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Abstract
We give an algebraic criterion for the existence of projectively Hermitian–Yang–
Mills metrics on a holomorphic vector bundle E over some complete non-compact
Kähler manifolds (X , ω), where X is the complement of a divisor in a compact Kähler
manifold and we impose some conditions on the cohomology class and the asymptotic
behaviour of the Kähler form ω. We introduce the notion of stability with respect to a
pair of (1, 1)-classes which generalizes the standard slope stability. We prove that this
new stability condition is both sufficient and necessary for the existence of projectively
Hermitian–Yang–Mills metrics in our setting.

1 Introduction

The celebrated Donaldson–Uhlenbeck–Yau theorem [8, 28] says that on a com-
pact Kähler manifold (X , ω), an irreducible holomorphic vector bundle E admits
a Hermitian–Yang–Mills (HYM) metric if and only if it is ω-stable. After this pio-
neering work, there have been several results aiming to generalize this to non-compact
Kähler manifolds [1, 15, 19, 21, 22, 25]. A key issue is to understand what role sta-
bility plays on the existence of projectively Hermitian–Yang–Mills (PHYM) metrics.
An interesting special case in the non-compact setting is when (X , E) both can be
compactified, i.e. X is the complement of a divisor in a compact Kähler manifold X
and E is the restriction of a holomorphic vector bundle E on X , and when the Kähler
metric has a known asymptotic behaviour. Under these assumptions, one wants to
build a relation between the existence of PHYMmetrics on E and some algebraic data
on E . In this paper, we prove a result in this setting.

Let X be an n-dimensional (n ≥ 2) compactKählermanifold, D be a smooth divisor
and X = X\D denote the complement of D in X . Let E be a holomorphic vector
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bundle on X , which we always assume to be irreducible unless otherwise mentioned.
Let E , E |D denote its restriction to X and D respectively. Suppose the normal bundle
ND of D in X is ample. On X we consider complete Kähler metrics ω satisfying
Assumption 1 (see Sect. 2 for a precise definition). Roughly speaking, we assume that
ω is asymptotic to certain model Kähler metrics given explicitly on the punctured
disc bundle of ND and there is a decomposition ω = ω0 + √−1∂∂̄ϕ, where ω0 is a
smooth closed (1,1)-form on X vanishing when restricted to D, ϕ is a smooth function
on X . Typical examples satisfying these assumptions are Calabi–Yau metrics on the
complement of an anticanonical divisor of a Fano manifold and its generalizations
[13, 14, 27] (see Sect. 6.2 for a sketch).

To state our theorem, we need two ingredients: the existence of a good initial
hermitian metric on E and the definition for stability with respect to a pair of classes.
The following lemma is proved in Sect. 4.

Lemma 1.1 If E |D is c1(ND)-polystable, then there is a hermitian metric H0 on E
satisfying:

(1) there is a hermitian metric H0 on E and a function f ∈ C∞(X) such that
H0 = e f H0,

(2) |�ωFH0 | = O(r−N0), where r denotes the distance function to a fixed point
induced by the metric w and N0 is the number in Assumption 1–(3).

We call H0 conformal to a smooth extendable metric if it satisfies the first condition
in Lemma 1.1. A key feature we use in this paper is that the induced metic on End(E)

is conformally invariant with respect to metrics on E . Therefore the two hermitian
metrics H0 and H0 induce the same metric on End(E) and this is the norm used in
Lemma 1.1-(2). Then naturally (following [25]) one wants to find a PHYM metric in
the following set

PH0 =
{
H0e

s : s ∈ C∞(X ,
√−1su(E, H0)), ‖s‖L∞ + ∥∥∂s

∥∥
L2 < ∞

}
. (1.1)

Here we use
√−1su(E, H0) to denote the subbundle of End(E) consisting of the

trace-free and self-adjoint endomorphisms with respect to H0. Though H0 in general
is not unique, we will show that if we fix the induced metric on det E , then the set
PH0 is uniquely determined as long as H0 satisfies conditions in Lemma 1.1 (see
Proposition 4.7).

Next we define stability with respect to a pair of (1,1)-classes, which generalizes the
standard slope stability defined for Kähler classes in [16, Chapter 5]. In the following,
we use μα(S) to denote the slope of a torsion-free coherent sheaf with respect to a
class α ∈ H1,1(M) on a compact Kähler manifold M (see Sect. 3.2 for a more detailed
discussion), i.e.

μα(S) := 1

rank(S)

∫

M
c1(det S) ∧ αn−1.

Definition 1.2 Let M be a compact Kähler manifold, α, β ∈ H1,1(M) be two classes,
E be a holomorphic vector bundle over M . We say E is (α, β)-stable if every coherent
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reflexive subsheaf S of E with 0 < rank(S) < rank(E) satisfies either of the following
conditions:

(a) μα(S) < μα(E), or
(b) μα(S) = μα(E) and μβ(S) < μβ(E).

The main result of this paper is

Theorem 1.3 Let ω = ω0 + ddcϕ be a Kähler metric satisfying the Assumption 1 in
Sect. 2. Suppose E |D is c1(ND)-polystable and PH0 is defined by (1.1). Then there
exists a unique ω-PHYM metric in PH0 if and only if E is (c1(D), [ω0])-stable.

By the definition of (α, β)-stability in Definition 1.2, we have the following con-
sequence.

Corollary 1.4 Suppose ω and E satisfy the conditions in Theorem 1.3. Then we have

(1) suppose [ω0] = 0, then there exists a unique ω-PHYM metric in PH0 if and only
if E is c1(D)-stable.

(2) if E |D is c1(ND)-stable, then there exists a unique ω-PHYM in PH0 .

Now let us give a brief outline for the proof of Theorem 1.3. For the “if” direction,
we follow the argument in [19, 25] by solving Dirichlet problems on a sequence of
domains exhausting X . A key issue here is to prove a uniformC0-estimate. For this we
rely on a weighted Sobolev inequality in [27, Proposition 2.1] and Lemma 5.4 which
builds a relation between weakly holomorphic projection maps over X and coherent
subsheaves over X . For the “only if” direction, we use integration by parts to show
that the curvature form on E can be used to compute the degree of E with respect to
[ω0] (see Lemma 5.3). For both directions, the asymptotic behaviour of the Kähler
metric ω plays an essential role.

Then let us compare Theorem 1.3 with some results existing in the literature. In
[25] and [19], by assuming some conditions on the base Kähler manifold (X , ω) and
an initial hermitian metric on E , it was proved that for an irreducible vector bundle E
the existence of a PHYM metric is equivalent to a stability condition called analytic
stability. In our case, since we assume that E has a compactification E on X , the
existence of good initial metrics is guaranteed by the polystablity assumption of E |D .
Moreover the stability we used in Theorem 1.3 is for E which is purely algebraic, i.e.
independent of choice of metrics. In [1], for asymptotically conical Kähler metrics on
X , it was proved that if E |D is c1(ND)-polystable, then there exists PHYM metrics
on E . No extra stability condition is needed in this case. Therefore the necessity of
stability conditions depends on the geometry of (X , ω) at infinity. Another typical
example for such a phenomenon is the problem for the existence of bounded solutions
of the Poisson equation on noncompact manifolds. See Sect. 6.1 for a brief discussion.

The paper is organized as follows. In Sect. 2, we discuss the assumptions on the
Kähler manifold (X , ω) and prove a weighted mean value inequality for nonnegative
almost subharmonic functions. In Sect. 3, we give a brief review of some standard
results for hermitian holomorphic vector bundles and give a detailed discussion on
(α, β)-stability used in Theorem 1.3. In Sect. 4, Lemma 1.1 is proved and we also
show that the assumption in Lemma 1.1 is necessary. In Sect. 5, we prove Theorem 1.3
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and give an example which does not satisfy the stability assumption. In Sect. 6.1, we
discuss some other results on the existence of PHYMmetrics. In Sect. 6.2, we discuss
someCalabi–Yaumetrics satisfyingAssumption 1. In Sect. 6.3, we prove a counterpart
of Theorem 1.3 in a different setting where X is a compact Kähler surface and c1(ND)

is trivial. In Sect. 6.4, we discuss some problems for further study.

Notations and conventions

• dc =
√−1
2 (−∂ + ∂̄), so ddc = √−1∂∂̄ .

• � = √−1�∂̄∂ , so in local normal coordinates � f = −∑n
i=1

∂2 f
∂zi ∂ z̄i

.
• Br (p) denotes the geodesic ball centered at p with radius r and if the basepoint p
is clear from the context, we will just write it as Br .

• In this paper, we identify a holomorphic vector bundle with the sheaf formed by
its holomorphic sections.

• When we integrate on a Riemannian manifold (M, g), typically we will omit the
volume element dVg .

• Let (M, ω) be a Kähler manifold and (E, H) be a hermitian holomorphic vector
bundle over M . We use C∞(M, E) to denote smooth sections of E ;

Wk,p(M, E;ω, H) (respectivelyWk,p
loc (M, E;ω, H))

to denote sections of E which are Wk,p (respectively Wk,p
loc ) with respect to the

metric ω and H . If bundles or metrics are clear from the text, we will omit them.

2 On the asymptotic behaviour of!

As mentioned in the introduction, the asymptotic behaviour of the Kähler metric on
the base manifold is crucial to make the argument in this paper work. In this section we
will discuss these assumptions. Let X be an n-dimensional (n ≥ 2) compact Kähler
manifold, D be a smooth divisor and X = X\D denote the complement of D in X .
Let LD denote the holomorphic line bundle determined by D.

