [1, t] for t � 1, one obtains

U(t) �
∫
BR+t (0)

ηq (t, t, x)dx g

(
1∫

BR+t (0)
ηq (t, t, x)dx

〈t〉−1

×
∫ t

0
(t − s)〈s〉−1μ

(
C2(R + s)−

n−1
2

)
ds

)

� 〈t〉−1μ
(
C2(R + t)−

n−1
2

) ∫ t

1
(t − s)〈s〉−1ds

×
[
μ

(
1∫

BR+t (0)
ηq (t, t, x)dx

〈t〉−1μ
(
C2(R + t)−

n−1
2

) ∫ t

1
(t − s)〈s〉−1ds

)] 1
pS (n)

.

Taking account of

〈t〉−1
∫ t

1
(t − s)〈s〉−1ds � 〈t〉−1

∫ t

1

t − s

s
ds = 〈t〉−1

∫ t

1
log s ds

� 1

3t

∫ t

2t/3
log s ds � log

(
2t

3

)
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for any t � 3
2 , and recalling (20), we may derive the lower bound estimate

U(t) � log

(
2t

3

)
μ
(
C2(R + t)−

n−1
2

)

×
[
μ

(
2C3〈t〉−

n−1
2 − 1

pS (n) log

(
2t

3

)
μ
(
C2(R + t)−

n−1
2

))] 1
pS (n)

with a positive constant C3 = C3(R).

Our assumption (6) shows that there is a suitably large constant cl � 1 such that
the next estimate holds:

μ(τ)

(
log

1

τ

) 1
pS (n)

>
cl
2

for 0 < τ � τ0 � 1. (25)

Let us choose a large constant t0 � 1 such that for any t � 3
2 t0, the following

inequalities hold (later, we will take t0 to be suitably large):

C2(R) � τ0(R + t)
n−1
2 , (26)

and

clC
−1
2 C3

(
n − 1

2

)− 1
pS (n)

log

(
2t

3

)

� 〈t〉 n−1
2 + 1

pS (n) (R + t)
− n−1

2 − 1
pS (n)

[
log

(
C

− 2
n−1

2 (R + t)

)] 1
pS (n)

.

Note that the second inequality in the above (it will be used for reducing the argument)
can be guaranteed since

〈t〉 n−1
2 + 1

pS (n) (R + t)
− n−1

2 − 1
pS (n)

[
log

(
C

− 2
n−1

2 (R + t)

)] 1
pS (n)

� log

(
2t

3

)

for large time t since pS(n) > 1. According to our assumption (6) for t � 3
2 t0, it

follows

μ

(
2C3〈t〉−

n−1
2 − 1

pS (n) log

(
2t

3

)
μ
(
C2(R + t)−

n−1
2

))

� μ

(
clC3〈t〉−

n−1
2 − 1

pS (n)

[
log
(
C−1
2 (R + t)

n−1
2

)]− 1
pS (n)

log

(
2t

3

))

� μ

(
C2(R + t)

− n−1
2 − 1

pS (n)

)
.
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Summarizing, we deduce the following first lower bound estimate:

U(t) � M0 log

(
2t

3t0

)[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]1+ 1
pS (n)

(27)

for any t � 3
2 t0 with a large parameter t0 � 1, with a positive constant M0 = M0(R)

which is independent of cl . Here, ε0 > 0 is a sufficiently small constant. We have to
underline that such a small ε0 does not bring any influence on the blow-up condition.

3.4 Iteration procedure and blow-up phenomenon: proof of Theorem 1

Up to now, we have determined among other things the iteration frame (21) for the
functional U = U(t) and the first lower bound estimate (27) containing a logarithmic
factor and a factor depending on the given modulus of continuity. In this part, we are
going to prove a sequence of lower bound estimates for U = U(t) by applying the
so-called slicing procedure, which has been introduced in [1].

Let us choose the sequence {� j } j∈N0 with � j := 2− 2−( j+1). Our goal is to derive
the sequence of lower bound estimates for the functional U = U(t) as follows:

U(t) � Mj (log〈t〉)−b j

[
log

(
t

�2 j t0

)]a j
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j

(28)

for t � �2 j t0 with a suitably large constant t0 � 1, where {Mj } j∈N0 , {a j } j∈N0 ,

{b j } j∈N0 and {σ j } j∈N0 are sequences of non-negative real numbers that we shall
determine recursively throughout the iteration procedure. From the first lower bound
estimate (27), we may choose with j = 0 the parameters

a0 := 1, b0 := 0, σ0 := 1 + 1

pS(n)
. (29)

We are going to prove the validity of (28) for any j ∈ N0 by using an inductive
argument. As we have already shown the validity of the basic case (27), it remains to
prove the inductive step. Let us assume that (28) holds for j � 1, our purpose is to
demonstrate it for j + 1.

First of all, via the lower bound estimate (28), we know

〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

� MpS(n)
j 〈t〉−1

∫ t

0

t − s

〈s〉

[
log
(

s
�2 j t0

)]a j pS(n)

(log〈s〉)pS(n)−1+b j pS(n)

×
[
μ

(
C2(R + s)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n)

ds
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� 1

3
MpS(n)

j 〈t〉−1(log〈t〉)−(pS(n)−1)−b j pS(n)

[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n)

×
∫ t

�2 j t0

t − s

s

[
log

(
s

�2 j t0

)]a j pS(n)

ds

for t � �2 j+2t0, where we shrank the interval of integration [0, t] to [�2 j t0, t] so that
〈s〉 = 3 + |s| � 3s for any s � �2 j t0. By employing integration by parts, we may
derive

∫ t

�2 j t0

t − s

s

[
log

(
s

�2 j t0

)]a j pS(n)

ds

� 1

a j pS(n) + 1

∫ t

�2 j
�2 j+2

t

[
log

(
s

�2 j t0

)]a j pS(n)+1

ds

� 1

3(a j pS(n) + 1)

