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Abstract
We prove that the integral Stokes matrices of size 4 with given Coxeter invariant
of nonzero discriminant decompose into finitely many braid group orbits. We also
establish exceptional isomorphisms between moduli spaces of points on algebraic
unit 3-spheres and certain moduli of local systems on positive genus surfaces.
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�g,n A compact oriented surface of genus g with n boundary curves
X(�g,n,SL2) The coarse moduli space of SL2-local systems on �g,n

�g,n The pure mapping class group of �g,n

Br The braid group on r strands
G[2] The semidirect product G[2] = (G × G) � C2 (Definition 3.2)
B(r ,G) The quotient Gr // (G × G) (Definition 3.4)
W (G) The quotient of G by itself under conjugation
C(r ,G) The quotient Gr−1 // G by diagonal conjugation action

1 Introduction

1.1 Let us define a Stokes matrix of size r to be an r ×r upper triangular matrix whose
diagonal entries are all 1. Let V (r) denote the affine space of size r Stokes matrices.
Let RecPolyr be the affine space of monic reciprocal polynomials of degree r in one
variable. We define the Coxeter invariant to be the morphism

c : V (r) → RecPolyr

sending s ∈ V (r) to cs(λ) = det(λ+s−1sT ), and denote its fibers by Vp(r) = c−1(p).
Given p ∈ RecPolyr (Z) a monic reciprocal polynomial with integral coefficients, the
variety Vp(r) admits a natural integral model over Z, with the integral points corre-
sponding to the Stokes matrices with integral entries. Each Vp(r) carries a nonlinear
action of the braid group Br on r strands.

Stokes matrices and their braid group dynamics arise in various contexts, such
as exceptional collections in triangulated categories (see Section 7) and quantum
cohomology [10], with integral Stokes matrices often playing a significant role. The
following problem appears fundamental.

Problem 1.1 Determine the structure of integral points on the varieties Vp(r) under
the braid group action and other symmetries.

Consider the first nontrivial case r = 3. If

s =
⎡
⎣
1 x z
0 1 y
0 0 1

⎤
⎦ ∈ Vp(3)

one has p(λ) = (λ + 1)(λ2 − kλ + 1) where k = x2 + y2 + z2 − xyz − 2. Each
Vp(3) therefore has the structure of an affine cubic surface of the type first studied
by Markoff [17] in 1880, and a classical argument shows that Vp(3)(Z) consists of
finitely many B3-orbits if disc(p) �= 0.
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Our main result concerns the next nontrivial case r = 4. The varieties Vp(4) can
be described explicitly. If

s =

⎡
⎢⎢⎣
1 a e d
0 1 b f
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ ∈ Vp(4),

then one has p(λ) = λ4 − k1k2λ3 + (k21 + k22 − 2)λ2 − k1k2λ + 1, where k1 and k2
are determined up to permutation by

k1 + k2 = ac + bd − e f ,

k1k2 = a2 + b2 + c2 + d2 + e2 + f 2 − abe − ad f − bc f − cde + abcd − 4,

and disc(p) = (k21 − 4)2(k22 − 4)2(k21 − k22)
2. Therefore, each Vp(4) is a finite union

of 4-dimensional affine complete intersections of degree 6.

Theorem 1.2 If p(λ) ∈ Z[λ] is a monic reciprocal polynomial of degree 4 such that
disc(p) �= 0, then Vp(4) contains at most finitely many integral B4-orbits.

Previously, the integral B4-orbits on Vp(4) for p(λ) = (λ − 1)4 were completely
classified in [9], and were shown to be infinite in number; in particular, the condition
on the discriminant in Theorem 1.2 is necessary. In contrast to Theorem 1.2, work in
preparation by the second author shows that, if r ≥ 5, for “most” choices of p the set
of integral Br -orbits on Vp(r) is infinite if nonempty.
1.2 Our proof of Theorem 1.2 is aided by a novel observation that each irreducible
component of Vp(4) is isomorphic, in a B4-equivariant manner, to a moduli space
of SL2-local systems for the surface of genus 1 with 2 boundary curves. Granting
these isomorphisms, Theorem 1.2 can be obtained by refining the general structure
theory of integral points on the latter moduli spaces, due to the second author [23]
(see also [25]). The main part of this paper will be devoted to providing a conceptual
basis for the isomorphism by making use of special phenomena in dimension 4, such
as the exceptional isogeny SL2 ×SL2 → SO(4) and the group structure on the unit
3-sphere.

Through our analysis, we will obtain more broadly a series of exceptional iso-
morphisms between moduli spaces of points on the unit 3-sphere (related to Stokes
matrices by invariant theory) and moduli spaces of SL2-local systems on surfaces
of positive genus with one or two boundary curves. The resulting extension of the
braid group actions on moduli of points on 3-spheres, to the actions of mapping class
groups of positive genus surfaces, provides another facet of the exceptional nature of
geometry and algebra in dimension 4.

Let S(m) ⊂ A
m be the complex affine hypersurface x21 + · · · + x2m = 1. Define the

moduli space of r points on S(m) to be

A(r ,m) = S(m)r // SO(m),
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the geometric invariant theory quotient of S(m)r by the diagonal action of SO(m).
The binary operation u ∗ v = su(v) = 2〈u, v〉u − v, where 〈·, ·〉 is the standard
bilinear form on A

m , equips S(m) with the structure of a quandle (see Definition 2.2
and Proposition 2.8). The quandle structure on S(m) endows A(r ,m) with a natural
action of the braid group Br on r strands. We define the Coxeter invariant to be the
morphism

c : A(r ,m) → Pin(m) // SO(m)

mapping the class of each sequence (u1, . . . , ur ) ∈ S(m)r to the class of the product
u1⊗· · ·⊗ur ∈ Pin(m) under the natural embedding of S(m) in the pin group Pin(m).
We shall denote AP (r ,m) = c−1(P) for each class P . This construction and terminol-
ogy are motivated by the notion of pseudo Coxeter element introduced by Brieskorn
in [7, Section 3] in the general setting of quandles or racks. The Coxeter invariant is
invariant under the Br -action on A(r ,m) (Proposition 2.11), so each AP (r ,m) inherits
the Br -action.

Let �g,n be a surface of genus g with n boundary curves. Let X(�g,n,SL2) be the
coarse moduli space of SL2-local systems on �g,n . It carries an action of the pure
mapping class group �g,n of the surface. There is a �g,n-invariant morphism

X(�g,n,SL2) → A
n

assigning to each local system the sequence of its monodromy classes (or traces) along
the boundary curves of �g,n . If n ∈ {1, 2}, the braid group B2g+n embeds into �g,n as
a subgroup generated by Dehn twists along a suitable chain of simple loops in �g,n

(see Sect. 4.2), leading to an action of Br on X(�g,n,SL2). We establish the following
exceptional isomorphisms.

Theorem 1.3 Let �g,n be a surface of genus g with n ∈ {1, 2} boundary curves. Let
r = 2g + n. We have Br -equivariant isomorphisms of complex algebraic varieties

A(r , 4)  X(�g,n,SL2)

such that the Coxeter invariant of an element on the left hand side determines the
boundary monodromy of the corresponding local system, and vice versa. In particular,
the Br -action on the left hand side extends to an action of �g,n.

Analogous results can be proved for A(r , 1)/μ2 and A(r , 2) describing them as
moduli spaces ofμ2- andGm-local systems onpositive-genus surfaces.As their deriva-
tion is elementary and completely analogous to the proof of Theorem 1.3, we omit
them in this paper.

The second part of this paper concerns applications of Theorem 1.3 to Stokes
matrices. By the invariant theory of orthogonal groups, the quotient of A(r , r) by
the natural action of μ2  O(r)/SO(r) can be identified with the space V (r) of
size r Stokes matrices, in a manner compatible with Br -action and Coxeter invariant
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(see Sect. 5 for a more detailed discussion). Theorem 1.3 thus provides us with a
Br -equivariant morphism

X(�g,n,SL2)  A(2g + n, 4) → A(2g + n, 2g + n) → V (2g + n)

whose image consists of those Stokes matrices s such that rank(s + sT ) ≤ 4. This
conceptually clarifies aspects of the work of Chekhov–Mazzocco [8] on embeddings
of Teichmüller spaces into moduli of Stokes matrices. In the case (g, n) = (1, 2), the
above morphism allows us to write each Vp(4) as a finite union of moduli spaces of
the form Xk(�1,2,SL2) for suitable k ∈ A

2. This serves as the starting point for our
proof of 1.2, as previously mentioned.

One source of integral Stokes matrices are exceptional collections in triangulated
categories. In this context, Theorem 1.2 gives restrictions on the mutation classes of
Gram matrices for full exceptional collections of length 4 in a triangulated category
admitting a Serre functor.

We summarize various Br -equivariant morphisms and Coxeter invariants in the
following diagram.

X(�g,n,SL2)

�Theorem 1.3

boundary monodromy
W (SL2)

2 ∐
W (SL2)

Theorem 1.3�

A(r , 4)
[u1,...,ur ]�→[u1⊗···⊗ur ] Pin(4) // SO(4)

Propsition 5.9

V (r)
s �→det(λ+s−1sT )

RecPolyr

Organization of the paper

In Sect. 2, we introduce the moduli spaces of points on spheres, braid group actions,
and Coxeter invariants. In Sect. 3, we recall the notion of core quandles for groups and
prove isomorphisms between certain moduli spaces of points on spheres and certain
quotient sets of product core quandles. In Sect. 4, we introduce the moduli spaces of
local systems, and prove Theorem 1.3 by way of isomorphisms obtained in Sect. 3. In
Sect. 5, we discuss the relationship between the moduli of points on spheres and the
spaces of Stokes matrices. In Sect. 6, we discuss Diophantine aspects of the varieties
Vp(4) and prove Theorem 1.2. Finally, in Sect. 7 we consider applications of the
Diophantine theorem to the study of exceptional collections. We include a glossary of
notations at the end of the paper.

2 Moduli of points on spheres

In this section, we introduce the moduli spaces of points on spheres and discuss their
braid group actions. The section is organized as follows. In Sect. 2.1, we recall the
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definitions braid groups and quandles, and the construction of braid group actions
from quandles. In Sect. 2.2, we record relevant background on Clifford algebras and
pin groups. Finally, in Sect. 2.3, we discuss the quandle structure on spheres, introduce
the moduli spaces of points on spheres and their braid group actions, and define their
Coxeter invariants.

2.1 Braids and quandles

We begin by recalling Artin’s presentation of braid groups, which we take as their
definition.

Definition 2.1 Let r ≥ 1 be an integer. The braid group on r strands is the group Br
defined by generators σ1, . . . , σr−1 subject to the following relations:

(1) σiσ j = σ jσi if |i − j | ≥ 2, and
(2) σiσ jσi = σ jσiσ j if |i − j | = 1 (braid relation).

We will refer to the elements σ1, . . . , σr−1 as the standard generators of Br .

We will introduce several examples of spaces with braid group actions. This can
be streamlined by the following notion.

Definition 2.2 A quandle is a pair (X , ∗) consisting of a set X and a binary operation
∗: X × X → X such that the following three conditions hold:

(1) For any x ∈ X , we have x ∗ x = x .
(2) For any x, z ∈ X there exists a unique y ∈ X such that x ∗ y = z.
(3) For any x, y, z ∈ X we have

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

A morphism ϕ : (X , ∗) → (X ′, ∗′) of quandles is a map of sets ϕ : X → X ′ such
that ϕ(x ∗ y) = ϕ(x)∗′ ϕ(y) for all x, y ∈ X . We shall denote by Aut(X , ∗) the group
of automorphisms of the quandle (X , ∗). The following classical observation shows
that quandles give rise to numerous examples of spaces with braid group action.

Proposition 2.3 Let (X , ∗) be a quandle, and let G be a group acting on X via quandle
automorphisms. Fix an integer r ≥ 1, and let Xr/G denote the quotient set of Xr by
the diagonal action of G. There is a right action of Br on Xr/G, described in terms
of the standard generators σ1, . . . , σr−1 of Br as follows:

σ ∗
i [x1, . . . , xr ] = [x1, . . . , xi−1, xi ∗ xi+1, xi , xi+2, . . . , xr ]

for every [x1, . . . , xr ] ∈ Xr/G.

Proof This is standard; see e.g. [7, Proposition 3.1]. First, we claim that the moves

σ ∗
i (x1, . . . , xr ) = (x1, . . . , xi−1, xi ∗ xi+1, xi , xi+2, . . . , xr )
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together generate an actionof Br on Xr . It followsby condition (2) ofDefinition2.2 that
eachσ ∗

i above is a bijection of Xr onto itself. It ismoreover obvious thatσ ∗
i σ ∗

j = σ ∗
j σ

∗
i

if |i − j | ≥ 2. Hence, it only remains to check the braid relations. For this, we may
restrict to the case r = 3. Note that

σ ∗
1 σ ∗

2 σ ∗
1 (x1, x2, x3) = ((x1 ∗ x2) ∗ (x1 ∗ x3), x1 ∗ x2, x1), while

σ ∗
2 σ ∗

1 σ2(x1, x2, x3) = (x1 ∗ (x2 ∗ x3), x1 ∗ x2, x1).

