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Abstract
We consider a 3-Calabi–Yau triangulated category associated to an ideal triangulation
of a marked bordered surface. Using the theory of harmonic maps between Riemann
surfaces, we construct a natural map from a component of the space of Bridgeland
stability conditions on this category to the enhanced Teichmüller space of the surface.
We describe a relationship between the central charges of objects in the category and
shear coordinates on the Teichmüller space.

1 Introduction

Recently, a remarkable connection has emerged between low-dimensional topol-
ogy and the theory of triangulated categories. A series of works by Bridgeland and
Smith [10], Haiden, Katzarkov, and Kontsevich [27], and Haiden [26] has revealed
that spaces of stability conditions on various kinds of triangulated categories can be
identified with moduli spaces of quadratic differentials on surfaces. Inspired by these
developments, a number of authors have proposed categorical analogs of familiar
notions from dynamics and Teichmüller theory [6, 13, 17–20].

In the present paper, we aim to clarify the relationship between the space of sta-
bility conditions on a triangulated category and the Teichmüller space of a surface.
We consider a large class of 3-Calabi–Yau triangulated categories associated to tri-
angulated surfaces in the work of Bridgeland and Smith [10]. Using the theory of
harmonic maps between Riemann surfaces, we construct a map from a component of
the space of stability conditions on such a category to a version of Teichmüller space
known in the literature as the enhanced Teichmüller space. In addition, we describe
an asymptotic relationship between the central charges of objects in the category and
shear coordinates on the enhanced Teichmüller space.
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The starting point for our construction is a result of Hitchin [30] and Wolf [47],
which uses holomorphic quadratic differentials to parametrize the Teichmüller space
of a compact surface. In the course of proving our main theorems, we obtain a mero-
morphic generalization of their result. The present paper is also strongly influenced
by the work of Gaiotto, Moore, and Neitzke in physics [24]. In an earlier series of
papers [1–5], we gave a mathematical formalization of their ideas in a particular limit
called the conformal limit. In contrast, the present paper can be seen as a first step
toward understanding the ideas of Gaiotto, Moore, and Neitzke away from the con-
formal limit.

By thework of Fock andGoncharov [21, 22], the enhancedTeichmüller space arises
as the set ofR>0-valued points of a certain cluster variety. The latter can be constructed
starting from the data of a quiver. Using these facts, we can give a formulation of our
main results entirely in terms of the 3-Calabi–Yau triangulated category associated to
a quiver with potential. We conjecture that the construction presented here is a special
case of a far more general construction valid for such categories.

1.1 Compact surfaces and holomorphic differentials

In the following discussion, S will denote a fixed compact Riemann surface satisfying
χ(S) < 0. If C is a surface equipped with a complete finite area hyperbolic metric,
then a marking of C by S is defined to be a diffeomorphism ψ : S → C . In this
case, the pair (C, ψ) is called a marked hyperbolic surface. Two marked hyperbolic
surfaces (C1, ψ1) and (C2, ψ2) are considered to be equivalent if there is an isometry
g : C1 → C2 such thatψ2 is homotopic to g◦ψ1, and the Teichmüller space T (S) can
be defined as the space of equivalence classes of marked hyperbolic surfaces of this
type. It is a real manifold homeomorphic to a Euclidean space of dimension−3 ·χ(S).

We will be interested in marked hyperbolic surfaces for which the marking is
harmonic. As we will review in Sect. 4, a map f : M → N of Riemannian manifolds
is harmonic if it satisfies a certain Euler-Lagrange equation. In particular, we can
consider the case where M and N are Riemann surfaces and the metrics are given
locally by expressions of the form g|dz|2 and h|dw|2 for some positive functions g
and h, where z and w are complex local coordinates on M and N , respectively. In this
case, a map f : M → N is harmonic if and only if it satisfies the partial differential
equation

∂2 f

∂z∂ z̄
+ 1

h

∂h

∂w

∂ f

∂z

∂ f

∂ z̄
= 0.

Note that while this condition depends on the exact form of the metric on N , it only
depends on the conformal structure of M . If M and N are any compact Riemannian
manifolds and the metric on N has negative curvature, then the work of Eells and
Sampson [16] implies that there exists a harmonic map in the homotopy class of any
diffeomorphism M → N . Hartman [29] proved that such a map is unique, and Schoen
and Yau [43] and Sampson [41] independently proved that it is a diffeomorphism in
the case where M and N are surfaces.
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Recall that a holomorphic quadratic differential on aRiemann surface S is defined as
a holomorphic section of ω⊗2

S , where ωS denotes the holomorphic cotangent bundle
of S. If ψ : S → C is a harmonic map and h is the metric on C , then the (2, 0)-
part of the pullback ψ∗h defines a holomorphic quadratic differential on S called the
Hopf differential of ψ . Our goal in this paper is to generalize the following theorem
of Wolf.

Theorem 1.1 ([47]). There is a homeomorphism

�S : T (S)
∼−→ H0(S, ω⊗2

S )

taking a point (C, ψ) ∈ T (S) to the Hopf differential of the unique harmonic diffeo-
morphism homotopic to ψ .

Theorem 1.1 is equivalent to a result of Hitchin from [30]. In modern terminology,
a quadratic differential determines a Higgs bundle on the Hitchin section. By applying
the nonabelian Hodge correspondence to this Higgs bundle, one obtains a point in the
SL2(C)-character variety which can be shown to lie in the Teichmüller space. This
defines a homeomorphism H0(S, ω⊗2

S )
∼→ T (S) which is the inverse of �S .

1.2 Noncompact surfaces andmeromorphic differentials

In this paper, we generalize Theorem 1.1 by considering surfaces of the form

C = C̄\
⎛
⎝

s⋃
i=1

Di ∪
t⋃

j=1

{p j }
⎞
⎠ (1)

where C̄ is a closed oriented surface, D1, . . . , Ds ⊂ C̄ are open disks whose closures
are disjoint, and p1, . . . , pt ∈ C̄ are points disjoint from the interiors of the Di . We
equip C with a complete, finite area hyperbolic metric with totally geodesic boundary.
By completeness of the metric, there is a cusp neighborhood around each of the
deleted points p j . Note that if a point p j lies on the boundary of some disk Di , then
the boundary of C will contain at least one component which is a bi-infinite totally
geodesic arc (see Fig. 1).

We define a marked bordered surface to be a pair (S, M) consisting of a compact
oriented surface S with (possibly empty) boundary together with a nonempty finite
subset M ⊂ S of marked points such that each component of ∂S contains at least one
marked point. We will write P ⊂ M for the set of punctures, defined as marked points
that lie in the interior of S. If C is a hyperbolic surface of the form (1), then a marking
of C by (S, M) is defined to be a diffeomorphism ψ : S\M → C◦ where C◦ denotes
the complement in C of all boundary components homeomorphic to S1. Then the pair
(C, ψ) is called a marked hyperbolic surface. We can define equivalence of marked
hyperbolic surfaces exactly as we did for closed surfaces, and we write T (S, M) for
the space of equivalence classes of marked hyperbolic surfaces of this type.
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Fig. 1 A hyperbolic surface of
the form (1)

If (C, ψ) ∈ T (S, M) is a marked hyperbolic surface, then we will define a tuple
L = (Li ) of numbers, called length data, which are indexed by the punctures and
boundary components of (S, M). If ∂S = ∅ then these numbers simply give the
lengths of the geodesic boundary components of C , while if ∂S �= ∅ then there is an
additional number, called a metric residue, associated to each boundary component
of S. We write

TL(S, M) ⊂ T (S, M)

for the set of points with fixed length data given by L .
We also consider a space parametrizing meromorphic quadratic differentials. To

define it, let S be a compact Riemann surface and M = {p1, . . . , pd} ⊂ S a nonempty
finite subset. Fix a local coordinate zi defined in a neighborhood of pi ∈ S so that
zi (pi ) = 0. Then for any meromorphic quadratic differential φ on S with poles at the
points of M , we define a tuple P = (Pi (zi )) of expressions, called the principal parts
of φ, which are indexed by the points of M . The principal part Pi (zi ) comprises the
terms of degree ≤ −1 in the expansion of a square root

√
φ in the variable zi . The

tuple P = (Pi (zi )) determines a corresponding divisor D = ∑
i mi pi which is the

polar divisor for any quadratic differential having principal part Pi (zi ) at each pi . We
write

QP (S, M) ⊂ H0(S, ω⊗2
S (D))

for the space of meromorphic quadratic differentials with fixed principal parts given
by P .

As we explain in Sect. 4.3, the principal part Pi (zi ) determines a collection of
distinguished tangent directions at pi whenever mi ≥ 3. Using this fact, we can
define an associated marked bordered surface (SP , MP ) in a natural way. The surface
SP is obtained by taking an oriented real blowup of S at each pi ∈ M for which
mi ≥ 3. The distinguished tangent directions determine a collection of marked points
on the boundary of the resulting surface, and we define MP to consist of these points
together with all points pi ∈ M for which mi ≤ 2. The tuple P of principal parts also
determines a corresponding tuple L of length data, and we write TP (S, M) for the
space TL(SP , MP ). By construction, S\M can be viewed as a subsurface of SP\MP ,
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and so if (C, ψ) ∈ TP (S, M), then ψ restricts to a map S\M → C\∂C . In Sect. 5,
we prove the following extension of Theorem 1.1.

Theorem 1.2 If (C, ψ) ∈ TP (S, M) then there is a unique harmonic diffeomorphism
Fψ : S\M → C\∂C homotopic to ψ whose Hopf differential lies inQP (S, M). There
is a homeomorphism

�
S,M
P : TP (S, M)

∼−→ QP (S, M)

taking (C, ψ) to the Hopf differential of this map Fψ .

Theorem 1.2 builds on earlier results of a number of different authors. In par-
ticular, Wolf [48] proved related results concerning harmonic maps between nodal
Riemann surfaces. Lohkamp [37] proved Theorem 1.2 in the special case where the
Hopf differentials have at most simple poles. Gupta [25] proved the case where the
Hopf differentials have only poles of order ≥ 3, and Sagman [40] further studied
the case where the Hopf differentials have double poles. From the perspective of the
theory of Higgs bundles, Theorem 1.2 is also closely related to the work of Simp-
son [45], Biswas, Adés-Gastesi, and Govindarajan [8], Sabbah [39], and Biquard and
Boalch [7].

1.3 Signed differentials and enhanced Teichmüller space

To formulate our other results, we will need to define various objects naturally asso-
ciated to a marked bordered surface. Firstly, if (S1, M1) and (S2, M2) are marked
bordered surfaces, then an isomorphism (S1, M1) → (S2, M2) is defined to be an
orientation preserving diffeomorphism S1 → S2 that induces a bijection M1 ∼= M2
of the marked points. Two isomorphisms are called isotopic if they are homotopic
through isomorphisms, and the mapping class group MCG(S, M) is defined as the
group of all isotopy classes of isomorphisms (S, M) → (S, M). This group acts on
the set P ⊂ M of punctures, and we define the signed mapping class group to be the
corresponding semidirect product MCG±(S, M) = MCG(S, M) � Z

P

2 .
If φ is a meromorphic quadratic differential with at least one pole on a compact

Riemann surface S, then the pair (S, φ) determines an associated marked bordered
surface (S, M). It is the surface (SP , MP ) considered above where P is the tuple
of principal parts of φ. This marked bordered surface is in fact independent of the
local coordinates used to define the principal parts. For any marked bordered surface
(S, M), we can define a moduli space Q(S, M) parametrizing triples (S, φ, θ) where
φ is a meromorphic quadratic differential on a compact Riemann surface S, and θ is
an isomorphism from (S, M) to the marked bordered surface determined by (S, φ).
Following Bridgeland and Smith [10], we require the differential φ to satisfy some
mild conditions making it into what is known as a Gaiotto–Moore–Neitzke (GMN)
differential (see Definition 2.1 below). If we assume that |M| ≥ 3 whenever S has
genus zero, then Q(S, M) has the natural structure of a complex manifold.

Suppose φ is a quadratic differential on a Riemann surface S with a double pole
at some point p ∈ S. If z is a local coordinate defined in a neighborhood of p with
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z(p) = 0, then the principal part of φ with respect to the local coordinate is equivalent
to the residue of φ at p. The latter is defined as Resp(φ) = ±4π i

√
ap where ap is

the leading coefficient in the Laurent expansion of φ in the variable z. The residue
is independent of the choice of local coordinate and is defined only up to a sign. We
define a signing for φ to be a choice of one of the two values for the residue at each
pole of order two, and we define a signed differential to be a quadratic differential
equipped with a signing. There is a branched cover

Q±(S, M) → Q(S, M)

where the fiber over a point (S, φ, θ) parametrizes the choices of signing for φ. This
cover has degree 2|P| and is branched over the locus of points (S, φ, θ) such that φ

has at least one simple pole. There is a natural action of the group MCG±(S, M) on
this space Q±(S, M) where the Z

P

2 factor acts by changing the signing.
In addition to the space Q(S, M), we consider the Teichmüller space T (S, M)

defined as before. We will see that it has the structure of an orbifold whose real
dimension is half that of Q(S, M). There is a branched cover

T ±(S, M) → T (S, M)

where the fiber over a marked hyperbolic surface (C, ψ) corresponds to a choice of
orientation for every boundary component ofC that is homeomorphic to S1. This cover
has degree 2|P| and is branched over the locus of points (C, ψ) where the surface C
has at least one cusp. The space T ±(S, M) is a real manifold known in the literature
as the enhanced Teichmüller space. There is a natural action of MCG±(S, M) on
the enhanced Teichmüller space where the Z

P

2 factor acts by changing the choice of
orientations for boundary components. In Sect. 5, we use Theorem 1.2 to prove the
following result.

Theorem 1.3 Let (S, M) be a marked bordered surface, and if S has genus zero, assume
|M| ≥ 3. Then there is an MCG±(S, M)-equivariant continuous map


± : Q±(S, M) → T ±(S, M)

from the space of signed differentials to the enhanced Teichmüller space.

We conjecture that the map 
± of Theorem 1.3 is actually real analytic. It should
be possible to prove this by extending the methods from Section 5 of [48] using the
analytic implicit function theorem. We leave this as a problem for future research.

1.4 Periods and shear coordinates

Ifφ is aGMNdifferential on a compact Riemann surface S, thenφ determines a double
cover π : �φ → S on which the square root

√
φ is a well defined meromorphic 1-

form. This double cover is known as the spectral cover for φ. Let �◦
φ be the surface

obtained from �φ by deleting the preimages of all poles of φ of order ≥ 2, and let
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τ : �◦
φ → �◦

φ be the natural involution interchanging the two sheets of the double
cover. Then the set

Ĥ(φ) = {γ ∈ H1(�
◦
φ, Z) : τ(γ ) = −γ }

is a lattice called the hat homology of φ, and the map

Zφ : Ĥ(φ) → C, Zφ(γ ) =
∫

γ

√
φ

is a homomorphism called the period map. If we choose φ to be sufficiently generic
(more precisely, if it is complete and saddle-free in the sense defined below), then φ

determines an associated basis {γi } of the hat homology lattice whose elements γi are
called standard saddle classes. In particular, we can evaluate the periods Zφ(γi ) ∈ C

of these basis elements. As shown in Section 4 of [10], these periods can be used to
define local coordinates on moduli spaces of quadratic differentials.

One can also construct interesting coordinates on the enhanced Teichmüller space.
We first define an ideal triangulation of a marked bordered surface (S, M) to be a
triangulation of S whose vertices are the points of M. We will also consider the
slightly more refined concept of a tagged triangulation introduced by Fomin, Shapiro,
and Thurston [23]. To each arc α of a tagged triangulation, we associate a function
Xα : T ±(S, M) → R>0 called a cluster coordinate or Fock-Goncharov coordinate.
These functions are closely related to Thurston’s shear coordinates and provide a
global parametrization of T ±(S, M). As observed by Fock and Goncharov [21, 22],
they transform by cluster Poisson transformations when we change the triangulation.

Now suppose we are given a quadratic differential φ in the spaceQ±(S, M). If we
choose φ generically, then there is an associated tagged triangulation τ(φ) of (S, M)

called the tagged WKB triangulation. Its arcs are in bijection with the standard saddle
classes, and so we can use the same symbol γ to denote a standard saddle class and
the corresponding arc of τ(φ). For each R > 0, we will write Xφ,γ (R) for the cluster
coordinate of 
±(R2 · φ) with respect to this arc γ . Then in Sect. 6, we prove the
following result.

Theorem 1.4 Taking notation as above, we have

Xφ,γ (R) · exp(R · ReZφ(γ )) → 1 as R → ∞.

Theorem 1.4 confirms a conjecture of Gaiotto,Moore, andNeitzke [24], formulated
precisely in equation (3.19) of [14]. It is an analog of Theorem 1.5 in [2]. In physical
terms, the construction in [2] is the conformal limit of the construction presented here.

1.5 Categorical interpretation

In the final two sections of this paper, we interpret our results in categorical terms.
As we will review in Sect. 7, one can associate to any 2-acyclic quiver with potential
(Q, W ) a corresponding 3-Calabi–Yau triangulated category D(Q, W ). Explicitly, it
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is defined as the full subcategory of the derived category of modules over the Ginzburg
algebra of (Q, W ) consisting of modules with finite-dimensional cohomology [32].
The resulting category is equipped with a canonical bounded t-structure whose heart
is a full abelian subcategory A(Q, W ) ⊂ D(Q, W ) encoding the quiver Q.

To see other abelian subcategories ofD = D(Q, W ), we use the operation of tilting.
Given a finite length heart A ⊂ D and a simple object S ∈ A, there is a notion of
tilting with respect to S to get a new heartA′ ⊂ D. We define Tilt(D) to be the graph
whose vertices are in bijection with the finite length hearts in D, where two vertices
are connected by an edge if the associated hearts are related by tilting at a simple
object. The group Aut(D) of autoequivalences of D acts naturally on Tilt(D). This
graph has a distinguished connected component Tilt�(D) ⊂ Tilt(D) containing the
distinguished heartA(Q, W ), and we will write Aut�(D) ⊂ Aut(D) for the subgroup
that preserves this distinguished component. We will write Aut�(D) for the quotient
of Aut�(D) by the subgroup of autoequivalences that act trivially on Tilt�(D). The
spherical twist functors introduced by Seidel and Thomas [44] generate a subgroup
which we denote Sph

�
(D) ⊂ Aut�(D). The quotient

Exch�(D) = Tilt�(D)/Sph
�
(D)

is known in cluster theory as the exchange graph, while

G�(D) = Aut�(D)/Sph
�
(D)

is known as the cluster modular group.
The space of stability conditions on a triangulated category was introduced by

Bridgeland in [9]. It is a complex manifold which carries a natural action of the group
of autoequivalences. A point in the stability manifold for a category D is specified
by a heart A ⊂ D together with a group homomorphism Z : K (A) → C satisfying
certain requirements. For the categoriesD = D(Q, W ) that we consider, the space of
stability conditions contains a distinguished connected component which we denote
Stab�(D). The group Sph

�
(D) acts on Stab�(D), and we consider the quotient

�(Q, W ) = Stab�(D)/Sph
�
(D).