(
1 − �2 j

�2 j+2

)
〈t〉
[
log

(
t

�2 j+2t0

)]a j pS(n)+1

for t � �2 j+2t0 so that �2 j t0 � �2 j
�2 j+2

t . For this reason, the last relation implies for
t � �2 j+2t0 immediately

〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

�
MpS(n)

j 2−(2 j+3)

3�2 j+2(a j pS(n) + 1)
(log〈t〉)−(pS(n)−1)−b j pS(n)

[
log

(
t

�2 j+2t0

)]a j pS(n)+1

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n)

. (30)

Plugging (28) into the iteration frame (21), we arrive, after taking into the consid-
eration (30), at

U(t) �
C02−(2 j+3)MpS(n)

j

3�2 j+2(a j pS(n) + 1)
(log〈t〉)−(pS(n)−1)−b j pS(n)

[
log

(
t

�2 j+2t0

)]a j pS(n)+1

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n)

[Iμ(t)] 1
pS (n) , (31)

where we introduce

Iμ(t) := μ

(
C1〈t〉−

n−1
2 − 1

pS (n) 〈t〉−1
∫ t

0
(t − s)〈s〉−1 [U(s)]pS(n)

(log〈s〉)pS(n)−1
ds

)
.
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We estimate

Iμ(t) � μ

⎛
⎝ C12−(2 j+3)MpS(n)

j

3�2 j+2(a j pS(n) + 1)
〈t〉− n−1

2 − 1
pS (n) (log〈t〉)−(pS(n)−1)−b j pS(n)

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n) [
log

(
t

�2 j+2t0

)]a j pS(n)+1
)

.

Taking a suitably large t0 such that for t � �2 j+2t0, recalling the conclusion (25) from
our assumption (6) and the condition (26), then the following inequality holds:

(
cl
2 )σ j pS(n)C1C

−1
2 2−(2 j+3)MpS(n)

j

3�2 j+2(a j pS(n) + 1)

[
log

(
t

�2 j+2t0

)]a j pS(n)+1

� 〈t〉 n−1
2 + 1

pS (n) (R + t)
− n−1

2 − 1
pS (n)

−ε0
(log〈t〉)pS(n)−1+b j pS(n)

×
[
log

(
C−1
2 (R + t)

n−1
2 + 1

pS (n)
+ε0

)]σ j

(32)

for a fixed j, because the polynomial decay factor (R + t)−ε0 plays from the point
of decay a dominant role in comparison with all logarithmic factors on the right-hand
side of the last inequality. Later, we will verify the last inequality (32) uniformly for
all j � 1 by choosing suitable parameters a j , b j , σ j and estimating Mj . According
to the last lower bounds estimates, it provides

Iμ(t) � μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)
(33)

for t � �2 j+2t0 with a suitably large t0 � 1. Summarizing the above estimates (31)
as well as (33), we claim the lower bound estimate

U(t) �
C02−(2 j+3)MpS(n)

j

3�2 j+2(a j pS(n) + 1)
(log〈t〉)−(pS(n)−1)−b j pS(n)

[
log

(
t

�2 j+2t0

)]a j pS(n)+1

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]σ j pS(n)+ 1
pS (n)

for t � �2 j+2t0. In other words, we have proved (28) for j + 1 provided that

Mj+1 := C02−(2 j+3)

3�2 j+2(a j pS(n) + 1)
MpS(n)

j ,

a j+1 := 1 + a j pS(n),

b j+1 := pS(n) − 1 + b j pS(n),

σ j+1 := 1

pS(n)
+ σ j pS(n).
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By using recursively the relations and the initial exponents (29), we deduce

a j = pS(n)

pS(n) − 1
p j
S(n) − 1

pS(n) − 1
, b j = p j

S(n) − 1,

σ j = pS(n)

pS(n) − 1
p j
S(n) − 1

(pS(n) − 1)pS(n)
. (34)

Due to the facts that �2 j � 2 and a j � pS(n)
pS(n)−1 p

j
S(n), the lower bound of Mj can be

estimated by

Mj = C02−(2 j+1)

3�2 j (1 + a j−1 pS(n))
MpS(n)

j−1 � C4[4pS(n)]− j M pS(n)
j−1

with the constant C4 := C0(pS(n)−1)
12pS(n)

> 0, which depends on n, but it is independent
of j . Applying the logarithmic function to both sides of the last inequality and using
iteratively the resulting inequality, we may obtain

logMj � pS(n) logMj−1 − j log[4pS(n)] + logC4

� · · · � p j
S(n) logM0 −

⎛
⎝ j−1∑

k=0

( j − k)pkS(n)

⎞
⎠ log[4pS(n)] +

⎛
⎝ j−1∑

k=0

pkS(n)

⎞
⎠ logC4

� p j
S(n)

(
logM0 − pS(n) log[4pS(n)]

[pS(n) − 1]2 + logC4

pS(n) − 1

)

+ j[pS(n) − 1] + pS(n)

[pS(n) − 1]2 log[4pS(n)] − logC4

pS(n) − 1
,

where we used the identities

j−1∑
k=0

( j − k)pk = 1

p − 1

(
p j+1 − p

p − 1
− j

)
and

j−1∑
k=0

pk = p j − 1

p − 1
.

Let us define j1 = j1(pS(n)) as the smallest non-negative integer such that

j1 � logC4

log[4pS(n)] − pS(n)

pS(n) − 1
.

We may estimate

logMj � p j
S(n)

(
logM0 − pS(n) log[4pS(n)]

[pS(n) − 1]2 + logC4

pS(n) − 1

)
= p j

S(n) logC5

(35)

carrying the positive constant

C5 := M0[4pS(n)]−
pS (n)

[pS (n)−1]2 C
1

pS (n)−1

4 ,
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which depends on n and R, but it is independent of j .
Let us now prove the inequality (32) uniformly for all j � 1. Due to the choices

of parameters a j , b j , σ j , we may estimate

〈t〉 n−1
2 + 1

pS (n) (R + t)
− n−1

2 − 1
pS (n)

−ε0
(log〈t〉)pS(n)−1+b j pS(n)

×
[
log

(
C−1
2 (R + t)

n−1
2 + 1

pS (n)
+ε0

)]σ j
[
log

(
t

�2 j+2t0

)]−a j pS(n)−1

� C(R + t)−ε0(log〈t〉)pS(n)−2+b j pS(n)+σ j−a j pS(n)

� C(R + t)−ε0(log〈t〉)−1+ 1
pS (n) .