Hence, the braid relations follow from condition (3) in Definition 2.2. We conclude
the proof by observing that the Br -action on Xr sends G-orbits to G-orbits, and hence
descends to the quotient Xr/G. ��
Remark The reader will notice that condition (1) in Definition 2.2 was not used in the
proof of Proposition 2.3. Omitting this condition leads to the definition of a rack or
automorphic set (see [7]), and braid group actions can indeed be introduced in this
greater generality.

Let X be a rack. In [7, Section 3], the notion of a pseudo Coxeter element cx ∈
Aut(X , ∗) associated to a sequence x = (x1, . . . , xr ) ∈ Xr was introduced. It is given
as the composition of left translations:

cx (u) = x1 ∗ (x2 ∗ . . . (xr ∗ u) . . .)), for all u ∈ X .

This construction will motivate our definitions of Coxeter invariants for moduli spaces
of points on spheres, to be given in Sect. 2.3.

2.2 Clifford construction

We now record some background on Clifford algebras needed for later parts of the
paper. Fix a field F of characteristic zero. Let q be a nondegenerate quadratic form
over an F-vector space V of finite dimension.Wewill denote by 〈−,−〉 the symmetric
bilinear pairing on V associated to q, given by

〈u, v〉 = q(u + v) − q(u) − q(v)

2
, u, v ∈ V .

Let O(q) (resp. SO(q)) denote the orthogonal group (resp. special orthogonal group)
of the quadratic form q. Let Cl(q) be the Clifford algebra over F associated to (V , q).
Namely, it is the associative F-algebra

Cl(q) = T (V )/〈v ⊗ v − q(v), v ∈ V 〉

where T (V ) = ⊕∞
i=0 V

⊗i the tensor algebra of V . To avoid potential confusion in
later parts of the paper, we will write ⊗ to indicate the multiplication operation in
Cl(q). There is a natural Z/2Z-grading Cl(q) = Cl0(q) ⊕ Cl1(q) on the Clifford
algebra induced from the Z-grading on T (V ), and there is an obvious embedding
V → Cl1(q). The underlying vector space of Cl(q) has dimension 2dimF (V ) over F .
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By functoriality, morphisms of quadratic spaces extend uniquely to morphisms of
Clifford algebras. In particular, the orthogonal group O(q) of the quadratic form q acts
on Cl(q) by algebra automorphisms. If F is algebraically closed, then for each integer
m ≥ 1 there is up to isomorphism a unique quadratic space (V , q) of dimension m
with q nondegenerate (e.g. take (Vm, qm) = (Am, x21 +· · ·+ x2m)). We will denote the
resulting Clifford algebra by Cl(m) when there is no risk for confusion, and employ
similar notations for related constructions, e.g. O(m) = O(q).

We now introduce a subgroup of units of the Clifford algebras, called pin groups.
Let S(q) ⊂ V be the affine hypersurface defined by the equation q(v) = 1. The
embedding V → Cl(q) induces an embedding S(q) ⊂ Cl(q)× since u⊗2 = q(u) = 1
for every u ∈ S(q).

Definition 2.4 The pin groupPin(q) is the closed algebraic subgroup of Cl(q)× over F
generated by S(q). We write Pin(q) = Pin0(q)�Pin1(q) where we denote Pini (q) =
Pin(q) ∩ Cli (q). We define the spin group by Spin(q) = Pin0(q).

By functoriality of theClifford construction, the natural action ofO(q) onV induces
an action of O(q) on Pin(q) by group automorphisms. Given u ∈ S(q), let us denote
by su the linear transformation of V given by

su(v) = 2〈v, u〉u − v for v ∈ V .

It is straightforward to check that su ∈ O(q) and su ◦ su = 1 for each u ∈ S(q). The
following result is elementary but useful.

Proposition 2.5 For any u ∈ S(q) and v ∈ V , we have su(v) = u ⊗ v ⊗ u−1.

Proof For each u, v ∈ V ⊂ Cl(q), we have

2〈u, v〉 = q(u + v) − q(u) − q(v) = (u + v)⊗2 − u⊗2 − v⊗2 = u ⊗ v + v ⊗ u.

Thus, if u ∈ S(q), then u ⊗ v ⊗ u−1 = (2〈u, v〉 − v ⊗ u) ⊗ u−1 = 2〈v, u〉u − v,
which is the desired result. ��

Let α : Pin(q) → Pin(q) be the automorphism of Pin(q) induced by the negation
automorphism v �→ −v of (V , q). Proposition 2.5 allows us to define the morphism
π : Pin(q) → O(q) taking g ∈ Pin(q) to π(g) ∈ O(q) given by

π(g)(v) = α(g) ⊗ v ⊗ g−1 for v ∈ V .

Corollary 2.6 We have the following.

(1) The morphism π : Pin(q) → O(q) is surjective, and π(Spin(q)) = SO(q).
(2) S(q) ⊂ Pin1(q) is a Zariski closed conjugacy class in Pin(q).

Proof (1) The first claim follows from the fact that the orthogonal group O(q) is
generated by (hyperplane) reflections by the Cartan–Dieudonné theorem, and the
observation that every reflection on (V , q) is of the form −su for some u ∈ S(q).
Since any reflection has determinant −1, the second claim follows.
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(2) This follows from the fact the natural action of O(q) on S(q) is transitive. Since
S(q) is Zariski closed in Cl(q), a fortiori it is Zariski closed in Pin(q). ��

We close this subsection by discussing the structure of Cl(m) over algebraically
closed fields of characteristic zero for m = 4.

Example 2.7 Let F be an algebraically closed field of characteristic zero. Let q4(xi j ) =
x11x22 − x12x21 = det(xi j ) be the determinant form on the space V4 = Mat2 of 2× 2
matrices. Then S(q4) = SL2 has a group structure induced by the matrix algebra
structure on Mat2. Consider the Z/2Z-graded F-algebra

M4 = M0
4 ⊕ M1

4 = Mat22 ⊕Mat22 ι

where ι2 = 1 and ι(a, b) = (b, a)ι for every (a, b) ∈ Mat22. Given a matrix x ∈ Mat2,
we shall denote by x̄ its adjugate, so that if

x =
[
x11 x12
x21 x22

]
then x̄ =

[
x22 −x12

−x21 x11

]
.

The embedding j : V4 → M4 given by x �→ (x, x̄)ι satisfies

j(x)2 = (x, x̄)ι(x, x̄)ι = (x, x̄)(x̄, x)ι2 = (x x̄, x̄ x) = det(x)(1, 1)

for every x ∈ Mat2. By the universal property of Clifford algebras, this extends to a
Z/2Z-graded F-algebra morphism j : Cl(q4) → M4, which is an isomorphism for
dimension reasons. Indeed, it suffices to observe that j : Cl(q4) → M4 is surjective.
For this note that, for any a, b ∈ SL2,

(a, ā)(b, b̄)(āb̄, ba) = (aba−1a−1, 1).

Since SL2 is perfect, it follows that j(Cl(q4)) contains elements of the form (x, 1)
and (1, x) for any x ∈ SL2. It is easy to deduce from this that j(Cl(q4)) = M4 since
it contains the coordinate basis vectors of M4, e.g.

([
1 0
0 0

]
, 0

)
=

([
1 1

−1 0

]
, 1

)
−

([
0 1

−1 0

]
, 1

)
.

2.3 Moduli of points on spheres

Fix a field F of characteristic zero, and let q be a nondegenerate quadratic form over
an F-vector space V . As in Sect. 2.2, let S(q) be the affine hypersurface in V defined
by q(v) = 1. The natural action of O(q) on V preserves S(q). For each u ∈ S(q), let
su ∈ O(q) be given by su(v) = 2〈u, v〉u − v for v ∈ V as before.

Proposition 2.8 The variety S(q) admits a quandle structure under the operation

u ∗ v = su(v) for u, v ∈ S(q).
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With respect to this, the groupO(q) acts on S(q) by quandle automorphisms. We shall
refer to (S(q), ∗) as the sphere quandle associated to S(q).

Proof Note first that u ∗ u = su(u) = 2〈u, u〉u − u = u for every u ∈ S(q). Next,
since su ◦ su = idV for each u ∈ S(q), the left translation Lu = u ∗ − on S(q) is an
automorphism of the variety S(q). Finally, note that

u ∗ (v ∗ w) = su(2〈v,w〉v − w) = 2〈su(v), su(w)〉su(v) − su(w) = (u ∗ v) ∗ (u ∗ w)

for each u, v, w ∈ S(q), since su ∈ O(q). This proves that (S(q), ∗) is a quandle, as
desired. To prove the second statement, we note that

(gu) ∗ (gv) = sgu(gv) = 2〈gu, gv〉gu − gv = g(2〈u, v〉u − v) = gsu(v) = g(u ∗ v)

for every u, v ∈ S(q) and g ∈ O(q). This gives the desired result. ��
Remark Let G be a group, and let S ⊂ G be a union of conjugacy classes. Then S
admits the structure of a quandle under the operation u ∗ v = uvu−1. Proposition 2.5
shows that the sphere quandle structure on S(q) above agreeswith the quandle structure
of S(q) as a conjugacy class in Pin(q).

We now introduce the main objects of our study.

Definition 2.9 Let r be a positive integer. The moduli space of r points on S(q) is the
geometric invariant theory quotient

A(r , q) = S(q)r // SO(q)

of S(q)r by the diagonal action of SO(q). Similarly, themoduli space of r unoriented
points on S(q) is the geometric invariant theory quotient

A′(r , q) = S(q)r // O(q)  A(r , q) // μ2

for the action of μ2 = O(q)/SO(q) on A(r , q).

The definition of A(r , q) is functorial in the quadratic space (V , q). In particular, if the
base field F is algebraically closed, then up to isomorphism there is a unique moduli
space of r points on the sphere for a nondegenerate quadratic form in m variables; we
shall denote it by A(r ,m) = S(m) // SO(m) as in Sect. 1. Similarly, we shall write
A′(r ,m) for the corresponding moduli space of unoriented points on S(m).

Proposition 2.10 The braid group Br acts on A(r , q) and A′(r , q) by the moves

σi (u1, . . . , ur ) = (u1, . . . , ui−1, sui (ui+1), ui , ui+2, . . . , ur )

where σ1, . . . , σr−1 are the standard generators of Br .

Proof This follows by combining Propositions 2.3 and 2.8. ��
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Our next step is to define the notion of Coxeter invariant for points in A(r , q).

Proposition 2.11 The morphism c : S(q)r → Pin(q) given by

(u1, . . . , ur ) �→ u1 ⊗ · · · ⊗ ur

is O(q)-equivariant and is Br -invariant.

Proof As O(q) acts on Cl(q) by algebra automorphisms, c is O(q)-equivariant. For
Br -invariance, fix u ∈ S(q)r . If σ = σi is one of the standard generators of Br , then

c(σ ∗
i u) = u1 ⊗ · · · ⊗ ui−1 ⊗ sui (ui+1) ⊗ ui ⊗ ui+2 ⊗ · · · ⊗ ur

= u1 ⊗ · · · ⊗ ui−1 ⊗ (ui ⊗ ui+1 ⊗ u−1
i ) ⊗ ui ⊗ ui+2 ⊗ · · · ⊗ ur

= u1 ⊗ · · · ⊗ ur = c(u)

by Proposition 2.5. This completes the proof. ��
Definition 2.12 The Coxeter invariant of A(r , q) is the Br -invariant morphism

c : A(r , q) → Pin(q) // SO(q)

given by [u1, . . . , ur ] �→ [u1 ⊗ · · · ⊗ ur ]. Given each class P in Pin(q) // SO(q), we
shall denote the corresponding fiber of c by AP (r , q). Similarly, the Coxeter invariant
of A′(r , q) is the Br -invariant morphism c : A′(r , q) → Pin(q) // O(q) given by
[u1, . . . , ur ] �→ [u1 ⊗ · · · ⊗ ur ], and we denote its fibers by A′

P (r , q).

Remark Under the projection π : Pin(q) // SO(q) → O(q) // SO(q) induced by the
morphism π : Pin(q) → O(q) from Sect. 2.2, we see that the image of c(u) for
u = [u1, . . . , ur ] ∈ A(r , q) is the class of

(−1)r su1 ◦ · · · ◦ sur .

3 Core quandles

3.1 Core quandles

Let us first recall the notion of a core quandle [15] associated to a group.

Proposition 3.1 Let G be a group. The operation

u ∗ v = uv−1u

for u, v ∈ G equips the set underlying G with the structure of a quandle. We shall
refer to (G, ∗) as the core quandle associated to G.
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Proof Clearly, u ∗ u = u for all u ∈ G. Since u ∗ (u ∗ v) = v for every u, v ∈ G, it
follows that the left translation u ∗ − is an involutive bijection on G. Moreover, for
u, v, w ∈ G we have

u ∗ (v ∗ w) = u(vw−1v)−1u = (uv−1u)(u−1wu−1)(uv−1u) = (u ∗ v) ∗ (u ∗ w).

This proves that (G, ∗) is a quandle, as desired. ��
Our next step is to construct out of G a group acting on its core quandle.