We define a second space T (Q) by associating a copy of the real manifoldR
n
>0 to each

vertex t ∈ Exch�(D) and then identifying two manifolds by a cluster transformation
whenever the associated vertices are connected by an edge. Here n is the rank of
the Grothendieck group K (D). The space T (Q) obtained in this way is the set of
R>0-valued points of a cluster variety associated to the quiver Q. We refer to it as the
enhanced Teichmüller space of Q. For every t ∈ Exch�(D) and γ ∈ K (D), one has
a function Xγ : T (Q) → R>0 defined using cluster coordinates.

We will apply the above constructions in a class of examples arising from trian-
gulated surfaces. If (S, M) is a marked bordered surface satisfying mild conditions
and τ is a tagged triangulation of (S, M), then the work of Labardini-Fragoso [34, 35]
provides an associated quiver with potential (Q, W ) = (Q(τ ), W (τ )), well defined up
to a suitable notion of equivalence. We can then consider the associated 3-Calabi–Yau
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triangulated category D = D(Q, W ), which was studied in the work of Bridgeland
and Smith [10]. Assuming (S, M) satisfies an amenability condition from [10], one
has isomorphisms �(Q, W ) ∼= Q±(S, M) and T (Q) ∼= T ±(S, M). By combining
these facts with Theorem 1.3, we deduce the following result in Sect. 8.

Theorem 1.5 Let (Q, W ) be the quiver with potential associated to a tagged trian-
gulation of an amenable marked bordered surface, and let D = D(Q, W ) be the
associated 3-Calabi–Yau triangulated category. Then there is a G�(D)-equivariant
continuous map


̂ : �(Q, W ) → T (Q)

from the space of stability conditions to the enhanced Teichmüller space.

Finally, for a generic point σ = (A, Z) of Stab�(D), we consider the 1-parameter
family of stability conditions σR = (A, R · Z) for R > 0. The heart A determines
a vertex t ∈ Exch�(D), and hence for any γ ∈ K (D), we have a function Xγ :
T (Q) → R>0. We will write Xσ,γ (R) = Xγ (
̂(σR)). Using Theorem 1.4, we prove
the following in Sect. 8.

Theorem 1.6 Take notation as in the last paragraph. Then

Xσ,γ (R) · exp(R · ReZ(γ )) → 1 as R → ∞.

The statements in Theorems 1.5 and 1.6 make sense for the 3-Calabi–Yau triangu-
lated category constructed from any nondegenerate quiver with potential, even when
the quiver with potential does not arise from a triangulated surface. We conjecture
that Theorems 1.5 and 1.6 are special cases of more general results valid for such
categories.

2 Meromorphic quadratic differentials

In this section, we define various moduli spaces parametrizing meromorphic quadratic
differentials on Riemann surfaces.

2.1 Basic definitions

Let S be a Riemann surface. Then ameromorphic quadratic differential on S is defined
to be a meromorphic section of ω⊗2

S where ωS is the holomorphic cotangent bundle
of S. In terms of a local coordinate z on S, a quadratic differential φ can be expressed
as

φ(z) = ϕ(z)dz⊗2

where ϕ(z) is a meromorphic function in the local coordinate.
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By a critical point of a quadratic differential φ, wemean either a zero or a pole of φ.
We will denote by Crit(φ) the set of all critical points of φ. It is useful to classify the
critical points into two types. The first type is a finite critical point, which is defined
as a zero or simple pole. The second type is an infinite critical point, defined as a pole
of order ≥ 2. We will denote by Crit<∞(φ) and Crit∞(φ) the sets of finite and infinite
critical points, respectively. In this paper, we sometimes restrict attention to quadratic
differentials satisfying additional conditions:

Definition 2.1 ([10, Definition 2.1]). A quadratic differential φ defined on a compact,
connected Riemann surface is called a Gaiotto-Moore-Neitzke (GMN) differential if

(1) φ has no zero of order > 1.
(2) φ has at least one pole.
(3) φ has at least one finite critical point.

A GMN differential is said to be complete if it has no simple poles.

Let φ be a quadratic differential on S. In a neighborhood of any point of S\Crit(φ),
there is a local coordinatew, well definedup to transformations of the formw �→ ±w+
constant, with respect towhich the quadratic differential can bewrittenφ(w) = dw⊗2.
Indeed, if we haveφ(z) = ϕ(z)dz⊗2 for some local coordinate z, thenwe can takew =∫ √

ϕ(z)dz. These distinguished local coordinates determine two important geometric
structures on the surface. On the one hand, by pulling back the standard Euclidean
metric on C using the distinguished local coordinates, we get a flat metric defined on
S\Crit(φ). On the other hand, by pulling back the horizontal lines Im(w) = constant
using the distinguished local coordinates, we get a foliation of S\Crit(φ) called the
horizontal foliation.

2.2 Marked bordered surfaces

In the following, we would like to consider differentials on surfaces of a fixed topo-
logical type with varying complex structure. With this in mind, we define a marked
bordered surface to be a pair (S, M) where S is a compact connected oriented smooth
surface with (possibly empty) boundary, andM ⊂ S is a nonempty finite set of marked
points such that each component of ∂S contains at least onemarked point.Wewill refer
to marked points in the interior of S as punctures and denote the set of all punctures
by P ⊂ M.

Given a marked bordered surface (S, M), it is sometimes convenient to consider
the surface S

′ obtained by taking the oriented real blowup of S at each point of P.
The resulting surface has an additional boundary component with no marked points
corresponding to each puncture of S. If we write ki for the number of marked points
on the i th boundary component of this modified surface S

′ and write g = g(S) for the
genus of S, then we can define

n = 6 − 6g +
∑

i

(ki + 3). (2)
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As we will see below, this number appears as the dimension of various natural moduli
spaces associated to the marked bordered surface (S, M).

If (S1, M1) and (S2, M2) are marked bordered surfaces, then an isomorphism
(S1, M1) → (S2, M2) is defined to be an orientation preserving diffeomorphism
S1 → S2 which induces a bijection M1 ∼= M2. Two such isomorphisms are said to be
isotopic if they are homotopic through maps S1 → S2 which also induce bijections
M1 ∼= M2. The group of all isotopy classes of isomorphisms from a marked bor-
dered surface (S, M) to itself is called the mapping class group of (S, M) and denoted
MCG(S, M).

2.3 Marked quadratic differentials

Let φ be a quadratic differential on S and let p ∈ S be a pole of φ of order m ≥ 3. If z
is a local coordinate defined in a neighborhood of p such that z(p) = 0, then we can
write

φ(z) =
(

a0z−m + a1z−m+1 + . . .
)

dz⊗2.

Then the asymptotic horizontal directions of φ at p are the m − 2 tangent vectors at p
which are tangent to the rays defined by the condition a0 · z2−m ∈ R>0. The name
comes from the fact that there is a neighborhood p ∈ U ⊂ S such that any leaf of
the horizontal foliation that enters U eventually tends to p and is asymptotic to one of
the asymptotic horizontal directions. In particular, it follows that these directions are
independent of the choice of local coordinate.

If we are given a quadratic differential φ on a compact Riemann surface S with at
least one pole, then we can construct an associated marked bordered surface (S, M)

by the following procedure. To define the underlying smooth surface S, we take an
oriented real blowup of S at each pole of φ of order ≥ 3. The asymptotic horizontal
directions ofφ determine a collection of points on the boundary of the resulting smooth
surface, and we define the set M to consist of these points together with the poles of φ

of order ≤ 2, considered as punctures.
Now suppose we fix a marked bordered surface (S, M). If φ is a quadratic dif-

ferential on S, then a marking of (S, φ) by (S, M) is defined as an isotopy class
of isomorphisms from (S, M) to the marked bordered surface determined by φ. A
marked quadratic differential (S, φ, θ) is defined as a quadratic differential φ on S
together with a marking θ of (S, φ) by (S, M). Two marked quadratic differentials
(S1, φ1, θ1) and (S2, φ2, θ2) are considered to be equivalent if there exists a biholo-
morphism f : S1 → S2 that preserves the differentials φi and commutes with the
markings θi in the obvious way.

2.4 Moduli spaces

For any marked bordered surface (S, M), we will writeQ(S, M) for the set of equiva-
lence classes of GMN differentials together with a marking by (S, M). It is important
to note that if (S, φ, θ) ∈ Q(S, M) then a puncture of (S, M) may correspond via θ
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to a pole of φ of order one or two, and therefore (S, M) does not uniquely deter-
mine the orders of the poles of φ. The mapping class groupMCG(S, M) acts naturally
onQ(S, M) by changing the marking of a differential in this set. We will now describe
a natural complex manifold structure on this setQ(S, M) such that the mapping class
group acts by biholomorphisms.

We begin by defining our notation. Let us write g = g(S) for the genus of S and d
for the number of boundary components of the surface S

′ defined in Sect. 2.2. We will
also write k1, . . . , kd for the integers encoding the number of marked points on the
boundary components of this surface S

′ and set mi = ki + 2. Note that these integers
mi can be viewed as the pole orders for a quadratic differential with associated marked
bordered surface (S, M).

If we write B = T (g, d) for the Teichmüller space parametrizing marked Riemann
surfaces of genus g with d marked points, then there is a universal curve π : X → B
whose fiber over b ∈ B is the corresponding Riemann surface X(b), and this universal
curve comes with d disjoint sections p1, . . . , pd . We form the effective divisor

D =
∑

i

mi · Di , Di = pi (B) ⊂ X

and write D(b) = ∑
i mi · pi (b) for its restriction to X(b). Then there is a vector

bundle q : E → B whose fiber over b ∈ B is the vector space

Eb = H0(X(b), ω⊗2
X(b)(D(b))).

There is a bundle over E with discrete fibers parametrizing the possible markings of a
differential by (S, M), and Q(S, M) is identified with the subset of the total space of
this bundle consisting of GMN differentials where the marking agrees, after blowing
down all boundary components of S, with the marking of the corresponding point in
the Teichmüller space B. In this way, the set Q(S, M) acquires a topology.

Proposition 2.2 ([4, Proposition 6.2]). Let (S, M) be a marked bordered surface, and
if g(S) = 0, assume that |M| ≥ 3. Then the space Q(S, M) has the structure of a
complex manifold of dimension n given by (2).

2.5 Principal parts

Let φ be a quadratic differential on S and suppose p ∈ S is a pole of φ of order m ≥ 3.
We will also fix a local coordinate z defined in an open neighborhood p ∈ U ⊂ S
such that z(p) = 0. If m is even, then we can write down a square root of φ given at
any point of U by an expression of the form

1

zm/2

(
f (z) + z

m
2 g(z)

)
dz

where f (z) is a polynomial of degree ≤ m−2
2 and g(z) is a holomorphic function. On

the other hand, if m is odd, then after choosing a square root z1/2 of z, we can write
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down a square root of φ given at a point of U by an expression

1

zm/2

(
f (z) + z

m−2
2 g(z)

)
dz

where f (z) is a polynomial of degree ≤ m−3
2 and g(z) is a holomorphic function. In

either case, the expression ± 1
zm/2 f (z)dz will be called the principal part of φ at p.

Note that this is well defined only up to a sign, and in general it depends on the choice
of local coordinate z.

In the case where the pole p has order m ≤ 2, the principal part of φ at p is simply
defined as ±√

ap dz/z where ap is the coefficient of z−2 in the Laurent expansion
of φ near p. In this case, the coefficient ap is called the leading coefficient of φ at p
and can be shown to be independent of the choice of local coordinate. The associated
quantity

Resp(φ) = ±4π i
√

ap

is known as the residue of φ at p. Like the principal part, it is well defined only up to
a sign.

2.6 Prescribing the principal parts

Let z be a local coordinate on a compact Riemann surface S. In view of the above
discussion, it is natural to define a principal differential in z to be an expression of the
form

z−ε
(

cr z−r + cr−1zr−1 + · · · + c1z−1
)

dz

where ε ∈ {0, 1
2 } and the ci are complex numbers. Suppose we are given a finite

subset M = {p1, . . . , pd} ⊂ S and a choice of local coordinate zi in a neighborhood
of each pi so that zi (pi ) = 0. If P = (Pi (zi )) is a tuple of principal differentials in
these local coordinates, then we get a divisor D = ∑

i mi pi where mi is the order of
the pole of the quadratic differential φi (zi ) = Pi (zi )

⊗2 at the point zi = 0. We define

QP (S, M) ⊂ H0(S, ω⊗2
S (D))

to be the set of quadratic differentials having principal part Pi (zi ) at the point pi for
each index i . Note that if mi ≤ 2, then this condition is equivalent to fixing the leading
coefficient at pi .

Lemma 2.3 Take notation as in the last paragraph. Suppose

q = 6g − 6 +
∑

i

si ≥ 0
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where g = g(S) and we write si = mi + 1 if mi is odd and si = mi if mi even. Then
there is a homeomorphism QP (S, M) ∼= R

q .

Proof If φ ∈ QP (S, M) then in a neighborhood of any pi ∈ M we can write φ(zi ) =
ϕ(zi )dz⊗2

i where ϕ(zi ) = 1
z

mi
i

· ∑
j≥0 a j z

j
i . One can check that the choice of the

principal part Pi (zi ) is equivalent to the choice of the coefficients a0, . . . , a�mi /2�−1.
In particular, if φ1, φ2 ∈ QP (S, M), then φ1 − φ2 has a pole of order at most mi −
�mi/2� = si/2 at pi . HenceQP (S, M) is an affine space for the complex vector space
H0(S, ωS(E)⊗2)where we have introduced the divisor E = ∑

i (si/2) · pi . Under our
assumption, the Riemann-Roch theorem implies that this vector space has complex
dimension 3g−3+∑

i si/2. HenceQP (S, M) is homeomorphic to a Euclidean space
of the required dimension. ��

2.7 Signed differentials

We will now define a modification of the moduli space Q(S, M) that parametrizes
marked quadratic differentials with additional data associated to the poles of order
two. If φ is a quadratic differential on S and p ∈ S is a pole of φ of order two, we have
seen that the residue Resp(φ) = ±4π i

√
ap is well defined up to a sign. By a signing

for φ, we mean the choice of one of these two values for each pole of order two. A
signed differential is a quadratic differential together with a signing.

There is a branched cover

Q±(S, M) → Q(S, M)

where a point in the fiber over the class of (S, φ, θ) is obtained by choosing a signing
for φ. This definition makes sense because the leading coefficient is invariant under
pullback. The cover has degree 2|P| and is branched precisely over the locus of points
such that φ has at least one simple pole. The mapping class groupMCG(S, M) acts on
the set P ⊂ S, and we define the signed mapping class group to be the corresponding
semidirect product

MCG±(S, M) = MCG(S, M) � Z
P

2 .

There is a natural action of this groupMCG±(S, M) onQ±(S, M)where theZ
P

2 factor
acts by changing the signing of a point in this space.

Proposition 2.4 ([4, Proposition 6.3]). Let (S, M) be a marked bordered surface, and
if g(S) = 0 assume that |M| ≥ 3. Then Q±(S, M) has the structure of a complex
manifold of dimension n given by (2).

2.8 Horizontal strip decomposition

We now review some geometric concepts related to quadratic differentials, following
the treatment in [10]. Let φ be a quadratic differential on S. By a straight arc, we
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will mean a path α : I → S\Crit(φ), defined on some open interval I ⊂ R, which
makes a constant angle in the flat metric with the leaves of the horizontal foliation. We
require that the tangent vectors to a straight arc have unit norm in the flat metric, and
we consider two straight arcs to be equivalent if they are related by a reparametrization
of the form t �→ ±t + constant. We then define a trajectory to be a straight arc which
is not the restriction of a straight arc defined on a larger interval. There are three kinds
of trajectories that will play a role in our discussion:

(1) A saddle trajectory is a trajectory which is asymptotic to a finite critical point at
each of its ends.

(2) A separating trajectory is a trajectory which is asymptotic to a finite critical point
at one end and an infinite critical point at the other end.

(3) A generic trajectory is a trajectory which is asymptotic to an infinite critical point
at each of its ends.

In the case of a saddle trajectory or generic trajectory, the two ends may be distinct
points of S, or they may coincide. We say that a quadratic differential is saddle-free if
there is no saddle trajectory which is also a leaf of the horizontal foliation.

Lemma 2.5 ([10, Lemma 3.1]). If φ is a complete, saddle-free GMN differential, then
every leaf of the horizontal foliation is either a generic trajectory or one of finitely
many separating trajectories.

We will be interested in two kinds of regions on a surface determined by the hori-
zontal foliation of a quadratic differential:

(1) A horizontal strip is defined as a maximal region in S which is mapped by a
distinguished local coordinate to a region of the form

{w ∈ C : a < Im(w) < b} ⊂ C.

Any leaf of the foliation contained in such a region is a generic trajectory connect-
ing two (not necessarily distinct) poles. Each boundary component of a horizontal
strip is composed of saddle trajectories and separating trajectories.

(2) Ahalf plane is defined as amaximal region in S which ismappedby a distinguished
local coordinate to a region of the form

{w ∈ C : Im(w) > 0} ⊂ C.

Any leaf of the foliation contained in such a region is a generic trajectory connect-
ing a fixed pole of order > 2 to itself. The boundary of a half plane is composed
of saddle trajectories and separating trajectories.

In the situation of Lemma 2.5, if we delete the critical points and the separating
trajectories from S, then we are left with an open subsurface, which is a disjoint union
of horizontal strips and half planes. Since the differential is assumed to be saddle-
free, each of the lines Im(w) = a and Im(w) = b corresponding to the boundary of a
horizontal strip contains a unique point corresponding to a finite critical point of φ. We
get a distinguished saddle trajectory on S by connecting these two points by a straight

123



D. G. L. Allegretti

Fig. 2 Image of a standard saddle connection

line segment in C (see Fig. 2) and then embedding the horizontal strip into S. This
distinguished saddle trajectory is called the standard saddle connection associated to
the horizontal strip.

2.9 The periodmap

We conclude this section by describing a construction that can be used to locally
parametrize quadratic differentials. Letφ be aGMNdifferential on a compactRiemann
surface S with poles of order mi at points pi ∈ S. We can alternatively view this
differential φ as a section

s ∈ H0(S, ωS(E)⊗2), E =
∑

i

⌈
mi

2

⌉
pi

with simple zeros at the zeros and odd order poles of φ. In terms of this section, we
can define an auxiliary surface, the spectral cover, by

�φ = {(p, λ(p)) : p ∈ S, λ(p) ∈ Fp, λ(p) ⊗ λ(p) = s(p)} ⊂ F

where F denotes the total space of the line bundleωS(E). There is a natural projection
π : �φ → S which is a double cover of S branched precisely at the simple zeros and
odd order poles of φ. We will write �◦

φ = π−1(S\Crit∞(φ)) and write τ : �◦
φ → �◦

φ

for the covering involution that exchanges the two sheets of the spectral cover.
As explained in Section 2.3 of [10], the spectral cover gives rise to a finitely gen-

erated free abelian group, the hat homology Ĥ(φ), which is given by

Ĥ(φ) = {γ ∈ H1(�
◦
φ, Z) : τ(γ ) = −γ }.