Moreover, from the lower bound of Mj in (35), we know

(
cl
2 )σ j pS(n)C1C

−1
2 2−(2 j+3)MpS(n)

j

3�2 j+2(a j pS(n) + 1)
� C̃

(p j+1
S (n) − 1)4 j

[(cl
2

) pS (n)

pS (n)−1
C5

]p j+1
S (n)

,

where C̃ is a positive constant independent of j . Note that C5 only depends on
M0,C0, pS(n) and R, but it is independent of cl . Taking a suitably large constant
cl = cl(R, n), in the last two inequalities, we notice

C̃

(p j+1
S (n) − 1)4 j

[(cl
2

) pS (n)

pS (n)−1
C5

]p j+1
S (n)

� C(R + t)−ε0(log〈t〉)−1+ 1
pS (n)

for any j � 1. Thus, we verified (32) uniformly for all j � 1.
Consequently, recalling the sequence of estimates (28) associated with (34), (35)

and �2 j � 2, the lower bound estimate of U = U(t) can be presented as follows:

U(t) � exp
(
p j
S(n) logC5

)
(log〈t〉)−p j

S(n)+1
[
log

(
t

2t0

)] pS (n)

pS (n)−1 p
j
S(n)− 1

pS (n)−1

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)] pS (n)

pS (n)−1 p
j
S(n)− 1

(pS (n)−1)pS (n)

� exp

⎧⎨
⎩p j

S(n) log

⎡
⎣C5(log〈t〉)−1

[
log

(
t

2t0

)] pS (n)

pS (n)−1

×
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)] pS (n)

pS (n)−1

⎤
⎦
⎫⎬
⎭

× log〈t〉
[
log

(
t

2t0

)]− 1
pS (n)−1
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]− 1
(pS (n)−1)pS (n)
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for t � 2t0 and any j � j1. There exists a positive constant C6 = C6(R) such that for
t � t1 with a suitably large constant t1, it holds

C2(R + t)
− n−1

2 − 1
pS (n)

−ε0 � (C6t)
− n−1

2 − 1
pS (n)

−ε0
.

Moreover, concerning suitably large t � t2, the following estimates hold:

log〈t〉 = log(3 + t) � 2 log(C6t),

log

(
t

2t0

)
� 1

2t0
log(C6t), (C6t)

− n−1
2 − 1

pS (n)
−ε0 � τ0.

For t � max{2t0, t1, t2}, the lower bound of the functionalU = U(t) can be controlled
in the following way:

U(t) � exp

{
p j
S(n) log

[
C52

−1(2t0)
− pS (n)

pS (n)−1 [log(C6t)]
1

pS (n)−1

×
[
μ

(
(C6t)

− n−1
2 − 1

pS (n)
−ε0

)] pS (n)

pS (n)−1

⎤
⎦
⎫⎬
⎭ log〈t〉

×
[
log

(
t

2t0

)]− 1
pS (n)−1
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]− 1
(pS (n)−1)pS (n)

.

(36)

Recalling our assumption (6), it follows that there exists a positive, continuous function
κ = κ(τ) such that

lim
τ→0+ κ(τ) ∈ [cl ,+∞] and μ(τ) =

(
log

1

τ

)− 1
pS (n)

κ(τ ). (37)

When t � max{2t0, t1, t2}, the crucial part in (36) is expressed by

log(C6t)

[
μ

(
(C6t)

− n−1
2 − 1

pS (n)
−ε0

)]pS(n)

=
(
n − 1

2
+ 1

pS(n)
+ ε0

)−1 [
κ

(
(C6t)

− n−1
2 − 1

pS (n)
−ε0

)]pS(n)

.

Hence, the lower bound estimate turns into

U(t) � exp

⎧⎨
⎩p j

S(n) log

⎡
⎣C7

[
κ

(
(C6t)

− n−1
2 − 1

pS (n)
−ε0

)] pS (n)

pS (n)−1

⎤
⎦
⎫⎬
⎭ log〈t〉

×
[
log

(
t

2t0

)]− 1
pS (n)−1
[
μ

(
C2(R + t)

− n−1
2 − 1

pS (n)
−ε0

)]− 1
(pS (n)−1)pS (n)
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with a suitable positive constant C7 = C7(R) which is independent of j . Let us take
account of the property (37) of κ = κ(τ), namely,

κ(τ) >
cl
2

when 0 < τ � 1

with a suitably large constant cl > 2(100/C7)
[pS(n)−1]/pS(n), where C7 only depends

onM0,C0,n and R,but it is independent of j .Then, for large time t � max{2t0, t1, t2},
we find that in the last estimate

log

[
C7[κ(τ)]

pS (n)

pS (n)−1

]
> log

[
C7

(cl
2

) pS (n)

pS (n)−1

]
> 1

for 0 < τ = (C6t)
− n−1

2 − 1
pS (n)

−ε0 � 1. Finally, taking the limit as j → +∞ in the
above estimate the lower bound for U(t) blows up in finite time. This completes the
proof of Theorem 1. �

4 Global (in time) existence of radial solutions in three dimensions

Firstly, by introducing a polynomial-logarithmic type weighted Banach space, we will
prepare uniform bounded L∞ estimates of the radial solutions to the three dimensional
freewave equation in Sect. 4.1. Then, the philosophy of the proof for Theorem 2 and its
key tool will be stated in Sect. 4.2. We will demonstrate the global (in time) existence
result in Sect. 4.3 by applying a refined analysis in the (t, r)-plane to estimate the
nonlinear terms.