Definition 3.2 Given a group G, let G[2] denote the semidirect product

G[2] = (G × G) � C2

where the cyclic group C2 = {1, ι} of order two acts on G × G by permutation.

Proposition 3.3 Let G be a group, and with core quandle (G, ∗).

(1) The group C2 = {1, ι} acts on (G, ∗) by ι · a = a−1 for every a ∈ G.
(2) The group G × G acts on (G, ∗) by (g, h) · a = gah−1 for a, g, h ∈ G.

These two actions define an action of G[2] = (G × G) � C2 on (G, ∗).

Proof For every a, b ∈ G, we observe that

(a ∗ b)−1 = (ab−1a)−1 = a−1ba−1 = a−1 ∗ b−1.

This proves the first part of the proposition. Next, for every g, h, a, b ∈ G we have

g(a ∗ b)h−1 = gab−1ah−1 = (gah−1)(hb−1g−1)(gah−1) = (gah−1) ∗ (gbh−1).

This proves the second part.Now letφ : C2 → Aut(G, ∗) andψ : G×G → Aut(G, ∗)

be the associated morphisms of groups. To prove the last assertion, it suffices to show
that, for every (g, h) ∈ G × G, we have

ψ(ι(g, h)) = φ(ι)ψ(g, h)φ(ι−1).

For each a ∈ G, we have

ψ(ι(g, h))(a) = ψ(h, g)(a) = hag−1 while

φ(ι)ψ(g, h)φ(ι−1)(a) = φ(ι)ψ(g, h)(a−1) = φ(ι)(ga−1h−1) = hag−1,

showing that the two sides agree, as desired. ��
To fix ideas, let now G be a reductive algebraic group over a field of characteris-

tic zero. (The reader will notice that our constructions and arguments apply almost
verbatim to arbitrary groups.)
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Given an integer r ≥ 1, let us equip Gr with the action of G × G given by

(x, y) · (a1, . . . , ar ) = (xa1y
−1, . . . , xar y

−1)

for (x, y) ∈ G × G and (a1, . . . , ar ) ∈ Gr . We define a variety B(r ,G) and equip it
with braid group action and a notion of Coxeter invariants as follows.

Definition 3.4 Let G be a group, and let r ≥ 1 be an integer. Let

B(r ,G) = Gr // (G × G).

Corollary 3.5 Let G be a group, and let r ≥ 1 be an integer. The braid group Br acts
on B(r ,G) by the moves

σ ∗
i [a1, . . . , ar ] = [a1, . . . , ai−1, aia

−1
i+1ai , ai , ai+2, . . . , ar ]

where σ1, . . . , σr−1 are the standard generators of Br .

Proof This follows by combining Propositions 2.3, 3.1, and 3.3. ��
Proposition 3.6 The map c : Gr → G[2] given by

c(a1, . . . , ar ) = (a1, a
−1
1 )ι · · · (ar , a−1

r )ι

is (G × G)-equivariant and Br -invariant. Here, G[2] = (G × G) � C2 is equipped
with the subgroup conjugation action of G × G.

Proof For any (x, y) ∈ G2 and z ∈ G, we have

(xzy−1, (xzy−1)−1)ι = (x, y)(z, z−1)ι(x, y)−1.

It follows that c(xay−1) = (x, y)c(a)(x, y)−1 for any (x, y) ∈ G2 and a ∈ Gr , thus
proving that c is (G × G)-equivariant. To prove Br -invariance, it suffices to note that
for any a, b ∈ G we have

(ab−1a, (ab−1a)−1)ι(a, a−1) = (ab−1a, a−1ba−1)(a−1, a)ι = (a, a−1)ι(b, b−1),

so c(σ ∗
i u) = c(u) for u ∈ Gr where σi is any of the standard generators of Br . ��

Definition 3.7 The Coxeter invariant on B(r ,G) is the Br -invariant morphism

c : B(r ,G) → G[2] // (G × G)

given by [a1, . . . , ar ] �→ [(a1, a−1
1 )ι · · · (ar , a−1

r )ι].
It will be useful to record the following.

Definition 3.8 Let W (G) = G // G be the quotient of G by itself under conjugation.
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Proposition 3.9 Under the conjugation action of G × G on G[2], we have:

• (G × G) // (G × G)  W (G)2, and
• (G × G)ι // (G × G)  W (G).

Thus, we have an isomorphism G[2] // (G × G)  W (G)2 � W (G).

Proof The first claim is obvious. To prove the second claim, let (d, e)ι ∈ (G ×G)ι be
given. For any (x, y) ∈ G × G, we have

(x, y)(d, e)ι(x, y)−1 = (x, y)(d, e)(y, x)−1ι = (xdy−1, yex−1).

Thus, the morphism f : (G × G)ι/(G × G) → W (G) given by (d, e) �→ de is
well defined. Consider now the morphism g : W (G) → (G ×G)ι/(G ×G) given by
c �→ (c, 1)ι. This is well-defined, since

(xcx−1, 1)ι = (x, x)(c, 1)ι(x, x)−1

for every x ∈ G. Now, clearly f ◦ g = idW (G). To see that g ◦ f = id(G×G)ι/(G×G),
it suffices to note that (de, 1)ι = (1, e−1)(d, e)ι(1, e) for every (d, e) ∈ G2. This
proves the second claim. ��

3.2 Exceptional isomorphisms

In Sect. 2, we introduced the moduli spaces A(r ,m) of points on spheres for r ,m ≥ 1.
We will prove the following.

Proposition 3.10 There exist Br -equivariant isomorphisms A(r , 4)  B(r ,SL2)

preserving the Coxeter invariants.

Proof Let q4(xi j ) = det(xi j ) be defined over V4 = Mat2 as in Example 2.7. Under
the isomorphism j : Cl(q4)  M4 given therein we have

Pin(q4) = Pin0(q4) � Pin1(q4) = (SL2 ×SL2) � (SL2 ×SL2)ι = SL[2]
2 .

Note that Spin(q4) = SL2 ×SL2 acts on SL[2]
2 by conjugation, and it follows by

Proposition 3.9 that

Pin(q4) // SO(q4) = Pin(q4) // Spin(q4) = W (SL2)
2 � W (SL2).

Under the isomorphism above, for each u, v ∈ S(q4) we have

j(su(v)) = j(u ⊗ v ⊗ u−1)

= ((u, u−1)ι)((v, v−1)ι)((u, u−1)ι)−1

= (uv−1u, u−1vu−1)ι = j(uv−1u).
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where the products such as uv−1u are taken with respect to the group structure on
SL2. This shows that the sphere quandle structure on S(q4) = SL2 agrees with the
core quandle structure. Thus, we have a Br -equivariant isomorphism

A(r , q4) = S(q4)
r // SO(q4) = SLr

2 //(SL2 ×SL2) = B(r ,SL2).

It remains to show that the isomorphism above preserves the Coxeter invariants. Our
goal is to show the commutativity of the following diagram:

A(r , q4)

c

∼
B(r ,SL2)

c

Pin(q4) // SO(q4) W (SL2)
2 � W (SL2) SL[2]

2 //(SL2 ×SL2).

Given u = [u1, . . . , ur ] ∈ A(r , q4), we have

c(u) = [(u1, u−1
1 )ι · · · (ur , u−1

r )ι] ∈ Pin(q4) // SO(q4) = SL[2]
2 // SL2

2

which agrees with the image of u under A(r , q4)  B(r ,SL2)
c−→ SL[2]

2 // SL2
2. Thus,

the isomorphism A(r , q4)  B(r ,SL2) respects the Coxeter invariants. ��

4 Moduli of local systems

Let G be a reductive algebraic group over a field F of characteristic zero. In the
previous section, we defined the space B(r ,G) and showed that the core quandle
structure on G induces an action of the braid group Br on B(r ,G). We introduced
the Coxeter invariant B(r ,G) → G[2] // G2, which is a Br -invariant morphism. As
we shall see, the space B(r ,G) can be viewed as a coarse moduli space of G-local
systems on a graph (1-dimensional finite simplicial complex).

This section is organized as follows. In Sect. 4.1, we discuss moduli of G-local
systems on graphs, and establish an isomorphism between B(r ,G) and a new space
denoted C(r ,G). In Sect. 4.2, we consider the moduli of G-local systems on surfaces,
and prove that C(r ,G) is isomorphic to the moduli space X(�g,n,G) of G-local
systems on the surface �g,n of genus g with n punctures, where

g =
⌊
r − 1

2

⌋
and n = r − 2g ∈ {1, 2}.

The isomorphisms established in Sects. 4.1 and 4.2will be Br -equivariant and preserve
invariants. Finally, in Sect. 4.3, we combine this with the sporadic isomorphisms given
in Sect. 3.2 to complete the proof of Theorem 1.3.
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4.1 Graphs

Let π be a finitely generated group. Let G be a reductive algebraic group over a field
F of characteristic zero. The G-representation variety Rep(π,G) of π is the affine
scheme defined by the functor

A �→ Hom(π,G(A))

for every F-algebra A. The G-character variety of π is defined to be the invariant
theoretic quotient

X(π,G) = Hom(π,G) // G = F[Hom(π,G)]G

of the G-representation variety with respect to the conjugation action of G. The group
Out(π) of outer automorphisms ofπ has a natural right action on X(π,G) by pullback
of representations.

Definition 4.1 Given a connected manifold or finite simplicial complex M , the G-
character variety of M is the G-character variety of its fundamental group:

X(M,G) = X(π1(M),G).

The variety X(M,G) is also the (coarse) moduli space of G-local systems on M ,
and we will also refer to it as such.

Example 4.2 As in Sect. 2, we shall denote by W (G) = G // G the quotient of G by
the conjugation action of G. If S1 denotes the oriented circle, monodromy along the
generator of π1(S1) gives us an isomorphism

X(S1,G)  W (G).

Suppose that M is a finite connected graph, i.e. 1-dimensional simplicial complex.
We can give an explicit presentation for X(M,G) as follows. Let V (M) and E(M)

respectively denote the sets of vertices and edges of M . Let us equip M with the
structure of a quiver, so that each edge e ∈ E(M) has a source vertex s(e) and a target
vertex t(e) in V (M). The quiver structure gives us an isomorphism

X(M,G)  GE(M) // GV (M)

where the group GV (M) acts on GE(M) by

(gv) · (he) = (gt(e)h(e)g−1
s(e))

for every (gv) ∈ GV (M) and (he) ∈ GE(M).
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Example 4.3 (1) Let Mr denote the graph with vertex set V (M) = {v1, v2} of size 2
and edge set E(M) = {e1, . . . , er } of r such that each edge joins v1 and v2. Let us
endowMr with a quiver structure so that s(ei ) = v1 and t(ei ) = v2 for all i = 1, . . . , r .
We then have

X(Mr ,G)  Gr // G2 = B(r ,G).

(2) Let now Nr denote the graph with vertex set V (M) = {w} and edge set E(M) =
{d1, . . . , dr−1} of size r − 1 such that each edge joins w to itself. Let us endow Nr

with a quiver structure. We then have

X(Nr ,G)  Gr−1 // G

where G acts on Gr−1 via diagonal conjugation.

Definition 4.4 Let G be a group, and let r ≥ 2 be an integer. Let

C(r ,G) = Gr−1 // G

be the quotient of Gr−1 by diagonal conjugation action of G.

Consider continuous map f : Nr → Mr sending the vertex w to v1 and each edge
di to the concatenation of edges ei and ei+1. Since f is a homotopy equivalence, and
it induces an isomorphism

B(r ,G)  X(Mr ,G)  X(Nr ,G)  C(r ,G).

The following proposition gives an explicit description of this isomorphism.

Proposition 4.5 Let G be a group, and let r ≥ 2 be an integer.We have an isomorphism
� : B(r ,G) → C(r ,G) given at the level of representatives by

�(a1, . . . , ar ) = (a1a
−1
2 , . . . , ar−1a

−1
r ),

with the inverse isomorphism  : C(r ,G) → B(r ,G) given by

(b1, . . . , br−1) �→ ((b1 . . . br−1), (b2 . . . br−1), . . . , br−1, 1).

The right Br -action induced via � on C(r ,G) is described in terms of the standard
generators of Br as follows:

(1) We have σ ∗
1 (b1, . . . , br−1) = (b1, b1b2, b3, . . . , br−1).

(2) If 1 < i < r − 1, we have

σ ∗
i (b1, . . . , br−1) = (b1, . . . , bi−2, bi−1b

−1
i , bi , bibi+1, bi+2, . . . , br−1).

(3) We have σ ∗
r−1(b1, . . . , br−1) = (b1, . . . , br−2b

−1
r−1, br−1).
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Proof It is easy to check that� and arewell-defined, and aremutual inverses of each
other. The description of the induced braid group action on C(r ,G) follows directly
from this and Corollary 3.5. For example, if 1 < i < r − 1, we have

σ ∗
i (b1, . . . , br−1)

= �σ ∗
i (b1, . . . , br−1)

= �σ ∗
i ((b1 . . . br−1), (b2 . . . br−1), . . . , br−1, 1)

= �((b1 . . . br−1), . . . , (bi−1 . . . br−1), bi (bi . . . br−1), (bi . . . br−1), . . . , br−1, 1)

= (b1, . . . , bi−2, bi−1b
−1
i , bi , bibi+1, bi+2, . . . , br−1).