On the other hand, there is a globally defined meromorphic 1-form λ on the spectral
cover with the property that π∗(φ) = λ⊗λ. It is anti-invariant under the action of the
covering involution τ , and we can define the period map to be the group homomor-
phism

Zφ : Ĥ(φ) → C, γ �→
∫

γ

λ

taking values in the complex numbers.
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Ifφ is a complete, saddle-free differential, then the hat homology Ĥ (φ) has a natural
basis. To describe this basis, we first note that each standard saddle connection α

can be lifted to a cycle in �◦
φ . Indeed, since finite critical points are branch points

for the covering map π : �φ → S, the preimage of a standard saddle connection
under this covering map is a closed loop in �◦

φ . By choosing an orientation for this
loop, we get a homology class γα which satisfies τ(γα) = −γα , and we can fix this
orientation uniquely by requiring that by requiring that the period Zφ(γα) lie in the
upper half plane. Thus we associate, to each standard saddle connection α for φ, a
class γα ∈ Ĥ(φ) called a standard saddle class. By Lemma 3.2 of [10], these classes
form a basis for Ĥ(φ). One can think of the periods Zφ(̂α) as coordinates on the space
of GMN differentials inducing a given horizontal strip decomposition. See Section 4
of [10] for more precise statements.

3 Enhanced Teichmüller space

In this section, we define the enhanced Teichmüller space of a punctured surface and
describe its parametrization by shear coordinates.

3.1 Marked hyperbolic surfaces

Belowwe will be interested in spaces parametrizing hyperbolic structures on surfaces.
The surfaces we consider will be of the form

C = C̄\
⎛
⎝

s⋃
i=1

Di ∪
t⋃

j=1

{p j }
⎞
⎠

where C̄ is a closed oriented surface, D1, . . . , Ds ⊂ C̄ are open disks whose closures
are disjoint, and p1, . . . , pt ∈ C̄ are points disjoint from the interiors of the Di . By a
hyperbolic surface, we will mean a surface C of this type equipped with a complete,
finite area hyperbolicmetricwith totally geodesic boundary.Note that by completeness
of the metric, there will be a cusp neighborhood around each point pi .

Let C◦ denote the surface obtained from C by removing all components of ∂C
homeomorphic to S1. Then we define a marking of C by a marked bordered sur-
face (S, M) to be a homeomorphism ψ : S\M → C◦. We define a marked hyperbolic
surface to be a hyperbolic surface together with a marking. Two marked hyperbolic
surfaces (C1, ψ1) and (C2, ψ2) are considered to be equivalent if there exists an isom-
etry g : C1 → C2 such that the maps ψ2 and g ◦ ψ1 are isotopic. In the following, we
will write T (S, M) for the set of all equivalence classes of hyperbolic surfaces with
a marking by (S, M). The mapping class group MCG(S, M) acts naturally on this set
by changing the marking of a hyperbolic surface.

A point (C, ψ) ∈ T (S, M) determines a corresponding representation

ρ : � → G
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of � = π1(S\M) into G = PSL2(R), unique up to the action of G by conjugation.
Indeed, the universal cover of C can be identified isometrically with a subset of the
hyperbolic plane H with totally geodesic boundary. The marking ψ induces an iso-
morphism � ∼= π1(C), and the fundamental group π1(C) acts on the universal cover
by orientation preserving isometries ofH. Since the group of all orientation preserving
isometries of H is identified with G, we get a representation ρ : � → G. Note that
this construction depends on a choice of embedding of the universal cover into H. If
we make a different choice, the resulting representation changes by conjugation by an
element of G. The conjugacy class of ρ is called the monodromy of (C, ψ).

3.2 Topological structure

We will use the monodromy to define a natural topology on the space T (S, M) for
any marked bordered surface (S, M). We begin by considering the special case where
S is a closed surface and M = P consists entirely of punctures.

Lemma 3.1 Let S be a closed surface and P ⊂ S a nonempty finite set. Then the map

T (S, P) → Hom(�, G)/G

sending a marked hyperbolic surface to its monodromy is injective.

Proof Suppose (C1, ψ1) and (C2, ψ2) are marked hyperbolic surfaces with the same
monodromy. Let us fix embeddings of the universal covers of theCi into the hyperbolic
plane. Then we get corresponding representations ρi : � → G such that ρ2 =
g · ρ1 · g−1 for some element g ∈ G. We can think of this element an isometry
g : H → H. The quotient C ′

i = H/ρi (�) is a surface equipped with a hyperbolic
metric, and g descends to an isometry g : C ′

1 → C ′
2. The surface Ci is identified with

the convex core of C ′
i , defined as the smallest closed convex subset of C ′

i such that the
inclusion into C ′

i is a homotopy equivalence. Thus we get an isometry g : C1 → C2.
By construction, the maps ψ2 and g ◦ψ1 induce the same isomorphism π1(S\P) ∼=

π1(C◦
2). Since the surfacesS\P andC◦

2 are K (�, 1)-spaces, there is a unique homotopy
class of homotopy equivalences S\P → C◦

2 inducing this isomorphism. In particular,
we see that the maps ψ2 and g ◦ ψ1 are homotopic. Hence (C1, ψ1) and (C2, ψ2) are
equivalent marked hyperbolic surfaces, and the map in the statement of the lemma is
injective. ��

Using Lemma 3.1, we can equip the set T (S, P) with a natural topology. Indeed,
we can equip � with the discrete topology and G with its standard topology as a
Lie group. Then the set Hom(�, G) has the compact open topology, and T (S, P) is a
subspace of a quotient of this set.

On the other hand, if (S, M) is a marked bordered surface such that S has nonempty
boundary, thenwecandefine a correspondingmarkedbordered surface (S◦, M

◦)where
S

◦ is the surface S equipped with the opposite orientation and M
◦ is the image of M

under the tautological map S → S
◦. We then define a marked bordered surface (̂S, M̂)

where Ŝ is obtained by gluing S and S
◦ along corresponding boundary segments and
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M̂ is the union of the images of M and M
◦ in the resulting surface. Note that Ŝ is a

closed surface and M̂ consists entirely of punctures so that we may apply Lemma 3.1
to give T (̂S, M̂) the structure of a topological space. If (C, ψ) ∈ T (S, M), then
by a similar doubling of C along its totally geodesic boundary segments, we get a
point (Ĉ, ψ̂) ∈ T (Ŝ, M̂) where the hyperbolic surface Ĉ is invariant under a natural
involution. This defines an embedding T (S, M) ↪→ T (̂S, M̂), and hence T (S, M)

acquires a topology.

3.3 Length data

Below we will be interested in some data naturally associated to the boundary of a
hyperbolic surface.Given apoint (ψ, C) ∈ T (S, M),wewill assign anumber Li called
a length datum to each boundary component ∂i of the associated surface S

′ defined
in Sect. 2.4. We first consider a boundary component ∂i with no marked points. Such
a boundary component arises from a puncture in the original surface S. By applying
the map ψ , we see that this corresponds either to a closed boundary component or a
cusp of C . In the first case, we define Li to be the hyperbolic length of the boundary
component; in the second case, we define Li = 0.

Next suppose that ∂i is a component of ∂S
′ containingmarkedpoints. Let p1, . . . , pk

denote themarked points on ∂i in cyclic order where we consider the indicesmodulo k.
We start off by assuming that k is even. By applying the map ψ and then lifting to the
universal cover, we see that these points p j correspond to a π1(C)-invariant collection
of points on ∂H̄. Let us choose a π1(C)-invariant collection of horocycles centered
around the latter points whose projections to C are disjoint. If b j is the segment of
∂i connecting p j and p j+1, then we can lift the corresponding arc in C to a geodesic
b̃ j ⊂ H connecting some points p̃ j , p̃ j+1 ∈ ∂H̄. We define μ j to be the length of the
geodesic b̃ j between the horocycles at its endpoints and set

Li = ±1

2

∑
j

(−1) jμ j .

This is well defined up to a sign and, by the argument of [25, Lemma 2.10], is inde-
pendent of the choice of horocycles. Borrowing terminology from [25], we call this
quantity the metric residue associated to ∂i . If ∂i is component of ∂S

′ with an odd
number of marked points, then we define the metric residue to be Li = 0.

3.4 Hyperbolic crowns

Following [25], we define a crown to be a hyperbolic surface which is topologically
a closed annulus with finitely many points deleted from one of its boundary compo-
nents. Note that geometrically such a surface has a single closed geodesic boundary
component and a cusp corresponding to each of the deleted points (see the right hand
side of Fig. 3). Given a crown A, let us label the cusps by 1, . . . , k in cyclic order
where k is the number of cusps on A. We denote by Ã ⊂ H the universal cover
of A, considered as a subset of the Poincaré disk model of the hyperbolic plane H.
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Fig. 3 The universal cover of a hyperbolic crown

By applying a suitable isometry of H, we can assume that the geodesic connecting
±1 ∈ ∂H̄ projects to the closed boundary component of A and that the point i ∈ ∂H̄

corresponds to the cusp labeled 1 (see Fig. 3).
Having fixed the normalization of Ã in this way, let us choose a basepoint on the

geodesic connecting±1 ∈ ∂H̄. Thenwe can introduce an additional real parameter, the
boundary twist, which is defined as the signed distance from this basepoint to 0 ∈ H.
Below we will use this parameter to glue hyperbolic crowns in the same way that the
Fenchel–Nielsen twist parameter is used in classical Teichmüller theory to glue pairs
of pants.

Now let S be a closed oriented disk and M ⊂ S a set consisting of k marked points
on ∂S and one puncture in the interior of S. Label themarked points on the boundary by
1, . . . , k in cyclic order. If we are given a crown A with cusps labeled by 1, . . . , k, then
the correspondence between marked points and cusps gives rise to a homeomorphism
ψ : S\M → A◦ and hence a pair (A, ψ), well defined up to equivalence. Thus we
can view the set of crowns with k labeled cusps as a subspace of T (S, M). Choosing
a nonnegative number L ∈ R≥0 so that L = 0 if k is odd, we define

CrL(k) ⊂ T (S, M)

to be the subset of crowns with metric residue equal to L . We will also write Cr∗L(k) ∼=
CrL(k) × R for the space parametrizing crowns in CrL(k) together with a choice of
boundary twist.

Lemma 3.2 ([25, Lemma 2.13]). Let q = k if k is odd and q = k −1 if k is even. Then
there is a homeomorphism CrL(k) ∼= R

q .

3.5 Prescribing the length data

We now define spaces parametrizing marked hyperbolic surfaces with prescribed
length data. Let (S, M) be a marked bordered surface, and let S

′ be the surface from
Sect. 2.4 with boundary components ∂1, . . . , ∂d . Choose a vector L = (Li ) ∈ R

d≥0 so
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that Li = 0 whenever ∂i has an odd number of marked points. We then write

TL(S, M) ⊂ T (S, M)

for the set of all marked hyperbolic surfaces (C, ψ) such that Li is the length datum
corresponding to ∂i . This set TL(S, M) has a topology coming from the topology
on T (S, M).

Lemma 3.3 Let (S, M) be a marked bordered surface, and let ki be the number of
marked points on the i th boundary component of the associated surface S

′. Suppose

q = 6g − 6 +
∑

i

si ≥ 0

where g = g(S) and we write si = ki + 3 if ki is odd and si = ki + 2 if ki is even.
Then there is a homeomorphism TL(S, M) ∼= R

q .

Proof If g = 0 and S
′ has exactly one boundary component with k marked points,

then the condition q ≥ 0 implies that k ≥ 3. If (C, ψ) ∈ T (S, M) then we can
identify C with an ideal k-gon in H. If p1, . . . , pk ∈ M are the marked points in
cyclic order, then after composing with an isometry of H, we can assume that p1, p2,
and p3 correspond to the points 0, 1, and ∞ ∈ RP

1 ∼= ∂H̄, respectively. If k is odd,
then we have q = k − 3, so by using the positions of the remaining k − 3 vertices as
coordinates, we can construct a homeomorphism TL(S, M) = T (S, M) ∼= R

q . If k is
even, then we can freely choose the positions of k − 4 vertices, and the remaining one
is determined by the metric residue. Hence we have TL(S, M) ∼= R

q in this case as
well.

Next, suppose that g > 0 or that S′ has more than one boundary component. If ∂i is
a component of ∂S

′ with ki > 0 marked points, then it follows from our assumption
that there is a nontrivial loop γi ⊂ S which is retractable to ∂i . Given a general point
(C, ψ) ∈ T (S, M), the image ψ(γi ) is homotopic to a geodesic in C . By cutting
along this geodesic for each boundary component ∂i having marked points, we obtain
a decomposition

C = C0 ∪
⋃

i

Ai

where C0 is a surface of genus g with punctures and boundary and Ai is a crown
with ki cusps. By Lemma 3.2, the hyperbolic structure on Ai with its prescribed
metric residue is determined by ki independent real parameters if ki is odd or ki − 1
parameters if ki is even. A pants decomposition for C0 consists of 3g −3+d essential
closed curves where d is the number of boundary components of S

′, so a hyperbolic
structure onC0 with specified boundary lengths is determined by 6g−6+2d Fenchel–
Nielsen coordinates corresponding to the curves in the pants decomposition. To glue
the surfaces C0 and Ai , we require a choice of boundary twist. Combining these facts
one sees that TL(S, M) ∼= R

q as desired. ��

123



D. G. L. Allegretti

3.6 Orientation of boundary components

We now give the definition of the enhanced Teichmüller space of a marked bordered
surface (S, M). This construction modifies the space T (S, M) defined previously by
associating additional data to the boundary components of the surfaces.

Definition 3.4 The enhanced Teichmüller space T ±(S, M) is the branched 2|P|-fold
cover

T ±(S, M) → T (S, M)

where a point in the fiber over (C, ψ) is obtained by choosing an orientation for each
component of ∂C which is homeomorphic to S1. This cover is branched over the set of
points (C, ψ)where the surfaceC has at least one puncture with a cusp neighborhood.

There is a natural action of the signed mapping class group MCG±(S, M) on
T ±(S, M) where the Z

P

2 factor acts by changing the orientations of the boundary
components. We will see below that the enhanced Teichmüller space is homeomor-
phic to a Euclidean space of some dimension given explicitly in terms of the genus
and number of marked points on (S, M).

3.7 Ideal triangulations

Given a marked bordered surface (S, M), we define an arc to be a smooth path α on S

connecting points ofMwhose interior lies in S\M and which has no self-intersections
in its interior. In addition, we require that α is not homotopic to a single point or to a
segment of ∂S containing nomarked points in its interior via a homotopy through such
paths. Two arcs are considered equivalent if they are related by a homotopy through
arcs or a reversal of orientations. Two arcs are compatible if we can find arcs in their
respective equivalence classes that do not intersect in S\M. An ideal triangulation
of (S, M) is a maximal collection of pairwise compatible arcs on (S, M), considered
up to equivalence.

Given an ideal triangulation T of (S, M), we always choose representatives for the
arcs of T which do not intersect inS\M. Then a triangle of T is defined to be the closure
in S of a connected component of the complement of all arcs of T . Topologically, such
a triangle is a disk containing two or three marked points. If a triangle has only two
marked points, it is said to be self-folded (see Fig. 4). In this case, there is a marked
point in the interior of the triangle and a unique arc incident to this point which we call
the internal edge. The remaining edge of a self-folded triangle is called the encircling
edge.

If T is an ideal triangulation of (S, M), then there is an associated skew-symmetric
matrix that encodes the combinatorics of T . For each arc α of T , let us write πT (α)

for the arc defined as follows: If α is the internal edge of a self-folded triangle, then
πT (α) is the encircling edge, andπT (α) = α otherwise. Then for each non-self-folded
triangle t of the triangulation T , we define a number εt

αβ by
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Fig. 4 An ordinary triangle (left)
and a self-folded triangle (right)

(1) εt
αβ = +1 if πT (α) and πT (β) are arcs of t with πT (β) immediately following

πT (α) as we travel around t in the counterclockwise direction.
(2) εt

αβ = −1 if the same holds with the counterclockwise direction.
(3) εt

αβ = 0 otherwise.

Then we define the exchange matrix of T to be the square matrix indexed by arcs of T
with (α, β) entry given by εT

αβ = ∑
t εt

αβ where the sum is taken over all non-self-
folded triangles.

There is also an extension of the notion of an ideal triangulation that will be impor-
tant later. Given a marked bordered surface (S, M) as before, we define a signing to
be a function ε : P → {±1} which associates a sign ε(p) to each puncture p ∈ P. We
define a signed triangulation of (S, M) to be a pair (T , ε) consisting of an ideal trian-
gulation T of (S, M) and a signing ε. Two signed triangulations (T1, ε1) and (T2, ε2)
are considered to be equivalent if we have T1 = T2 and the signings εi differ only
at a puncture in the interior of a self-folded triangle. This generates an equivalence
relation on the set of all signed triangulations, and an equivalence class of signed
triangulations is called a tagged triangulation. Given a tagged triangulation τ , any arc
of a representative signed triangulation determines a tagged arc of τ . Suppose (T , ε1)

and (T , ε2) are two representatives for τ where the εi differ only at a puncture in the
interior of a self-folded triangle. Let α be the interior edge of this triangle and β the
encircling edge. Then the tagged arc represented by α in (T , ε1) is considered to be
equivalent to the tagged arc represented by β in (T , ε2).

3.8 Shear coordinates

Suppose that we are given a point of T ±(S, P). This consists of a point (C, ψ) ∈
T (S, P) together with a choice of orientation for each component of the boundary
of C which is homeomorphic to S1. We can view the universal cover of C as a subset
C̃ ⊂ H with totally geodesic boundary, and if g ⊂ C̃ is a geodesic that projects to
an S1 boundary component of C , then the orientation of this boundary component
determines a distinguished endpoint of g. If T is an ideal triangulation of (S, P), then
we can represent T by a collection of arcs on S which do not intersect in S\P. Let
α be any one of these arcs, and let α̃ ⊂ C̃ be a curve that projects onto ψ(α) ⊂ C
(see Fig. 5). We will modify this curve in two ways. First, if α̃ has an endpoint on
some boundary geodesic g of C̃ projecting to an S1 boundary component of C , then
we will drag this endpoint along g until it coincides with the distinguished endpoint
of g determined by the orientation. We will then straighten the resulting curves to
geodesics in H (see Fig. 6).
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Fig. 5 Lifting an arc to the universal cover

Fig. 6 A geodesic spiral

In this way, we obtain a π1(C)-invariant collection of geodesics inHwhich decom-
pose the universal cover C̃ into ideal triangles. If C has a boundary component
homeomorphic to S1, then the images of these geodesics under the covering map
C̃ → C spiral into this boundary component in the direction prescribed by the orien-
tation (see Fig. 6).

Let α be an arc of the ideal triangulation T , and let α̃ be one of the corresponding
geodesics in H obtained by the above construction. Then the decomposition of C̃
includes two ideal triangles which share the edge α̃. Their union is a quadrilateral
with vertices in ∂H̄. Let us label the vertices as z1, . . . , z4 ∈ ∂H̄ so that the order is
compatible with the orientation of ∂H̄ ∼= RP

1 and α̃ connects z1 and z3 (see Fig. 7).
Then we can associate to α the cross ratio

Yα = (z1 − z2)(z3 − z4)

(z2 − z3)(z1 − z4)
∈ R>0. (3)

One can check that this cross ratio is independent of the choice of the geodesic lift α̃ as
well as the labeling of the vertices of the quadrilateral. The logarithm log Yα is known
as the shear coordinate associated to the arc α.

One can also describe the shear coordinate more geometrically as follows. For
i = 2, 4, there exists a unique geodesic in H that starts at zi and meets the geodesic α̃

orthogonally (see Fig. 7). If we write pi for the point of intersection between this
geodesic and α̃, then the shear coordinate equals the signed distance between p2
and p4. The sign detects whether p2 appears before or after p4 for a given choice of
orientation of α̃. See [38, Chapter 1, Corollary 4.16], for the proof.