4.1 Preliminary and weighted L∞
t L∞

r estimates for the linear model

As preparations for studying nonlinear models, we will state some polynomial-
logarithmic type weighted L∞

t L∞
r estimates for the linear wave equation in the radial

case. Let us first extend initial data u0 = u0(r) and u1 = u1(r) by even reflections,
namely,

u0(−r) = u0(r) and u1(−r) = u1(r) for r < 0.

Note that our assumptions u0 ∈ C20 and u0 radially symmetric ensure u′
0(0) = 0.

Due to our interest of radial solutions and the application of even reflections, we may
rewrite the semilinear Cauchy problem (3) in three dimensions as

{
utt − urr − 2

r ur = |u|pS(3)μ(|u|), r ∈ R, t > 0,

u(0, r) = u0(r), ut (0, r) = u1(r), r ∈ R.
(38)
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Now we turn our focus to the linear model with vanishing right-hand side and the
same initial data as those of (38), namely,

{
vt t − vrr − 2

r vr = 0, r ∈ R, t > 0,

v(0, r) = u0(r), vt (0, r) = u1(r), r ∈ R.
(39)

Let us recall u0 ∈ C20 as well as u1 ∈ C10 . According to the well-known d’Alembert’s
formula, the solution to the linear Cauchy problem (39) can be represented as follows:

v(t, r) = ∂

∂t

(∫ 1

−1
Hu0(t + rσ)dσ

)
+
∫ 1

−1
Hu1(t + rσ)dσ

= 1

2r

(
(t + r)u0(t + r) − (t − r)u0(t − r)

)+ 1

r

∫ t+r

t−r
Hu1(ρ)dρ, (40)

where we denoted

Hu j (ρ) := ρ

2
u j (ρ) with j = 0, 1.

Its proof is standard by taking the new variable rv(t, r) and the representation of
solution for the one dimensional free wave equation.

Motivated by the papers [2, 4, 15], we are able to derive some decay estimates in
some weighted L∞

t L∞
r spaces for radial solutions of the linear Cauchy problem (39).

In order to overcome some difficulties from the influence of modulus of continuity
when we consider the nonlinear model (38), we will include an additional logarithmic
type weighted function in the solution space. To be specific, we introduce the Banach
space

Xκ := {v ∈ C([0,+∞) × R) : v is even in r and ‖v‖Xκ < +∞}
with a polynomial-logarithmic type weighted norm

‖v‖Xκ := sup
t�0, r∈R

(
ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|v(t, r)|) with κ := 1 + 1

pS(3)
.

Here, the new weighted factor is defined by

ω(τ) := (log τ)
1

pS (3) for any τ � 3. (41)

Then, we have the next result for bounded estimates in the family of Banach spaces
{Xκ}κ>1.

Proposition 4.1 Let u0 ∈ Aκ ∩C20 and u1 ∈ Bκ+1∩C10 with κ > 1. Then, the following
estimate holds:

‖v‖Xκ � ‖u0‖Aκ
+ ‖u1‖Bκ+1 ,
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where the Banach spaces for initial data are defined as follows:

Aκ := {h ∈ C1 : h is an even function and ‖h‖Aκ
< +∞},

Bκ := {h ∈ C : h is an even function and ‖h‖Bκ
< +∞},

carrying the corresponding norms

‖h‖Aκ
:= sup

r�0

(
ω(〈r〉)〈r〉κ |h(r)|)+ sup

r�0

(
ω(〈r〉)〈r〉κ+1|h′(r)|),

‖h‖Bκ
:= sup

r�0

(
ω(〈r〉)〈r〉κ |h(r)|).

In the above, we used the property to be even for the functions 〈r〉 and |h(r)|, |h′(r)|
so that we just need to consider r � 0 in these norms.

Proof By using the definitions of ‖u0‖Aκ
and ‖u1‖Bκ+1 , respectively, wemay estimate

|Hu0(ρ)| � [ω(〈ρ〉)]−1〈ρ〉1−κ‖u0‖Aκ
,

|H ′
u0(ρ)| � |u0(ρ)| + 〈ρ〉|u′

0(ρ)| � [ω(〈ρ〉)]−1〈ρ〉−κ‖u0‖Aκ
,

|Hu1(ρ)| � [ω(〈ρ〉)]−1〈ρ〉−κ‖u1‖Bκ+1 .

Let us employ the triangle inequality to observe

〈t − |r |〉 = 3 + ∣∣t − |r |∣∣ � 3 + |t ± r | = 〈t ± r〉. (42)

According to the solution formula (40), one may derive

|v(t, r)| � 1

|r |
(|Hu0 (t + r)| + |Hu0 (t − r)|)+ 1

|r |
∫ t+|r |

t−|r |
|Hu1 (ρ)|dρ

� 1

|r |
(
[ω(〈t + r〉)]−1〈t + r〉1−κ + [ω(〈t − r〉)]−1〈t − r〉1−κ

)

× (‖u0‖Aκ
+ ‖u1‖Bκ+1

)+ 1

|r |
∫ t+|r |

t−|r |
[ω(〈ρ〉)]−1〈ρ〉−κdρ

(‖u0‖Aκ
+ ‖u1‖Bκ+1

)

�
(

1

|r | [ω(〈t − |r |〉)]−1〈t − |r |〉1−κ + 1

|r |
∫ t+|r |

t−|r |
[ω(〈ρ〉)]−1〈ρ〉−κdρ

)

× (‖u0‖Aκ
+ ‖u1‖Bκ+1

)
,

becauseofκ > 1,whereweused the relation (42). Let us divide our next considerations
into two cases with respect to the interplay between t and |r |.
• When t � 2|r |, since the integrand takes its maximum for ρ = t − |r | and

〈t + |r |〉 ≈ 〈t − |r |〉, thanks to the representation (40), we may estimate
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ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|v(t, r)|

� ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1

|r | |Hu0 (t + r) − Hu0 (t − r)| + 〈t + |r |〉
〈t − |r |〉 ‖u1‖Bκ+1

� ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|H ′
u0 (ζ )| + ‖u1‖Bκ+1

� ‖u0‖Aκ
+ ‖u1‖Bκ+1 ,

where we employed the mean value theorem with ζ ∈ (t − r , t + r), (42) and

|H ′
u0(ζ )| � [ω(〈ζ 〉)]−1〈ζ 〉−κ‖u0‖Aκ

� [ω(〈t − |r |〉)]−1〈t − |r |〉−κ‖u0‖Aκ
.