The expressions for σ ∗
1 and σ ∗

r−1 can be derived similarly. ��
Definition 4.6 The Coxeter invariant on C(r ,G) is the composition

c : C(r ,G)
−→ B(r ,G)

c−→ G[2] // (G × G)

where  is given as in Proposition 4.5.

Corollary 4.7 Let G be a group. Given b = (b1, . . . , br−1) ∈ C(r ,G), its Coxeter
invariant c(b) is given explicitly by

c(b) =
{

(b1b3 . . . br−1, (b1b2 . . . br−1)
−1(b2b4 . . . br−2)) ∈ W (G)2 if r is even

(b1b3 . . . br−2)(b1b2 . . . br−1)
−1(b2b4 . . . br−1) ∈ W (G) if r is odd.

Here we use the identification G[2] // (G × G)  W (G)2 � W (G) proved in
Proposition 3.9.

Proof If r is even, then c(b) ∈ (G×G)//(G×G)  W (G)2 with the first component
in W (G)2 given by

(b1b2 . . . br−1)(b2b3 . . . br−1)
−1 . . . (br−3br−2br−1)(br−2br−1)

−1br−1

= b1b3 . . . br−1,

and the second component given by

(b1b2 . . . br−1)
−1(b2b3 . . . br−1) . . . (br−3br−2br−1)

−1(br−2br−1)b
−1
r−1

= (b1b2 . . . br−1)
−1(b2b4 . . . br−2).

If r is odd, then c(b) = (d(b), e(b))ι ∈ (G × G)ι // (G × G)  W (G), where

d(b) = (b1b2 . . . br−1)(b2b3 . . . br−1)
−1 . . . (br−2br−1)b

−1
r−1 = b1b3 . . . br−2

and
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e(b) = (b1b2 . . . br−1)
−1(b2b3 . . . br−1) . . . (br−2br−1)

−1br−1

= (b1b2 . . . br−1)
−1(b2b4 . . . br−1).

Recall that the identification (G × G)ι // (G × G)  W (G) in Proposition 3.9 maps
(d(b), e(b))ι to the element d(b)e(b) ∈ W (G). This completes our proof. ��

4.2 Surfaces

Throughout this paper, by a surfacewe shall mean a compact oriented manifold of real
dimension 2 with possibly nonempty boundary. Given a surface�, we shall endow its
boundary curves with orientations consistent with the orientation of the surface. The
inclusion ∂� → � of the boundary curves into � induces a morphism

c : X(�,G) → W (G)π0(∂�)

from the G-character variety of � to the product of |π0(∂�)| copies of W (G), given
by sending a representation ρ to the sequence of its monodromy classes along the
boundary curves of �.

Given a surface �, let �(�) denote the pure mapping class group of �. It is the
group of isotopy classes of orientation-preserving homeomorphisms of the surface
fixing the boundary curves pointwise. Given a reductive algebraic group G over a
field of characteristic zero and a connected surface �, we have a natural right action
of �(�) on the character variety X(�,G) by pullback of representations, factoring
through the morphism

�(�) → Out(π1(�)).

Given a surface � and a simple closed curve a ⊂ �, we shall denote by τa ∈ �(�)

the associated left Dehn twist along a.
Suppose now that �g,n is a connected surface of genus g ≥ 1 with n ∈ {1, 2}

boundary curves. Let us implicitly fix a base point x ∈ �g,n on the interior of �g,n .
The fundamental group of �g,n is free of rank 2g + n − 1. We introduce a preferred
sequence of free generators below, using a ribbon graph presentation of �g,n .

Definition 4.8 A hyperelliptic sequence of generators for π1(�g,n) is a sequence

(α1, . . . , α2g+n−1)

of simple based loops on �g,n arranged as shown in Fig. 1. Note that the loop(s)

• α1α3 . . . αr−1 and (α1α2 . . . αr−1)
−1(α2α4 . . . αr−2) (if r is even)

• (α1α3 . . . αr−2)(α1α2 . . . αr−1)
−1(α2α4 . . . αr−1) (if r is odd)

are freely homotopic to parametrizations of the boundary curve(s) of�g,n ; this is used
in Proposition 4.9 below.

It is clear that the loops α1, . . . , α2g+n−1 together freely generate π1(�g,n). The
above definition is motivated by the following.
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Fig. 1 Hyperelliptic generators for π1(�g,n)

Proposition 4.9 Let r ≥ 3 be an integer, and write r = 2g + n with n ∈ {1, 2}.
Let �g,n be a surface of genus g with n boundary curves, and let (α1, . . . , αr−1)

be a hyperelliptic sequence of generators for π1(�g,n). For i = 1, . . . , r − 1, let
τi ∈ �(�g,n) be the left Dehn twist along the simple closed curve underlying αi .

(1) There is an embedding Br → �(�g,n) sending σi �→ τi for i = 1, . . . , r − 1.
(2) The isomorphism

X(�g,n,G)  C(r ,G)

given by ρ �→ (ρ(α1), . . . , ρ(αr−1)) is Br -equivariant for the Br -action on
X(�g,n,G) induced by the braid group embedding (1) and the Br -action on
C(r ,G) given in Proposition 4.5.

(3) The isomorphism in (2) gives rise to a commutative diagram

X(�g,n,G)

k

∼ C(r ,G)

c

W (G)n W (G)n

where the vertical arrow on the left hand side sends ρ ∈ X(�g,n,G) to its mon-
odromy along the boundary curves, and where the vertical arrow on the right
hand side is the morphism c introduced in Corollary 4.7.

Proof (1) The fact that the assignment σi �→ τi above gives rise to an embedding of
Br into �(�g,n) is classical and due to Birman and Hilden [1, 2].

(2) For convenience, we shall denote a simple loop lying in the same free homotopy
class as the product of loops such as α1α2 by the same letters. We have the following.

• τ1(α2) = α1α2 and τ1(αi ) = αi for all i �= 2.
• If 1 < i < r − 1, then we have

⎧⎨
⎩

τi (αi−1) = αi−1α
−1
i ,

τi (αi ) = αi , and
τi (αi+1) = αiαi+1

while τi (α j ) = α j whenever |i − j | ≥ 2.
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• τr−1(αr−2) = αr−2α
−1
r−1 and τr−1(αi ) = αi for all i �= r − 2.

Combining this with the description of the braid group action on C(r ,G) given in
Proposition 4.5, we obtain the desired result.

(3) By Corollary 4.7, if b = (b1, . . . , br−1) ∈ C(r ,G) then we have

• c(b) = (b1b3 . . . br−1, (b1b2 . . . br−1)
−1(b2b4 . . . br−2)) if r is even, while

• c(b) = (b1b3 . . . br−2)(b1b2 . . . br−1)
−1(b2b4 . . . br−1) if r is odd.

Then (3) follows simply by combining this with the observation that the loop(s)

• α1α3 . . . αr−1 and (α1α2 . . . αr−1)
−1(α2α4 . . . αr−2) (if r is even)

• (α1α3 . . . αr−2)(α1α2 . . . αr−1)
−1(α2α4 . . . αr−1) (if r is odd)

are freely homotopic to parametrizations of the boundary curve(s) of �g,n . This can
be readily seen by following along the boundary of the ribbon presentation of �g,n ,
as shown in Fig. 1. ��
Remark Note that Dehn twists along the boundary curves of � act trivially on the
moduli spaces X(�g,n,G). By [11, Section 4.4.4], in the cases r = 3 and r = 4
the embedding Br → �(�g,n) of the type given above Br isomorphically onto the
pure mapping class group of the surface of genus g with n punctures. Hence, the
braid group actions on the spaces X(�1,1,G) and X(�1,2,G) coincide with the pure
mapping class group action.

4.3 Proof of Theorem 1.3

We now complete the proof Theorem 1.3. We have seen from Propositions 4.9 and 4.5
that there is a Br -equivariant isomorphism

X(�g,n,G)  C(r ,G)  B(r ,G)

that is compatible with invariants (boundary monodromy and Coxeter invariants).
Combining this with the sporadic isomorphism established in Proposition 3.10 gives
us the desired result.

5 Stokes matrices

In this section, we establish isomorphisms betweenmoduli spaces of points on spheres
and spaces of Stokes matrices. Together with Theorem 1.3, this gives a canonical
embedding of the moduli of SL2-local systems on surfaces with two boundary com-
ponents into the space of Stokes matrices. We also show the compatibility of Coxeter
invariants, integral structures, and Poisson structures of this embedding.

5.1 Stokes matrices andmoduli of points on spheres

We begin with a definition.
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Definition 5.1 A Stokes matrix of size r is an r × r unipotent upper triangular matrix.
We denote by V (r) the affine space of Stokes matrices of size r .

It is well-known that there is a braid group action on the space of Stokes matrices.
Let s ∈ V (r) and let σ1, . . . , σr−1 be the standard generators of Br . The Br -action on
V (r) is given by

σi s =

⎡
⎢⎢⎣

Ii−1
si,i+1 −1
1 0

Ir−i−1

⎤
⎥⎥⎦ · s ·

⎡
⎢⎢⎣

Ii−1
si,i+1 1
−1 0

Ir−i−1

⎤
⎥⎥⎦ .

Note that the braid group action given above is slightly different from the one in [4,
10]. It is clear that the characteristic polynomial of −s−1sT ,

p(λ) = det(λ + s−1sT ),

is invariant under the Br -action and satisfies p(λ) = λr p(1/λ). The characteristic
polynomial of −s−1sT has been of great importance in the study of Stokes matrices.
For instance, it is related to themonodromy data at infinity of certain Fuchsian systems
[10, 20]; it also is related to the Serre functors of triangulated categories admitting
full exceptional collections (see Sect. 7); finally, the eigenvalues of −s−1sT are the
Casimir functions of a natural Poisson bracket on the space of Stokes matrices [20,
Theorem 3.2].

We relate the spaces of Stokes matrices with the moduli of points on spheres. We
begin with introducing some notations. Let Sym(r) denote the affine space of r × r
symmetric matrices. It is clear that V (r) can be identified with the closed subscheme
of Sym(r) consisting of symmetric matrices with 1’s on the diagonal, via

V (r) ↪→ Sym(r), s �→ 1

2

(
s + sT

)
.

Let Sym(r ,m) denote the closed subscheme of Sym(r) consisting of symmetricmatri-
ces of rank ≤ m, and let V (r ,m) ⊂ V (r) be the preimage of Sym(r ,m) under
the embedding V (r) ↪→ Sym(r). It is not hard to check that the closed subscheme
V (r ,m) ⊂ V (r) is invariant under the Br -action on V (r).

Proposition 5.2 (Am)r // O(m)  Sym(r ,m).

Proof By the First Fundamental Theorem of Invariant theory for the orthogonal group
(cf. [18, Chapter 11 §2.1] and [21, Chapter 2 §9]), any O(m)-invariant polynomial
function on (Am)r is a polynomial in the following functions

�i j : (Am)r → A
1, (v1, . . . , vr ) �→ 〈

vi , v j
〉

for 1 ≤ i, j ≤ r . Hence the quadratic map

� : (Am)r → Sym(r), (v1, . . . , vr ) �→ (
〈
vi , v j

〉
)i j
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descends to an embedding

�̃ : (Am)r // O(m) → Sym(r).

Thus it suffices to show that the image of� is Sym(r ,m) ⊂ Sym(r). This is equivalent
the following statement: for any r × r symmetric matrix A of rank at most m, there
exists v1, . . . , vr ∈ A

m such that

⎡
⎢⎢⎣

− v1 −
− v2 −

· · ·
− vr −

⎤
⎥⎥⎦

⎡
⎣
— — —
v1 v2 · · · vr
— — —

⎤
⎦ = A.

This follows straightforwardly from the fact that for any symmetric matrix A, there
exists an invertible matrix P ∈ GLr (F) and a diagonal matrix D such that A =
PDPT , if char(F) �= 2. ��

Corollary 5.3 Restricting the isomorphism (Am)r // O(m)  Sym(r ,m) to the closed
subscheme V (r ,m) ⊂ Sym(r ,m), one obtains a Br -equivariant isomorphism

A′(r ,m) = S(m)r // O(m)
−→ V (r ,m)

given by

[(v1, . . . , vr )] �→

⎡
⎢⎢⎢⎣

1 2 〈v1, v2〉 · · · 2 〈v1, vr 〉
0 1 · · · 2 〈v2, vr 〉
...

. . .
. . .

...

0 · · · 0 1

⎤
⎥⎥⎥⎦ .

Proof The isomorphism A′(r ,m)  V (r ,m) follows from the previous proposition.
Recall that the natural action of Br on A′(r ,m) = S(m)r //O(m) is determined by the
moves

σi (v1, . . . , vr ) = (v1, . . . , vi−1, svi (vi+1), vi , vi+2, . . . , vr )

= (v1, . . . , vi−1, 2 〈vi , vi+1〉 vi − vi+1, vi , vi+2, . . . , vr ).