Proposition 3.5 Let (S, M) be a marked bordered surface, and if g(S) = 0 assume that
|M| ≥ 3. Then for any ideal triangulation of (S, M), the associated cross ratios (3)
provide a homeomorphism T ±(S, M) ∼= R

n
>0 where the dimension n is given by (2).
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Fig. 7 Defining the shear
coordinate

Proof By Proposition 2.10 of [23], any ideal triangulation of (S, M) consists of n arcs.
The inverse homeomorphism is described in Chapter 2, Theorem 4.4 of [38]. ��

Note that the space T (S, M) considered above is the quotient of T ±(S, M) by
the action of the group Z

P

2 . It therefore follows from Proposition 3.5 that this space
T (S, M) has the natural structure of an orbifold.

3.9 Cluster coordinates

From Proposition 3.5 we see that, for any ideal triangulation of (S, M), the associated
shear coordinates provide a global parametrization of enhanced Teichmüller space.
We will also consider an extension of the above construction which is better suited to
dealing with changes of triangulation. To describe the extended construction, suppose
we are given a signed triangulation (T , ε). By changing the orientations of boundary
components, we get an action ofZ

P

2 on T ±(S, M) by homeomorphisms. Given a point
of T ±(S, M), let us act on this point by ε ∈ Z

P

2 and write Yα ∈ R>0 for the cross
ratio (3) associated to the resulting point of T ±(S, M) and an arc α of T . We consider
two cases:

(1) If α is not the interior edge of a self-folded triangle, then we define Xα = Yα .
(2) If α is the interior edge of a self-folded triangle, let β denote the encircling edge.

Then we define Xα = YαYβ .

In this way, we get a collection of parameters Xα ∈ R>0 which provide a homeo-
morphism as in the statement of Proposition 3.5. As in Lemma 9.6 of [5], one can
show that the number Xα associated to an arc α of a signed triangulation depends
only on the underlying tagged arc. These numbers are called cluster coordinates or
Fock-Goncharov coordinates.

Let γ be any arc of T . We say that an ideal triangulation T ′ is obtained from T by a
flip of γ if T ′ is different from T and there is an arc γ ′ of T ′ such that T \{γ } = T ′\{γ ′}.
In this case we also say that the signed triangulation (T ′, ε) is obtained from (T , ε)

by a flip of γ and that the underlying tagged triangulation of (T ′, ε) is obtained from
the underlying tagged triangulation of (T , ε) by a flip of the tagged arc γ . Figure8
illustrates a neighborhood of the arcs γ and γ ′.
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Fig. 8 A flip of an arc

If (T , ε) and (T ′, ε) are related by a flip of the arc γ , then there is a natural bijection
between the arcs of T and the arcs of T ′. Abusing notation,wewill use the same symbol
to denote an arc of T and the corresponding arc of T ′. We will write Xα and X ′

α for
the Fock-Goncharov coordinates with respect to an arc α of the signed triangulations
(T , ε) and (T ′, ε), respectively.

Proposition 3.6 Take notation as in the last paragraph. Then the coordinates Xα

and X ′
α are related by

X ′
α =

⎧⎨
⎩

X−1
γ if α = γ

Xα

(
1 + X

−sgn(εαγ )
γ

)−εαγ

if α �= γ

where εαγ = εT
αγ is the exchange matrix associated to T .

Proof The same statement appears in [5, Proposition 9.8], for cluster coordinates on
moduli spaces of local systems. The proof is the same in our setting. ��

4 Harmonic maps

In this section,we review the basic theory of harmonicmaps betweenRiemann surfaces
and prove a result on the existence and uniqueness of such maps.

4.1 Basic definitions

We begin by recalling the general notion of a harmonic map between Riemannian
manifolds (M, g) and (N , h). In terms of local coordinates {xα} on M and {yi } on N ,
the Riemannian metrics can be written g = gαβdxα ⊗ dyβ and h = hi j dyi ⊗ dy j .
(Here we employ the Einstein summation convention and sum over repeated indices.)
Given a smooth map f : M → N , we define the energy density of f by the formula

e( f ) = ∂ f i

∂xα

∂ f j

∂xβ
gαβhi j ◦ f .

One can check that this is independent of the choice of local coordinates and gives a
globally defined function on M . We define the energy of f on V ⊂ M by

EV ( f ) =
∫

V
e( f )dμg

123



Stability conditions and Teichmüller space

where μg is the volume form associated to g. We can view EM as a functional on the
space of smooth maps M → N . Such a map is called harmonic if it is a critical point
of this functional [11].

In this paper, we will deal exclusively with harmonic maps between Riemann
surfaces. Let M and N be Riemann surfaces, and assume the metrics are conformal.
This means that for any local coordinate z on M and any local coordinate w on N ,
the metrics are given by local expressions of the form g|dz|2 and h|dw|2 for some
positive functions g and h. In this case, one can rewrite the energy density of f as

e( f ) = h( f (z))

g(z)

(
| fz |2 + | fz̄ |2

)

where we write fz :=∂z f , fz̄ :=∂z̄ f , etc., and by a common abuse of notation we
confuse f withw ◦ f . The energy density is the sum of the holomorphic energy H( f )

and the antiholomorphic energy L( f ), given by the expressions

H( f ) = h( f (z))

g(z)
| fz |2, L( f ) = h( f (z))

g(z)
| fz̄ |2.

The Jacobian of f is defined as the difference J ( f ) = H( f ) −L( f ). The statement
that f is harmonic is equivalent to an Euler-Lagrange equation, which in this case
takes the form

fzz̄ + hw

h
fz fz̄ = 0 (4)

in a local patch on M (see [11]). This equation implies that the condition of being
harmonic does not depend on the exact form of the metric on M but only on its
conformal class. From equation (4), one can derive the Bochner equation

�g logH( f ) = −2KNJ ( f ) + 2KM (5)

where �g = (4/g)∂2/∂z∂ z̄ is the Laplace–Beltrami operator, and KM and KN are
the Gaussian curvature of M and N , respectively. A proof of this identity can be found
in Section 1 of [43].

Using the identities f ∗(dw) = fzdz + fz̄d z̄ and f ∗(dw̄) = f̄zdz + f̄ z̄d z̄ together
with f̄z = fz̄ and f̄ z̄ = fz , one computes

f ∗ (
h|dw|2

)
= ϕ(z)dz⊗2 + g(z)e( f )dz ⊗ dz̄ + ϕ(z)dz̄⊗2 (6)

where we have written ϕ(z) = h( f (z)) fz f̄z . From this we see that the (2, 0)-part of
the pullback of the metric on N is the quadratic differential ϕ(z)dz⊗2. It is called the
Hopf differential of the map f . One can also check that

∂z̄ϕ = h( f (z))
(

f̄zτ( f ) + fzτ( f )
)

where τ( f ) denotes the tension of f , defined as the expression appearing on the
left hand side of the harmonicity equation (4). From this we see that if the map f
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is harmonic, then its associated Hopf differential is holomorphic. The converse also
holds provided the Jacobian is nowhere vanishing (see [41]).

4.2 Model maps into crowns

Wewill now reviewa result ofGupta [25]which establishes the existence of a harmonic
map from the punctured disk D

∗ = {z ∈ C : 0 < |z| < 1} ⊂ C to a hyperbolic crown.
We will see later that such a map provides a local asymptotic model of a harmonic
map into a more general cusped hyperbolic surface.

We consider meromorphic quadratic differentials φ on the disk D = {z ∈ C : |z| <

1} ⊂ C which have the form

φ(z) =
(

am z−m + am−1z−m+1 + · · · + a2z−2
)

dz⊗2

for some m ≥ 3. If P(z) = ± 1
zm/2 f (z)dz is a principal differential, we will denote

by QP (m) the space of quadratic differentials of this form with principal part P(z). It
follows from the arguments of [25] that this space is homeomorphic to the Euclidean
spaceR

q where q = m−1 ifm is odd and q = m−2 ifm is even. On the other hand, by
Lemma 3.2, we know that the space Cr∗L(m −2) of hyperbolic crowns with prescribed
metric residue and a choice of boundary twist is homeomorphic to a Euclidean space
of the same dimension.

We can construct a canonical homeomorphism between these spaces using the
theory of harmonicmaps. In the following, we define the analytic residue of a principal
differential P(z) to be the coefficient of z−1, which is well defined up to a sign.

Theorem 4.1 ([25, Theorem 3.2]). Let P(z) be a principal differential, and let L be
the real part of its analytic residue. For any quadratic differential φ ∈ QP (m), there
exists a hyperbolic crown A ∈ CrL(m − 2) and a harmonic map

f : D
∗ → A\∂ A

with Hopf differential φ. There is a canonical choice of boundary twist for A so that
the resulting map

QP (m) → Cr∗
L(m − 2)

is a homeomorphism.

4.3 Compatibility conditions

For the rest of this section, we fix a compact Riemann surface S and a nonempty
finite subset M = {p1, . . . , pd} ⊂ S. For each point pi ∈ M , we fix a neighborhood
pi ∈ Ui ⊂ S and a local coordinate zi providing a biholomorphism Ui ∼= D with
zi (pi ) = 0. We also choose a principal differential Pi (zi ) in this local coordinate and
set P = (Pi (zi )).
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The squareφi (zi ) = Pi (zi )
⊗2 defines a quadratic differentialφi onUi with a pole of

some order mi at the point pi . By definition, we can have either mi = 0, 2, or mi ≥ 3.
If we have mi ≥ 3, then the quadratic differential φi determines mi − 2 asymptotic
horizontal directions at pi . Using this fact, we can define a marked bordered surface
(SP , MP ) associated to (S, M) and P . The surface SP is defined by taking an oriented
real blow up of S at each point pi for which mi ≥ 3. The asymptotic horizontal
directions determine a collection of points on the boundary of the resulting surface,
and we define MP to consist of these points together with all points pi ∈ M for which
mi ≤ 2. In particular, note that if φ ∈ QP (S, M), then (SP , MP ) coincides with the
marked bordered surface that we previously associated to the pair (S, φ).

By applying the constructions of Sect. 3, we get a space TL(SP , MP ) parametrizing
marked hyperbolic surfaces with prescribed length data. Note that the tuples L = (Li )

and P = (Pi (zi )) can be indexed by the same set. We will say that L is compatible
with P if the following conditions are satisfied:

(1) If mi ≤ 2 then we have

L2
i = 16π2|ai | sin2(θi/2)

where ai is the leading coefficient of φi at pi and θi = arg(ai ) is its argument.
(2) If mi ≥ 3 then Li equals the real part of the analytic residue of Pi (zi ).

If L = (Li ) is a tuple of length data compatible with P = (Pi (zi )), then we will use
the abbreviation TP (S, M):=TL(SP , MP ).

4.4 Construction of harmonic maps

Take notation as above. In the discussion that follows, we will assume that χ(S\M) <

0 and also that each phase θi lies in the interval (0, 2π). Given a point (C, ψ) ∈
TP (S, M), we will define a collection of maps

fi : Ui\{pi } → C◦

called the model maps. We will then construct a collection of harmonic maps, defined
on subsets of S\M , whose behavior near pi is controlled by fi .

We first suppose that pi ∈ M is a point withmi = 0. In this case, we have Li = 0 in
the compatibility condition, and so this point pi corresponds via the map ψ to a cusp
in C . This cusp has a neighborhood conformally equivalent to a punctured disk in C,
and we define fi to be any biholomorphism from Ui\{pi } onto such a neighborhood.

Next we suppose that pi ∈ M is a point withmi = 2. In this case, we have Li �= 0 in
the compatibility condition, and so pi corresponds via the map ψ to a totally geodesic
boundary component ∂i ⊂ ∂C . Note that if we equip S\M with its uniformizing
metric, then there is an isometry

Ui\{pi } ∼= {z = x + iy ∈ C : 0 ≤ x ≤ 1, y > y0}/z ∼ z + 1 (7)
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for some y0 > 0 where the metric on the right hand side is |dz|2/y2. If α : [0, 1] → ∂i

is a constant speed parametrization of ∂i , then we let ui : Ui\{pi } → ∂i be the map
ui (x + iy) = α(x) and let ti : Ui\{pi } → Ui\{pi } be the map ti (z) = z + δi · (y − y0)
where δi = (sin θi )/(1 − cos θi ). We then define fi = ui ◦ ti .

Finally, suppose that pi ∈ M is a point for which mi ≥ 3. In this case, pi corre-
sponds to a boundary component of the blow up SP with mi −2 marked points. Let γi

be a loop on SP which is retractible to this boundary component. Under our assumption
on (S, M), its imageψ(γi ) is essential and is therefore homotopic to a unique geodesic
in C . We will denote by Ai the corresponding hyperbolic crown obtained by cutting
along this geodesic. By the compatibility condition, the metric residue Li equals the
real part of the analytic residue of Pi (zi ). Hence, after choosing a boundary twist for Ai ,
we can apply Theorem 4.1 to get a harmonic map fi : Ui\{pi } → Ai\∂ Ai ⊂ C◦
whose Hopf differential has principal part Pi (zi ).

We now use the model maps to construct a collection of harmonic maps. For each
index i and real number l > y0, let Ul

i ⊂ Ui be the disk such that the isometry (7)
provides an identification

Ul
i \{pi } ∼= {x + iy : 0 ≤ x < 1, y > l}/ ∼ .

If we define Sl = S\ ⋃
i Ul

i , then these sets Sl form a compact exhaustion of S\M ,
that is, a nested collection of compact sets such that

⋃
l Sl = S\M . Note that there is

a canonical homeomorphism S\M ∼= SP\(MP ∪ ∂SP ), and hence we may view the
Sl as subsets of SP\MP . After replacing ψ by a homotopic map if necessary, we may
assume it agrees with fi on ∂Ul

i ⊂ ∂Sl , and then the work of Lemaire [36] implies
that there exists a unique harmonic map Fl : Sl → C◦ in the homotopy class of ψ |∂Sl

relative to ∂Sl . An important fact that we will use below is that this map Fl has least
energy among maps with the given boundary conditions.

4.5 Convergence of harmonic maps

Our next goal is to prove that there is a subsequence of the maps Fl that converges
to a harmonic map F : S\M → C◦. Note that the map Fl depends on the phases θi

associated to points pi ∈ M for which mi = 2. We write Fl = Fθ
l where θ = (θi ) to

indicate the dependence on these parameters explicitly. Then we have the following
bound for the energy of this map on Sl .

Lemma 4.2 There exists a constant N0 > 0 such that

ESl (Fθ
l ) ≤ ESl (F0

l ) + N0

for all l.

Proof Define tθ : Sl → Sl by

tθ (z) =
{

ti (z) if z ∈ Ui for mi = 2

z otherwise

123



Stability conditions and Teichmüller space

where ti is the map defined above using the parameter θi . Then the composition F0
l ◦ tθ

agreeswith Fθ
l on ∂Sl . Since themap Fθ

l is harmonic,wehave ESl (Fθ
l ) ≤ ESl (F0

l ◦tθ ).
ByLemma4.4 of [25], there is a constant N0, independent of l, such that ESl (F0

l ◦tθ ) ≤
ESl (F0

l ) + N0. Combining this with the previous inequality gives the desired bound.
��

In the following, we will write f θ
i for the model map fi : Ui\{pi } → C◦ that we

constructed above using the data θ = (θ j ). Note that although we use this notation
for all of the model maps for the sake of uniformity, f θ

i is actually independent of θ

unless mi = 2. We will also use the notation U k,l
i = U k

i \Ul
i whenever l > k.

Lemma 4.3 There exists a constant Ni > 0, such that

EU k,l
i

( f 0i ) − EU k,l
i

(Fθ
l ) ≤ Ni

for all l.

Proof Let us first assume thatmi = 0. In this case, themodel map f 0i : Ui\{pi } → C◦
is a biholomorphism onto its image. It follows that the energy of f 0i on a subsurface
V ⊂ Ui\{pi } equals the area of f 0i (V ) with respect to the hyperbolic metric on C◦.
We then obtain the desired bound

EU k,l
i

( f 0i ) − EU k,l
i

(Fθ
l ) ≤ EU k,l

i
( f 0i ) ≤ Ni

where Ni is defined as the total area of f 0i (Ui\{pi }). On the other hand, if mi = 2 then
we have EU k,l

i
( f 0i ) ≤ EU k,l

i
(Fθ

l ) as in Lemma 3.2 of [48] so that the desired bound

holds for any Ni > 0. Finally, if mi ≥ 3 then we define g to be a map U k,l
i → U k,l

i
having the lowest possible energy subject to the constraint g|∂Ul

i
= fi |U k,l

i
. (In [25],

such a function g is called a solution of the partially free Dirichlet boundary problem.)
By Lemma 4.6 of [25], there is a constant Ni > 0, independent of l, such that

EU k,l
i

( f 0i ) ≤ EU k,l
i

(g) + Ni .

Thus we have

EU k,l
i

( f 0i ) − EU k,l
i

(Fθ
l ) ≤ EU k,l

i
( f 0i ) − EU k,l

i
(g) ≤ Ni

as desired. ��
Lemma 4.4 The maps Fl have energy uniformly bounded on compact sets. That is, for
any compact set K ⊂ S\M, there is a constant N > 0 such that EK (Fl) ≤ N for
all l.

Proof Given any compact subset K ⊂ S\M , we can find a real number k > y0 such
that K ⊂ Sk . It then suffices to show that the energies ESk (Fl) for l ≥ k are bounded
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by some positive constant which is independent of l. According to Lemma 4.2, we
can find a constant N0 > 0 independent of l so that

ESk (Fθ
l ) = ESl (Fθ

l ) −
∑

i

EU k,l
i

(Fθ
l )

≤ ESl (F0
l ) −

∑
i

EU k,l
i

(Fθ
l ) + N0.

Consider the map g : Sl → C◦ given by the formula

g(z) =
{

f 0i (z) if z ∈ U k,l
i

F0
k (z) if z ∈ Sk .

It is continuous and satisfies g|∂Ul = F0
l |∂Ul . Since F0

l is harmonic, it follows that
ESl (F0

l ) ≤ ESl (g). Combining this fact with Lemma 4.3, we obtain

ESk (Fθ
l ) ≤ ESk (F0

k ) +
∑

i

EU k,l
i

( f 0i ) −
∑

i

EU k,l
i

(Fθ
l ) + N0

≤ ESk (F0
k ) +

∑
i

Ni + N0

for some constants Ni > 0 independent of l. This completes the proof. ��
Lemma 4.5 There is a subsequence {Fl j } of the maps Fl which converges with respect
to the C1-norm on compact sets to a harmonic map F : S\M → C◦.

Proof Consider any real number k > y0. As shown in Section 1 of [42], there is a
constant R > 0 independent of l such that e(Fl) ≤ R · ESk (Fl) on Sk . Combining this
with Lemma 4.4, we see that the energy densities e(Fl) are uniformly bounded on Sk .
The harmonicity equation (4) applied to Fl can be written

�Fl = −hw

h
∂z Fl∂z̄ Fl , (8)

and from what we have said, we get a C0 bound for the right hand side on Sk . By a
standard regularity theorem for Poisson’s equation (see [31, Theorem 10.1.2]), the Fl

are uniformly bounded on Sk with respect to the C1,α-norm. This gives a Cα bound
for the right hand side of (8), and by applying the regularity theorem once again,
we conclude that the Fl are uniformly bounded on Sk with respect to the C2,α-norm.
By the Arzelà–Ascoli theorem, there is a subsequence of the Fl that converges with
respect to the C1-norm on Sk .