• When t � 2|r |, we have some further discussions.

– If |r | � 1, since 〈t − |r |〉 ≈ 〈t + |r |〉 ≈ 3, this set is compact, then we get

ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|v(t, r)| � ‖u0‖Aκ
+ ‖u1‖Bκ+1 ,

whose approach is the same as the one for t � 2|r |.
– If |r | � 1, since 〈t + |r |〉 � 3〈r〉 and |r | ≈ 〈r〉, then we get

ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|v(t, r)|

�
( 〈t + |r |〉

|r | + 〈t + |r |〉
|r | 〈t − |r |〉κ−1

∫ t+|r |

t−|r |
〈ρ〉−κdρ

) (‖u0‖Aκ
+ ‖u1‖Bκ+1

)

�
(
1 + 〈t − |r |〉κ−1

κ − 1

(〈t − |r |〉1−κ − 〈t + |r |〉1−κ
)) (‖u0‖Aκ

+ ‖u1‖Bκ+1

)
� ‖u0‖Aκ

+ ‖u1‖Bκ+1 ,

because of κ > 1.

In other words, we arrive at

∥∥∥ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1v(t, r)
∥∥∥
L∞([0,+∞)×R)

� ‖u0‖Aκ
+ ‖u1‖Bκ+1 ,

which completes our proof. ��

4.2 Philosophy of our approach

By Duhamel’s principle, the solution to the inhomogeneous linear Cauchy problem

{
vt t − vrr − 2

r vr = F(t, r), r ∈ R, t > 0,

v(0, r) = 0, vt (0, r) = 0, r ∈ R
(43)
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is given by

vinh(t, r) =
∫ t

0

∫ 1

−1
HF [s](t − s + rσ)dσds = 1

r

∫ t

0

∫ t−s+r

t−s−r
HF [s](ρ)dρds

with HF [s](ρ) := ρ
2 F(s, ρ). Concerning the semilinear Cauchy problem (38),

inspired by the last representation (43), we introduce

Lu(t, r) :=
∫ t

0

∫ 1

−1
Hu[s](t − s + rσ)dσds = 1

r

∫ t

0

∫ t−s+r

t−s−r
Hu[s](ρ)dρds

with the nonlinear term

Hu[s](ρ) := ρ

2
|u(s, ρ)|pS(3)μ(|u(s, ρ)|).

In view of Duhamel’s principle as well as the above setting, we expect that if we
find u ∈ Xκ with κ > 1 such that

u(t, r) = v(t, r) + Lu(t, r)

= ∂

∂t

∫ 1

−1
Hu0(t + rσ)dσ +

∫ 1

−1
Hu1(t + rσ)dσ

+ 1

r

∫ t

0

∫ t−s+r

t−s−r
Hu[s](ρ)dρds,

then u = u(t, r) is a solution of the Cauchy problem (38). Note that v ∈ Xκ when
κ > 1 for the linear Cauchy problem (39) via Proposition 4.1 and initial data u0, u1
with compact support. In order to prove Theorem 2, in the subsequent part, we will
verify the following two crucial inequalities:

‖Lu‖Xκ � ‖u‖pS(3)
Xκ

, (44)

‖Lu − Lũ‖Xκ � ‖u − ũ‖Xκ

(
‖u‖pS(3)−1

Xκ
+ ‖ũ‖pS(3)−1

Xκ

)
, (45)

for any u, ũ ∈ Xκ , under some conditions for the modulus of continuity. Let us recall
u0 = εū0 and u1 = εū1. Combining (44) with Proposition 4.1, we immediately claim

‖v + Lu‖Xκ � ε
(‖ū0‖Aκ

+ ‖ū1‖Bκ+1

)+ ‖u‖pS(3)
Xκ

. (46)

Providing that we take a small parameter 0 < ε < ε0 � 1 and compactly supported
initial data, we combine (46) and (45) to claim that there exists a global (in time) small
data radial solution u ∈ Xκ by using Banach’s fixed point theorem.

123



W. Chen, M. Reissig

From the condition (8), there exists a positive and continuous function κ̄ = κ̄(τ )

such that

μ(τ) =
(
log

1

τ

)− 1
pS (3)

κ̄(τ ) and lim
τ→0+ κ̄(τ ) = 0. (47)

Furthermore, the condition (9) means that the above function κ̄ satisfies the next
additional condition:

κ̄(τ ) log log
1

τ
� 1 when τ ∈ (0, τ0] (48)

with a sufficiently small τ0. Before starting our proof, let us introduce a crucial state-
ment.

Proposition 4.2 Let us consider a modulus of continuity μ = μ(τ) with μ(0) = 0
satisfying the conditions (8) and (9). Let us recall the weighted factor via (41). Then,
the integral

I (ξ) :=
∫ |ξ |

−|ξ |
[ω(〈η〉)]−pS(3)〈ξ + η〉〈η〉−1μ

(
ε0[ω(〈η〉)]−1〈ξ 〉−1〈η〉− 1

pS (3)

)
dη

fulfills the following estimate:

I (ξ) � 〈ξ 〉[log(〈ξ 〉)]− 1
pS (3) (log log〈ξ 〉) κ̄

(
ε0〈ξ 〉−1

)
.

Proof To begin with, let us split I (ξ) into two parts

I1(ξ) :=
∫ |ξ |

2

− |ξ |
2

[ω(〈η〉)]−pS (3)〈ξ + η〉〈η〉−1μ
(
ε0[ω(〈η〉)]−1〈ξ〉−1〈η〉− 1

pS (3)
)
dη,

I2(ξ) :=
( ∫ |ξ |

|ξ |
2

+
∫ − |ξ |

2

−|ξ |

)
[ω(〈η〉)]−pS (3)〈ξ + η〉〈η〉−1μ

(
ε0[ω(〈η〉)]−1〈ξ〉−1〈η〉− 1

pS (3)
)
dη.