It can be verified straightforwardly that this action is compatible with the action of
Br on V (r ,m) via the isomorphism S(m)r // O(m)  V (r ,m) described explicitly
above. ��
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Hence we have the following diagram:

S(1)r S(2)r · · · S(r)r S(r + 1)r · · ·

A(r , 1) A(r , 2) · · · A(r , r) A(r , r + 1) · · ·

A′(r , 1) A′(r , 2) · · · A′(r , r) A′(r , r + 1) · · ·

V (r , 1) V (r , 2) · · · V (r) V (r) · · ·

deg 2 deg 2

deg 2

deg 2





 









We define the Coxeter invariant on V (r ,m) by pulling back the Coxeter invariant
on A′(r ,m) via the isomorphism V (r ,m)  A′(r ,m).

Definition 5.4 The Coxeter invariant on V (r ,m) is defined to be the composition

c : V (r ,m)
∼−→ A′(r ,m)

c−→ Pin(m) // O(m).

It is a Br -invariant morphism by Propositions 2.11 and Corollary 5.3. We shall denote
VP (r ,m) = c−1(P) for each P ∈ Pin(m) // O(m). Similarly, for each class p ∈
O(m) // O(m) we shall denote by Vp(r ,m) the subvariety of V (r ,m) consisting of
Stokes matrices whose Coxeter invariant has class p in O(m) // O(m).

The next proposition shows that the Coxeter invariant of a size r Stokes matrix
s ∈ V (r) = V (r , r) gives a refinement of the characteristic polynomial of −s−1sT .
Let Polyr denote the space of polynomials of degree r .

Proposition 5.5 Let f : O(r) //O(r) → Polyr be the map sending [g] ∈ O(r) //O(r)
to the characteristic polynomial of g. Then the composition

V (r)
∼−→ A′(r , r) c−→ Pin(r) // O(r)

π−→ O(r) // O(r)
f−→ Polyr

takes a Stokes matrix s ∈ V (r) to the characteristic polynomial of −s−1sT . Here
π : Pin(r) → O(r) is the surjection introduced in Sect. 2.2.

Proof It suffices to prove the statement on a dense open subset of V (r). We con-
sider the subset V (r)\V (r , r − 1) ⊂ V (r) consisting of Stokes matrices s such that
rank(s + sT ) = r . Observe that s ∈ V (r)\V (r , r − 1) if and only if its image
[(v1, . . . , vr )] ∈ A′(r , r) under the isomorphism V (r)  A′(r , r) satisfy the prop-
erty that {v1, . . . , vr } ⊂ S(r) ⊂ A

r is linearly independent. With respect to the basis
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{v1, . . . , vr }, the linear transformation svi ∈ O(r) can be expressed as

svi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 · · · 0
0 −1 · · · 0 · · · 0
...

...
. . .

... · · · ...

2 〈v1, vi 〉 2 〈v2, vi 〉 · · · 1 · · · 2 〈vn, vi 〉
...

... · · · ...
. . .

...

0 0 · · · 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is then easy to check the following Coxeter identity [6] holds

s · sv1 · · · · · svr = (−1)r+1sT ,

where

s =

⎡
⎢⎢⎢⎣

1 2 〈v1, v2〉 · · · 2 〈v1, vn〉
0 1 · · · 2 〈v2, vn〉
...

. . .
. . .

...

0 · · · 0 1

⎤
⎥⎥⎥⎦ .

The proposition then follows from the fact that the image of [(v1, . . . , vr )] ∈ A′(r , r)
under the composition

A′(r , r) c−→ Pin(r) // O(r)
π−→ O(r) // O(r)

is given by [(−1)r sv1 ◦ · · · ◦ svr ]. ��

Remark Given a Stokes matrix s ∈ V (r), its Coxeter invariant c(s) ∈ Pin(r) // O(r)
carries more information than the characteristic polynomial of −s−1sT in general, as
we shall see in Example 5.7 below.

Example 5.6 Let s be a 3 × 3 Stokes matrix

s =
⎡
⎣
1 x z
0 1 y
0 0 1

⎤
⎦ .

The characteristic polynomial of its associated Coxeter element −s−1sT is given by

p(λ) = (λ + 1)(λ2 − kλ + 1),

where k = x2 + y2 + z2 − xyz − 2.
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Example 5.7 Let s be a 4 × 4 Stokes matrix

s =

⎡
⎢⎢⎣
1 a e d
0 1 b f
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ .

The characteristic polynomial of its associated Coxeter element −s−1sT is given by

pk1,k2(λ) = λ4 − k1k2λ
3 + (k21 + k22 − 2)λ2 − k1k2λ + 1

where we have

k1 + k2 = ac + bd − e f

k1k2 = a2 + b2 + c2 + d2 + e2 + f 2 − abe − ad f − bc f − cde + abcd − 4.

Note that the assignment (k1, k2) �→ pk1,k2 is not injective. Indeed, we have

pk2,k1 = pk1,k2 and p−k1,−k2 = pk1,k2 ,

which reflects the fact that the morphisms

Spin(4) // SO(4) → Spin(4) // O(4) and Spin(4) // O(4) → SO(4) // O(4)

respectively are generically finite of degree 2. This shows that the Coxeter invariant
c(s) ∈ Pin(4) // O(4) carries more information than the characteristic polynomial p.

Remark As we shall see in Sect. 6, the expressions for k and (k1, k2) in the above
examples give equations for the moduli spaces of SL2-local systems with fixed boun-
datry traces on a one-holed torus and a two-holed torus, respectively. This relationship
will be generalized in the next subsection.

5.2 Stokes matrices and character varieties

We now establish the connection between the SL2-character varieties and the space of
Stokes matrices, through the isomorphism A′(r ,m)  V (r ,m) in Corollary 5.3 and
AP (r , 4)  Xk(�g,n,SL2) in Theorem 1.3.

First, we need to compare the invariant subvarieties AP (r , 4) ⊂ A(r , 4) and
A′
P ′(r , 4) ⊂ A′(r , 4). Here P ∈ Pin(4) // SO(4) and P ′ denotes its class in

Pin(4) // O(4). Recall that in the proof of Proposition 3.10, we have

Pin(4) // O(4) = (Pin(4) // SO(4)) // {1, ι} = (W (SL2)
2 � W (SL2))/{1, ι}

where element ι acts on Pin0(4)//SO(4) = W (SL2)
2 by interchanging the components

ofW (SL2)
2 and acts on Pin1(4)//SO(4) = W (SL2) trivially. It follows that Pin0(4)//
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O(4) parametrizes unordered pairs of (not necessarily distinct) elements in W (SL2).
This shows the following.

Proposition 5.8 Let r ≥ 1, and let r0 ∈ {0, 1} denote its remainder modulo 2. Given
P ∈ Pinr0(4) // SO(4), we have the following.

• If r = 3, then the action of μ2 on A(r , 4) is trivial AP (3, 4)  A′
P ′(3, 4).

• If r ≥ 5 is odd, then the involutive action of μ2 on A(r , 4) preserves AP (r , 4),
and the projection A(r , 4) → A′(r , 4) induces an isomorphism

AP (r , 4) // μ2  A′
P ′(r , 4).

• If r is even, then the involution in μ2 provides an isomorphism of AP (r , 4) with
AιP (r , 4). The preimage of A′

P ′(r , 4) along the projection A(r , 4) → A′(r , 4) is
AP (r , 4) � AιP (r , 4), and each component maps isomorphically onto A′

P ′(r , 4).

We can now relate the SL2-character varieties with the space of Stokes matrices
and compare their Coxeter invariants.

Proposition 5.9 Let r ≥ 3 be an integer, and write r = 2g + n with n ∈ {1, 2}. Let
k ∈ A

n. There is a canonicalmorphism from themoduli of local systems Xk(�g,n,SL2)

into the space of Stokes matrices V (r) given by

Xk(�g,n,SL2)  AP (r , 4) → A′
P ′(r , 4)  VP ′(r , 4)

where the Coxeter invariant P ∈ Pin(r) // SO(r) is determined by k, and P ′ is the
class of P in Pin(r) // O(r). If r is even, the second arrow above is an isomorphism.
Moreover, the corresponding class of P ′ inO(r) //O(r) has characteristic polynomial
p described as follows:

(1) If r is odd, we have

p(λ) = (λ2 − kλ + 1)(λ + 1)(λ − 1)r−3.

(2) If r is even, we have

p(λ) =
(
λ4 − k1k2λ

3 + (k21 + k22 − 2)λ2 − k1k2λ + 1
)
(λ − 1)r−4.

Proof The first part of the proposition follows from Theorem 1.3 and Corollary 5.3 as
well as the observation that, if r is even, then AP (r , 4) → A′

P ′(r , 4) is an isomorphism
by Proposition 5.8.

Now we relate the Coxeter invariants on both sides. Suppose [(v1, . . . , vr )] ∈
A(r , 4) and ρ ∈ X(�g,n,SL2) are identified through the isomorphism established
in Theorem 1.3. By Propositions 4.5 and 4.9, the Coxeter invariants of ρ, i.e. the
monodromy along the boundary curve(s), are described as follows.

• When r is odd, the monodromy of ρ along the boundary curve is given by

v1v
−1
2 · · · vrv−1

1 v2 · · · v−1
r ∈ SL2 .
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• When r is even, the monodromy of ρ along the two boundary curves are given by

v1v
−1
2 · · · v−1

r and v−1
1 v2v

−1
3 · · · v−1

r−1vr ∈ SL2 .

By Proposition 5.5, the image of [(v1, . . . , vr )] ∈ A(r , 4) under the composition
A(r , 4) → A′(r , 4)  V (r , 4) ↪→ V (r) lies in the closed subvariety Vp(r) ⊂ V (r),
where p is the characteristic polynomial of

(−1)r sv1 ◦ · · · ◦ svr ∈ O(r).

Here we regard each vi as an element in S(r) by the embedding S(4) ↪→ S(r) to the
first four components. It is clear that the linear transformation (−1)r sv1 ◦ · · · ◦ svr acts
trivially on the last r − 4 components. Hence it suffices to compute the characteristic
polynomial of (−1)r sv1 ◦ · · · ◦ svr as an element in O(4), and express it in terms of
the boundary monodromy of ρ.

Recall that we have sv(u) = vu−1v, where u, v are regarded as elements in S(4) on
the left hand side, and regarded as elements in SL2 on the right hand side. Therefore,

• when r is odd, (−1)r sv1 ◦ · · · ◦ svr acts on SL2 as:

u �→ −v1v
−1
2 v3 · · · vr u−1vrv

−1
r−1 · · · v1;

• when r is even, (−1)r sv1 ◦ · · · ◦ svr acts on SL2 as:

u �→ v1v
−1
2 · · · v−1

r uv−1
r · · · v1.

It remains to prove the following linear algebraic lemma. ��
Lemma 5.10 Let a, b ∈ SL2.

(1) The linear transformation Mat2 → Mat2 given by

u �→ aūb

has characteristic polynomial

p(λ) = (λ2 − kλ + 1)(λ + 1)(λ − 1),

where k = − tr(ab−1). (Recall that ū denotes the adjugate matrix of u.)
(2) The linear transformation Mat2 → Mat2 given by

u �→ aub

has characteristic polynomial

p(λ) = λ4 − k1k2λ
3 + (k21 + k22 − 2)λ2 − k1k2λ + 1,

where k1 = tr(a) and k2 = tr(b).

123



Stokes matrices and exceptional isomorphisms

Proof Both statements can be verified by direct computations. Let a = [ai j ]1≤i, j≤2
and b = [bi j ]1≤i, j≤2. The transformation in (1) can be represented by the matrix

⎡
⎢⎢⎣

a12b21 a12b22 a22b21 a22b22
−a11b21 −a11b22 −a21b21 −a21b22
−a12b11 −a12b12 −a22b11 −a22b12
a11b11 a11b12 a21b11 a21b12

⎤
⎥⎥⎦ .

Using the condition that a, b ∈ SL2, one can show that the eigenvalues of the above
matrix are ±1 and μ1, μ2, where μ1, μ2 are the eigenvalues of −ab−1. This proves
the statement in (1).

Similarly, the transformation in (2) can be represented by the matrix

⎡
⎢⎢⎣
a11b11 a11b12 a21b11 a21b12
a11b21 a11b22 a21b21 a21b22
a12b11 a12b12 a22b11 a22b12
a12b21 a12b22 a22b21 a22b22

⎤
⎥⎥⎦ .

The eigenvalues of thematrix areμ1ν1, μ1ν2, μ2ν1, μ2ν2, whereμ1, μ2 are the eigen-
values of a and ν1, ν2 are the eigenvalues of b. The statement in (2) then follows
from

λ4−k1k2λ
3+(k21+k22−2)λ2−k1k2λ+1=(λ−μ1ν1)(λ−μ2ν1)(λ−μ1ν2)(λ − μ2ν2).

��
Next, we show that the morphism Xk(�g,n,SL2) → VP (r) is compatible with the

integral structures on Xk(�g,n,SL2) and V (r).

Proposition 5.11 The morphism Xk(�g,n,SL2) → VP (r) defined in Proposition 5.9
sends integral points in Xk(�g,n,SL2) to integral Stokes matrices.