We can now repeat the above argument, replacing k by k + 1, to get a further
subsequence that converges in C1 on Sk+1. If we continue this process inductively and
let {Fl j } be a diagonal subsequence, then {Fl j } converges in C1 on compact subsets
to a map F : S\M → C◦. Since each Fl j satisfies the Euler-Lagrange equation (4),
so does the limit F . Hence this limit map is harmonic. ��
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4.6 Computing the principal parts

Our next goal is to compute the principal parts of the Hopf differential of F . We begin
by analyzing the behavior of this map near a point pi ∈ S for which mi = 0.

Lemma 4.6 If mi = 0 then the map F has finite energy on Ui .

Proof Fix some k > y0. Then we can find a smooth embedding g : Ui\{pi } → C◦
such that g|∂Ui = F |∂Ui and g|∂Ul

i
= fi |∂Ul

i
for all l ≥ k. By [36] there is a harmonic

map hl : U y0,l
i → C◦ in the homotopy class of g|

U
y0,l
i

relative to ∂U y0,l
i which

coincides with g on this boundary. By the energy minimizing property of hl , we have

E
U

y0,l
i

(hl) ≤ EUi (g) ≤ E
U

y0,k
i

(g) + EU k
i
( fi ).

Since themodelmap fi is a biholomorphism, the energy EU k
i
( fi ) equals the hyperbolic

area of the image fi (U k
i ). Thus there exists a constant N > 0, independent of l,

such that E
U

y0,l
i

(hl) ≤ N . Arguing as in the proof of Lemma 4.5, we see that there

is a sequence {hl j } that converges uniformly on compact sets to a harmonic map
h : Ui\{pi } → C◦. We can assume that the indices l j form a subsequence of the ones
appearing in the statement of Lemma 4.5. Note that, by construction, the limit map h
satisfies EUi (h) ≤ N .

Now the function dist(Fl , hl) is subharmonic on U y0,l
i , being a distance function

between two harmonicmaps, so it attains itsmaximumon ∂U y0,l
i . Since Fl and hl agree

on ∂Ul
i , thismaximummust in fact lie on ∂Ui . ByLemma4.5,wehavedist(Fl j , hl j ) →

0 uniformly on ∂Ui as j → ∞. Hence h = lim j→∞ hl j = lim j→∞ Fl j = F and
EUi (F) ≤ N . ��
Lemma 4.7 If mi = 0 then the Hopf differential of F is integrable near pi .

Proof Recall that the Hopf differential of F is given explicitly by φ(zi ) = ϕ(zi )dz⊗2
i

where ϕ(zi ) = h(F(zi ))Fzi F̄zi and h is the function defining the hyperbolic metric
on C . By the inequality of arithmetic and geometric means, one has

|ϕ(zi )| ≤ 1

2
h(F(zi ))

(
|Fzi |2 + |Fz̄i |2

)
.

Integrating both sides yields

∫
Ui

|ϕ(zi )|dzi d z̄i ≤ EUi (F)

2
< ∞

by Lemma 4.6. ��
We can now prove the desired statement about principal parts.

Lemma 4.8 The Hopf differential of F has principal part Pi (zi ) at pi for every i .
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Proof Let φ denote the Hopf differential of F . If mi = 0 then we have Pi (zi ) = 0.
On the other hand, it follows from Lemma 4.7 that φ has at worst a simple pole at
any pi ∈ M . Thus the differential φ has vanishing leading coefficient at pi and its
principal part is zero. If mi = 2 then by Proposition 5.5 of [40], the Hopf differential
φ has a pole of order two at pi with leading coefficient −�(δi )L2

i /16π
2 where

�(δ) = 1 − δ2 − 2iδ

and we write δi = (sin θi )/(1 − cos θi ) as above. Using the compatibility condition,
one easily checks that this equals the leading coefficient of φi = Pi (zi )

⊗2. Hence φ

has principal part Pi (zi ) at pi . Finally, if mi ≥ 3 then the desired statement is proved
in Lemma 4.9 of [25]. ��

4.7 Uniqueness

We have now constructed a harmonic map F : S\M → C◦ whose Hopf differential
has principal part Pi (zi ) at the point pi ∈ M . In the next two lemmas, we will write
F ′ : S\M → C◦ for any harmonic map in the homotopy class of ψ whose Hopf
differential has principal part Pi (zi ) at pi .

Lemma 4.9 The function dist(F, F ′) is bounded on S\M and tends to zero near any
pi for which mi = 0.

Proof Let us first consider a point pi ∈ M for which mi = 0. Then by Lemma 4.7,
the Hopf differentials of F and F ′ are integrable near pi . If we equip S\M with the
uniformizing metric, then the holomorphic energy functionsH(F) andH(F ′) tend to
unity near pi by Proposition 3.13 of [48] while the antiholomorphic energy functions
L(F) andL(F ′) tend to zero near pi as inCorollary 2 of [37].Working in the coordinate
z = x + iy provided by the isomorphism (7), we see that the Hopf differentials of F
and F ′ have the form O(e−2π y)dz⊗2 as y → ∞ or equivalently as z → pi . If h is
the hyperbolic metric on C◦, then it follows from equation (6) that the tautological
map ofRiemannianmanifolds (Ui\{pi }, F∗h) → (Ui\{pi }, (F ′)∗h) is approximately
an isometry near pi . Equivalently, F ′ ◦ F−1 is approximately an isometry near the
corresponding cusp of C◦. Since an isometry of a cusp neighborhood is given by a
parabolic transformation, the translation distance of such an isometry tends to zero as
we approach the cusp. Hence dist(F, F ′)(z) → 0 as z → pi .

In particular, we see that dist(F, F ′) is bounded on Ui\{pi } whenever mi = 0.
In the case mi = 2, it was shown in Lemma 5.9 of [40] that dist(F, F ′) is also
bounded on Ui\{pi }. For mi ≥ 3, this was shown in Proposition 3.9 of [25]. The
function dist(F, F ′) is bounded on S\ ⋃

i Ui since the latter is compact. Therefore it
is bounded on all of S\M . ��
Lemma 4.10 The maps F and F ′ are equal.

Proof On a punctured surface, any bounded subharmonic function is necessarily
constant, so the distance function dist(F, F ′) equals some constant k on S\M by
Lemma 4.9. If this constant k is nonzero, then we can construct a nonvanishing vector
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field on C where the vector assigned to a point F(z) points from F(z) to F ′(z). If
{z j } ⊂ S\M is a sequence of points converging to some pi ∈ M with mi = 2, then
F(z j ) → w and F ′(z j ) → w′ where w and w′ lie on a common boundary com-
ponent of C and dist(w,w′) = k. It follows that the vector field is tangent to those
boundary components of C that are homeomorphic to S1. As explained in the proof
of Corollary 3.10 of [25], this vector field is also tangent to any boundary component
of C which forms part of a hyperbolic crown, and the tangent vectors point alternately
toward and away from the cusps aswe travel around the crown. In particular, we cannot
have any pi with mi ≥ 3 odd. We also cannot have pi with mi = 0 since the distance
function dist(F, F ′) tends to zero near such a point by Lemma 4.9.

Let Ĉ be the punctured surface obtained by doubling C along its boundary. We
view Ĉ as a closed surface with finitely many marked points obtained by filling in
the punctures. This surface inherits a vector field from the one on C , and this vector
field has index +1 at each marked point. But then Ĉ has negative Euler characteristic
while the total index of the vector field is positive. This contradicts the Poincaré-Hopf
theorem. It follows that k = 0 and consequently F = F ′. ��

Thus we see that the harmonic map F : S\M → C◦ constructed above is inde-
pendent of which functions fi we choose for the model maps and also independent
of which subsequence {Fl j } we take the limit of in Lemma 4.5. Combining these
observations with Lemma 4.8, we get a well defined map

�
S,M
P : TP (S, M) → QP (S, M)

taking a point (ψ, C) ∈ TP (S, M) to the Hopf differential of the unique associated
harmonic map F : S\M → C◦.

4.8 Regularity

Finally, we will show that the map F : S\M → C◦ constructed above is a diffeomor-
phism onto its image.

Lemma 4.11 Assume S\M is equipped with the uniformizing metric, and let H(F)

denote the holomorphic energy of F with respect to this choice of metric. ThenH(F) ≥
1 on S\M.

Proof If mi = 0 then Proposition 3.13 of [48] says that limz→pi H(F)(z) = 1. On the
other hand, for mi ≥ 2 we claim that limz→pi H(F)(z) ≥ 1. Indeed, we can choose a
local coordinate z defined in a neighborhood of pi so that the local expression for the
metric is g|dz|2 where g(z) = 1

|z|2 log2 |z| . Letφ(z) = ϕ(z)dz⊗2 be theHopf differential

of F in this coordinate. Since the map Fl is an orientation preserving diffeomorphism,
the Jacobian satisfies J (Fl) > 0 so that H(F) − L(F) = J (F) ≥ 0 and hence
|ϕ|2/g2 = LH ≤ H2. This implies the claim since ϕ(z) has a pole of order ≥ 2
at z = 0. To complete the proof, suppose that z0 is a local minimum for H(F)

on S\M . Then the Bochner equation (5) implies

0 ≤ (
�g logH

)
(z0) = 2J (F)(z0) − 2.
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so that 1 ≤ J (F)(z0) ≤ H(F)(z0). It follows that H(F) ≥ 1 on all of S\M . ��
Lemma 4.12 We have J (F) > 0 on S\M so that F is an orientation preserving local
diffeomorphism.

Proof We already know that J (F) ≥ 0, and Sard’s theorem implies that J (F) is
not identically zero. If J (F)(z) = 0, then the claim on page 270 of [43] implies
H(F)(z) = 0, which contradicts Lemma 4.11. Hence the Jacobian of F is nowhere
vanishing. ��
Lemma 4.13 F surjects onto C\∂C.

Proof If mi = 0 then Lemma 5 of [37] says that the diameter of F(∂Ul
i ) tends

to zero as l → ∞. If mi = 2 then Lemma 5.4 of [40] says there exists a hyper-
bolic isometry R stabilizing the corresponding boundary component of C such that
dist(F, R ◦ fi )(z) → 0 as z → pi . Finally, if mi ≥ 3, then by considering a polygonal
exhaustion as in Proposition 2.29 of [25], one sees that F surjects onto the hyper-
bolic crown corresponding to pi . Since F � ψ these facts imply that F is surjective
onto C\∂C . ��
Lemma 4.14 F is injective.

Proof Let y ∈ C\∂C and consider the preimage F−1(y). We claim that this preimage
is contained in a compact set in S\M . Indeed, if it is not contained in such a set, then
we can find a sequence {xi } ⊂ F−1(y) such that limi→∞ xi ∈ M . But then the points
F(xi ) tend to a cusp or boundary component of C as i → ∞, and we can bound F(xi )

away from y by choosing i sufficiently large. This contradiction establishes the claim.
Now since y0 is a regular value by Lemma 4.12, the preimage F−1(y) is a compact

zero-dimensional manifold, hence finite. Since ψ is a diffeomorphism and F � ψ ,
we know that F has degree one. Therefore

1 =
∑

x∈F−1(y)

sgnJ (F)(x).

From Lemma 4.12, we know that J (F)(x) > 0 for all x ∈ F−1(y), and hence
|F−1(y)| = 1. ��

Proposition 4.15 F is a diffeomorphism S\M
∼−→ C\∂C.

Proof This follows from Lemmas 4.12, 4.13, and 4.14. ��

5 Amap betweenmoduli spaces

In this section, we use our results on harmonic maps to construct a natural map from
the moduli space of signed quadratic differentials to the enhanced Teichmüller space.
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5.1 A homeomorphism of moduli spaces

As in the previous section, we consider a compact Riemann surface S and a nonempty
finite subset M = {p1, . . . , pd} ⊂ S. We choose a local coordinate zi defined on a
disk around pi and set P = (Pi (zi )) where Pi (zi ) is a principal differential in this
local coordinate. We write mi for the order of the pole of the quadratic differential
φi (zi ) = Pi (zi )

⊗2 andwrite θi for the argument of its leading coefficientwhenmi = 2.
Assuming χ(S\M) < 0 and θi ∈ (0, 2π), we have constructed a well defined map



S,M
P : TP (S, M) → QP (S, M). Here we will show that it is a homeomorphism,

following the approach of [47].

Lemma 5.1 �
S,M
P is injective.

Proof Suppose we have 

S,M
P (C1, ψ1) = 


S,M
P (C2, ψ2) = φ. Then by construction

φ arises as the Hopf differential of harmonic maps F1, F2 : S\M → C◦ constructed
from ψ1 and ψ2, respectively. These maps satisfy the Bochner equation (5), namely

�wk = e2wk − e−2wk |ϕ|2 (9)

where we have written wk = 1
2 logH(Fk) and φ(z) = ϕ(z)dz⊗2, and by applying

a conformal transformation we may assume the metric on S\M has the expression
|dz|2 in the coordinate z and the Laplace–Beltrami operator in (5) specializes to the
ordinary Laplacian.

If we define w̃k = wk − 1
2 log |ϕ| = 1

2 log
H(Fk)|ϕ| , then by the result in Section 5

of [28] (see also equation (8) of [25]), we have the bound

0 ≤ w̃k(z) ≤ e−C R(z)

where C > 0 and R(z) is the distance from z to the nearest zero of φ, measured using
the flat metric associated to φ. Exponentiating these inequalities, we obtain

1 ≤ H(Fk)(z)1/2

|ϕ(z)|1/2 ≤ exp(e−C R(z)).

Whenmi ≥ 2, it follows thatH(Fk)(z)/|ϕ(z)| → 1andhenceH(F1)(z)/H(F2)(z) →
1 as z → pi . Proposition 3.13 of [48] implies that the same is true when mi = 0.
Thus, for any value of mi , we see that w1(z) − w2(z) → 0, as z → pi .

If we have w1 > w2 at some point of S\M , then it follows from what we have said
that there exists a local maximum of the difference w1 − w2. But then at this local
maximum point the Bochner equation (9) implies

0 ≥ �(w1 − w2) = (e2w1 − e2w2) − |ϕ|2(e−2w1 − e−2w2) > 0,

which is a contradiction. If w2 > w1 then we reach a similar contradiction by inter-
changing the roles of w1 and w2. We must therefore have w1 ≡ w2 and H1 ≡ H2
on S\M . Since L(Fk) = |ϕ|2/H(Fk), we have e(F1) ≡ e(F2) on S\M as well. Then
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from (6), we see that the hyperbolic metrics on C1 and C2 pull back via F1 and F2 to
give the same metric on S\M . Hence (C1, ψ1) and (C2, ψ2) represent the same point
of TP (S, M). ��
Lemma 5.2 �

S,M
P is continuous.

Proof Suppose {ρi }i≥1 ⊂ TP (S, M) is a sequence of points that converge to a point
ρ∞ ∈ TP (S, M). For i = 1, . . . ,∞, we can represent ρi as a pair (Ci , ψi ) where C◦

i
is the surface S\M equipped with a metric tensor hi and ψi is the identity map. We
can further assume that the sequence of metric tensors hi converges to h∞ as i → ∞.

Let Fi : S\M → C◦
i be the harmonic map associated to (Ci , ψi ) as in Sect. 4.

Recall that it is constructed as a limit of harmonic maps Fi,l : Sl → C◦ defined on
sets Sl forming a compact exhaustion of S\M .We can assume the boundary conditions
for the maps Fi,l on ∂Sl converge as i → ∞ so that the results in Sections 3 and 4
of [15] imply that Fi,l → F∞,l with respect to the C1-norm as i → ∞. Combining
this observation with Lemma 4.4, we see that for any fixed compact set K there is a
constant N > 0 such that EK (Fi,l) < N for all i and all l.

Let {εi }i≥1 be a strictly decreasing sequence of positive real numbers such that
εi → 0 as i → ∞. Then by Lemma 4.5, we can find an increasing sequence of
numbers li such that li → ∞ and dist(Fi,li , Fi ) < εi on Sli . Since the maps Gi = Fi,li
have energy uniformly bounded on compact sets, the argument of Lemma 4.5 implies
that there is a subsequence of indices ik such that Gik converges with respect to the
C1-norm on compact sets to some harmonic map G. By our uniqueness results, we
have G = limi→∞ Gi without passing to a subsequence, and G = F∞. Therefore
limi→∞ Fi = limi→∞ Fi,li = F∞. Since the Fi converge in C1 on compact sets,
their Hopf differentials converge to the Hopf differential of F∞. That is, �S,M

P (ρi ) →
�

S,M
P (ρ∞). ��

Lemma 5.3 �
S,M
P is proper.

Proof Let K ⊂ QP (S, M) be a compact set in the space of quadratic differentials,
and let us consider its preimage �−1(K ) ⊂ TP (S, M), where to simplify notation
we have written � = �

S,M
P . If {ρi }i≥1 ⊂ �−1(K ) is any sequence of points, then

�(ρi ) ∈ K for i ≥ 1 so that after passing to a subsequence we may assume the �(ρi )

converge to a point of K .
Let Sl ⊂ S\M be the sets forming the compact exhaustion from Sect. 4.4. For any l,

let us write ‖φ‖Sl for the total area of Sl with respect to the flat metric determined
by a quadratic differential φ on S\M . Let (Ci , ψi ) be a marked hyperbolic surface
representing ρi where Ci is S\M equipped with some hyperbolic metric hi and ψi

is the identity map. Let Fi : S\M → Ci be the associated harmonic map. Then the
calculation in Lemma 3.2 of [47] shows that

ESl (Fi ) ≤ 2‖�(ρi )‖Sl + A(Fi (Sl))

for every i where A is the area function for the hyperbolic metric on Ci . Note that we
have A(Fi (Sl)) ≤ A(Ci ) < ∞. Since the �(ρi ) converge, it follows that there exists
a constant N > 0, independent of i , such that ESl (Fi ) ≤ N .
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Arguing as in the proof of Lemma 4.5, we see that there is a subsequence {Fik }
of the Fi which converges with respect to the C1-norm on compact subsets of S\M .
Then the energy densities e(Fi ), and by (6) the pullback metrics F∗

i (hi ), converge
uniformly on compact sets. From this we get convergence of the subsequence {ρik }.
This proves that �−1(K ) is sequentially compact, hence compact. ��
Proposition 5.4 �

S,M
P is a homeomorphism.

Proof From Lemmas 2.3 and 3.3, we know thatQP (S, M) and TP (S, M) are homeo-
morphic to Euclidean spaces of the same dimension. The proposition therefore follows
from Lemmas 5.1, 5.2, 5.3 and the invariance of domain. ��

5.2 Exceptional surfaces

In the above discussion, we assumed that the Riemann surface S and set M ⊂ S satisfy
χ(S\M) < 0. On the other hand, if χ(S\M) ≥ 0 then S is isomorphic to the Riemann
sphere and M consists of one or two marked points on S. We will now explain how
our arguments can be extended to include these cases. Since the proofs are similar to
those in previous sections, some details are left to the reader.