From now on, we assume the normal bundle of D, i.e. ND = LD|D is ample unless
otherwise mentioned. Then we know that c1(D) is nef and big. We fix a hermitian
metric hD on ND such that

ωD := √−1	hD

is a Kähler form on D, where 	hD denotes the curvature of hD . Let D (respectively
C) denote the (respectively punctured) disc bundle of ND under the metric hD , i.e.

C := {
ξ ∈ ND : 0 < |ξ |hD ≤ 1/2

}
,

D := {
ξ ∈ ND : |ξ |hD ≤ 1

}
.

(2.1)
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We are mainly interested in the region where |ξ |hD is small, which will be viewed as
a model of X at infinity. Then we have a well-defined positive smooth function on C

t = − log |ξ |2hD (2.2)

such that
√−1∂∂̄t = ωD , where using the obvious projection map p : C → D, we

view ωD as a form on C. Then for every smooth function F : (0,∞) −→ R with
F ′ > 0 and F ′′ > 0,

ωF = √−1∂∂̄F(t) = F ′(t)
√−1∂∂̄t + F ′′(t)

√−1∂t ∧ ∂̄t (2.3)

defines a Kähler form on C. Let gF denote the corresponding Riemannian metric and
rF denote the induced distance function to a fixed point p.

We need a diffeomorphism to identify a neighborhood of D in ND with a neigh-
borhood of D in X . For this, we use the following definition introduced by Conlon
and Hein in [6, Definition 4.5].

Definition 2.1 An exponential-type map is a diffeomorphism � from a neighborhood
of D in ND to a neighborhood of D in X such that

(1) �(p) = p for all p ∈ D,
(2) d�p is complex linear for all p ∈ D,
(3) π(d�p(v)) = v for all p ∈ D and v ∈ ND,p ⊂ T 1,0

p ND , where π denotes the
projection T 1,0

p X → T 1,0
p X/T 1,0

p D = ND,p.

Now we can state the assumptions for the Kähler metric ω on X . We consider a
special class of potentials:

H :=
{
F(t) : F(t) = Ata for some constant A > 0 and a ∈

(
1,

n

n − 1

]}
. (2.4)

Assumption 1 Let ω be a Kähler form on X and g be the corresponding Riemannian
metric. We assume that

(1) the sectional curvature of g is bounded,
(2) ω can be written as ω0 + √−1∂∂̄ϕ, where ϕ a smooth function on X and ω0 is a

smooth (1, 1)-form on X with ω0|D = 0,
(3) there exists an exponential-type map � from a neighborhood of D in ND to a

neighborhood of D in X and a potential F ∈ H such that

∣∣�∗(ω) − ωF
∣∣
gF

= O(r−N0
F ) for some number N0 ≥ 8. (2.5)

Remark 2.2 There are (lots of) other potentials F besides those given in (2.4) making
the argument in this paper work, but for simplicity of the statement and some com-
putations we only consider potentials in H. The order in (2.5) is not optimal either
and again we just choose the number 8 for a neat statement. From now on, unless
otherwise mentioned, N0 denotes the number in (2.5).
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Here are themain properties wewill use for Kählermetrics defined by the potentials
inH. For simplicity of notation, we omit the subscript for the dependence on F .

Proposition 2.3 For the Kähler metric defined by a potential F = Ata ∈ H, we have

(1) The metric is complete as |ξ |hD → 0,
(2) r ∼ t

a
2 ,

(3) Vol(Br (p)) ∼ r2n(1− 1
a ),

(4) if θ is a smooth form on D with θ |D = 0, then |θ |g = O(e−δt ) for some δ > 0.

Conditions (1)–(3) follow directly from (2.3) and (2.4). Condition (4) can be proved
directly by doing computation in local coordinates on D as in [14, Section 3]. For
completeness and later reference, we include some details.

Proof of (4): We choose local holomorphic coordinates z = {zi }n−1
i=1 on the smooth

divisor D and fix a local holomorphic trivialization e0 of ND with |e0|hD = e−ψ ,
where ψ is a smooth function on D satisfying

√−1∂∂̄ψ = ωD . Then we get local
holomorphic coordinates {z1, . . . , zn−1, w} on C by writing a point ξ = we0(z). Then
in these coordinates we can write (2.3) as

ωF = √−1F ′(t)ψi j̄ dzi ∧ dz̄ j + F ′′(t)
√−1

(
dw

w
− ψi dzi

)
∧

(
dw̄

w̄
− ψ j̄ d z̄ j

)
.

(2.6)

Then it is easy to check the following estimates:

|dzi |2ωF
= |�ωF (dzi ∧ dz̄i )| ∼ t1−a

|dw|2ωF
∼ |w|2

F ′′(t)
≤ Ce−δt for some δ > 0

ωn
F ∼ F ′(t)n−1F ′′(t)

|ω|2
√−1

n

(
n−1∏
i=1

dzi ∧ dz̄i

)
∧ dw ∧ dw̄.

(2.7)

Then (4) follows directly from (2.7). ��
Remark 2.4 Actually, from the proof of Proposition 2.3-(4), we can give an effective
lower bound for δ. For example, for 2-forms, δ can be chosen to be any positive number
sufficiently close to (and less than) 1/2. However δ > 0 is sufficient for our later use.

Remark 2.5 Although not needed in this paper, we mention that following the compu-

tation in [27, Section 4] or [3, Section 3], we can show that ‖Rm‖ ≤ Cr2(
1
a −1).

In Assumption 1, we only assume the asymptotics of the Kähler forms. To get the
asymptotic behaviour of the corresponding Riemannian metrics, we need to show that
the complex structure of X and D are also close to each other (with respect to the
metric gF ). When D is an anticanonical divisor, the following result is proved in [14,
Proposition 3.4]. For a general smooth divisor D, the author learned the following
proof from Song Sun.
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Lemma 2.6 Let JD and JX denote the complex structure on D and X respectively.
And�∗ JX := d�◦ JX ◦ (d�)−1 denote the pullback of JX under an exponential-type
map �. Then we have

∣∣∣∇k
gF (�∗ JX − JD)

∣∣∣
gF

= O(e(− 1
2+ε)t ) for all k ≥ 0 and ε > 0. (2.8)

Proof Since d�p is complex linear for all p ∈ D, we know �∗ JX − JD is smooth
section of End(TD) vanishing on D. But this is not enough to get the bound claimed
in (2.8). We will use the integrability of �∗ JX and property (3) in Definition 2.1. In
the following, we ignore the pull-back notation.

Around a fixed point in D we can choose local holomorphic coordinates
{w, z1 . . . , zn−1} of the total space of ND so that the zero section is given by w = 0.
Then we can write for α = 1, . . . , n − 1 that

JX∂zα = √−1∂zα + Pα∂w̄ + Qαβ∂z̄β + O
(
|w|2

)
,

where Pα and Qαβ are linear functions of w and w, i.e. there are smooth functions pα

and pα of {zi } such that Pα = pαw + pαw and a similar expression for Qαβ . There
are no type (1, 0) vectors in the linear term of the right hand side because J 2

X
= −id.

Since JX is integrable, we know that

[
∂w − √−1JX∂w, ∂zα − √−1JX∂zα

]

= −2
√−1∂wPα∂w̄ − 2

√−1∂wQαβ∂z̄β + O (|w|)

is still of type (1, 0) with respect to JX , which coincides with JD when restricted to
D. Therefore

∂wPα = pα = 0.

By the property (2) and (3) in Definition 2.1 and the following standard exact
sequence of the holomorphic vector bundles on D

0 −→ T 1,0D −→ T 1,0X −→ ND −→ 0,

we know that on D, the dzα component of ∂̄JX ∂w is tangential to D. Note that by
definition we have ∂̄JX ∂w = L∂w JX , therefore we know that

∂̄JX ∂w(∂zα ) = [∂w, JX∂zα ] = p̄α∂w + ∂wQαβ∂zβ + O (|w|) .

Since on D, the dzα component of ∂̄JX ∂w is tangential to D, we obtain pα = 0. So
we have for α = 1, . . . , n − 1

JX∂zα = √−1∂zα + Qαβ∂z̄β + O
(
|w|2

)
. (2.9)
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Now on D we consider the local basis of holomorphic vector fields (with respect to
JC):

en = w∂w, eα = ∂zα , α = 1, . . . , n − 1

and correspondingly ēn, ēα the conjugate vector fields, and en, eα the dual frame etc.
Then we can write

JX − JD =
∑

J j
i e

i ⊗ e j , (2.10)

where i, j range from 1, . . . , n, 1, . . . , n̄. Then (2.9) implies that we have
∣∣∣J j

i

∣∣∣ =
O (|w|) for all i, j . Then the lemma follows from the explicit expression of the Kähler
metric on D, see (2.7). ��

From the assumption (2.5) on the Kähler form and (2.8) on the complex structure
asymptotics, we obtain that for the corresponding Riemannian metric

∣∣�∗g − gF
∣∣
gF

= O(r−N0
F ). (2.11)

It is also useful to write down the Riemannian metric gF explicitly in real coordi-
nates. Note that the set

{
ξ ∈ ND : |ξ |hD < 1

}
is diffeomorphic to R+ × Y , where Y

is a smooth (2n − 1)-dimensional S1 bundle over D. Let F(t) = Ata ∈ H. Then we
can write the Riemannian metric gF as follows

gF = dr2 + C1r
2(1− 1

a )gD + C2r
2(1− 2

a )θ2, (2.12)

where gD is the corresponding Riemannianmetric forωD and θ is a connection 1-form
on Y such that dθ = ωD .