Proof Let α1, . . . , αr−1 be the hyperelliptic generators of π1(�g,n). Recall that the
composition X(�g,n,SL2)  C(r ,SL2)  B(r ,SL2)  A(r , 4) → A′(r , 4)
established in previous sections is given by

ρ �→ [(ρ(α1 · · ·αr−1), ρ(α2 · · ·αr−1), . . . , ρ(αr−1), 1)].

Here we identify SL2 with S(q4), where the quadratic form is given by q4(xi j ) =
x11x22 − x12x21 = det(xi j ) on the space V4 = Mat2. Note that for any a, b ∈ Mat2,
we have

〈a, b〉q I2 = 1

2

(
det(a + b) − det(a) − det(b)

)
I2

= 1

2

(
(a + b)(ā + b̄) − aā − bb̄

)

= 1

2

(
ab̄ + bā

)
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= tr(ab̄)

2
I2

By Corollary 5.3, the Stokes matrix associated to ρ is given by

s =

⎡
⎢⎢⎢⎢⎢⎣

1 tr ρ(α1) tr ρ(α1α2) · · · tr ρ(α1 · · · αr−1)

1 tr(α2) · · · tr ρ(α2 · · ·αr−1)

1 · · · tr ρ(α3 · · · αr−1)

. . .
...

1

⎤
⎥⎥⎥⎥⎥⎦

.

The proposition then follows from the fact that the integral points on Xk(�,SL2)

correspond to local systems having integral traces along every loop of �. ��

Finally, we show that the morphism X(�g,n,SL2) → V (r) defined in Propo-
sition 5.9 is a Poisson morphism, with respect to the natural Poisson structures on
X(�g,n,SL2) and V (r) which we now recall.

The natural Poisson structure on X(�g,n,SL2) was introduced by Goldman [12]
for closed surfaces, and extended to surfaces with boundary for SLn-representations in
a work of Lawton [16, Theorem 15]. Let α, β ∈ π1(�g,n) be represented by oriented
immersed curves in general position. Then the Poisson bracket of the trace functions
is given by

{trα, trβ} = 1

2

∑
p∈α∩β

ε(p;α, β)
(
trαpβp − tr

αpβ
−1
p

)
,

where ε(p;α, β) = ±1 denotes the oriented intersection number of α and β at p, and
αp, βp are elements inπ1(�g,n, p) corresponding to α and β. Note that the symplectic
leaves of this Poisson structure are the level sets of the boundarymonodromymorphism
c : X(�g,n,SL2) → W (SL2)

π0(∂�).
On the other hand, there is a natural Poisson structure on V (r) introduced by

Dubrovin [10] and Ugaglia [20]. For i < j and k < �, the Poisson bracket (up to an
overall scaling) of si j and sk� is given by

{si j , sk�} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 si j si� − s j� if i = k and j < �,
1
2 si j sk j − sik if i < k and j = �,

si j − 1
2 si j s j� if j = k,

si�sk j − siks j� if i < k < j < �,

0 if j < k,

0 if i < k and j > �.

A description of symplectic leaves of this Poisson structures can be found in [4,
Section 5.5].
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Proposition 5.12 The morphism X(�g,n,SL2) → V (r) defined in Proposition 5.9 is
a Poisson morphism.

Proof Recall from the proof of Proposition 5.11 that the morphism X(�g,n,SL2) →
V (r) is given by

ρ �→

⎡
⎢⎢⎢⎢⎢⎣

1 tr ρ(α1) tr ρ(α1α2) · · · tr ρ(α1 · · · αr−1)

1 tr(α2) · · · tr ρ(α2 · · · αr−1)

1 · · · tr ρ(α3 · · · αr−1)

. . .
...

1

⎤
⎥⎥⎥⎥⎥⎦

.

The proposition then follows from computing the Poisson bracket

{trαiαi+1···α j−1 , trαkαk+1···α�−1}

for each of the six cases above. For instance, when i = k < j < �, we have

{trαiαi+1···α j−1 , trαiαi+1···α�−1} = 1

2

(
tr(αiαi+1···α j−1)

2α j ···α�−1
− trα jα j+1···α�−1

)

= 1

2
trαiαi+1···α j−1 trαiαi+1···α�−1 − trα jα j+1···α�−1 .

Here we used the fact that tr(A2B) = tr(AB) tr(A) − tr(B) for any A, B ∈ SL2. ��
Remark When r is even, the embedding Xk(�g,n,SL2) ↪→ VP (r) established in
Proposition 5.9 and 5.12 provide a conceptual clarification of (the complexification
of) the result of Chekhov–Mazzocco [8] on embeddings of Teichmüller spaces of
surfaces into the varieties of Stokes matrices as symplectic leaves.

6 Diophantine theorem

Let �g,n be a surface of genus g ≥ 0 with n ∈ {1, 2} boundary curves, and let
r = 2g + n. By Theorem 1.3, there is a Br -invariant isomorphism

AP (r , 4)  Xk(�g,n,SL2)

where the Coxeter invariant P determines the boundary monodromy k, and vice versa.
The Diophantine aspects of the latter were investigated in [23, 24]. Motivated by
applications to the study of size 4 integral Stokes matrices, in this section we refine this
Diophantine study in the case� = �1,2 of a two-holed torus, and prove Theorem 1.2.
This section is organized as follows. In Sect. 6.1, we review general structure theorems
for integral points on the varieties Xk(�g,n,SL2). We give an analysis of the classical
case (g, n) = (1, 1) in Sect. 6.2, which goes back to work of Markoff [17]. This
together with preliminary observations for the case (g, n) = (0, 4) in Sect. 6.3 are
used to prove Theorem 1.2 in Sect. 6.4.
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6.1 Review of structure theory

Let � be a compact oriented surface of genus g with n boundary curves satisfying
3g+n−3 > 0. For k ∈ C

n , let Xk = Xk(�,SL2) denote the moduli of SL2(C)-local
systems on � with boundary monodromy traces k. We will be interested in the study
of integral points on Xk . Let us define an essential curve in � to be a simple closed
curve on � which is noncontractible and not isotopic to a boundary curve of �.

Definition 6.1 Let k ∈ C
n . A point ρ ∈ Xk(Z) defined to be integral if its monodromy

trace along every essential curve on � is integral.

If k ∈ Z
n , the variety Xk admits a natural integral model over Z, in which case the

definition of Xk(Z) above coincides with the set of integral points on Xk in the usual
algebro-geometric sense [23, Lemma 2.5]. We make the following definition.

Definition 6.2 The degenerate locus of Xk is the union of images of nonconstant
morphisms A

1 → Xk over C. A point or a subvariety of Xk is degenerate if it belongs
to the degenerate locus of Xk , and is nondegenerate otherwise.

It was proved in [22] that, in the case n ≥ 1, each Xk is log Calabi–Yau in the sense
that it admits a normal projective compactification with trivial log canonical divisor.
Definition 6.2 is motivated by consideration of the log Calabi–Yau geometry of the
moduli spaces Xk ; see [23, Section 1.3] for details.

Theorem 6.3 [23] The nondegenerate integral points of Xk(Z) consist of finitely many
mapping class group orbits. There is a proper closed subvariety Z ⊂ Xk whose orbit
of complex points gives precisely the locus of degenerate points on Xk(C).

Amodular characterization of the degenerate locus of Xk was given in [24], which
we recall below. A nontrivial pair of pants in � is a subsurface of genus 0 with 3
boundary curves each of which is either essential or a boundary curve on �.

Theorem 6.4 A point ρ ∈ Xk(C) is degenerate if and only if one of the following
conditions holds:

(1) There is an essential curve a ⊂ � such that tr ρ(a) = ±2, or
(2) (g, n, k) �= (1, 1, 2) and there is a nontrivial pair of pants �′ ⊂ � such that the

restriction ρ|�′ is reducible.

In light of Theorem 6.4 above, the following special case of [22, Corollary 5.8]
gives a stronger variant of the first part of Theorem 6.3. Given any subset A ⊂ C,
let us denote by Xk(A) the subset of Xk(C) such that tr ρ(a) ∈ A for every essential
curve a ⊂ �. The following is a corollary of [23, Theorem 1.4].

Theorem 6.5 For any k ∈ C
n, the set Xk(Z \ {±2}) consists of finitely many mapping

class group orbits.

Given a loop α on �, we shall denote by tr(α) the regular function on Xk defined
by the traces of representations along α: ρ �→ tr ρ(α).
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6.2 Case (g, n) = (1, 1)

We specialize to the case (g, n) = (1, 1) where � is a one-holed torus. We refer to
[23, Section 2.3.1] for details and background. Let us fix a hyperelliptic sequence of
generators (α1, α2) of π1(�). Writing x = tr(α1), y = tr(α2), and z = tr(α1α2), it is
classical (see e.g. [13]) that for each k ∈ A

1 the moduli space Xk = Xk(�,SL2) is
the affine cubic surface

x2 + y2 + z2 − xyz − 2 = k. (1)

The mapping class group descent on Xk in this case is classical and can be traced back
to the 1880 work of Markoff [17]. We record the following.

Theorem 6.6 We have the following.

(1) We have X2(Z) = �(�) · {(2, y, y), (−2, y,−y) : y ∈ Z}.
(2) We have X−2(Z) = �(�) · {(0, 0, 0), (3, 3u, 3u) : u ∈ {±1}}.
(3) If k �= 2, then Xk(Z) consists of finitely many mapping class group orbits.

Proof (1) First, we note that a representation ρ : π1(�) → SL2(C) is reducible if and
only if tr ρ([α1, α2]) = 2. Thus, the locus V2(C) parametrizes the Jordan equivalence
classes of reducible representations of π1(�). Given ρ ∈ X2(Z), it suffices to show
that we have tr ρ(a) = ±2 for some essential curve a ⊂ �. Let us assume without
loss of generality that ρ is diagonal, and write

ρ(α1) =
[
λ 0
0 λ−1

]
, and ρ(α2) =

[
μ 0
0 μ−1

]
.

Note that λ and μ are each either ±1 or an algebraic integer of degree 2, by our
hypothesis that ρ ∈ X2(Z). If [Q(λ, μ) : Q] = 4, then the conjugates of λμ are λμ,
λ−1μ, λμ−1, and λ−1μ−1. But since tr ρ(α1α2) = λμ + λ−1μ−1 ∈ Z, this implies
that λμ−1 = λμ or λ−1μ−1 and hence λ ∈ Z or μ ∈ Z, contradicting the hypothesis
on degree of Q(λ, μ). It follows that we must have d = [Q(λ, μ) : Q] ≤ 2. If d = 1,
thenwe are done, so assume d = 2. It is then easy to see that, up tomapping class group
action (essentially equivalent to the Euclidean algorithm), there exists a nonseparating
simple loop α such that ρ(α) = ±I. This gives the desired result.

(2) This is classical; we briefly sketch the derivation. Let (x, y, z) ∈ X−2(Z) be an
integral solution to the equation

x2 + y2 + z2 − xyz = 0.

Up to �(�)-action, one can assume that (x, y, z) satisfies

|x | ≤ |y| ≤ |z| ≤ |xy − z| or |x | ≤ |z| ≤ |y| ≤ |xz − y|.

We will assume the first case; the second case can be treated similarly. Now, if x = 0
then we must have y = z = 0 from the equation for X−2. So let us assume x �= 0. If
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|x | ≤ 2, then the binary form q(y, z) = y2 + z2 − xyz is positive semidefinite, so

y2 + z2 − xyz = q(y, z) = −x2

admits no integral solution. So let us assume that 3 ≤ |x |. From the equation defining
X−2, we have

|z||xy − z| = |x2 + y2| ≤ 2|y|2.

If |xy| ≤ 2|z|, then

|xy|2
4

≤ |z|2 ≤ 2|y|2 �⇒ |x |2 ≤ 8,

a contradiction; so we must have |xy| > 2|z|. But then

|xyz|
2

< |z||xy − z| ≤ 2|y|2 �⇒ |x | < 4,

so that we have x = ±3. Let us assume that x = 3. From 2|z| < |xy| = 3|y| it follows
that

3|y|2 ≤ 3|yz| = 9 + y2 + z2 ≤ 9 + 2|y|2 �⇒ |y|2 ≤ 9.

Since 3 = |x | ≤ |y|, it follows that y = ±3. Substituting (3,±3) for (x, y) in the
equation for X−2 we find z = ±3, with the sign of z agreeing with that of y. Finally,
the case x = −3 similarly leads to (y, z) = (−3, 3) or (3,−3). A suitable composition
of Dehn twists gives rise to a cyclic permutation of coordinates, so we may makes
arrangements so that x = 3.