For the first integral, we use the asymptotic behaviors 〈ξ 〉 ≈ 〈η + ξ 〉 ≈ 〈η − ξ 〉 when
η ∈ [−|ξ |

2 ,
|ξ |
2 ] to deduce

I1(ξ) � 〈ξ 〉
∫ |ξ |

2

− |ξ |
2

〈η〉−1[log(〈η〉)]−1μ

(
ε0〈ξ 〉−1〈η〉− 1

pS (3) [log(〈η〉)]− 1
pS (3)

)
dη

� 〈ξ 〉μ
(
ε0〈ξ 〉−1

) ∫ |ξ |
2

0
〈η〉−1[log(〈η〉)]−1dη

� 〈ξ 〉[log(〈ξ 〉)]− 1
pS (3) (log log〈ξ 〉) κ̄

(
ε0〈ξ 〉−1

)
, (49)

in which we applied the condition (47), and the increasing property of μ = μ(τ) as

well as [〈η〉 log(〈η〉)]− 1
pS (3) < 1.
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Let us turn to the first part of I2(ξ), which is denoted by I2,1(ξ). When ξ � 0, due
to η ∈ [ ξ

2 , ξ ], the equivalences 〈η + ξ 〉 ≈ 〈η〉 ≈ 〈ξ 〉 hold. It leads to

I2,1(ξ) � 〈ξ 〉[log(〈ξ 〉)]−1μ

(
ε0〈ξ 〉−1− 1

pS (3) [log(〈ξ 〉)]− 1
pS (3)

)

� 〈ξ 〉[log(〈ξ 〉)]−1− 1
pS (3) κ̄
(
ε0〈ξ 〉−1

)
,

because [〈ξ 〉 log(〈ξ 〉)]− 1
pS (3) < 1. When ξ � 0, the equivalences 〈η− ξ 〉 ≈ 〈ξ 〉 ≈ 〈η〉

are valid for η ∈ [−ξ,− ξ
2 ]. Then, one deduces

I2,1(ξ) � [log(〈ξ 〉)]−1〈ξ 〉−1μ

(
ε0〈ξ 〉−1− 1

pS (3) [log(〈ξ 〉)]− 1
pS (3)

)∫ − ξ
2

−ξ

〈−ξ − η〉dη

� 〈ξ 〉[log(〈ξ 〉)]−1− 1
pS (3) κ̄
(
ε0〈ξ 〉−1

)
.

The above two estimates are stronger than the estimate (49). Repeating the same
procedure as those for I2,1(ξ), by symmetry we are able to get

I2,2(ξ) � 〈ξ 〉[log(〈ξ 〉)]−1− 1
pS (3) κ̄
(
ε0〈ξ 〉−1

)
.

Summarizing the above derived estimates, we complete the proof of this proposition.
��

4.3 Some estimates for solutions to nonlinear models: proof of Theorem 2

Let us choose u ∈ Xκ . From the definition of the Banach space Xκ with κ > 1, we
obtain

|u(s, ρ)|pS(3)μ(|u(s, ρ)|)
� [ω(〈s − |ρ|〉)]−pS(3)〈s + |ρ|〉−pS(3)〈s − |ρ|〉−(κ−1)pS(3)‖u‖pS(3)

Xκ

× μ
(
[ω(〈s − |ρ|〉)]−1〈s + |ρ|〉−1〈s − |ρ|〉−(κ−1)‖u‖Xκ

)
� [ω(〈s − |ρ|〉)]−pS(3)〈s + |ρ|〉−pS(3)〈s − |ρ|〉−(κ−1)pS(3)‖u‖pS(3)

Xκ

× μ
(
ε0[ω(〈s − |ρ|〉)]−1〈s + |ρ|〉−1〈s − |ρ|〉−(κ−1)

)
,

where we assumed ‖u‖Xκ � ε0 for some ε0 > 0 sufficiently small.
With the aim of proving (44), we just need to show

ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉κ−1|Lu(t, r)| � ‖u‖pS(3)
Xκ

.
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Because Lu is even in r , we may restrict ourselves to non-negative values of r .
Concerning r � 0, applying the definition of Lu, we get

|Lu(t, r)| � 1

r

∫ t

0

∫ t−s+r

t−s−r
|Hu[s](ρ)|dρds � 1

r
I0(t, r)‖u‖pS(3)

Xκ
,

where

I0(t, r) :=
∫ t

0

∫ t−s+r

t−s−r
〈ρ〉[ω(〈s − |ρ|〉)]−pS(3)〈s + |ρ|〉−pS(3)〈s − |ρ|〉−(κ−1)pS(3)

× μ
(
ε0[ω(〈s − |ρ|〉)]−1〈s + |ρ|〉−1〈s − |ρ|〉−(κ−1)

)
dρds

for the case t � r . In the case t � r , we can slightly modify the representation
formulate for Lu. Precisely, being Hu[s](ρ) an odd function with respect to ρ, one
notices

∫ r−(t−s)

(t−s)−r
Hu[s](ρ)dρ = 0.

The additivity of the integral regions shows

Lu(t, r) = 1

r

∫ t

0

∫ (t−s)+r

r−(t−s)
Hu[s](ρ)dρds.

As a consequence, when t � r , we may replace I0(t, r) by

Ĩ0(t, r) :=
∫ t

0

∫ r+(t−s)

r−(t−s)
〈ρ〉[ω(〈s − |ρ|〉)]−pS(3)〈s + |ρ|〉−pS(3)〈s − |ρ|〉−(κ−1)pS(3)

× μ
(
ε0[ω(〈s − |ρ|〉)]−1〈s + |ρ|〉−1〈s − |ρ|〉−(κ−1)

)
dρds.

All in all, we already derived

|Lu(t, r)| �
{
r−1 I0(t, r)‖u‖pS(3)

Xκ
when t � r ,

r−1 Ĩ0(t, r)‖u‖pS(3)
Xκ

when t � r ,

for any r � 0.