From the asymptotic of the Riemannianmetric tensor (2.11), the explicit expression
of the Riemannianmetric gF in (2.12) and conditions inAssumption 1, one can directly
show the following result.

Lemma 2.7 Suppose (X , ω, g) satisfy Assumption 1, then

(1) the volume growth of g is at most 2, i.e. there exists a constant C > 0 such that
Vol(BR(p)) ≤ CR2 for all R sufficiently large.

(2) for large numbers K , α = 2 and β = 4
a − 2, (X , ω) is of (K , α, β)-polynomial

growth as defined in [27, Definition 1.1],
(3) if θ is a smooth form on X vanishing when restricted to D, then

|θ |g = O(r−N0).

That (M, g) is of (K , α, β)-polynomial growth is important for us since we need
the weighted Sobolev inequality in [27, Proposition 2.1] to prove a weighted mean
value inequality in the next subsection.
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2.1 A weightedmean value inequality

In this subsection, using a weighted Sobolev inequality in [27], we prove a weighted
mean value inequality for nonnegative functions which are almost subharmonic. This
is important when we run Simpson’s argument to get a uniformC0-estimate. As usual,
r denotes the distance function to a fixed base point induced by a Riemannian metric.

Lemma 2.8 Let (X , g) be a Riemannian manifold which is of (K , α, β)-polynomial
growth as defined in [27]. Let u be a nonnegative compactly supported Lipschitz
function satisfying �u ≤ f in the weak sense. Suppose that | f | = O(r−N ), for some
N ≥ 2 + α + β, then there exist Ci = Ci (n, N ) such that

‖u‖L∞ ≤ C1

∫
(1 + r)−Nu + C2 (2.13)

Proof The following argument is the standard Moser iteration with the help of the
weighted Sobolev inequality in [27, Proposition 2.1].

Let γ = 2n+1
2n−1 . Note that we have

∫
u p�u ≤ ∫

u p f for any p ≥ 1. Integration by
parts and using that | f | = O(r−N ), we have

∫
|∇u

p+1
2 |2 ≤ Cp

∫
u p(1 + r)−N .

Let dμ = (1+ r)−NdVg and without loss of generality, we may assume dμ has total
mass 1. Then the weighted Sobolev inequality shows that

(∫ ∣∣∣∣u
p+1
2 −

∫
u

p+1
2 dμ

∣∣∣∣
2γ

dμ

) 1
2γ

≤ C

(∫
|∇u

p+1
2 |2

) 1
2 ≤ Cp

1
2

(∫
u pdμ

) 1
2

.

Applying the triangle inequality and Hölder inequality, we get

(∫
u(p+1)γ dμ

) 1
2γ ≤ C1

∫
u

p+1
2 dμ + C2 p

1
2

(∫
u pdμ

) 1
2

≤ C1

(∫
u p+1dμ

) 1
2 + C2 p

1
2

(∫
u p+1dμ

) p
2(p+1)

.

Let pi = γ i , i = 0, 1, . . .. We have for any i

(∫
u pi+1dμ

) 1
γ ≤ C1

∫
u pi dμ + C2 pi

(∫
u pi dμ

) pi
pi+1

.

Either there exists a sequence of pi j → ∞ such that
∫
u pi j dμ ≤ 1, which implies

that ‖u‖L∞ ≤ 1, or there exists a smallest i0 such that and
∫
u pi dμ > 1 for i ≥ i0. In

the second case, we have
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‖u‖L pi0 ≤ max

{
‖u‖L1(dμ),Cp

1
pi0
i0

}
≤ C1‖u‖L1(dμ) + C2

(∫
u pi+1dμ

) 1
γ ≤ Cpi

∫
u pi dμ, for i ≥ i0.

Iterating gives that

‖u‖L∞ = lim
i→∞ ‖u‖L pi (dμ) ≤ C‖u‖L pi0 ≤ C1‖u‖L1(dμ) + C2.

��

2.2 The assumption on the degree a

The only reason why we need to assume a ≤ n
n−1 is that the volume growth of the

corresponding Riemannian metric is at most 2. In fact we have the following easy but
useful degree vanishing property for Riemannian manifolds with at most quadratic
volume growth.

Lemma 2.9 Let (M, g) be a complete Riemannian manifold with volume growth order
at most 2. Let u ∈ C∞(M) satisfying |∇u| ∈ L2 and �u ∈ L1, then

∫

M
�u dVg = 0.

Proof By the Cauchy–Schwarz inequality and the assumption on the volume growth,
we have

1

R

∫

B2R\BR

|∇u|dVg ≤ C

(∫

B2R\BR

|∇u|2dVg
) 1

2 → 0 as R → ∞.

Therefore there is a sequence Ri → ∞ such that
∫
∂BRi

|∇u| dS → 0. Since �u is

integrable,
∫
M �u dVg = limi→∞

∫
BRi

�u dVg for any sequence Ri going to infinity.

Using Stokes’ theorem, we have

∣∣∣∣∣
∫

BRi

�u dVg

∣∣∣∣∣ ≤
∫

∂BRi

|∇u| dS → 0 as Ri → ∞.

��

2.3 Assumption on8 and!

By Proposition 2.3 and the assumption on the decomposition of ω = ω0 + √−1∂∂̄ϕ,
we know that (2.5) is equivalent to say that

∣∣∣�∗(
√−1∂∂̄ϕ) − ωF

∣∣∣
gF

= O(r−N0
F ). (2.14)
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Writing �∗(
√−1∂∂̄ϕ) − ωF as d(�∗dcϕ − dcF) and integrating this exact 2-form,

we can show the following result, whose proof is similar to that given in [14, Lemma
3.7].

Lemma 2.10 There exists a real 1-form η outside a compact set of C with

|η|gF = O(r
−N0+1+ 1

a
F )

such that

�∗(
√−1∂∂̄ϕ) − ωF = dη

Proof Choose a cut-off function χ which equals 1 on {0 < |ξ |hD < δ}and 0 on
{|ξ |hD > 2δ} for some δ > 0. Let

θ = d(χ(�∗(dcϕ) − dcF))

And it suffices to write θ = dη with |η|gF = O(r
−N0+1+ 2

a
F ).

We identify C with R+ × Y in such a way that the Riemannian metric gF can be
written as dr2 + gr , where r is the coordinate function on R+ and gr is a metric on
{r} × Y 2n−1 that depends on r . Then θ is supported on the region {r > r0} for some
r0 > 0. Then there exist a 1-form α and a 2-form β supported on the region {r > r0}
such that ∂r�α = 0 and ∂r�β = 0

θ = dr ∧ α + β.

Then we define

η =
∫ r

r0
α dr .

θ is closed, therefore dα + ∂rβ = 0 and then one can directly check that θ = dη.
Since dr ∧ α is perpendicular to β and we assumed |θ |gF = O(r−N0

F ), we obtain that

|α|gF = O(r−N0
F ). Fix a smooth background Riemannian metric ḡ on Y . Then from

(2.12) and (2.11), we obtain the following estimate

C−1r2(1−
2
a )ḡ ≤ gr ≤ Cr2(1−

1
a )ḡ.

Then the estimate for |η|gF follows from a direct computation. ��
Remark 2.11 A similar argument can be applied to ddcϕ directly on X (using Assump-
tion 1) and we obtain that there exists a cut-off function χ supported on a compact set

and a smooth real 1-formψ supported outside a compact set satisfying |ψ | = O(r1+ 1
a )

such that

ddcϕ = ddc(χϕ) + dψ
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This is quite useful when we want to integrate by parts on X .

We assumed that ω0 is a closed (1,1)-form on X and vanishes when restricted to
D. In particular,

∫
X c1(D) ∧ ωn−1

0 = 0. Then by the Lelong–Poincaré formula, we
obtain the following.

Lemma 2.12 Let S ∈ H0(X , LD) be a defining section of D and h be any smooth
hermitian metric on LD. Let f = log |S|2h, then we have

∫

X
ddc f ∧ ωn−1

0 = 0.

3 Hermitian holomorphic vector bundles

Firstly let us recall the definition of projectivelyHermitian–Yang–Millsmetrics. Given
a hermitian metric H on a holomorphic vector bundle E , there is a unique connection
compatible with these two structures and it is called the Chern connection of (E, H).
Let FH denote the curvature of theChern connection andwe call it theChern curvature
of (E, H). Let E be a holomorphic vector bundle on a Kähler manifold (X , ω).
A hermitian metric H is called an ω-projectively Hermitian–Yang–Mills metric (ω-
PHYM) if

�ωFH = tr(�ωFH )

rank(E)
idE . (3.1)

Accordingly theChern connection is called anω-PHYMconnection if (3.1) is satisfied.
A hermitian metric H is called an ω-Hermitian–Yang–Mills (ω-HYM) metric if

�ωFH = λidE

for some constant λ. We also use the notation F⊥
H to denote the trace-free part of the

curvature form, i.e. F⊥
H = FH− tr(FH )

rank(E)
idE . Then (3.1) is equivalent to say�ωF⊥

H = 0.