(3) It follows by Theorem 6.5 (alternatively, see [23, Section 4.2] for an elementary
argument) that Xk(Z \ {±2}) decomposes into finitely many mapping class group
orbits. It is thus enough to show that the set of integral points (x, y, z) ∈ Xk(Z)

satisfying x = ±2 is contained in finitely many �(�)-orbits. For this, note first that
the intersection of Xk with the plane x = 2 (resp. x = −2) gives a degenerate conic

(y − z)2 = k − 2 (resp. (y + z)2 = k − 2)

which is a union of two disjoint parallel lines (note k �= 2 by hypothesis). Dehn
twist along the curve underlying α1 induces an automorphism of the conic given by
(y, z) �→ (z, 2z− y) (resp. (y, z) �→ (z,−2z− y)). Under the group generated by this
automorphism, any real point on the conic can be brought into a compact subset ofR

2.
This shows that the integral points on the conic belong to finitely many �(�)-orbits,
and we are done. ��
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Remark If we write

s =
⎡
⎣
1 x z
0 1 y
0 0 1

⎤
⎦ =

⎡
⎣
1 tr(α1) tr(α1α2)

0 1 tr(α2)

0 0 1

⎤
⎦ ,

then each Xk can be embedded as a closed subvariety of the affine space of unipotent
upper triangular matrices given by the following condition:

det(λ + s−1sT ) = (λ + 1)(λ2 − kλ + 1).

6.3 Lemma for (g, n) = (0, 4)

We refer to [23, Section 2.3.2] for details and background. Let � be a surface of type
(0, 4), with boundary curves c1, . . . , c4. Here, we will be interested in SL2(C)-local
systems on � whose boundary traces along c3 and c4 are the same. In Sect. 6.4, such
local systems will arise by restriction from SL2(C)-local systems on a surface of type
(1, 2) by cutting the surface along a nonseparating essential curve.

Fix numbers k1, k2, t ∈ C, and let k = (k1, k2, t, t). Let (γ1, γ2, γ3, γ4) be the
generating sequence for π1(�) given by simple loops around the boundary curves
(c1, c2, c3, c4) respectively. Let X ,Y , Z respectively be underlying curves of simple
loops on� homotopic to γ1γ2, γ2γ3, and γ1γ2, respectively, and let x = tr X , y = tr Y ,
and z = tr Z . Then Xk = Xk(�,SL2) is the affine cubic surface

x2 + y2 + z2 + xyz = (t2 + k1k2)x + t(k1 + k2)(y + z) + 4 − 2t2

−k21 − k22 − t2k1k2.

(See [13] for details.) Given a simple closed curve a ⊂ �, we shall denote by τa ∈
�(�) the (left) Dehn twist along a. We record the following.

Lemma 6.7 Assume that k1 + k2, k1k2 ∈ Z, and let dk = (k1 − k2)2 ∈ Z.

(1) Suppose t �= ±2. If k1 �= k2, then the set of integral points on the curve {x = 2} ⊂
Xk consists of finitely many 〈τX 〉-orbits. If moreover (t2 − 4)dk is not a perfect
square, then the said curve has no integral point.

(2) Suppose t �= ±2. If k1 �= −k2, then the set of integral points on the curve
{x = −2} ⊂ Xk consists of finitely many 〈τX 〉-orbits.

(3) Suppose t = 2u for some u ∈ {±1}. If k1, k2 /∈ {±2}, then the set of integral
points on the curve {z = ±2} ⊂ Xk consists of finitely many 〈τZ 〉-orbits.

Proof (1) The curve C = {x = 0} ⊂ Xk can be viewed as a degenerate conic curve
in A

2
y,z given by F(y + z) = 0 where

F(W ) = W 2 − t(k1 + k2)W − [2(t2 + k1k2) + 4 − 2t2 − k21 − k22 − t2k1k2].

By elementary geometry and the description of Dehn twist τX given in [23, Section
2.3.2], we see that C(Z)/〈τX 〉 is finite unless C ⊂ A

2
y,z is a (nonreduced) line in A

2
y,z ;
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this occurs precisely when F has zero discriminant (cf. proof of Theorem 6.6(3)). But
we have

disc(F) = t2(k1 + k2)
2 + 4[2(t2 + k1k2) + 4 − 2t2 − k21 − k22 − t2k1k2]

= (t2 − 4)dk

which is nonzero by our hypotheses. If moreover (t2 − 4)dk is not a perfect square,
then C(Z) is empty since F(W ) = 0 admits no rational solution. The result follows.

(2) The curve C = {x = −2} ⊂ Xk can be viewed as a conic curve in A
2
y,z given

by the equation

(y − z)2 − t(k1 + k2)(y − z) + [2(t2 + k1k2) + 2t2 + k21 + k22 + t2k1k2]
= 2t(k1 + k2)z.

If t �= 0, then this equation defines a non-vertical and non-horizontal parabola since
k1 + k2 �= 0 by hypothesis, whence C(Z)/〈τX 〉 is finite by elementary geometry and
the description ofDehn twist τX given in [23, Section 2.3.2]. If t = 0, then the equation
becomes

(y − z)2 + (k1 + k2)
2 = 0

which admits no integer solutions since k1 + k2 �= 0. The result follows.
(3) Let v ∈ {±1}. The curve Cv = {z = 2v} ⊂ Xk can be viewed as a conic curve

in Ax,y given by the equation

x2 + y2 + 2vxy = (t2 + k1k2)(x + vy) + [t(k1 + k2) − v(t2 + k1k2)]y
+ 2vt(k1 + k2) − 2t2 − k21 − k22 − t2k1k2.

Note that t(k1 + k2) − v(t2 + k1k2) = −v(t − vk1)(t − vk2) �= 0 by our hypothesis,
so the above equation defines a non-vertical and non-horizontal parabola, whence
Cv(Z)/〈τZ 〉 is finite by elementary geometry and the description of Dehn twist τZ
given in [23, Section 2.3.2]. ��

6.4 Case (g, n) = (1, 2) and proof of Theorem 1.2

We specialize to the case (g, n) = (1, 2) where � is a two-holed torus. Let us first
recall the following explicit presentation of the moduli space Xk given in [13, Section
5.3]. Consider the presentation

π1(�1,2) = 〈K1, K2,U , X ,Y |K1 = UXY , K2 = UY X〉,

and define V = UX , W = UY , and Z = XY . Let us write the trace functions of
loops by corresponding lower-case letters (e.g. u = trU ). For k = (k1, k2) ∈ C

2, we
have the presentation of Xk as the four-dimensional subvariety of A

6
u,v,w,x,y,z given

by
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k1 + k2 = yv + xw + zu − uxy

k1k2 = x2 + y2 + u2 + v2 + w2 + z2 − xyz − yuw − uxv + vwz − 4.

Let us fix a hyperelliptic sequence of generators (α1, α2, α3) of π1(�) in such a way
that U = α1, X = α−1

2 , and Y = α2α3. Let us write

s =

⎡
⎢⎢⎣
1 a e d
0 1 b f
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 tr(α1) tr(α1α2) tr(α1α2α3)

0 1 tr(α2) tr(α2α3)

0 0 1 tr(α3)

0 0 0 1

⎤
⎥⎥⎦

Then in terms of the coordinates above, we have

u = a, x = b, y = f , v = ab − e, w = d, and z = c.

This leads to the following.

Proposition 6.8 For k = (k1, k2) ∈ A
2(C), we have a presentation of Xk as the

subvariety of the affine space of 4 × 4 unipotent upper triangular matrices by

k1 + k2 = ac + bd − e f

k1k2 = a2 + b2 + c2 + d2 + e2 + f 2 − abe − ad f − bc f − cde + abcd − 4.

Using the matrix variable s above, note that we have

det(λ + s−1sT ) = λ4 − k1k2λ
3 + (k21 + k22 − 2)λ2 − k1k2λ + 1.

The discriminant of the above polynomial is �k = (k21 − 4)2(k22 − 4)2(k21 − k22)
2.

We will prove the following strengthening of Theorem 6.3.

Theorem 6.9 Fix k ∈ A
2(C) with �k �= 0. Then Xk(�1,2,SL2)(Z) contains at most

finitely many integral �(�)-orbits.

Proof Let ρ ∈ Xk(Z) be given. It is known by Theorem 6.3 that Xk(Z \ {±2})
decomposes into finitelymany�(�)-orbits, sowemay assume that there is an essential
curve in � whose trace is ±2 under ρ. The following cases occur:

• Case I. There is a separating essential curve a ⊂ � such that tr ρ(a) = 2.
• Case II. There is a separating essential curve a ⊂ � such that tr ρ(a) = −2.
• Case III. There is no separating essential curve with trace ±2 under ρ, but there
is a nonseparating curve a ⊂ � such that tr ρ(a) = ±2.

In the remainder of the proofs, wewill treat the cases separately. Throughout the proof,
let (α1, α2, α3) be the hyperelliptic sequence of generators for π1(�) we fixed.
Case I. Suppose a ⊂ � is a separating essential curve such that tr ρ(a) = 2. Let us
write �|a = �1 � �2 where �1 is a surface of type (1, 1) and �2 is a surface of type
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(0, 3). We may assume up to �(�)-action that �1 is the tubular neighborhood of the
union of the images of the loops α1 and α2. By Theorem 6.6(1), we may assume that
ρ ∈ Xk belongs to an algebraic curve Cσ,t ⊂ Xk that consists of points of the form

⎡
⎢⎢⎣
1 2σ tσ ∗
0 1 t ∗
0 0 1 ∗
0 0 0 1

⎤
⎥⎥⎦

for some σ ∈ {±1} and t ∈ Z. We claim that we must have Cσ,t (Z) = ∅ except for t
in a finite subset S ⊂ Z \ {±2}.
Claim There is a finite set S ⊂ Z \ {±2} such that Cσ,t (Z) = ∅ for any t /∈ S.

Proof of Claim Suppose ρ ∈ Cσ,t (Z). We first note that t �= ±2. Indeed, otherwise
ρ|�1 is abelian, whence the monodromy of ρ along b = ∂� must be the identity
(and not just of trace 2). But then k1 = tr ρ(c1) = tr ρ(c2) = k2, contradicting our
hypothesis on k. Thus, ρ(α2) must be diagonalizable. By the same argument, we see
that ρ(α1) cannot be ±I. Thus, up to global conjugation by an element of SL2(C), we
may assume that

ρ(α1) =
[
1 1
0 1

]
, ρ(α2) =

[
λ 0
0 λ−1

]
, and ρ(α3) =

[
x11 x12
x21 x22

]

for some quadratic unit λ �= ±1 such that λ + λ−1 = t and some xi j ∈ C. Note that

tr ρ(α2α3) = λx11 + λ−1x22 ∈ Z and

tr ρ(α1α2α3) = λx11 + λ−1x22 + λ−1x21 ∈ Z

which shows that λ−1x21 ∈ Z, whence x21 = mλ for some m ∈ Z. Now, note that

tr ρ(α1α3) = tr ρ(α3) + x21 ∈ Z

since α1α3 is (homotopic to) a simple loop whose underlying curve is essential. This
shows that k1 = tr ρ(α3) ∈ Z[λ]. This implies that

tr ρ(α2)
2 − 4 = disc(Z[λ]) | disc(Z[k1])

which shows that t = tr ρ(α2) ∈ Z belongs to a finite set, say S ⊂ Z \ {±2}. This
proves the claim. ��

Thus, to prove Case I of Theorem 6.9, it suffices to show that Cσ,t (Z) decomposes
into finitely many 〈τa〉-orbits for each t ∈ S given in the above claim. So fix t ∈ S. Let
c denote the simple closed curve on �1 underlying the loop α2. Then �|c is a surface
of type (0, 4), with boundary curves

∂(�|c) = c1 � c2 � c3 � c4
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where c1 and c2 are the boundary curves of �, and the curves c3 and c4 correspond
to c. Let k′ = (k1, k2, t, t) ∈ A

4(C). Pullback of representations via the immersion
�|c → � induces a nonconstant morphism from the algebraic curve C ⊂ Xk into
Xk′(�|c,SL2). Its image is contained in an algebraic curve of the form described in
Lemma 6.7(1), which contains at most finitely many 〈τa〉-orbits by the said lemma.
Thus, Cσ,t (Z) consists of finitely many 〈τa〉-orbits, as desired.
Case II. Suppose a ⊂ � is a separating essential curve such that tr ρ(a) = −2. Let
�|a = �1 � �2 where �1 is of type (1, 1) and �2 is of type (0, 3). As in the study of
Case I, up to �(�)-action, we may assume that the surface �1 is obtained by taking
a closed tubular neighborhood of the union of images of the simple loops α1 and α2.
By Theorem 6.6(2), we may thus assume that ρ is of the form

⎡
⎢⎢⎣
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣
1 3 3u ∗
0 1 3u ∗
0 0 1 ∗
0 0 0 1

⎤
⎥⎥⎦

for some u ∈ {±1}. In the first case where tr ρ(α1) = tr ρ(α2) = tr ρ(α1α2) = 0, the
defining equations for Xk force k1 + k2 = 0, contradicting our hypothesis. So we may
assume that tr ρ(α1) = 3 and tr ρ(α2) = tr ρ(α1α2) = 3u.