First suppose that M = {p1} consists of a single marked point. In this case, we may
assume m1 ≥ 3 since otherwise QP (S, M) and TP (S, M) are both empty. Then the
associated marked bordered surface (SP , MP ) is a disk with m1 − 2 marked points
on its boundary. It was shown in Proposition 3.12 of [25] that for any (C, ψ) ∈
TP (S, M), there exists a unique harmonic map F : S\M → C homotopic to ψ

whose Hopf differential lies in QP (S, M). Moreover, the map taking (C, ψ) to the
Hopf differential of this harmonic map F is a homeomorphism �

S,M
P : TP (S, M) →

QP (S, M) as before.
Next suppose that M = {p1, p2} consists of two marked points. In this case, we

must have m1 ≥ 3 or m2 ≥ 3 since otherwise TP (S, M) is empty. If we have both
m1 ≥ 3 and m2 ≥ 3, then (SP , MP ) is an annulus with m1 − 2 marked points on one
boundary component and m2 − 2 marked points on the other boundary component.
In such examples, the construction of the homeomorphism �

S,M
P proceeds exactly as

above.
It remains to consider the cases where m1 ≥ 3 and m2 ≤ 2. In these cases, the

marked bordered surface (SP , MP ) is a once-punctured disk with m1 − 2 marked
points on its boundary. If m2 = 2 then for any (C, ψ) ∈ TP (S, M), the compatibility
condition implies that C is a hyperbolic crown. Then exactly as above, we can then
construct a harmonic map F : S\M → C◦ whose Hopf differential lies inQP (S, M).
On the other hand, if m2 = 0 then more care is needed. Indeed, if (C, ψ) ∈ TP (S, M),
then p2 corresponds to a cusp in C , and this surface C has no closed geodesics. In
particular, we cannot apply Theorem 4.1 to construct a model map into C .

To get around this difficulty, first note that if F : S\M → C is a harmonic map
homotopic to ψ with Hopf differential in QP (S, M), then F is the unique map with
these properties by the arguments of Sect. 4.7. Let us choose a sequence of principal
differentials P2,i (z2) = ±√

ai dz2/z2 with ai ∈ C
∗ for all i such that ai → 0

as i → ∞ and define Pi = (P1(z1), P2,i (z2)). Then (SP , MP ) and the (SPi , MPi )
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are all equal to a common marked bordered surface (S, M). Suppose {ρi } ⊂ T (S, M)

is a sequence of points ρi ∈ TPi (S, M) that converges to some (C, ψ) ∈ TP (S, M),
and let Fi be the harmonic map associated to ρi . As in the proof of Lemma 5.2,
the maps Fi converge to a unique harmonic map S\M → C in the homotopy class
of ψ with Hopf differential in QP (S, M). One then shows as in Sect. 5.1 that there
is a homeomorphism �

S,M
P : TP (S, M) → QP (S, M) taking (C, ψ) to the Hopf

differential of this harmonic map.

5.3 The inverse homeomorphism

Up until now, we have assumed that the phase θi associated to a point pi ∈ M with
mi = 2 lies in (0, 2π). Equivalently, we have assumed that the leading coefficient of
a differential in QP (S, M) at such a point pi is not a positive real number. We will
now show that this assumption can be dropped, and in doing so, establish Theorem 1.2
from the introduction.

Theorem 5.5 Let P = (Pi (zi )) be a tuple of principal differentials with no restriction
on the phases of the leading coefficients. Then there exists a unique homeomorphism



S,M
P : QP (S, M) → TP (S, M)

such that the image of a differential φ is represented by a pair (C, ψ) where ψ :
S\M → C\∂C is a harmonic map with Hopf differential φ.

Proof As usual we will write mi for the order of the differential φi (zi ) = Pi (zi )
⊗2

at the point pi ∈ M . We write ai for the leading coefficient of φi when mi = 2 and
write θi = arg(ai ) ∈ [0, 2π). Choose a real number θ ∈ R so that e2iθ · ai /∈ R>0 for
all pi ∈ M with mi = 2 and define P(θ) = (Pθ

i (zi )) where Pθ
i (zi ) = eiθ · Pi (zi ).

Then our earlier results imply that there exists a homeomorphism



S,M
P(θ) : QP(θ)(S, M) → TP(θ)(S, M)

defined as the inverse of �
S,M
P(θ). Given a differential φ ∈ QP (S, M), we can apply

this homeomorphism 

S,M
P(θ) to the rotated differential e2iθ · φ ∈ QP(θ)(S, M) to get

an equivalence class of marked hyperbolic surfaces. This equivalence class can be
represented by a pair (Cθ , ψθ ) where Cθ\∂Cθ is identified with the surface S\M
equipped with an auxiliary metric hθ , and ψθ is the identity map. According to (6),
the metric hθ can be written in a local coordinate z as

e2iθ · ϕ(z)dz⊗2 + g(z)e(id)dz ⊗ dz̄ + e−2iθ · ϕ(z)dz̄⊗2

where φ(z) = ϕ(z)dz⊗2. We can define a modified metric h on S\M given in the
local coordinate by

ϕ(z)dz⊗2 + g(z)e(id)dz ⊗ dz̄ + ϕ(z)dz̄⊗2.
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Since ϕ(z) is holomorphic and the Jacobian J (id) of the identity map is strictly
positive, we see that the identity map is a harmonic map of Riemannian manifolds
(S\M, g) → (S\M, h) with Hopf differential φ. By equipping the surface S\M with
the metric h and defining ψ = id, we get a point 


S,M
P (φ) = (C, ψ) ∈ T (S, M).

It follows from the uniqueness of 

S,M
P(θ) that this point is independent of the choice

of θ . Since h is the limit of the metrics hθ as θ → 0, we see that C has length data
compatible with P . Hence 


S,M
P (φ) ∈ TP (S, M). Since the map 


S,M
P(θ) is unique and

a homeomorphism, it follows that the resulting map 

S,M
P : QP (S, M) → TP (S, M)

has these same properties. ��

5.4 Incorporating themarkings

Let (S, M) be a marked bordered surface, and if g(S) = 0 assume that |M| ≥ 3.
Recall that the moduli space Q(S, M) parametrizes triples (S, φ, θ) where φ is a
GMN differential on S and θ is a marking of (S, φ) by (S, M). Suppose we are given
such a triple (S, φ, θ). Let M = {p1, . . . , pd} ⊂ S be the set of poles of φ and choose
a local coordinate zi defined on a disk around pi . We will write P = (Pi (zi )) for a
tuple of principal differentials where Pi (zi ) is the principal part of φ at pi . Then the
point 
S,M

P (φ) ∈ TP (S, M) is represented by a pair (C, ψ), and the composition

S\M
θ |S\M−−−→ SP\MP

ψ−→ C◦

determines a marking of C by (S, M). Hence we have a marked hyperbolic surface
whose equivalence class defines a point 
(S, φ, θ) ∈ T (S, M).

Proposition 5.6 This construction gives a well defined MCG(S, M)-equivariant map


 : Q(S, M) → T (S, M).

Proof We first note that the above construction is independent of the choice of local
coordinate zi . Indeed, if we choose a different local coordinate z′

i near each pi , then
we get a tuple P ′ = (P ′

i (z
′
i )) of principal parts for φ. This P ′ determines the same

compatible length data as P , and so we have TP ′(S, M) = TP (S, M). The proof of
Lemma 5.1 shows that a point in TP (S, M) represented by a hyperbolic surface with
harmonic marking is uniquely determined by the Hopf differential of the marking.
Hence we must have 


S,M
P ′ (φ) = 


S,M
P (φ).

It remains to check that the construction is independent of the choice of represen-
tative for a point of Q(S, M). Suppose that (S1, φ1, θ1) and (S2, φ2, θ2) represent the
same point ofQ(S, M). For k = 1, 2, let Mk ⊂ Sk be the set of poles of φk , and let Pk

be a tuple of principal differentials encoding the principal parts ofφk . Then

Sk ,Mk
Pk

(φk)

is a point of TPk (Sk, Mk) represented by a pair (Ck, ψk). From the definition of equiv-
alence of marked quadratic differentials, we get a biholomorphism f : S1 → S2 that
preserves the φk and commutes with the markings θk . This map f induces an diffeo-
morphism (S1)P1\(M1)P1 → (S2)P2\(M2)P2 , also denoted f , and we claim that the
pairs (C1, ψ1) and (C2, ψ2 ◦ f ) represent the same point of TP1(S1, M1).
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Recall that Sk\Mk can be considered as a subsurface of (Sk)Pk \(Mk)Pk . By Theo-
rem 5.5, we can assume that the mapψk is harmonic on Sk\Mk . Since f is conformal,
it follows that ψ2 ◦ f is harmonic as well. Let us write α(p,q) for the (p, q)-part of
a differential form α. Since f is holomorphic, the pullback along f of a (p, q)-form
on S2 is a (p, q)-form on S1. It follows that if h is the hyperbolic metric on C2, then

(
f ∗(ψ∗

2 h)
)(2,0) = f ∗ (

(ψ∗
2 h)(2,0)

)
= f ∗φ2 = φ1.

This means the maps ψ2 ◦ f and ψ1 have the same Hopf differential. The claim now
follows from the proof of Lemma 5.1.

Thus we see that there exists an isometry g : C1 → C2 such that ψ2 ◦ f and g ◦ψ1
are homotopic. By a simple diagram chase, one sees that the compositions ψ2 ◦ θ2 and
g ◦ ψ1 ◦ θ1 are homotopic. Hence we have two equivalent representatives for a point
in T (S, M), and the map 
 is well defined. It follows immediately from the way we
have defined the MCG(S, M)-actions that this map is MCG(S, M)-equivariant. ��

5.5 A lift to covering spaces

Now suppose we are given a point of the moduli space Q±(S, M). We can think of
this as a point (S, φ, θ) in Q(S, M) together with a choice of rp ∈ C for each p ∈ P

of φ satisfying

ap = (rp/4π i)2

where ap is the leading coefficient of φ at θ(p). Let (C, ψ) be a marked hyperbolic
surface representing the point 
(S, φ, θ) ∈ T (S, M). From the compatibility condi-
tion, one sees that if Re(rp) = 0 then p corresponds via the map ψ to a cusp of C .
Otherwise it corresponds to a boundary component of C . We will choose an orienta-
tion of the boundary component to agree with the orientation of C if Re(rp) > 0, and
we choose the opposite orientation of the boundary component if Re(rp) < 0. This
defines a point of T ±(S, M), and hence we have the following.

Proposition 5.7 This construction defines a lift of 
 to an MCG±(S, M)-equivariant
map


± : Q±(S, M) → T ±(S, M)

of the covering spaces.

Our goal in the remainder of this section is to prove that the map 
± of Proposi-
tion 5.7 is continuous.

5.6 Fixing themarking

Let us consider a fixed compact Riemann surface S, a finite subset M =
{p1, . . . , pd} ⊂ S, and positive integers m1, . . . , md ∈ Z>0. Let S be the smooth
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surface obtained by taking an oriented real blowup of S at each pi for which mi ≥ 3,
and let M ⊂ S be a set consisting of mi − 2 marked points on the resulting boundary
component of S, together with those points pi for which mi ≤ 2. Let D = ∑

i mi pi

and write

N = N (S, M) ⊂ H0(S, ω⊗2
S (D))

for the set of quadratic differentials whose associated marked bordered surface equals
the fixed surface (S, M). Thus the asymptotic horizontal directions associated to a
differential φ remain constant as we vary φ within N .

Fix a choice of local coordinate zi defined in a neighborhood of pi ∈ S. Then
for any φ ∈ N , there is a tuple Pφ = (Pφ,i (zi )) of principal differentials giving the
principal parts of φ in these local coordinates. We can view 


S,M
Pφ

(φ) as a point of
T (S, M), and hence there is a map


N : N → T (S, M)

given by φ �→ 

S,M
Pφ

(φ).

Lemma 5.8 This map 
N is continuous.

Proof For each ρ ∈ T (S, M), choose a tuple Pρ = (Pρ,i (zi )) of principal differentials
so that Pρ depends continuously on ρ and a quadratic differential in QPρ (S, M) has
associated marked bordered surface (S, M). Then the map �N ,P : T (S, M) → N
given by ρ �→ (


S,M
Pρ

)−1(ρ) is injective and continuous by the proofs of Lemmas 5.1
and 5.2, respectively. Since T (S, M) is locally compact andN is Hausdorff, �N ,P is
locally a homeomorphism onto its image.

By construction the map 
N is a left inverse for �N ,P , so it is continuous when
restricted to the image of �N ,P . Suppose φ ∈ N is any point and {φ j } ⊂ N is a
sequence of points converging to φ. We can choose the Pρ so that Pρ j = Pφ j for
ρ j = 
N (φ j ). Then it follows that 
N (φ j ) → 
N (φ) and hence 
N is continuous
at φ. ��

5.7 Proof of continuity

Using Lemma 5.8, we can prove the continuity of the maps 
 and 
± constructed
previously. This establishes Theorem 1.3 from the introduction.

Proposition 5.9 The map 
 : Q(S, M) → T (S, M) is continuous.

Proof Consider a point q ∈ Q(S, M) which is represented by a marked quadratic
differential (S, φ, θ), and write M ⊂ S for the set of poles of φ. Let B = T (g, d)

be the Teichmüller space parametrizing marked Riemann surfaces of genus g with
d = |M | marked points. Then the pair (S, M) can be considered as a point b ∈ B. If
π : X → B is the universal curve, then S is the fiber of π over b. Let b ∈ U ⊂ B be
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a neighborhood of b over which π is trivial. Then there exists a local trivialization

sU : π−1(U ) → U × S

which provides an isomorphism of the fiber over any b′ ∈ U with S. Let q ′ ∈ Q(S, M)

represented by a marked quadratic differential (S′, φ′, θ ′), and write M ′ ⊂ S′ for the
set of poles of φ′. By choosing q ′ sufficiently close to q in the topology of the moduli
space, we can assume that b′ = (S′, M ′) defines a point in U and that sU |π−1(b′) ◦ θ ′
and θ are isotopic. Then (S′, φ′, θ ′) is equivalent to a marked quadratic differential
with marking θ . Lemma 5.8 shows that 
 is continuous when restricted to a subspace
of Q(S, M) parametrizing quadratic differentials on a fixed Riemann surface with a
fixed marking. Thus, by choosing q ′ sufficiently close to q, we can ensure that the
points 
(q) and 
(q ′) are close. It follows that 
 is continuous at q. ��
Proposition 5.10 The map 
± : Q±(S, M) → T ±(S, M) is continuous.

Proof This follows immediately from Proposition 5.9 and the fact that 
± is a lift
of 
 to a map of the covering spaces Q±(S, M) and T ±(S, M). ��

6 Asymptotic property

In this section, we prove an asymptotic property of the map from signed differentials
to the enhanced Teichmüller space.

6.1 Images of horizontal and vertical paths

Wehave seen in Sect. 2.8 that a quadratic differential φ defined on a Riemann surface S
naturally determines a flat Riemannian metric on S\Crit(φ). This defines a metric
space structure on the complement of the poles of φ, and it is a well known fact that
this metric space is complete if and only if φ is complete in the sense of Definition 2.1.

We have also seen that φ determines a foliation of S\Crit(φ) whose leaves are
mapped by the distinguished local coordinates to horizontal lines inC. Inwhat follows,
we will say that a smooth path in S\Crit(φ) is horizontal if its image under any
distinguished local coordinate has constant imaginary part. We will say that a smooth
path in S\Crit(φ) is vertical if its image under any distinguished local coordinate has
constant real part.

To prove the main result of this section, we will make use of the following state-
ments. The proofs are sketched in Section 2.5 of [25], and further details can be found
in the references cited there.

Proposition 6.1 ([25, Section 2.5]). Let φ be a complete meromorphic quadratic dif-
ferential on S, let M ⊂ S be the set of poles of φ, and let C be a surface equipped
with a hyperbolic metric. Let αh be a horizontal path and αv a vertical path in S, each
of length L and lying at a distance R > 0 from the critical points, with respect to the
flat metric.
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Fig. 9 An octagon associated to
a saddle connection

If ψ : S\M → C is a harmonic map which is a diffeomorphism onto its image with
Hopf differential φ, then there is a universal constant k > 0 such that

(1) The image ψ(αh) has length

2L + O(e−k R) as R → ∞.

Moreover, this image ψ(αh) is a curve having geodesic curvature O(e−k R). It is
contained in an ε-neighborhood of a geodesic segment where ε → 0 as R → ∞.

(2) The image ψ(αv) has length

O(Le−k R) as R → ∞.

If w = x + iy is the distinguished local coordinate on S\Crit(φ), then it follows
from equation (5) of [25] that the tangent vectors ∂x and ∂y are orthogonal with
respect to the metric obtained by pulling back the hyperbolic metric along ψ . Thus
Proposition 6.1 implies that ψ(αv) is an approximately horocyclic arc for R � 0.

6.2 A contour integral

Let φ be a complete and saddle-free differential on S, and let M ⊂ S be the set of
poles of φ. We will consider the universal cover π : U → S\M of the surface S\M .
The quadratic differential φ determines a singular horizontal foliation of S\M , and
this can be lifted to a singular foliation of U . Given a standard saddle connection α

for φ, we can consider a lift α̃ of this curve α to U . We define cα̃ to be the boundary of
an octagon in U which contains α̃ in its interior and whose sides alternately project to
vertical and horizontal paths on S. An example is illustrated in bold in Fig. 9, which
also illustrates the lifted foliation.

Wewill write φ̃ = π∗φ for the pullback of the quadratic differential to the universal
cover. After making a branch cut along α̃, we can choose a branch λ of the square root
of φ̃ which is continuous on cα̃ . We can also choose an orientation for cα̃ in such a way
that the integral

∫
cα̃

λ over the resulting contour has positive imaginary part. Then we
have the following statement, which is closely related to Lemma 2.28 of [25].
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Lemma 6.2 Let L1, . . . , L4 be the lengths of the segments labeled σ1, . . . , σ4, respec-
tively, in Fig.9, where length is defined using the pullback of the flat metric
on S\ Crit(φ). Then

Re

(∫
cα̃

λ

)
=

∑
i

(−1)i Li .

Proof If e is a segment of cα̃ that projects to a vertical path on S, then the integral of λ

over e is a pure imaginary number with absolute value equal to the length of e. If e
is a segment of cα̃ that projects to a horizontal path on S, then the integral over e is a
real number with absolute value equal to the length of e. Moreover, the integrals over
two successive segments that project to paths of the same type (horizontal or vertical)
have opposite arguments. The segments labeled ρ1 and ρ3 in Fig. 9 are strictly longer
than the segments labeled ρ2 and ρ4, and therefore the requirement that

∫
cα̃

λ have
positive imaginary part implies that

∫
ρi

λ has positive imaginary part for i = 1, 3. It
follows that

∫
σi

λ = −Li for i = 1, 3 while
∫
σi

λ = Li for i = 2, 4. ��

6.3 Asymptotics of cross ratios

Continuing with the notation of Sect. 6.2, let us now consider the rescaled differential
R2 · φ for R ∈ R. Let us write P = (Pi (zi )) for a tuple of principal differentials
encoding the principal parts ofφ at points pi ∈ M . Then there is a point
S,M

R·P (R2·φ) ∈
TR·P(S, M),which canbe representedby amarkedhyperbolic surface (CR, ψR)where
ψR : S\M → CR is a harmonic diffeomorphism onto its image. This map ψR can be
lifted to a map ψ̃R : U → H which intertwines the action of π1(S\M) on U by deck
transformations with its action on H via the monodromy representation.