Remark 3.1 Note that the PHYM property is conformally invariant, i.e. if a hermitian
metric H0 satisfies (3.1), then H = H0e f also satisfies (3.1) for every smooth function
f . Moreover to get a HYMmetric from a PHYMmetric, it suffices to solve a Poisson
equation, which is always solvable for a constant λ such that

∫
X (tr(�ωFH )−λ)ωn = 0

when M is compact.

3.1 Basic differential inequalities

Let E be a holomorphic vector bundle and H , K be two hermitian metrics on E , then
we have an endomorphism h defined by

〈s, t〉H = 〈h(s), t〉K .
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Wewill write this as H = Kh and h = K−1H interchangeably. Note that h is positive
and self-adjoint with respect to both H and K . Let ∂H and ∂K denote the (1, 0) part of
the Chern connection determined by H and K respectively. By abuse of notation, we
use the same notation to denote the induced connection on End(E). Simpson showed
that

Lemma 3.2 [25] Let H = Kh, then we have

(1) ∂H = ∂K + h−1∂K (h);
(2) �K h = h

√−1(�FH−�FK )+√−1�∂̄(h)h−1∂K (h)where�K = √−1�∂̄∂K ;
(3) � log tr(h) ≤ 2 (|�FH |H + |�FK |K ).

Moreover in (2) and (3), if det(h) = 1 then the curvatures can be replaced by the
trace-free curvatures F⊥.

3.2 Slope stability

If |tr(�ωFH )| ∈ L1, the ω-degree of (E, H) and ω-slope of (E, H) are defined to be

degω(E, H) =
√−1

2nπ

∫

M
tr(�ωFH )ωn =

√−1

2π

∫

M
tr(FH ) ∧ ωn−1

μω(E, H) = degω(E, H)

rank(E)
.

(3.2)

Now let us assume M is compact. Integration by parts shows that the degree defined
above is independent of the metric H and only depends on the cohomology class of
[ω] ∈ H2(X ,R), i.e. by the Chern–Weil theory,

degω(E) =
∫

M
c1(E) ∧ ωn−1.

Moreover for any coherent subsheaf S of E , one can define its ω-degree as follows
(see [16, Chapter 5]). It is shown that det S := (∧r S)∗∗ is a line bundle, where r is the
rank of S and define

degω(S) =
∫

M
c1(det S) ∧ ωn−1. (3.3)

As before we define μω(S), the ω-slope of S, to be degω(S)

rank(S)
. Note that for the definition

of ω-degree and ω-slope, we do not need ω to be a Kähler form at all, and a real closed
(1, 1)-form is enough. That is for every real closed (1, 1)-form α, we can define

degα(S) =
∫

M
c1(det S) ∧ αn−1.

The slope μα(S) is defined similarly as before and we will use the notation μ(S, α)

and μα(S) interchangeably.
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We have the following definition which generalizes the standard slope stability
defined for Kähler classes in [16, Chapter 5].

Definition 3.3 Let M be a compact Kähler manifold, α, β ∈ H1,1(M) be two coho-
mology classes, E be a holomorphic vector bundle over M .

(1) We say E is α-stable if for every coherent reflexive subsheaf S of E with 0 <

rank(S) < rank(E), we have μα(S) < μα(E); E is α-polystable if it is the
direct sum of stable vector bundles with the same α-slope; E is α-semistable if
for every coherent reflexive subsheaf S of E with 0 < rank(S) < rank(E), we
have μα(S) ≤ μα(E);.

(2) We say E is (α, β)-stable if every coherent reflexive subsheaf S of E with 0 <

rank(S) < rank(E) satisfies either of the following conditions:

(a) μα(S) < μα(E), or
(b) μα(S) = μα(E) and μβ(S) < μβ(E).

From the definition, we know that if β = 0, then E is (α, β)-stable if and only if
it is α-stable; if E is α-stable, then it is (α, β)-stable for any class β. In applications,
typically the first class α has some positivity. For example, in our Theorem 1.3, α =
c1(D) is nef and big.

Remark 3.4 For every coherent subsheaf S of a holomorphic vector bundle E , we have
an exact sequence of sheaves:

0 → S → S∗∗ → S∗∗/S → 0,

where S∗∗/S is a torsion sheaf and supports on an analytic set with codimension at least
2. Then by [16, Section 5.6], we know det S = det(S∗∗). In particular, we know that E
is α-stable (respectively (α, β)-stable) if and only if the conditions in (1) (respectively
(2)) hold for every coherent subsheaf of E .

3.3 Coherent subsheaves and weakly holomorphic projectionmaps

Let (E, H) be a hermitian holomorphic vector bundle over a Kähler manifold (M, ω).
Suppose S is a coherent subsheaf of E , since E is torsion-free, then S is torsion free
and hence locally free outside � which is a closed analytic set of codimension at
least 2. Moreover on X\� we have an induced orthogonal projection map π = πH

S
satisfying

π = π� = π2, (id − π) ◦ ∂̄π = 0. (3.4)

Outside the singular set �, the Chern curvature of (S, H |S) is related to the Chern
curvature (E, H) by

FS,H = FE,H |S − ∂π ∧ ∂̄π. (3.5)

Let us mention a result in current theory:
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Theorem 3.5 [10] Let � be a closed analytic subset of codimension at least 2 in a
Kähler manifold (M, ω). Assume T is a closed positive current on M\� of bidegree
(1, 1), i.e a (1, 1)-formwith distribution coefficients, then the mass of T is locally finite
in a neighborhood of �. More precisely, every p ∈ � has a neighborhood U ⊆ M
such that

∫

U
T ∧ ωn−1 < ∞.

Applying the above theorem to tr(
√−1∂π ∧ ∂̄π), one gets

π ∈ W 1,2
loc (M,End(E);ω, H). (3.6)

In general, an element π ∈ W 1,2
loc (M,End(E);ω, H) is said to be a weakly holomor-

phic projection map if it satisfies (3.4) almost everywhere. By the discussion above,
we know that for a coherent subsheaf S of E , πH

S is a weakly holomorphic projection
map. A highly nontrivial result due to Uhlenbeck and Yau [28] is that the converse is
also true (see also [24]).

Theorem 3.6 [28] Suppose there is aweakly holomorphic projectionmapπ , then there
exists a coherent subsheaf S of E such that π = πH

S almost everywhere.

If X is compact, degω(S) defined in (3.3) can be computed using the curvature form
FS,H . The following result is well-known, see [16, Section 5.8]. We include a simple
proof using Theorem 3.5.

Proposition 3.7 Let (E, H) be a hermitian holomorphic vector bundle over a compact
Kähler manifold (M, ω) and S be a coherent subsheaf of E. Then

degω(S) =
√−1

2π

∫

M\�
tr(FS,H ) ∧ ωn−1, (3.7)

where degω(S) and FS,H are defined in (3.3) and (3.5) respectively.

Proof Let r denote the rank of S. Since S is a subsheaf of E , there is a natural sheaf
homomorphism

� : (∧r S)∗∗ −→ (∧r E)∗∗ = ∧r E .

Note that � is only injective on M\� in general. Let ∧r H denote the metric on
∧r E induced from H , then �∗(∧r H) defines a singular hermitian metric on (∧r S)∗∗
which is smooth outside � and whose curvature form is equal to tr(FS,H ). Since �

is a holomorphic bundle map, by choosing a local holomorphic basis of (∧r S)∗∗ and
∧r E , it is easy to show that �∗(∧r H) = f K , where K is a smooth hermitian on
(∧r S)∗∗, the function f is positive smooth outside � and converge to 0 polynomially
along �.
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Then by Theorem 3.5, it suffices to prove the following: for every smooth positive
function f on M\� satisfying � log f ∈ L1, and | f | = O(dist(·, �)k) for some k
one has

∫

M
� log f ωn = 0. (3.8)

Note that | log f | ∈ L2, then (3.8) follows from the Cauchy–Schwarz inequality and
existence of good cut-off functions. More precisely, since � has real codimension at
least 4, it is well-known that there exists a sequence of cut-off functions χε such that
1 − χε is supported in the ε-neighborhood of � and we have uniform L2 bound on
�χε .

We briefly describe a construction of these cut-off functions. Let s be a regularized
distance function to � in the sense that s : M → R≥0 is smooth and satisfies that
there exist positive constants Ck such that

C−1
0 dist(x, �) ≤ s(x) ≤ C0dist(x, �) and |∇ks| ≤ Ckdist(x, �)1−k for all k ≥ 0.

The existence of such a regularized distance function can be derived from [26, Theorem
2 on page 171]. After a rescaling, we may assume s < 1 on M . For every ε > 0, let
ρε be a smooth function which is equal to one on the interval (−∞, ε−1) and zero on
(2 + ε−1,∞). Moreover we can have |ρ′

ε | + |ρ′′
ε | ≤ 10. Then we define

χε = ρε(log(− log s)),

and we can directly check they satisfy the desired properties. ��
Motivated by the above result, Simpson [25] uses the right hand side of (3.7) to

define an analytic ω-degree of a coherent subsheaf on a noncompact Kähler manifold.
Typically one needs to assume |�ωFH | ∈ L1 to ensure the first term of (3.5) is
integrable. Then the degree of a coherent subsheaf is either a finite number or −∞
depending on whether |∂̄π | ∈ L2. In general, this analytic degree depends on the
choice of the background metric H . And a key observation in this paper is that when
E has a compactification and H is conformal to a smooth extendable hermitian metric,
this analytic degree does have an algebraic interpretation, see Lemmas 5.3 and 5.4.