Estimates for I0(t, r) with t � r . Since |t − s − r | � t − s + r (we are working with
r � 0) and the even function with respect to ρ of the integrand in I0(t, r) so that

I0(t, r) �
∫ t

0

∫ t−s+r

max{0,t−s−r}
〈s + ρ〉−pS(3)〈s − ρ〉−(κ−1)pS(3)〈ρ〉[ω(〈s − ρ〉)]−pS(3)

× μ
(
ε0[ω(〈s − ρ〉)]−1〈s + ρ〉−1〈s − ρ〉−(κ−1)

)
dρds.
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We now perform the change of two variables

ξ = s + ρ, η = ρ − s, namely, ρ = ξ + η

2
, s = ξ − η

2
. (50)

Since ρ, s � 0, we get |η| � ξ. Furthermore, ρ ∈ [max{0, t − s − r}, t − s + r ] leads
to

t − r � s + max{0, t − s − r} � s + ρ = ξ � t + r .

Hence, recalling κ := 1 + 1
pS(3)

in the definition of the Banach space Xκ , we may
employ Proposition 4.2 to derive

I0(t, r) �
∫ t+r

t−r
〈ξ 〉−pS(3)

∫ ξ

−ξ

[ω(〈η〉)]−pS(3)〈ξ + η〉〈η〉−1

× μ

(
ε0[ω(〈η〉)]−1〈ξ 〉−1〈η〉− 1

pS (3)

)
dηdξ

�
∫ t+r

t−r
〈ξ 〉−pS(3) I (ξ)dξ

�
∫ t+r

t−r
〈ξ 〉1−pS(3)[log(〈ξ 〉)]− 1

pS (3) (log log〈ξ 〉) κ̄
(
ε0〈ξ 〉−1

)
dξ.

Thus, from the even behavior of Lu with respect to r , taking account of t � r � 0,
we may arrive at

ω(〈t − r〉)〈t + r〉〈t − r〉 1
pS (3) |Lu(t, r)|

� ω(〈t − r〉)〈t + r〉〈t − r〉 1
pS (3) r−1|I0(t, r)| ‖u‖pS(3)

Xκ

� J0(t, r)‖u‖pS(3)
Xκ

,

where

J0(t, r) := [log(〈t − r〉)] 1
pS (3)

〈t + r〉〈t − r〉 1
pS (3)

r

×
∫ t+r

t−r
〈ξ 〉1−pS(3)[log(〈ξ 〉)]− 1

pS (3) (log log〈ξ 〉) κ̄
(
ε0〈ξ 〉−1

)
dξ.

Noticing that ε0〈ξ 〉−1 � ε03−1 � τ0 with 0 < ε0 � 1 sufficiently small, we directly
apply (48) to derive

κ̄
(
ε0〈ξ 〉−1

) [
log log

(
ε−1
0 〈ξ 〉
)]

� 1. (51)
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Due to ε−1
0 � 1, we simplify our aim as

J0(t, r) � [log(〈t − r〉)] 1
pS (3)

〈t + r〉〈t − r〉 1
pS (3)

r

∫ t+r

t−r
〈ξ 〉1−pS(3)[log(〈ξ 〉)]− 1

pS (3) dξ.

Next, we will estimate J0(t, r) more precisely by estimating the last right-hand side
in different zones of the (t, r)-plane.

Zone I: t � 2r � 0 For ξ ∈ [t − r , t + r ], we know the equivalence 〈ξ 〉 ≈ 〈t + r〉.
It follows

J0(t, r) � 〈t + r〉2−pS(3)〈t − r〉 1
pS (3) [log(〈t + r〉)]− 1

pS (3) [log(〈t − r〉)] 1
pS (3)

� 〈t + r〉2−pS(3)+ 1
pS (3) � 1,

since −p2S(3) + 2pS(3) + 1 = 0 for three dimensions (see (2) with n = 3).
Zone II: 0 � r � 1 and t � 2r We own the equivalence 〈t + r〉 ≈ 3 so that

J0(t, r) � 〈t + r〉1+ 1
pS (3) 〈t − r〉1−pS(3) � 1

by using the bounds 2 � 〈t − r〉 � 〈t + r〉.
Zone III: r � 1 and r � t � 2r Via the equivalences r ≈ 〈r〉 ≈ 〈t + r〉, we are able

to conclude

J0(t, r) � 〈t + r〉
r

〈t − r〉 1
pS (3)

∫ t+r

t−r
〈ξ 〉1−pS(3)dξ � 〈t − r〉2−pS(3)+ 1

pS (3) � 1,

where we applied pS(3) = 1 + √
2 > 2.

Summarizing, we have derived the key estimate

ω(〈t − r〉)〈t + r〉〈t − r〉 1
pS (3) |Lu(t, r)| � J0(t, r)‖u‖pS(3)

Xκ
� ‖u‖pS(3)

Xκ

for any t � r .

Estimates for Ĩ0(t, r) with t � r . This part just discusses the case for r � 1 since
the influence coming from the compact set {(t, r) : 0 � t � r � 1} is negligible. As
before, we take the change of variables (50). According to s � 0 and ρ � r − (t − s),
we deduce r − t � η � ξ, while from s � 0 and |ρ − r | � t − s it follows
r − t � ξ � r + t . For this reason, we find

Ĩ0(t, r) �
∫ r+t

r−t
〈ξ 〉−pS(3)

∫ ξ

r−t
[ω(〈η〉)]−pS(3)〈ξ + η〉〈η〉−1

× μ

(
ε0[ω(〈η〉)]−1〈ξ 〉−1〈η〉− 1

pS (3)

)
dηdξ.
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The relation [r − t, ξ ] ⊂ [−ξ, ξ ] and the application of Proposition 4.2 associated
with (51) yield

Ĩ0(t, r) �
∫ r+t

r−t
〈ξ 〉1−pS(3)[log(〈ξ 〉)]− 1

pS (3) (log log〈ξ 〉) κ̄
(
ε0〈ξ 〉−1

)
dξ

� [log(〈r − t〉)]− 1
pS (3)