Let α be any standard saddle connection for φ, and consider once again the
octagon cα̃ illustrated in Fig. 9. Each side σi is contained in a leaf Zi of the hori-
zontal foliation, and Proposition 6.1(1) implies that as we travel along this leaf Zi

in either direction, the geodesic curvature of ψ̃R(Zi ) tends to zero. It follows that
the curve ψ̃R(Zi ) is asymptotic to a point on ∂H̄. Moreover, if σi and σ j are succes-
sive horizontal sides of cα̃ , then Proposition 6.1(2) implies that ψ̃(Zi ) and ψ̃(Z j ) are
asymptotic to a common point on ∂H̄. Hence the images of the leaves containing the
sides σi are asymptotic to exactly four points on ∂H̄.

Let us label these points as z1, . . . , z4 ∈ ∂H̄ so that the order is compatible with
the orientation of ∂H̄ ∼= RP

1. We choose these labels in such a way that the arc ρi

in Fig. 9 connects two leaves of the horizontal foliation whose images are asymptotic
to the point labeled zi . Our goal is to understand the cross ratio Yα = Yφ,α(R) of
z1, . . . , z4, defined by the formula (3). To do this, we will first review an elementary
fact from hyperbolic geometry.

Consider a geodesic g in H which connects two points on ∂H̄, and suppose we are
given disjoint horocycles around the endpoints of this geodesic (see Fig. 10). In this
situation, we let μ be the distance between the points of intersection of g with the
horocycles. Following Penner [38], we define the lambda length to be λ = exp(μ/2).
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Fig. 10 Defining the lambda
length

Fig. 11 An ideal quadrilateral
with a horocycle around each
vertex

In particular, we can consider the ideal quadrilateralwith vertices z1, . . . , z4, andwe
can choose disjoint horocycles around these vertices (see Fig. 11). Then by applying
the above construction to the geodesic connecting the points zi and z j , we get a
corresponding lambda length λi j .

Lemma 6.3 ([38, Chapter 1, Corollary 4.16]). The cross ratio Yα is given in terms of
the lambda lengths by

Yα = λ12λ34

λ23λ14
. (10)

Lemma 6.3 implies in particular that the expression on the right hand side of (10) is
independent of the choice of horocycles. Using this lemma, we can derive an asymp-
totic relation between the cross ratio Yα and the integral considered previously.

Lemma 6.4 Taking notation as above, we have

Yφ,α(R) · exp
(

R · Re
∫

cα̃

λ

)
→ 1 as R → ∞.

Proof For each R, let us choose disjoint horocycles around the vertices z1, . . . , z4.
Let us write μi for the hyperbolic distance between the horocycles around zi and zi+1
where the indices are considered modulo 4. Then by definition we have λi,i+1 =
exp(μi/2). Let us also write Li (R) for the length of the segment σi in Fig. 9, where
length is defined using the pullback of the R2 ·φ-metric. By applying Lemma 6.2 and
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Fig. 12 The horizontal foliation near a double pole

Lemma 6.3, we find

Yφ,α(R) · exp
(

R · Re
∫

cα̃

λ

)
= exp

(∑
i

(−1)i
(

Li (R) − μi

2

))
. (11)

By Proposition 6.1, we know that for R � 0 the curve ψ̃R(σi ) approximates a segment
of the geodesic connecting zi and zi+1, while ψ̃R(ρi ) is an approximately horocyclic
arc. Moreover, Li (R) is approximately half the length of ψ̃R(σi ). Since

∑
i (−1)iμi

is independent of the choice of horocycles, it follows that the sum on the right hand
side of (11) tends to zero as R → ∞. This completes the proof. ��

6.4 The foliation near a double pole

Consider again a quadratic differential φ on S, and suppose that φ has a double pole
at p ∈ S. In this case, one can show ([46, Theorem 6.3]) that there exists a local
coordinate t , defined in a neighborhood of p, such that

φ(t) = ap

t2
dt⊗2

for a well defined constant ap ∈ C
∗. It follows that away from p, any branch of the

function w = √
ap log(t) is a distinguished local coordinate. Assuming ap /∈ R, the

condition Im(w) = constant describes a spiral in the t-plane around the point t = 0
where the direction of spiraling depends on the value of the leading coefficient. The
curve spirals in the clockwise direction if Im(ap) < 0 and in the counterclockwise
direction if Im(ap) > 0. (See Fig. 12.)

Lemma 6.5 Let φ ∈ QP (S, M) and let (C, ψ) be a marked hyperbolic surface repre-
senting 


S,M
P (φ) where ψ : S\M → C is a harmonic diffeomorphism onto its image.

If α is a horizontal trajectory for φ which is asymptotic to a double pole p ∈ M such
that ap /∈ R, then
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(1) The curve ψ(α) winds infinitely many times around the boundary component of C
corresponding to p, becoming arbitrarily close to this boundary component. (See
Fig.6.)

(2) The direction of spiraling is compatible with the orientation of C if Im(ap) < 0.
It is the opposite direction if Im(ap) > 0.

Proof Consider a small disk D ⊂ S centered at the point p. If e is a segment that points
radially outward from p, connecting this point to ∂ D, then by the above discussion,
we know that e intersects α in infinitely many points which accumulate at p. The
map ψ takes D\{p} to an annulus A ⊂ C and sends e to a curve connecting the two
boundary components of this annulus. Since ψ is a diffeomorphism onto its image,
ψ(α) intersects ψ(e) in infinitely many points that accumulate at the boundary of A.
This implies (1). Part (2) follows from the similar behavior of the horizontal foliation
near p. ��

6.5 TheWKB triangulation

An important fact first noted in [24] is that a complete, saddle-free GMN differential
determines an associated ideal triangulation. More precisely, suppose we are given a
marked quadratic differential (S, φ, θ) representing a point in the spaceQ(S, M). If φ
is complete and saddle free, then we have seen that the horizontal foliation determines
a decomposition of S into horizontal strips and half planes. By choosing a single
generic trajectory within each of the horizontal strips, we obtain a collection of paths
on S. The preimage of this collection under the diffeomorphism θ is a collection of
arcs which define an ideal triangulation T (φ) of (S, M). Following the terminology
of [24], we call T (φ) the WKB triangulation.

If the differential φ is equipped with a signing, then T (φ) can be equipped with
a natural signing denoted ε(φ). Indeed, the fact that φ is saddle-free implies that the
residue of φ at a double pole corresponding to a puncture p ∈ P cannot be real ([10,
Section 10.1]), and so the chosen value of the residue must lie in either the upper or
lower half plane. If this value lies in the upper half plane, we will set ε(φ)(p) = +1,
and if it lies in the lower half plane, we will set ε(φ)(p) = −1. Then (T (φ), ε(φ))

is called the signed WKB triangulation, and its equivalence class is called the tagged
WKB triangulation and denoted τ(φ).

6.6 Asymptotics of cluster coordinates

We now come to themain result of this section. Fix a complete, saddle-free differential
φ ∈ Q±(S, M). Here we use the same symbol to denote a point of Q±(S, M) and an
underlying quadratic differential. Then for any R > 0, we can consider the image of
the rescaled differential R2 · φ under the map 
± : Q±(S, M) → T ±(S, M). Under
our assumptions, the differential φ determines an associated tagged WKB triangula-
tion τ(φ), and we can define cluster coordinates with respect to τ(φ). In particular,
suppose γ = γα ∈ Ĥ(φ) is the class of a standard saddle connection α for φ. In the
following, we will use the same symbol α to denote the corresponding arc of theWKB
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triangulation, and we will write Xφ,γ (R) for the cluster coordinate of
±(R2 ·φ)with
respect to this tagged arc α.

Theorem 6.6 Taking notation as above, we have

Xφ,γ (R) · exp(R · ReZφ(γ )) → 1 as R → ∞.

Proof Let β be an arc of the WKB triangulation, and let (CR, ψR) be a marked
hyperbolic surface representing 
±(R2 · φ) with ψR harmonic. We will begin by
describing the image of β under the map ψR . To do this, suppose p is a double pole
of φ which corresponds to an endpoint of this arc β. We have a distinguished value rp

of the residue of φ at this pole p. Suppose this value rp satisfies Re(rp) > 0. If we also
have Im(rp) > 0, then the leading coefficient ap of φ at p satisfies Im(ap) < 0. Then
it follows from Lemma 6.5 that the image of β under ψR spirals into the boundary
ofCR in the direction compatible with the orientation of the surface. By the definitions
of Sect. 5.5, this agrees with the orientation of the boundary component prescribed by

±(R2 · φ) ∈ T ±(S, M).

On the other hand, if Re(rp) > 0 and Im(rp) < 0, then the leading coefficient ap

of φ at the pole p satisfies Im(ap) > 0. In this case, Lemma 6.5 implies that ψR(β)

spirals into the boundary of CR in the direction opposite to the orientation of the
surface. If we change the chosen orientation of this boundary component of CR by
acting on 
±(R2 · φ) by the signing ε(φ), then the definitions of Sect. 5.5 imply that
ψR(β) spirals in the direction prescribed by the resulting orientation.

One can performa similar analysis in the casewhereRe(rp) < 0. IfRe(rp) = 0 then
p corresponds via themapψR to a cusp ofCR , and the leaves of the horizontal foliation
do not spiral into the pole p. Thus we see that for any arc β of the WKB triangulation,
the ends of ψR(β) spiral into the boundary of CR in the direction prescribed by
ε(φ) · 
±(R2 · φ).

It follows that if α is not the interior edge of a self-folded triangle, then the cluster
coordinate is given by Xφ,γ (R) = Yφ,α(R) where Yφ,α(R) is defined as in Sect. 6.3,
and the period is Zφ(γ ) = ∫

cα̃
λ. If α is the internal edge of a self-folded triangle and

β is the encircling edge, then Xφ,γ (R) = Yφ,α(R)Yφ,β(R). In this case, one also has

Zφ(γ ) =
∫

cα̃

λ +
∫

cβ̃

λ

by the proof of Theorem 7.8 in [2]. The desired statement therefore follows from
Lemma 6.4. ��

7 Triangulated categories

In this section, we review the construction of the 3-Calabi–Yau triangulated category
associated to a triangulated surface.
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7.1 Quivers with potential

Recall that a quiver Q is simply a directed graph. It consists of a finite set Q0 of
vertices, a finite set Q1 of arrows, and maps s : Q1 → Q0 and t : Q1 → Q0 taking
an arrow to its source and target, respectively. A path of length d > 0 in Q is defined
as a sequence of arrows a1, . . . , ad such that s(ai ) = t(ai+1) for every i . Such a path
will be denoted by p = a1 . . . ad . We define its source by s(p) = s(ad) and its target
by t(p) = t(a1). A path is cyclic if its source and target coincide. Two paths p and
q are composable if s(p) = t(q), and in this case their composition pq is defined by
concatenation. We also allow paths of length zero and define composition analogously
for such paths.

If Q is a quiver and k is a field, we write kQ for the k-vector space spanned by
the set of all paths in Q. This vector space has a natural bilinear product operation
where the product of two paths is defined to be their composition if the paths are
composable and is defined to be zero otherwise. The space kQ equipped with this
multiplication is called the path algebra of Q. The paths of length one generate a two-
sided ideal a ⊂ kQ in the path algebra, and the complete path algebra k̂Q is defined
as the completion of kQ with respect to this ideal a. Concretely, it is the vector space
generated by possibly infinite k-linear combinations of paths in Q with multiplication
induced by composition of paths.

A potential for Q is defined as an element of k̂Q each of whose terms is a cyclic
path of positive length. Two potentials W and W ′ for Q are cyclically equivalent if
their difference W − W ′ lies in the closure of the vector subspace of k̂Q spanned
by elements of the form a1 . . . ad − a2 . . . ada1 where a1 . . . ad is a cyclic path of
positive length. A quiver with potential is a pair (Q, W ) where Q is a quiver and W
is a potential for Q considered up to cyclic equivalence.

7.2 Quivers with potential from surfaces

In this paper, we are interested in a particular class of quivers with potential associated
to triangulated surfaces in the work of Labardini-Fragoso [34]. Let (S, M) be amarked
bordered surface and T an ideal triangulation of (S, M). If p ∈ P is any puncture, then
the valency of p with respect to T is defined as the number of half arcs of T that are
incident to p. We say that T is regular if every puncture has valency ≥ 3 with respect
to T . Below we will define a quiver with potential (Q(T ), W (T , ε)) associated to a
signed triangulation (T , ε) for which the underlying ideal triangulation T is regular.

By definition, Q(T ) has exactly one vertex for each arc of T . We typically draw
the vertices at the midpoints of the corresponding arcs on the surface and use the same
symbol to denote a vertex and the corresponding arc. The quiver Q(T ) has εT

i j arrows

from j to i whenever εT
i j > 0. Figure13 illustrates a portion of an ideal triangulation

and the associated quiver.
The quiver Q(T ) constructed in this way has two obvious kinds of cyclic paths.

Let us say that a triangle of T is internal if all of its sides are arcs. Then there is a
clockwise oriented path τ(t) of length three inscribed within each internal triangle t of
the triangulation T . On the other hand, there is a counterclockwise oriented path π(p)
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Fig. 13 The quiver associated to
an ideal triangulation

of length ≥ 3 encircling each puncture p ∈ P. Following Labardini-Fragoso [34], we
define a canonical potential W (T , ε) for Q(T ) by the formula

W (T , ε) =
∑

t

τ(t) −
∑

p

ε(p)π(p)

where the first sum runs over all internal triangles t of T and the second sum runs over
all punctures p ∈ P. Thus we get a quiver with potential (Q(T ), W (T , ε)) canonically
associated to (T , ε). This construction can be generalized to the case where T is non-
regular; we refer to [34] for the details concerning non-regular triangulations.

In [12], Derksen, Weyman, and Zelevinsky defined two quivers with poten-
tial (Q, W ) and (Q′, W ′) to be right equivalent if there exists an isomorphism
F : k̂Q

∼→ k̂Q′ of their completed path algebras such that F preserves paths of
length zero and F(W ) is cyclically equivalent to W ′. The following result is due to
Labardini-Fragoso.

Theorem 7.1 ([35, Theorem 6.1]). Let (S, M) be a marked bordered surface, and
assume (S, M) is not one of the following:

(1) A sphere with ≤ 5 marked points.
(2) An unpunctured disk with ≤ 3 marked points on its boundary.
(3) A once-punctured disk with one marked point on its boundary.

Then up to right equivalence, the quiver with potential associated to a signed trian-
gulation of (S, M) depends only on the underlying tagged triangulation.

Let us say that a potential is reduced if it is a sum of cycles of length ≥ 3. In the
case where Q is a quiver with reduced potential W , and k is a vertex of Q that is
not contained in a cyclic path of length two, Derksen, Weyman, and Zelevinsky [12]
define a new quiver with potential μk(Q, W ) called the quiver with potential obtained
by mutation in the direction k. It is well defined up to right equivalence and depends
only on the right equivalence class of (Q, W ). Although the general definition of the
mutated quiver with potential μk(Q, W ) is somewhat involved, it can be understood
in a simple way for quivers with potential arising from triangulated surfaces, thanks
to the following result of Labardini-Fragoso.
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Theorem 7.2 ([34, Theorem 30]). Let (S, M) be a marked bordered surface satisfying
the assumption of Theorem 7.1. Let (T , ε) be a signed triangulation of (S, M) and
(T ′, ε) the signed triangulation obtained from (T , ε) by a flip of the arc k. Then, up
to right equivalence,

(Q(T ′), W (T ′, ε)) = μk(Q(T ), W (T , ε)).

7.3 The Jacobian algebra

Let us consider once again a quiver Q. For any cyclic path p = a1 . . . ad and any
arrow a in Q, we define the cyclic derivative of p with respect to a by the formula

∂a(p) =
∑

i :ai =a

ai+1 . . . ada1 . . . ai−1 ∈ k̂Q.

Extending this operation by linearity and continuity, we can define the cyclic derivative
∂a(W ) ∈ k̂Q of any potential W for Q with respect to the arrow a. Then the Jacobian
ideal J(Q, W ) ⊂ k̂Q is the closure of the two-sided ideal in the path algebra generated
by the set {∂a(W ) : a ∈ Q1}. The Jacobian algebra of (Q, W ) is the quotient

J (Q, W ) = k̂Q/J(Q, W ).

It is easy to see from this definition that right equivalent quivers with potential have
isomorphic Jacobian algebras. In the following, we will write A(Q, W ) for the cate-
gory of finite dimensional modules over the Jacobian algebra. It is an abelian category
with finitely many isomorphism classes of simple objects in bijection with the vertices
of Q. Our main goal in this section is to describe a 3-Calabi–Yau triangulated category
containing A(Q, W ) as a distinguished subcategory.

7.4 Hearts and tilting

Let D denote a k-linear triangulated category with shift functor [1]. The notion of a
t-structure on D determines a full abelian subcategory of D called the heart of the
t-structure. In this paper we will be interested exclusively in bounded t-structures. By
a heart in D, we will always mean the heart of a bounded t-structure, which can be
characterized as follows.

Definition 7.3 ([9, Lemma 3.2]). The heart of a bounded t-structure on D is a full
additive subcategory A ⊂ D such that

(1) If j > k are integers, then HomD(A[ j], A[k]) = 0 for all objects A, B ∈ A.
(2) For every object E ∈ D, there is a finite sequence of integers

k1 > k2 > · · · > ks
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and a sequence of exact triangles

0 = E0 E1 E2 · · · Es−1 Es = E

A1 A2 As

with A j ∈ A[k j ] for each j .

A heart in a triangulated category D is a full abelian subcategory. To get other
abelian subcategories of D, we use the operation of tilting. In this paper, we will only
need a special case of the tilting construction which we describe now.

Let us say that a heart is of finite length if it is noetherian and artinian as an abelian
category. IfA ⊂ D is a finite length heart and S ∈ A is a simple object, then we write

S⊥ = {E ∈ A : HomA(S, E) = 0}, ⊥S = {E ∈ A : HomA(E, S) = 0}.

Then the categories

μ−
S (A) = 〈S[1], ⊥S〉, μ+

S (A) = 〈S⊥, S[−1]〉

are new hearts called the left tilt and right tilt ofA at S, respectively. Here we use the
notation 〈C〉 for the extension closure of a collection C of objects inD. It is defined as
the smallest full subcategory of D which contains all objects in C and is closed under
extensions.

7.5 Triangulated categories from surfaces

In this paper, we will be interested in a class of 3-Calabi–Yau triangulated categories
associated to triangulated surfaces. The existence of these categories is guaranteed by
the following theorem.

Theorem 7.4 ([10,Theorem7.1]).Let (Q, W )be a quiver with reduced potential. Then
there exists a corresponding 3-Calabi–Yau triangulated category D(Q, W ) over k.
It has a distinguished bounded t-structure whose heart is the category A(Q, W ) of
finite-dimensional modules over the Jacobian algebra J (Q, W ). Moreover, if (Q′, W ′)
is another quiver with potential and F : k̂Q → k̂Q′ is a right equivalence, then F
induces a canonical triangulated equivalence D(Q, W ) → D(Q′, W ′).