3.4 Dirichlet problem

We have the following important theorem of Donaldson:

Theorem 3.8 [9] Given a hermitian holomorphic vector bundle (E, H0) over (Z , ω)

which is a compact Kähler manifold with non-empty boundary ∂Z, there is a unique
hermitian metric H on E such that

(1) H |∂Z = H0|∂Z ,
(2)

√−1�ωFH = 0.

123



Hermitian–Yang–Mills connections on some…

As observed in [19], one can do conformal changes to H to fix the induced metric
on det E and still have it to be a projectively Hermitian–Yang–Mills metric.

Proposition 3.9 [19] Given a hermitian holomorphic vector bundle (E, H0) over
(Z , ω) which is a compact Kähler manifold with boundary, there is a unique her-
mitian metric H on E such that

(1) H |∂Z = H0|∂Z and det H = det H0,
(2)

√−1�ωF⊥
H = 0,

3.5 Donaldson functional for manifolds with boundary

Next we recall Simpson’s construction [25] for Donaldson functional. We follow
the exposition in [19, Subsection 2.5] and focus on compact Kähler manifolds with
boundary.

Let (Z , ω) be a compact Kähler manifold with boundary, (E, H0) be a hermitian
holomorphic vector bundle. Let b be a smooth section of End(E)which is self-adjoint
with respect to H0. Then for any smooth function f : R → R and � : R × R → R

respectively, we can define

f (b) ∈ C∞(End(E)) and�(b) ∈ C∞(End(End(E)))

as follows: at each point p ∈ Z , choose an orthonormal basis {ei } of E such that
b(ei ) = λi ei . Let {e∨

i } denote its dual basis, then set

f (b)(ei ) = f (λi )ei and �(b)(e∨
i ⊗ e j ) = �(λi , λ j )e

∨
i ⊗ e j .

Recall that for any two hermitian metrics H1 and H2, there is a smooth section s of
End(E), which is self-adjoint with respect to both H1 and H2 such that H2 = H1es

and det H = det H0 if and only if tr(s) = 0. Let PH0 denote the space of hermitian
metrics H of E such that

det H = det H0 and H |∂Z = H0|∂Z .

Let �(λ1, λ2) denote the smooth function

�(λ1, λ2) =

⎧⎪⎪⎨
⎪⎪⎩

eλ2−λ1 − (λ2 − λ1) − 1

(λ2 − λ1)
2 if λ1 �= λ2

1

2
if λ1 = λ2.

(3.9)

Then put

Mω(H1, H2) = √−1
∫

Z
tr(s�ωFH1)ω

n +
∫

Z

〈
�(s)(∂̄s), ∂̄s

〉
H1

ωn .

Mochizuki proved the following important result
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Theorem 3.10 [19] If H ∈ PH0 is an ω-PHYM metic, then Mω(H0, H) ≤ 0.

3.6 Bando–Siu’s interior estimate

The following result shows that to get a local uniform bound for a sequence of PHYM
metrics, it suffices to have a uniform C0-bound.

Theorem 3.11 [2, 15] Let B2(p) ⊆ (M, ω) be a geodesic ball of radius 2 contained in
aKählermanifold such that B2(p) is compact. Let (E, H0)beahermitian holomorphic
vector bundle over B2(p). Suppose H = H0es is an ω-PHYM metric with tr(s) = 0,
then for any k ∈ N and p ∈ (1,∞) there exists a smooth functionFk,p which vanishes
at the origin and depends only on the geometry of B2(p) such that

∥∥∥∇k+2
H0

s
∥∥∥
L p(B1(p))

≤ Fk,p

(
‖s‖L∞ +

k∑
i=0

∥∥∥∇ i
H0

FH0

∥∥∥
L∞(B2(p))

)
.

4 Existence of a good initial metric

In this section, we continue to use notations in Sect. 2 and always assume the Kähler
metric on X satisfies the Assumption 1. We begin by working on the model space
(C, ωC), where ωC = ddcF(t) for some potential F(t) ∈ H. Using the explicit
expression of ωC in (2.3), it is easily to show that

Lemma 4.1 Let E be a holomorphic vector bundle on D and p∗(E) be its pull back to
C. Suppose HD is a metric on E satisfying

√−1�ωD FHD = λidE for some constant λ,

then H = e
− λ

n−1 log |ξ |2hD p∗(HD) defines ametric on p∗(E) satisfying
√−1�ωC FH =

0.

Remark 4.2 If n = 2, the metric H actually is a flat metric on p∗(E).

Let E be a holomorphic vector bundle onD. We still use p to denote the projection
map fromD to D. Then we can compare the holomorphic structure on E and p∗(E |D)

as follows. In a neighborhood of D, which we may assume to be C, we fix a bundle
map � : E → p∗(E |D) such that �|D is the canonical identity map and � is
an isomorphism as maps between complex vector bundles. Then � pulls back the
holomorphic structure on p∗(E |D) to E . Now we have two holomorphic structures
on E and denote them by ∂̄1 and ∂̄2. Then the difference

β = ∂̄2 − ∂̄1

is a smooth section ofA0,1(End(E)) and is 0when restricted to D. Locally near a point
in D, choose holomorphic coordinates {z1, . . . , zn−1, w} such that D = {w = 0}.
Using these coordinates, β can be written as fidz̄i + hdw̄ where fi and h are smooth
sections of End(E) and fi |w=0 = 0.
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Now suppose we have a Hermitian metric H on p∗(E |D)|C , then via � we view it
as a metric on E |C . Let ∂i denote the (1, 0) part of the Chern connection determined
by ∂̄i and H . Then one can check that

μ = ∂2 − ∂1 = −β∗H ,

where β∗H denote the smooth section ofA1,0(End(E)) obtained from β by taking the
metric adjoint for the End(E) part and taking conjugate for the 1-form part. Locally
μ = f ∗H

i dzi + h∗H dw. Since H is only defined over C, a priori f ∗H and h∗H are only
defined on C. Note that the operator ∗H is conformally invariant with respect to the
choice of metric H , so if H = e f H for some function f ∈ C∞(C) and metric H on
E , f ∗H

i and h∗H are smooth sections over D. Then we can compute the difference of
curvatures for (∂̄1, H) and (∂̄2, H):

F∂̄2,H = ∂̄2∂2 + ∂2∂̄2 = F∂̄1,H + ∂1β + ∂̄1μ + [β,μ], (4.1)

where we abuse notation to use the same symbol ∂ and ∂̄ to denote the induced
connection on End(E). Again note that the induced metric (and hence the Chern
connection) onEnd(E) is conformally invariant formetrics H on E . Therefore F∂̄2,H−
F∂̄1,H is a smooth End(E) valued (1, 1)-form over D and i∗D(F∂̄2,H − F∂̄1,H ) = 0.
Then by Proposition 2.3, we obtain there exists a δ > 0,

∣∣F∂̄2,H − F∂̄1,H

∣∣
ωC ,H

= O(e−δt ).

Combining this and the previous lemma, we proved that

Proposition 4.3 Let E be a holomorphic vector bundle on D. Suppose there is a
metric HD on E |D satisfying

√−1�ωD FHD = λid for some constant λ, then there is
a Hermitian metric H on E |C satisfying:

(1). there is a hermitian metric H on E and a function f ∈ C∞(C) such that H =
e f H, and

(2). |�ωC FH | = O(e−δt ) for some δ > 0.

Motivated by this, we can give the proof of the Lemma 1.1.

Proof of Lemma 1.1. By the Donaldson–Uhlenbeck–Yau theorem there exists a hermi-
tian metric HD on E |D such that

√−1�ωD FHD = λid. (4.2)

Extend HD smoothly to get a hermitian metric H0 on E . Using the diffeomorphism
� given in the Assumption 1-(3) we get a positive smooth function on X by abuse of
notations stilled denoted by t , which is equal to (�−1)∗t outside a compact set on X .

Define a hermitian metric on E using

H0 = e
λ

n−1 t H0. (4.3)
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Then we claim that

|�ωFH0 | = O(r−N0). (4.4)

From the construction, FH0 = FH0
− λddct

n−1 id, where FH0
is smooth bundle valued

(1,1)-form on X . Recall that for a 2 form θ ,

�ωθ = nθ ∧ ωn−1

ωn
.

Since we assume that |�∗(ω) − ωC | = O(r−N0), then (4.4) will follow from the
following estimate on C: there exist a δ > 0 such that

∣∣∣∣�ωC

(
�∗(FH0

) − λ

n − 1
�∗ddct

)∣∣∣∣ = O(e−δt ). (4.5)

By (2.8) and (2.10), we can easily show that there exists a δ > 0 such that

∣∣�∗ddct − ddct
∣∣ = |d((�∗ JX − JD) ◦ dt)| = O(e−δt ). (4.6)

Using the same argument as we did before Proposition 4.3, we can show that there
exists a δ > 0 such that

∣∣∣�∗(FH0
) − p∗(FH0

|D)

∣∣∣ = O(e−δt ). (4.7)

Then (4.5) follows from (4.2), (4.6) and (4.7). ��
Remark 4.4 Recall that we use S ∈ H0(X , LD) to denote a defining section of D.
Then from the definition of t , we know that there exists a smooth hermitian metric h
on LD such that t = − log |S|2h .
Remark 4.5 From the above discussion, we also obtain that |FH0 | = O(r1−a). In
general, we can not expect a higher decay order for the full curvature tensor FH0 since
it has non-vanishing component along the directions tangential to D, but if n = 2 we
actually proved that

|FH0 |ω = O(r−N0). (4.8)

From the proof given above, the assumption that E |D is c1(ND)-polystable is
used crucially to have a good initial metric H0 satisfying (1) and (2) in Lemma 1.1,
which both are important for the proof. We show the assumption that E |D is c1(ND)-
polystable is also necessary subject to the conditions in Lemma 1.1. More precisely,
we have that

Proposition 4.6 Suppose there is a Hermitian metric H0 on E satisfying:

(1). |�ωFH0 | = O(r−N0), where as before N0 is the number in (2.5), and
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(2). there is a hermitian metric H0 on E and a function f ∈ C∞(X) such that
H0 = e f H0.