∫ r+t

r−t
〈ξ 〉1−pS(3)dξ

� 〈t − r〉2−pS(3)[log(〈t − r〉)]− 1
pS (3) ,

due to 2 − pS(3) = 1 − √
2 < 0. Hence,

ω(〈t − r〉)〈t + r〉〈t − r〉 1
pS (3) |Lu(t, r)|

� ω(〈t − r〉)〈t + r〉〈t − r〉 1
pS (3) r−1| Ĩ0(t, r)| ‖u‖pS(3)

Xκ

� 〈t + r〉
r

〈t − r〉2−pS(3)+ 1
pS (3) ‖u‖pS(3)

Xκ

� ‖u‖pS(3)
Xκ

by the same reason as the one in Zone III of estimates for I0(t, r).
Thus, we may claim

∥∥ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉 1
pS (3) Lu(t, r)

∥∥
L∞([0,+∞)×R)

� ‖u‖pS(3)
Xκ

(52)

with the weighted factor defined in (41) and under the conditions (8) as well as (9).
As a by-product, due to

|Lu(t, r) − Lũ(t, r)| � 1

r
‖u − ũ‖Xκ

(
‖u‖pS(3)−1

Xκ
+ ‖ũ‖pS(3)−1

Xκ

)

×
{
r−1 I0(t, r) when t � r ,

r−1 Ĩ0(t, r) when t � r ,

one can prove

∥∥ω(〈t − |r |〉)〈t + |r |〉〈t − |r |〉 1
pS (3)
(
Lu(t, r) − Lũ(t, r)

)∥∥
L∞([0,+∞)×R)

� ‖u − ũ‖Xκ

(
‖u‖pS(3)−1

Xκ
+ ‖ũ‖pS(3)−1

Xκ

)
,

by the same way as those for (52).
Summarizing the last statements, we have completed the proof of the desired

inequalities (44) as well as (45), namely, the proof of Theorem 2 is completed. �
Furthermore, by employing Banach’s fixed point theorem, with the weighted data,

we arrive at the next global (in time) well-posedness result with some pointwise decay
estimates.
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Corollary 4.1 Let us consider a modulus of continuity μ = μ(τ) with μ(0) = 0
fulfilling (8) and (9). Let u0 ∈ (Aκ ∩ C20) and u1 ∈ (Bκ+1 ∩ C10) be radial with
κ = 1 + 1

pS(3)
. Then, there exists 0 < ε0 � 1 such that for any ε ∈ (0, ε0) fulfilling

‖u0‖Aκ
+ ‖u1‖Bκ+1 < ε0, the semilinear Cauchy problem (3) for n = 3 admits a

uniquely determined global (in time) small data radial solution u ∈ C([0,+∞)×R
3).

Furthermore, the solution fulfills the following pointwise decay estimates:

|u(t, r)| � [log(〈t − |r |〉)]− 1
pS (3) 〈t + |r |〉−1〈t − |r |〉− 1

pS (3)
(‖u0‖Aκ

+ ‖u1‖Bκ+1

)
.

The data spaces Aκ and Bκ were defined in Proposition 4.1.

Remark 8 One of our new tools is the introduction of new weighted data spaces with
logarithmic factors. With these spaces we are able to derive polynomial-logarithmic
type decay estimates for the global (in time) radial solutions to the Cauchy problem
(38) with modulus of continuity from the previous Corollary 4.1.

5 Final remarks

In this paper, we derived a blow-up result and a global (in time) existence result for
semilinear classical wave equations with a modulus of continuity in the nonlinearity
|u|pS(n)μ(|u|). Specially, considering a modulus of continuity μ = μ(τ)withμ(0) =
0 carrying the form (4) with 0 < τ0 � 1, we described the critical regularity of
nonlinearities |u|pS(3)μ(|u|) by the threshold γ = 1

pS(3)
.

According to the general blow-up condition (6) and the global (in time) existence
result in Theorem 2, we expect that the general threshold is described by the quantity
(10), i.e.

CStr = lim
τ→0+ μ(τ)

(
log

1

τ

) 1
pS (n)

. (53)

Let us explain it via three situations concerning the value of CStr � 0.

• Blow-up of solutions when CStr = +∞: Due to the proposed condition (6) in
Theorem1, the validity of the last conjecture from the blow-up viewpoint is already
known when CStr = +∞.

• Blow-up of solutions when CStr ∈ (0,+∞): Due to the proposed condition (6)
in Theorem 1, we already know the blow-up phenomenon occurs when CStr ∈
[cl ,+∞) with a suitably large constant cl � 1. Recently, the blow-up result
for semilinear classical wave equations with modulus of continuity in derivative
type nonlinearity has been studied by [3]. Considering the model utt − �u =
|ut |pG (n)μ(|ut |) with the Glassey exponent pG(n) := n+1

n−1 for n � 2, the author
of [3] proposes a new blow-up condition even for the completed intermediate case
as follows:

lim
τ→0+ μ(τ)

(
log

1

τ

)
= CGla ∈ (0,+∞].
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Motivated by the above explanation, we believe that the blow-up result still holds
in the intermediate caseCStr ∈ (0, cl).However, due to some technical difficulties,
the rigorous justification is still challenging.

• Global (in time) existence of solutions when CStr = 0: Due to the proposed
condition (8), i.e. CStr = 0, and the decay assumption (9) in Theorem 2, our
conjecture is partially verified from the global (in time) existence perspective.

Lastly, we underline that the validity of our conjecture (53) has been verified in the
present manuscript for the semilinear three dimensional Cauchy problem (3) with a
modulus of continuity fulfilling μ(0) = 0 and μ(τ) = cl(log 1

τ
)−γ with cl � 1

when τ ∈ (0, τ0], because the global (in time) existence result for γ > 1
pS(3)

and the

blow-up result for 0 < γ � 1
pS(3)

have been rigorously demonstrated in Theorems 2
and 1, respectively.
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