Explicitly, the categoryD(Q, W ) of Theorem 7.4 is defined as the full subcategory
of the derived category of the complete Ginzburg dg-algebra of (Q, W ) consisting of
dg-modules with finite-dimensional cohomology. Further details can be found in [32].
For us the important property of this construction is the following result of Keller and
Yang [32].
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Theorem 7.5 ([10, Theorem 7.3]). Let (Q, W ) be a 2-acyclic quiver with potential,
and let (Q′, W ′) = μk(Q, W ) be a quiver with potential obtained by mutation in the
direction k. Then there is a canonical pair of k-linear triangulated equivalences

�± : D(Q′, W ′) → D(Q, W )

such that if Sk ∈ A(Q, W ) is the simple object corresponding to the vertex k, then
functors �± induce tilting in the sense that

�±(A(Q′, W ′)) = μ±
Sk

(A(Q, W )).

The category that we are interested in is obtained by applying Theorem 7.4 to the
quiver with potential associated to a triangulation of a marked bordered surface. In
order to make use of the results of [10], we consider only marked bordered surfaces
of the following type.

Definition 7.6 ([10]). A marked bordered surface (S, M) is amenable if it is not one
of the following:

(1) A closed surface with a single puncture.
(2) A sphere with ≤ 5 punctures.
(3) An unpunctured disk with ≤ 4 marked points on its boundary.
(4) A once-punctured disk with one, two, or four marked points on its boundary.
(5) A twice-punctured disk with two marked points on its boundary.
(6) An annulus with one marked point on each boundary component.

If τ is a tagged triangulation of an amenable marked bordered surface (S, M), then
by Theorem 7.1, there is an associated quiver with potential (Q(τ ), W (τ )) which is
well defined up to right equivalence. Hence, by Theorem 7.4 there is an associated tri-
angulated category D(Q(τ ), W (τ )). If τ ′ is any other tagged triangulation of (S, M),
then τ and τ ′ are related by a sequence of flips of tagged arcs. It then follows from
Theorems 7.2 and 7.5 that the categories D(Q(τ ), W (τ )) and D(Q(τ ′), W (τ ′)) are
equivalent. Hence the category D(Q(τ ), W (τ )) is determined by (S, M) up to a non-
canonical equivalence.

7.6 The exchange graph

For any triangulated category D, the tilting graph Tilt(D) is the graph whose vertices
are the finite length hearts in D, where two vertices are connected by an edge if
the corresponding hearts are related by a tilt at a simple object. In particular, we
can take D = D(Q, W ) to be the category associated to a 2-acyclic quiver with
potential (Q, W ). In this case, the graph Tilt(D) has a distinguished vertex given
by the canonical heart A(Q, W ) ⊂ D(Q, W ). We write Tilt�(D) for the connected
component of Tilt(D) containing this vertex.

Let Aut(D) denote the group of all triangulated autoequivalences of D. There is a
natural action of this group on the tilting graph Tilt(D), and we write

Aut�(D) ⊂ Aut(D)
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for the subgroup preserving Tilt�(D). We let

Nil�(D) ⊂ Aut�(D)

be the subgroup of autoequivalences that act trivially and write

Aut�(D) = Aut�(D)/Nil�(D)

for the quotient, which acts effectively on Tilt�(D).
IfA ∈ Tilt�(D) and S ∈ A is a simple object, then S is spherical, and hence by the

work of Seidel andThomas [44], there is an associated autoequivalence TwS ∈ Aut(D)

called a spherical twist. It has the property TwS(μ−
S (A)) = μ+

S (A) by Proposition 7.1
of [10]. Moreover, the group SphA(D) = 〈TwS : S ∈ A simple〉 ⊂ Aut(D) is
independent of the choice of vertexA, and therefore we can simply denote this group
by Sph�(D). We write

Sph
�
(D) ⊂ Aut�(D)

for the image of Sph�(D) in Aut�(D).
This group Sph

�
(D) acts on Tilt�(D), and the quotient

Exch�(D) = Tilt�(D)/Sph
�
(D)

is known in cluster theory as the exchange graph. The quotient group

G�(D) = Aut�(D)/Sph
�
(D)

acts by symmetries on Exch�(D) and is known as the cluster modular group.
In the case where the quiver with potential arises from a tagged triangulation of an

amenable marked bordered surface (S, M), we can give a simple description of these
objects. Indeed, in this case one can define another graph Tri��(S, M) whose vertices
are tagged triangulations of (S, M), where two vertices are connected by an edge if
the corresponding triangulations are related by a flip of a tagged arc. There is a natural
action of the signed mapping class group MCG±(S, M) on this graph Tri��(S, M),
and one has the following result.

Theorem 7.7 ([4, Theorem 10.1]). Let τ be a tagged triangulation of an amenable
marked bordered surface (S, M). Let (Q, W ) = (Q(τ ), W (τ )) be the quiver with
potential determined by τ , and let D = D(Q, W ) be the associated triangulated
category. Then

(1) There is an isomorphism of graphs

Tri��(S, M) ∼= Exch�(D).

(2) There is an isomorphism of groups

MCG±(S, M) ∼= G�(D).
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Under these isomorphisms, the action of the cluster modular group on the exchange
graph coincides with the action of the signed mapping class group on the graph of
tagged triangulations.

8 Themain results

In this section, we formulate our main results in terms of the triangulated category
introduced above.

8.1 Stability conditions

We begin by recalling the notion of a stability condition from [9]. If A is an abelian
category, then a stability function on A is defined to be a group homomorphism
Z : K (A) → C such that for any nonzero object E ∈ A, the complex number
Z(E) lies in the semi-closed upper half plane

H = {r exp(iπφ) : r > 0 and 0 < φ ≤ 1} ⊂ C.

Given a stability function Z : K (A) → C, we can assign to any nonzero object E ∈ A
a well defined phase given by

φ(E) = 1

π
arg Z(E) ∈ (0, 1].

A nonzero object E ∈ A is said to be semistable with respect to Z if every proper
nonzero subject A ⊂ E satisfies φ(A) ≤ φ(E).

If we are given a stability function on an abelian category A, then the semistable
objects provide a way to filter arbitrary objects of A. More precisely, if E ∈ A is
a nonzero object, then a Harder–Narasimhan filtration of E is a finite sequence of
subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E

such that each quotient Fj = E j/E j−1 is semistable, and

φ(F1) > φ(F2) > · · · > φ(Fn).

A stability function Z on A is said to have the Harder–Narasimhan property if every
nonzero object of A has a Harder–Narasimhan filtration. Using these concepts, we
can give the following definition of a stability condition on a triangulated category.

Definition 8.1 ([9, Proposition 5.3]). LetD be a triangulated category. Then a stability
condition (A, Z) on D consists of the heartA of a bounded t-structure on D together
with a stability function Z on A having the Harder–Narasimhan property.
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One can show using our definitions that if A ⊂ D is a heart, then there is an
isomorphism K (A) ∼= K (D). Thus a stability function onA induces a homomorphism
Z : K (D) → C called then central charge. In the examples that we consider, the
Grothendieck group is a finite-rank lattice K (D) ∼= Z

n , and we will restrict attention
to stability conditions satisfying the support property from [33]: For any norm ‖ · ‖
on K (D) ⊗Z R, there is a constant C > 0 such that

‖γ ‖ < C · |Z(γ )|

for every class γ ∈ K (D) represented by a semistable object. If we write Stab(D)

for the set of stability conditions on D satisfying this support property, then the main
result of [9] can be formulated as follows.

Theorem 8.2 ([9, Theorem 1.2]). The set Stab(D) has the structure of a complex
manifold such that the map

Stab(D) → HomZ(K (D), C) (12)

taking a stability condition to its central charge is a local isomorphism.

8.2 Group actions

To describe the space of stability conditions on a triangulated category, one typically
considers quotients by various group actions. For any triangulated category D, there
is a natural action of the group Aut(D) on Stab(D). If (A, Z) ∈ Stab(D) is a stability
condition and � ∈ Aut(D) is an autoequivalence of D, then � · (A, Z) = (A′, Z ′) is
defined by

A′ = �(A), Z ′(E) = Z(�−1(E))

for an object E ∈ A′.
In the case where D = D(Q, W ) is the 3-Calabi–Yau triangulated category asso-

ciated to a 2-acyclic quiver with potential (Q, W ), there is a distinguished component
Stab�(D) ⊂ Stab(D) of the space of stability conditions on D. It is the component
containing those stability conditions of the form (A, Z) where A is a vertex lying in
the distinguished component Tilt�(D) ⊂ Tilt(D) of the tilting graph. As explained
in Section 7.7 of [10], the subgroup Aut�(D) ⊂ Aut(D) preserves this component
while Nil�(D) ⊂ Aut�(D) acts trivially on it. Hence there is an induced action of
Aut�(D) = Aut�(D)/Nil�(D) on Stab�(D). We write

�(Q, W ) = Stab�(D)/Sph
�
(D)

for the quotient of the distinguished component by the subgroup Sph
�
(D) ⊂ Aut�(D).

In addition to the action of the group of autoequivalences, there is a natural action
of the group of complex numbers on the space of stability conditions. This action has
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the property that the forgetful map (12) isC-equivariant where z ∈ C acts on the space
of central charges by mapping Z ∈ HomZ(K (D), C) to e−iπ z · Z .

8.3 Stability conditions from surfaces

Let τ0 be a tagged triangulation of an amenable marked bordered surface (S, M). We
will denote by (Q, W ) = (Q(τ0), W (τ0)) the associated quiver with potential and by
D = D(Q, W ) the associated 3-Calabi–Yau triangulated category. In [10], Bridge-
land and Smith gave a description of the quotient Stab�(D)/Aut�(D) in terms of
meromorphic quadratic differentials on Riemann surfaces. Here we employ a slightly
modified version of this result involving the space Q±(S, M) introduced in Sect. 2.7.
In the following statement, we consider the C-action on this space where a complex
number z ∈ C sends a quadratic differential φ to the rescaled differential e−2π i z · φ.

Theorem 8.3 ([4, Theorem 10.3]). Take notation as in the previous paragraph. Then
there is an isomorphism of complex manifolds

�(Q, W ) ∼= Q±(S, M) (13)

which is equivariant with respect to the actions of G�(D) ∼= MCG±(S, M) and C.

If A ∈ Tilt�(D), then there is a corresponding subset Stab(A) ⊂ Stab(D) con-
sisting of stability conditions of the form (A, Z) for some stability function Z . As
explained in [10, Section 7.7], it is a locally closed subset of the space of stability
conditions. By Theorem 7.7, there is a unique corresponding vertex τ ∈ Tri��(S, M).
An important property of the isomorphism (13) is that if σ ∈ �(Q, W ) is any point
corresponding to a stability condition in the interior of Stab(A), then σ is mapped to
a complete, saddle-free quadratic differential φ having tagged WKB triangulation τ .
There is an isomorphism K (A) ∼= Ĥ(φ) which identifies identifies the stability func-
tion Zσ of σ with the period map Zφ and identifies the classes of simple objects inA
with standard saddle classes of φ.

8.4 Positive points of cluster varieties

In the theory of cluster algebras and cluster varieties, a seed is defined to be an ordered
triple i = (�, {ei }i∈I , 〈−,−〉) consisting of a lattice � of finite rank, a basis {ei }i∈I

for � indexed by some finite set I , and an integer-valued skew form 〈−,−〉. An
isomorphism of seeds is defined to be an isomorphism of the underlying lattices that
preserves the distinguished bases and the skew forms.

For example, suppose that (Q, W ) is a 2-acyclic quiver with potential and D =
D(Q, W ) is the associated 3-Calabi–Yau triangulated category. Then we get a lattice
� = K (D) of finite rank. Given a heart A ∈ Tilt�(D), there are finitely many simple
objects Si ∈ A (i ∈ I ) up to isomorphism, and their classes ei = [Si ] ∈ K (A) ∼=
K (D) form a basis for �. There is a bilinear form 〈−,−〉 on � given by the Euler
pairing
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〈[E], [F]〉 =
∑
i∈Z

(−1)i dimkHom
i
D(E, F)

where Homi
D(E, F) = HomD(E, F[i]). The 3-Calabi–Yau property of D implies

that this form is skew-symmetric. In this way, we see that there is a seed naturally
associated to any vertex A ∈ Tilt�(D). If A′ is obtained from A by applying a
spherical twist, then the seed associated toA is isomorphic to the one associated toA.
It follows that, up to isomorphism, there is a well defined seed it associated to each
vertex t ∈ Exch�(D).

We say that two seeds i = (�, {ei }i∈I , 〈−,−〉) and i′ = (�′, {e′
i }i∈I , 〈−,−〉′) are

related by mutation at k ∈ I if we have �′ = � and 〈−,−〉′ = 〈−,−〉 and if the bases
are related by

e′
j =

{
−ek if j = k

e j + [〈ek, e j 〉]+ · ek if j �= k
(14)

where we write [m]+ = max(m, 0).
Continuing the example from above, suppose that t , t ′ ∈ Exch�(D) are connected

by an edge. Then t and t ′ correspond to hearts A, A′ ∈ Tilt�(D) so that if Si (i ∈ I )
are the simple objects ofA up to isomorphism, then we haveA′ = μ+

Sk
(A) for some k.

Then the proof of Proposition 7.1 in [10] shows thatA′ has simple objects S′
i (i ∈ I ) in

bijection with those ofA, and the classes ei = [Si ] and e′
i = [S′

i ] are related by (14). It
follows that, up to composition with seed isomorphisms, the seeds it and it ′ are related
by mutation at k ∈ I .

To any seed i = (�, {ei }i∈I , 〈−,−〉), we associate the real manifold

Ti = HomZ(�, Z) ⊗Z R>0 ∼= R
I
>0.

For any γ ∈ �, there is a function X i,γ : Ti → R>0 given by X i,γ (g ⊗ h) = hg(γ ).
Note that if i′ is a seedwhich is isomorphic to i, then the two seeds have the same lattice,
and so we have a canonical homeomorphism Ti ∼= Ti′ . We can therefore think of Ti as
depending only on the isomorphism class of i. For k ∈ I , we define a homeomorphism
μk : Ti → Tμk (i) by the formula

μ∗
k(Xμk (i),γ ) = X i,γ · (1 + X i,ek )

〈γ,ek 〉.

We then define a space by gluing the manifolds Ti using these homeomorphisms.

Definition 8.4 The enhanced Teichmüller space of Q is the space

T (Q) =
⎛
⎝ ∐

t∈Exch�(D)

Tit

⎞
⎠ / ∼

where ∼ is the relation defined by gluing each pair of spaces Ti and Tμk (i) by the
homeomorphism μk : Ti → Tμk (i).
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This space T (Q) arises as the set ofR>0-valued points of the cluster Poisson variety
of Q (see Section 9.6 of [4] for a definition of the cluster Poisson variety in our setup).
In particular, it is independent of the choice of potential W . Note that the action of the
cluster modular group G�(D) on the exchange graph Exch�(D) gives rise to a natural
action of G�(D) on T (Q).

8.5 Positive points of cluster varieties from surfaces

Let τ0 once again be a tagged triangulation of an amenable marked bordered surface
(S, M). We write (Q, W ) = (Q(τ0), W (τ0)) for the associated quiver with potential
and D = D(Q, W ) for the associated triangulated category. We can then apply the
construction described above to get a space T (Q), and we have the following result.

Theorem 8.5 Take notation as in the previous paragraph. Then there is a homeomor-
phism

T (Q) ∼= T ±(S, M)

which is equivariant with respect to the action of G�(D) ∼= MCG±(S, M).

Proof Associated to any vertex t ∈ Exch�(D) is a seed it = (�, {ei }i∈I , 〈−,−〉) well
defined up to isomorphism. The functions X it ,ei provide a homeomorphism Tit ∼=
R

I
>0. If τ is the tagged triangulation corresponding to t under the isomorphism of

Theorem 7.7, then by Lemma 9.10 of [10], the tagged arcs of τ are naturally in
bijection with the basis elements ei . Let us write αi for the tagged arc corresponding
to ei . Then there is a cluster coordinate Xτ,αi for each of these tagged arcs, and
these coordinates provide a homeomorphism T ±(S, M) ∼= R

I
>0. Hence there is a

homeomorphism T ±(S, M) ∼= Tit .
Next suppose that t ′ is connected to t by an edge of Exch�(D), and let τ ′ be the

tagged triangulation corresponding to t ′ under the isomorphism of Theorem 7.7. Then
τ ′ is obtained from τ by a flip of some tagged arc γ . By Lemma 9.10 of [10], one has
〈ei , e j 〉 = εT

αi α j
. Using this fact together with (14), one can check that the transfor-

mation used to glue Tit to Tit ′ coincides with the transformation in Proposition 3.6.
Hence there is a canonical homeomorphism T (S, M) ∼= T (Q). The equivariance
follows from Theorem 7.7. ��

For any vertex t ∈ Exch�(D), let it = (�, {ei }i∈I , 〈−,−〉) be the corresponding
seed, well defined up to isomorphism. Let τ ∈ Tri��(S, M) be the tagged triangulation
corresponding to t under the isomorphism of Theorem 7.7. From the proof of Theo-
rem 8.5, one see that for each i ∈ I , the function X i,ei : Ti → R>0 is identified with
the cluster coordinate Xτ,αi : T ±(S, M) → R>0 associated to a corresponding tagged
arc αi of τ . The correspondence between basis elements ei and tagged arcs αi is such
that if φ is a complete, saddle-free differential with tagged WKB triangulation τ , then
ei is the class in K (A) ∼= Ĥ(φ) of the standard saddle connection corresponding to αi .
See [10, Section 10.4], for details.
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8.6 From stability conditions to Teichmüller space

If we now write 
̂ : �(Q, W ) → T (Q) for the composition of 
± : Q±(S, M) →
T ±(S, M) with the homeomorphisms of Theorems 8.3 and 8.5, then we have our first
main result.

Theorem 8.6 Let (Q, W ) be the quiver with potential associated to a tagged trian-
gulation of an amenable marked bordered surface, and let D = D(Q, W ) be the
associated 3-Calabi–Yau triangulated category. Then there is a G�(D)-equivariant
continuous map


̂ : �(Q, W ) → T (Q)

from the space of stability conditions to the enhanced Teichmüller space.

Proof The continuity of 
̂ follows from Proposition 5.10, while the equivariance
follows from the MCG±(S, M)-equivariance of 
± combined with the equivariance
properties in Theorems 8.3 and 8.5. ��

Next suppose that σ = (A, Z) is a stability condition in the interior of Stab(A)

for some heart A ∈ Tilt�(D). We will consider the 1-parameter family of stabil-
ity conditions σR = (A, R · Z) for R > 0. The heart A determines a seed i =
(�, {ei }i∈I , 〈−,−〉) whose underlying lattice is � = K (D), and hence we have a
function X i,γ : Ti → R>0 for every γ ∈ K (D). In the following, we will write
Xσ,γ (R) = X i,γ (
̂(σR)).

Theorem 8.7 Take notation as in the last paragraph. Then

Xσ,γ (R) · exp(R · ReZ(γ )) → 1 as R → ∞.

Proof By the remarks followingTheorem8.3, the stability conditionσR corresponds to
a quadratic differential R2 ·φ where φ is complete and saddle-free. There is an isomor-
phism K (A) ∼= Ĥ(φ) that identifies the stability function Z with the period map Zφ

and identifies the basis elements provided by the seed i with standard saddle connec-
tions. By the remark following Theorem 8.5, the functions X i,ei (R) are identified with
cluster coordinates on T ±(S, M) corresponding to these standard saddle-connections.
The theorem therefore follows from Theorem 6.6. ��
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