Then H0|D defines a PHYMmetric with respect to ωD ∈ c1(ND), i.e, E |D is c1(ND)-
polystable.

Proof By these two assumptions, we have
∣∣∣√−1�ωFH0

+ �ω f id
∣∣∣ = O(r−N0). In

particular the trace-free part of �ωFH0
decays like r−N0 . Since

F⊥
H0

= FH0
− tr(FH0

)

rankE
id

is a smooth bundle valued (1,1)-form on X , its pull-back under � to D is a smooth
bundle valued 2-form satisfying that its restriction to D is of type (1,1) and

|�ωF�∗(F⊥
H0

)| = O(r−N0).

From the explicit expression of the Kähler form ωF in (2.3) and the assumption on
the potential F in Assumption 1, we know that

�ωD (F⊥
H0

|D) = 0.

��
Next we can show that the set PH defined in (1.1) is unique if we fix the induced

metric on the determinant line bundle. More precisely, we have

Proposition 4.7 Suppose we have two metrics H0 and H1 satisfying the condition (1)
and (2) in Lemma 1.1 and det H0 = det H1, then

PH0 = PH1 .

In particular, there exists a constant C > 0 such that C−1H0 ≤ H1 ≤ CH0.

Proof Bycondition (1) inLemma1.1,we know that there are smooth hermitianmetrics
H0 and H1 and smooth functions f0 and f1 on X such that for i = 0, 1

Hi = Hie
fi .

Andbydoing a conformal change,wemayassumedet H0 = det H1. Leth = H
−1
0 H1.

Since det H0 = det H1, we have

H1 = H0h.

From the proof of Proposition 4.6, we know that Hi |D are PHYM. By the uniqueness
of PHYM metrics on compact Kähler manifolds, we know that

∇(h|D) = 0,
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where ∇ denotes the induced connection on End(E) from the Chern connection on
(E, H0). From this and noting that H0 is conformal to an extendable metric, we can
check directly that

|∇h| ∈ L2(X;ω, H0)

Then from the definition of PH0 , we obtain that PH0 = PH1 . ��

5 Proof of themain theorem

We first prove a lemma on the degree vanishing property.

Lemma 5.1 Let (Xn, ω) be a complete Kähler manifold and β be a d-closed (k, k)

form with
∫

X
|β|ωn finite for some 1 ≤ k ≤ n − 1. Suppose ω = dη for some smooth

1-form η with |η| = O(r), then
∫

β ∧ ωn−k = 0.

Proof Fix a base point p ∈ X and let ρR be a smooth cut-off function which is 1 on
BR(p), 0 outside B2R(p) and |∇ρR | ≤ C

R where C is a constant independent of R.
Integrating by parts, we have the following

∣∣∣∣
∫

X
β ∧ ωn−k

∣∣∣∣ =
∣∣∣∣ lim
R→∞

∫

B2R(p)
ρRβ ∧ ωn−k

∣∣∣∣

≤ C lim
R→∞

∫

B2R(p)\BR(p)

1

R

∣∣∣β ∧ ωn−k−1 ∧ η

∣∣∣ωn,

which is bounded byC
∫
B2R(p)\BR(p) |β| ωn . And this term tends to 0 as R → ∞ since

|β| ∈ L1. ��
Fromnowon,we assumeω = ω0+ddcϕ is aKähler form satisfying theAssumption

1 in Sect. 2. Note that we only proved that ddcϕ = dψ for a smooth form ψ with

|ψ | = O(r1+ 1
a ) (see Remark 2.11). Therefore we can not apply Lemma 5.1 directly.

Typically we have a definite decay order for |β|, so we can still use integration by
parts to show some degree vanishing properties. More precisely, we have

Lemma 5.2 Let β be a d-closed (k, k) form for some 1 ≤ k ≤ n − 1, satisfying
|β| = O(r−N0). Then

∫

X
β ∧ (ddcϕ)n−k = 0.

Proof By a similar integration by part argument as in the proof of Lemma 5.1, it
suffices to show that

lim
R→∞

1

R

∫

B2R(p)\BR(p)

∣∣∣β ∧ (ddcϕ)n−k−1 ∧ ψ

∣∣∣ (ddcϕ)n = 0.
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This follows from the facts that |β| = O(r−N0), |ψ | = O(r1+ 1
a ) and the volume

growth order of ω is at most 2. ��

The following two lemmas are crucial for us since they relate information on X
and that on X .

Lemma 5.3 Let H0 be the metric constructed in Lemma 1.1. One has the following
equality:

∫

X

√−1

2π
tr(FH0) ∧ ωn−1 =

∫

X
c1(E) ∧ [ω0]n−1. (5.1)

Proof Firstly, recall that

ntr(FH0) ∧ ωn−1 = �ωtr(FH0)ω
n .

By the construction in Lemma 1.1, we know that |�ωtr(FH0)| = O(r−N0). Since
the volume growth order of ω is at most 2, we know that �ωtr(FH0) is absolutely
integrable. Therefore the left hand side of (5.3) is well-defined.

By the Chern-Weil theory, for any smooth hermitian metric H0 on E we have

∫

X
c1(E) ∧ [ω0]n−1 =

∫

X

√−1

2π
tr(FH0

) ∧ ωn−1
0 .

By the construction (4.3), H0 = eCt H0 for some constant C and t defined in Sect. 4.
Moreover by Remark 4.4, t = − log |S|2h for some smooth hermitian metric on LD .
By Lemma 2.12, we obtain that

∫
X ddct ∧ ωn−1

0 = 0. So we have

∫

X
c1(E) ∧ [ω0]n−1 =

∫

X

√−1

2π
tr(FH0) ∧ ωn−1

0 . (5.2)

Using (5.2) and ω = ω0 + ddcϕ, to prove (5.1), it suffices to show that for any
k = 1, . . . , n − 1,

∫

X
tr(FH0) ∧ ωn−1−k

0 ∧ (ddcϕ)k = 0. (5.3)

Case 1. 1 ≤ k ≤ n − 2. Since ω0 vanishes when restricted to D, by Lemma 2.7,
we know that |ω0| = O(r−N0). Combining this with Remark 4.5, we know that
tr(FH0) ∧ ωn−1−k

0 is a closed (n − k, n − k)-form with decay order at least r−N0 .
Therefore Lemma 5.2 implies that its integral is 0.
Case 2. k = n − 1. If n = 2, then by (4.8) we can still apply Lemma 5.2. If n ≥ 3,
note that though |�ωtr(FH0)| = O(r−N0), |tr(FH0)| is not in L1 in general. So we
can not apply Lemma 5.2 directly. Instead we shall use the asymptotic behaviour of
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tr(FH0) obtained from the construction. Integrating by parts and pulling back via �,
we know that

∫

X
tr(FH0) ∧ (ddcϕ)n−1 = lim

εi→0

∫

�(|ξ |hD=εi )

tr(FH0) ∧ (ddcϕ)n−2 ∧ dcϕ

= lim
εi→0

∫

|ξ |hD=εi

�∗ (
tr(FH0) ∧ (ddcϕ)n−2 ∧ dcϕ

)
.

Then by (2.5), Lemma 2.10 and the assumption N0 > 8, we obtain that the right hand
side of the above equality equals

lim
εi→0

∫

|ξ |hD=εi

�∗(tr(FH0)) ∧ (ddcF(t))n−2 ∧ dcF(t).

By (4.6) and (4.7), we know that it equals

lim
εi→0

∫

|ξ |hD=εi

(
p∗tr(FH0

) − λrank(E)

n − 1
ddct

)
∧ (ddcF(t))n−2 ∧ dcF(t). (5.4)

Note that when restricted to the level set of t ,

(ddcF(t))n−2 = F ′(t)n−2ωn−2
D .

Therefore
(
p∗tr(FH0

) − λrank(E)
n−1 ddct

)
∧ (ddcF(t))n−2 = 0 by (4.2). ��

Lemma 5.4 Suppose E |D is c1(ND)-polystable and let H0 be the metric constructed
in Lemma 1.1.

(1). Let S be a coherent reflexive subsheaf of E. If S|D is locally free and a splitting
factor of E |D, then ∂̄π

H0
S ∈ L2(X;ω, H0).

(2). Let π ∈ W 1,2
loc (X , E

∗ ⊗ E;ω, H0) be a weakly holomorphic projection map. If
∂̄π ∈ L2(X;ω, H0), then there exists a coherent reflexive subsheaf S of E such
that π = π

H0
S a.e. and S|D is a splitting factor of E |D.