For u ∈ {±1}, let Cu ⊂ Xk(�) be the algebraic curve given by the equations
tr(α1) = 3 and tr(α2) = tr(α1α2) = 3u. To prove Case II of Theorem 6.9, it suffices
to show that Cu(Z) for each u ∈ {±1} consists of finitely many 〈τa〉-orbits. Let c now
denote the simple closed curve on �1 underlying the loop α1, so that tr ρ(c) = 3.
Then �|c is a surface of type (0, 4), with boundary curves

∂(�|c) = c1 � c2 � c3 � c4

where c1 and c2 are the boundary curves of �, and the curves c3 and c4 correspond to
c. Let k′ = (k1, k2, 3, 3) ∈ A

4(C). Pullback of representations under the immersion
�|c → � induces a nonconstant morphism from the algebraic curve Cu ⊂ Xk into
Xk′(�|c,SL2). Its image is contained in an algebraic curve of the form described in
Lemma 6.7(2), which contains at most finitely many 〈τa〉-orbits by the said lemma.
Thus, Cu(Z) consists of finitely many 〈τa〉-orbits, as desired.
Case III.Supposea ⊂ � is a nonseparating curve such that tr ρ(a) = ±2, and suppose
that no separating essential curve on � has trace ±2 under ρ. Up to �(�)-action, we
may assume that a is the curve underlying the simple loop α1.

We claim that the restriction ρ|(�|a) belongs to one of finitely many �(�|a)-
orbits in X(�|a,SL2) determined by the boundary condition k = (k1, k2). Indeed,
we are done by Theorem 6.5 if there is no essential curve on c ⊂ �|a such that
tr ρ(a) = ±2, so let us assume that there exist such a c. Since no separating essential
curve on � has trace ±2 under ρ by assumption, we may assume that the image of c
in � is nonseparating. By choosing the generating loops of π1(�|a) judiciously, we
may assume that ρ|(�|a) belongs into an algebraic curve of the form described in
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Lemma 6.7(3). By Lemma 6.7(3), it follows that ρ|(�|a) belongs to one of finitely
many �(�|a)-orbits in X(�|a,SL2) determined by k = (k1, k2).

Thus, let us assume without loss of generality that ρ|(�|a) is one of finitely many
points in X(�|a,SL2). Let b be an essential curve in �|a whose image in � is a
separating essential curve. By our assumption, there is a constant K = K (k1, k2) such
that | tr ρ(b)| ≤ K . Moreover, by our assumption on ρ, we have tr ρ(b) �= ±2. Let us
write

(�|a)|b = �′
1 � �2

where �′
1 and �2 are each a surface of type (0, 3), such that the boundary curves of

�′
1 map onto a and b under the immersion �′

1 → � while the boundary curves of
�2 map to b and ∂� = c1 � c2. We remark that ρ|�′

1 must be irreducible, seeing as
the monodromy traces of ρ|�′

1 along two of the boundary curves (corresponding to
a) are both ±2 while the trace along the remaining one (corresponding to b) is not. It
follows a fortiori that ρ|(�|a) is irreducible. Let�1 denote the component of�|b that
is of type (1, 1). It follows, by the paragraph on nonseparating curves in [23, Section
2.2.3], that the locus

C = {ρ′ ∈ Xk : ρ′|(�|a) = ρ|(�|a)} ⊂ Xk

is an algebraic curve whose image under the restriction morphism Xk → X(�1) is
nonconstant. It follows by arguing as in the proof of Theorem 6.6(3) that this image
of C in X(�1) consists of at most finitely many 〈τa〉-orbits. Thus, a fortiori the curve
C has finitely many 〈τa〉-orbits, whence ρ belongs to the �(�)-orbit of one of finitely
many points in Xk(Z), as desired.

This completes the proof of Theorem 6.9. ��
We now prove Theorem 1.2.

Proof of Theorem 1.2 Let p(λ) ∈ Z[λ] be a monic reciprocal polynomial of degree 4
with disc(p) �= 0. We would like to show that the B4-invariant subvariety

Vp(4) = {s ∈ V (4) : det(λ + s−1sT ) = p(λ)} ⊂ V (r)

contains at most finitely many integral B4-orbits. By Theorem 1.3, Propositions 5.9
and 6.8, the subvariety Vp(4) is isomorphic to the disjoint union

Vp(4) ∼=
∐
k

Xk(�1,2,SL2),

where k = (k1, k2) ∈ A
2(C) are such that

λ4 − k1k2λ
3 + (k21 + k22 − 2)λ2 − k1k2λ + 1 = p(λ).
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ByTheorem6.9 and the assumption that disc(p) �= 0, each Xk(�1,2,SL2)(Z) contains
atmost finitelymany integral�(�)-orbits. Theorem 1.2 then follows from the compat-
ibility of integral structures on Xk(�1,2,SL2) and Vp(4) proved in Proposition 5.11.

��

7 Exceptional collections

In this section, we apply the isomorphism AP (r , 4)  Xk(�g,n,SL2) and the struc-
ture results of integral points on Xk(�g,n,SL2) established in previous sections, to
obtain the finiteness of possible Gram matrices of full exceptional collections (up to
mutations) of certain triangulated categories.

We start with recalling some of the theory of exceptional collections developed by
Bondal, Gorodentsev, Polishchuk, Rudakov, and many others. The reader is referred
to the original papers [3, 5, 14] for more details.

Let D be a triangulated category. An object E ∈ D is called exceptional if

Hom0
D(E, E) = C and Homk

D(E, E) = 0 for all k ∈ Z\{0}.

An ordered collection of exceptional objects {E1, . . . , Er } is called an exceptional
collection if for any r ≥ i > j ≥ 1,

Homk
D(Ei , E j ) = 0 for all k ∈ Z.

An exceptional collection {E1, . . . , Er } is called full if for any object E ∈ D,

Homk
D(Ei , E) = 0 for all 1 ≤ i ≤ r and all k ∈ Z �⇒ E  0.

Given two objects E and F of D, one defines objects LE F and RF E of D (called
left and right mutation, respectively) by the distinguished triangles

LE F → Hom•
D(E, F) ⊗ E → F and E → Hom•

D(E, F)∗ ⊗ F → RF E .

A mutation of an exceptional collection E = {E1, . . . , Er } is defined via a mutation
of a pair of adjacent objects in the collection as follows:

LiE := {E1, . . . , Ei−1, LEi Ei+1, Ei , Ei+2, . . . , Er },
RiE := {E1, . . . , Ei−1, Ei+1, REi+1Ei , Ei+2, . . . , Er }.

Theorem 7.1 [3, 14] A mutation of an exceptional collection is again an exceptional
collection. Moreover, the following relations hold:

LiRi = RiLi = id, LiLi+1Li = Li+1LiLi+1, RiRi+1Ri = Ri+1RiRi+1,

LiL j = L jLi and RiR j = R jRi if |i − j | �= 1.
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Hence the braid group Br acts on the set of exceptional collections of length r in D
by left (or right) mutations.

Let E = {E1, . . . , Er } be an exceptional collection in D. Denote

sE :=
(
χ(Ei , E j )

)
1≤i, j≤r

the Gram matrix of E with respect to the Euler pairing

χ(E, F) :=
∑
k∈Z

(−1)k dimHomk
D(E, F).

Observe that sE ∈ V (r) is an integral unipotent upper triangular matrix. Mutations of
exceptional collections act on the Gram matrices in the following way:

sLiE =

⎡
⎢⎢⎣

Ii−1
si,i+1 −1
1 0

Ir−i−1

⎤
⎥⎥⎦ · sE ·

⎡
⎢⎢⎣

Ii−1
si,i+1 1
−1 0

Ir−i−1

⎤
⎥⎥⎦ ,

sRiE =

⎡
⎢⎢⎣

Ii−1
0 1

−1 si,i+1
Ir−i−1

⎤
⎥⎥⎦ · sE ·

⎡
⎢⎢⎣

Ii−1
0 −1
1 si,i+1

Ir−i−1

⎤
⎥⎥⎦ .

Note that the actions on the Gram matrices by left mutations are compatible with the
braid group actions on the Stokes matrices defined in Sect. 5.1.

We recall a well-known relationship between the Serre functor and the Coxeter
element associated to the Gram matrix of any full exceptional collection.

Lemma 7.2 LetD be a triangulated category that admits a Serre functor SD and a full
exceptional collection of length r . Then there exists a monic reciprocal polynomial p
of degree r such that sE ∈ Vp(r) for any full exceptional collection E of D.

Proof Let E = {E1, . . . , Er } be a full exceptional collection of D. Then the classes
{[E1], . . . , [Er ]} ⊂ K num

0 (D) form a basis of the numerical Grothendieck group
K num
0 (D). It is easy to check that if we consider v ∈ K num

0 (D) as a column
vector with respect to the basis {[E1], . . . , [Er ]}, then the induced automorphism
SnumD : K num

0 (D) → K num
0 (D) can be written as

SnumD (v) = s−1
E sTE v.

Define the polynomial

p(λ) := det(λ + SnumD ).

Then it is clear that p is a monic reciprocal polynomial of degree r , and sE ∈ Vp(r)
for any full exceptional collection E . ��
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Remark In the context of Fukaya–Seidel category of a Lefschetz fibration, the Cox-
eter identity in Proposition 5.5 is reminiscent of the relationship between the global
monodromy and the Serre functor. We refer to [19] for more details.

Example 7.3 LetD = DbCoh(X) be the bounded derived category of coherent sheaves
on a smooth projective variety X of dimension n. The Serre functor is given by SD =
(−⊗KX )[n], where KX denotes the canonical bundle on X . Since (−⊗KX ) induces a
unipotent operator on the Grothendieck group ofD [5, Lemma 3.1], the Serre operator
SnumD satisfies the property that (−1)nSnumD is unipotent. Suppose that D admits a full
exceptional collection E = {E1, . . . , Er }. By Lemma 7.2, the Grammatrix sE satisfies
the following properties:

• s is a unipotent upper triangular r × r matrix,
• (−1)ns−1sT is unipotent.

Let D be a triangulated category that admits a full exceptional collection. It is
interesting to understand all possible Gram matrices of full exceptional collections
of D, up to the natural Br -actions. Using the Br -equivariant isomorphisms between
AP (r , 4) and the SL2-character variety, togetherwithDiophantine results fromSect. 6,
we are able to establish finiteness result for Gram matrices of nondegenerate full
exceptional collections.

Definition 7.4 Let E be an exceptional collection of length r of D and let p be the
characteristic polynomial of the matrix −s−1

E sTE . We say E is degenerate if its Gram
matrix sE ∈ Vp(r) lies in the image of a nonconstant morphism A

1 → Vp(r) from
the affine line, and is said to be nondegenerate otherwise.

Remark It would be interesting to give a categorical characterization of degenerate
exceptional collections.

Theorem 7.5 LetD be a triangulated category admitting a full exceptional collection
of length 4 and a Serre functor SD. Then there is a finite list of integral Stokes matri-
ces of size 4 such that, up to mutations, the Gram matrix of any nondegenerate full
exceptional collection of D belongs to this list.

Moreover, if the discriminant of the polynomial p(λ) = det(λ + SnumD ) is nonzero,
then there is a finite list of integral Stokes matrices of size four such that, up to
mutations, the Gram matrix of any full exceptional collection ofD belongs to this list.

Proof By Lemma 7.2, there exists a reciprocal polynomial p of degree 4 such that
sE ∈ Vp(4) for any full exceptional collection E of D. Recall from Example 5.7
that Vp(4) is isomorphic to a disjoint union of B4-invariant varieties of the form
AP (4, 4) for some P ∈ Spin(4) // SO(4). By Theorem 1.3, for each AP (4, 4) there is
a B4-equivariant isomorphism

AP (4, 4)  Xk(�1,2,SL2)

for some k ∈ C
2. Since the morphisms Xk(�1,2,SL2) → Vp(4) send integral points

to integral points (Proposition 5.11), the theorem then follows from the Diophantine
results on character varieties Theorems 6.3 and 6.9. ��
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We conclude the section with a few remarks.

Remark LetD = DbCoh(X) be the derived category of an algebraic surface X admit-
ting a full exceptional collection E of length four. Then the Gram matrix sE has
the property that s−1

E sTE is unipotent by Example 7.3, and hence sE ∈ Vp(4) where
p(λ) = (λ − 1)4. In terms of the matrix coefficients

s =

⎡
⎢⎢⎣
1 a e d
0 1 b f
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦

the variety Vp(4) is given by

{
a2 + b2 + c2 + d2 + e2 + f 2 − abe − ad f − bc f − cde + abcd = 0,

ac + bd − e f = 0.
(2)

The solutions to this system of Diophantine equations have been studied in [9]. It is
proved in [9, Theorem A] that any integral solution to (2) is equivalent to one of the
following solutions under the signed braid group actions:

⎡
⎢⎢⎣
1 2 2 4
0 1 0 2
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦ , or

⎡
⎢⎢⎣
1 n 2n n
0 1 3 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦ for n ∈ N.

Note that this does not contradict with the conclusion of Theorem 7.5, since both of
these types of matrices are degenerate points in Vp(4) and �p = 0.

Remark In general, the Grammatrix of an exceptional collection of length r > 4 does
not lie in the image of the composition

Xk(�g,n,SL2)  AP (r , 4) → A′
P ′(r , 4) ↪→ V (r , 4) ↪→ V (r).

For instance, suppose that X is an even dimensional smooth projective variety such
thatDbCoh(X) admits a full exceptional collection E . Then s−1

E sTE is unipotent, hence
sE + sTE is invertible. On the other hand, if s is in the image of the above composition,
then s + sT is not invertible when r > 4.
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