Proof A crucial point here is that H0 is conformal to a smooth extendable metric H0.
In particular, for a coherent subsheaf S of E , the projections induced by H0 and H0 are
the same. Note that by [4, Lemma 3.23 and Remark 3.25], for every coherent reflexive
subsheaf S of E , S|D is torsion free and can be naturally viewed as a subsheaf of E |D .

(1) Let π = π
H0

S
. Then π is smooth in a neighborhood of D and ∂̄π |D = 0

by assumption. Note that π
H0
S = π |X , so it suffices to show ∂̄π ∈ L2(X , ω, H0).

Fix small balls Ui of X covering D such that there are holomorphic coordinates
{z1, . . . , zn−1, w} on each Ui with D ∩ Ui = {w = 0} and E is trivial on each ball
Ui . Under these coordinates and trivializations we can write

∂̄π = ∂̄zπdz̄ + ∂̄wπdw̄,
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where we view ∂̄zπ and ∂̄wπ as matrices of smooth functions and ∂̄zπ |w=0 = 0. So we
have |∂̄zπ | ≤ C |w| and |∂̄wπ | ≤ C . Then the result follows from the explicit estimate
given in (2.7).

(2)Given a projectionmapπ ∈ W 1,2
loc (X , E

∗⊗E;ω, H0)with ∂̄π ∈ L2(X;ω, H0),
we first prove the following:

Claim π ∈ W 1,2(X;ωX , H0) for a fixed (hence any) smooth Kähler metric ωX on X.

Since |π |H0
≤ 1 and by [7, Lemma 7.3], it suffices to show ∂̄π ∈ L2(X;ωX , H0).

By (2.8) and (2.11), we may assume in local coordinates around D the Kähler metric
ω is exactly given by the model space. We choose local holomorphic coordinates
z = {zi }n−1

i=1 on the smooth divisor D andfix a local holomorphic trivialization e0 of ND

with |e0|hD = e−ψ , where ψ is a smooth function on D satisfying
√−1∂∂̄ψ = ωD .

Then we get local holomorphic coordinatea {z1, . . . , zn−1, w} on C by writing a point
ξ = we0(z). Choose a basis of (0, 1)-forms dz̄1 . . . dz̄n−1,

dw̄
w̄

− ∂̄zi ψdz̄i . Then we
can write

∂̄π = fidz̄i + h(
dw̄

w̄
− ∂̄zi ψdz̄i ),

where fi and h are sections of End(E). Notice that dz̄i is perpendicular to the dw̄
w̄

−
∂̄zi ψdz̄i . Since ∂̄π is in L2 with respect to ω, by (2.7) we know that

∫ (
| fi |2(− log |w|)1−a + |h|2(− log |w|)2−a

) (− log |w|)(n−1)(a−1)+a−2

|w|2 dλ < ∞.

(5.5)

Then we know that fi − h∂̄ziψ, h
w̄
are all L2-integrable with respect to the Lebesgue

measure. Therefore the claim is proved:

∂̄π = ( fi − h∂̄zi ψ)dz̄i + h

w̄
dw̄ ∈ L2(X;ωX , H0).

Then Uhlenbeck–Yau’s result (Theorem 3.6) implies that there exists a coherent sub-
sheaf S of E such that π = πH0

S
outside the singular set of S. Taking the double

dual, we may assume S is reflexive. By the integrability condition (5.5), ∂̄πH0
S

|D = 0,

which means that S|D is a splitting factor of E |D since E |D is polystable. ��
Now we are ready to prove the main theorem. We decompose it into two proposi-

tions.

Proposition 5.5 Suppose there exists an ω-PHYM metric H in PH0 , then E is
(c1(D), [ω0])-stable.
Proof Suppose there is a reflexive subsheaf S of E with 0 < rank(S) < rank(E) such
that μ(S, c1(D)) ≥ c1(E, c1(D)), we need to show that μ(S, [ω0]) < μ(E, [ω0]).
By [18] for any coherent refelxive sheaf E on X , we have

μ(E, c1(D)) = μ(E |D, c1(D)|D) = μ(E |D, c1(ND)).
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(When E is a vector bundle, this follows from the fact that the first Chern class c1(D)

is the Poincaré dual of the homology class defined by the divisor D. For a general
reflexive sheaf, the key point is to show that c1(E)|D = c1(E |D) using the fact that E
is locally free outside an analytic set of (complex) codimension at least 3.) Therefore
we have

μ(S|D, c1(ND)) ≥ μ(E |D, c1(ND)). (5.6)

By assumption, E |D is c1(ND)-polystable, so (5.6) implies that S|D is locally free
and is a splitting factor of E |D . Then by Lemma 5.4, we have

∂̄π
H0
S ∈ L2(X;ω, H0).

Claim ∂̄πH
S ∈ L2(X;ω, H0) = L2(X;ω, H).

For simplicity of notation, in the following we omit the dependence on S. By the
definition of PH0 and H ∈ PH0 , we know that H = H0es with ‖s‖L∞ + ∥∥∂̄s

∥∥
L2 <

∞. The claim follows directly from the following pointwise inequality (outside the
singular set � of S)

|∂̄πH | ≤ C
(
|∂̄s| + |∂̄πH0 |

)
, (5.7)

where C is a constant independent of points and all the norms are with respect to H0.
Let r0, r denote the rank of S and E respectively. Near any given point p ∈ X\�, we
can find a local holomorphic basis {e1, . . . , er0 , er0+1, . . . , er } of E such that

S = Span{e1, . . . , er0},〈
ei , e j

〉
H0

(p) = δi j ,

∂̄
〈
ei , e j

〉
H0

(p) = 0 for 1 ≤ i, j ≤ r0 and r0 + 1 ≤ i, j ≤ r .

In the followingwe use Einstein summation convention and use i, j to denote numbers
from 1 to r , α, β to denote numbers from 1 to r0. Under this basis πH0 can be written
as

e∨
α ⊗ eα + H0,iβ H̃

βα
0 e∨

i ⊗ eα,

where we view H0 = (H0,i j ) = (
〈
ei , e j

〉
H0

) as a matrix and H̃0 = (H̃0,αβ) =
(
〈
eα, eβ

〉
H0

) as a submatrix of H0. Then

|∂̄πH0 |(p) =
∑
i,α

|∂̄H0,iα|(p).

Similarly, πH can be written as e∨
α ⊗ eα + Hiβ H̃βαe∨

i ⊗ eα . Note that as a matrix
H = H0h, where h is the matrix representation of es under the basis {ei }ri=1. Since
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‖s‖L∞ < ∞, we have

|∂̄πH |(p) ≤ C
(∑

|∂̄Hiα|(p) + |∂̄hi j |(p))
)

≤ C
(∑

|∂̄H0,iα|(p) + |∂̄hi j |(p)
)

≤ C
(
|∂̄πH0 |(p) + |∂̄s|(p)

)
,

which gives (5.7).
Let π = πH

S . Using the Chern–Weil formula and the fact that H ∈ PH0 is PHYM,
we have

�ωtr(FS,H ) = �ωtr(FE,H ◦ π) − |∂̄π |2

= rank(S)

rank(E)
�ωtr(FE,H0) − |∂̄π |2,

and consequently is L1.

Claim

1

rank(S)

∫

X
tr(FS,H ) ∧ ωn−1 = μ(S, [ω0]).

Assume this for a moment, then by Lemma 5.3, we know that

μ(S, [ω0]) ≤ μ(E, [ω0]),

and equality holds if and only if ∂̄π = 0. Suppose ∂̄π = 0. Since |π |H0
= |π |H0 ≤

C |π |H ≤ C . Again by [7, Lemma 7.3], there is a global holomorphic section of
End(E), which is still denoted by π , such that π = πH

S a.e. and π2 = π . Note
that since rank(π) = tr(π) is real valued and holomorphic, it follows that rankπ is
a constant. Thus E holomorphically splits as the direct sum of ker π and �π , which
contradicts with our assumption that E is irreducible. Therefore we prove that

μ(S, [ω0]) < μ(E, [ω0]).

Proof of the claim: since H ∈ PH0 , we have

tr(FS,H ) − tr(FS,H0) = ∂∂̄u,

for a bounded real valued smooth function u with |∇u| ∈ L2. By Lemma 2.9,

∫
tr(FS,H ) ∧ ωn−1 =

∫
tr(FS,H0) ∧ ωn−1.
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By the same argument in Lemma 5.3, we can show

∫
tr(FS,H0) ∧ ωn−1 = μ(S, [ω0]).

Hence we complete the proof of the claim. ��
Proposition 5.6 Let H0 be the metric constructed in Lemma 1.1. Suppose E is
(c1(D), [ω0])-stable, then there exists a unique ω-PHYM metric H in PH0 .

Proof Uniqueness is easy, for convenience we will review the argument. Suppose we
have twoω-PHYMmetrics H1, H2 ∈ PH0 . Let h = H−1

1 H2. By the definition ofPH0 ,
we know that det h = 1 and h is both bounded from above and below and |∂̄h| ∈ L2.
Then by taking the trace of the differential equality in Lemma 3.2-(2), we get

�ωtr(h) = −|∂̄hh− 1
2 |2.

By Lemma 2.9,

∫
|∂̄hh− 1

2 |2 = −
∫

�ωtr(h) = 0.

Therefore ∂̄h = 0 and since h is self-adjoint with respect to Hi , it is parallel with
respect to the Chern connection determined by (∂̄, Hi ). Then its eigenspaces give a
holomorphic decomposition of E which contradicts the assumption that E is irrducible
unless h is a multiple of identity map. Since det h = 1, it must be that h is the identity
map, i.e. H1 = H2.

For the existence part, we follow Simpson and Mochizuki’s argument [19, 25]. For
completeness, we include some details. Let {Xi } be an exhaustion of X by compact
domains with smooth boundary and we solve Dirichlet problems on every Xi using
Donaldson’s theorem (Theorem 3.8). Then we have a sequence of PHYM metrics Hi

on E |Xi such that Hi |∂Xi = H0|∂Xi and det Hi = det H0. Let si be the endomorphism
determined by Hi = H0hi = H0esi . Then we have si |∂Xi = 0 and tr(si ) = 0.

We argue by contradiction to prove a uniform C0-estimate for si . First note that by
Lemma 3.2, esi satisfies the elliptic differential inequality

� log(tr(esi )) ≤ |�F⊥
H0

|. (5.8)

Therefore tr(esi ) satisfies the weighted mean value inequality in Lemma 2.8. Since
tr(esi ) and |si | are mutually bounded, we know that |si | also satisfies the weighted
mean value inequality (2.13). Lemma 2.8 plays an essential role since it ensures that
after normalization we can have a nontrivial limit inW 1,2

loc . Suppose there is a sequence
si such that supXi

|si |H0 → ∞ as i → ∞. Then by Lemma 2.8, we obtain

li =
∫

Xi

|si |H0(1 + r)−N0 → ∞.
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Let ui = l−1
i si . Then by Lemma 2.8 again we obtain there is a constantC independent

of i such that
∫

Xi

|ui |(1 + r)−N0 = 1 and |ui | ≤ C, (5.9)

where the norms are with respect to the back ground metric H0. Then following
Simpson’s argument, we can show that

Lemma 5.7 After passing to a subsequence, ui converge weakly in W 1,2
loc to a nonzero

limit u∞. The limit u∞ satisfies the following property: if� : R×R → R is a positive
smooth function such that �(λ1, λ2) < (λ1 − λ2)

−1 whenever λ1 > λ2, then

√−1
∫

X
tr(u∞�FH0) +

∫

X

〈
�(u∞)

(
∂̄u∞

)
, ∂̄u∞

〉
H0

≤ 0. (5.10)

Proof By Theorem 3.10

√−1
∫

Xi

tr(ui�FH0) + li

∫

Xi

〈
� (li ui )

(
∂̄ui

)
, ∂̄ui

〉
H0

≤ 0. (5.11)

By the definition of � in (3.9), we know that as l → ∞, l� (lλ1, lλ2) increases
monotonically to (λ1 − λ2)

−1 if λ1 > λ2 and ∞ if λ1 ≤ λ2. Fix a � as in the
statement of the lemma. We know that for all A > 0 there exists lA such that if
|λi | ≤ A and l > lA, then we have

�(λ1, λ2) < l� (lλ1, lλ2) . (5.12)

Since sup |ui | are bounded, its eigenvalues are also bounded. Then by (5.11) and
(5.12), we obtain that for i sufficiently large

√−1
∫

Xi

tr(ui�FH0) +
∫

Xi

〈
�(ui )

(
∂̄ui

)
, ∂̄ui

〉
H0

≤ 0. (5.13)

Again since sup |ui | is bounded we can find � satisfying the assumption in the
lemma and �(ui ) = c0 for all i , where c0 a fixed small positive number. Then by
(5.13) and the construction of H0, there exists a positive constant C such that

∫

Xi

|∂̄ui |2 ≤ C .

Therefore by a diagonal sequence argument and after passing to a subsequence we
may assume ui converge weakly in W 1,2

loc to a limits u∞ with
∫
X |∂̄u∞|2 ≤ C . We

claim that u∞ �= 0. Indeed by (5.9), there exists a compact set K ⊆ X independent
of i such that

∫

K
|ui |(1 + r)−N ≥ 1

2
.
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Since on compact sets the embedding from W 1,2 to L1 is compact, after taking the
limit, we get

∫
K |u∞|(1 + r)−N ≥ 1

2 . In particular u∞ �= 0.
Next we prove (5.10). By the uniform boundedness of ui , the O(r−N0) decay

property of |�FH0 | and the nonnegativity of the second term of the left hand side in
(5.13), we know that there exists εi → 0 such that for any j ≥ i , we have

√−1
∫

Xi

tr(u j�FH0) +
∫

Xi

〈
�

(
u j

) (
∂̄u j

)
, ∂̄u j

〉
H0

≤ εi .

Note that
〈
�

(
u j

) (
∂̄u j

)
, ∂̄u j

〉
H0

= |� 1
2 (u j )(∂̄u j )|2H0

. By [25, Proposition 4.1], we

know that on each fixed Xi , �
1
2 (u j ) → �

1
2 (u∞) in Hom

(
L2, Lq

)
for any q < 2.

Since ∂̄u j converge weakly in L2(Xi ) to ∂̄u∞, we obtain that �
1
2 (u j )(∂̄u j ) converge

weakly to�
1
2 (u∞)(∂̄u∞) in Lq(Xi ) for any q < 2. Then we know that for any q < 2,

∥∥∥�
1
2 (u∞)(u∞)

∥∥∥
2

Lq (Xi )
≤ lim inf

j→∞

∥∥∥�
1
2 (u j )(u j )

∥∥∥
2

Lq (Xi )

≤ Vol(Xi )
2
q −1 lim inf

j→∞

∥∥∥�
1
2 (u j )(u j )

∥∥∥
2

L2(Xi )

≤ Vol(Xi )
2
q −1

(
εi − lim

j→∞
√−1

∫

Xi

tr(u j�FH0)

)

≤ Vol(Xi )
2
q −1

(
εi − √−1

∫

Xi

tr(u∞�FH0)

)
.

Let q → 2, we obtain

√−1
∫

Xi

tr(u∞�FH0) +
∥∥∥�

1
2 (u∞)(u∞)

∥∥∥
2

L2(Xi )
≤ εi .

Letting i → ∞, the inequality (5.10) is proved. ��
Simpson’s argument in [25, Lemma 5.5 and Lemma 5.6] can be applied verbatim

to the infinite volume case, so we have

Lemma 5.8 [25] Let u∞ be a limit obtained in the previous lemma. Then we have

(1) The eigenvalues of u∞ are constant and not all equal.
(2) Let� : R×R −→ (0,∞) be a C∞-function such that�

(
λi , λ j

) = 0 if λi > λ j .
Then �(u∞)

(
∂̄u∞

) = 0.

Let λ1 ≤ λ2 ≤ · · · ≤ λrank(E) denote the eigenvalues of u∞. Let γ be an open
interval between the eigenvalues (since eigenvalues of u∞ are not all equal by the
previous lemma, there exists such a nonempty interval). We choose a C∞-function
pγ : R −→ (0,∞) such that pγ (λi ) = 1 if λi < γ , and pγ (λi ) = 0 if λi > γ . Set
πγ := pγ (u∞), see Sect. 3.5 for the definition. Then one can easily show that [19,
25]
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(1) π2
γ = πγ , (id − πγ ) ◦ πγ = 0 and πγ is self-adjoint with respect to H0.

(2)
∫
X |∂̄πγ |2 < ∞.

Moreover using (5.10), Simpson proved that

Lemma 5.9 [25] There exists at least one γ such that

1

tr(πγ )

(√−1
∫

X
tr(πγ �FH0) −

∫

X
|∂̄πγ |2

)
≥ 1

rank(E)

√−1
∫

X
tr(�FH0).

By Lemma 5.4, we get a filtration of E by coherent reflexive subsheaves Si whose
restrictions to D are splitting factors of E |D . Since we assume that E |D is c1(ND)-
polystable, we know that for every i

μ(Si |D, c1(ND)) = μ(E |D, c1(ND)).

Then again by [18], we have

μ(Si , c1(D)) = μ(E, c1(D)). (5.14)

Note that Lemma 5.9 is equivalent to the statement that there exists at least one Si
such that

∫

X
tr(FSi ,H0) ∧ ωn−1 ≥

∫

X
tr(FE,H0) ∧ ωn−1.

Then by Lemma 5.3,

μ(Si , [ω0]) ≥ μ(E, [ω0]). (5.15)

which contradicts with the (c1(D), [ω0])-stability assumption. Therefore we do have
a uniform C0-estimate for si .

Bando–Siu’s interior regularity result Theorem 3.11 can be applied to get local
uniform estimate for all derivatives of si . Then we can take limits to get a smooth
section s ∈ End(E), which is self-adjoint with respect to H0 and tr(s) = 0 and more
importantly

‖s‖L∞ < ∞ andH = H0e
s is a PHYM metric.

Then we use Mochizuki’s argument in [19, Section 2.8] to show that

|∂̄s| ∈ L2(X , ω, H0).

Indeed taking the trace of the equality in Lemma 3.2-( 2) and noting that Hi = H0hi
is PHYM, we have

�tr(hi ) = −tr(hi
√−1�F⊥

H0
) − |h

1
2
i ∂̄(hi )|2. (5.16)
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Since det hi = 1 and hi |∂Xi = id, we know that ∇νi tr(hi ) ≤ 0, where νi denotes
the outward unit normal vector of ∂Xi . Integrating (5.16) over Xi and using Stoke’s
theorem in the left hand side, we obtain

∫

Xi

|h
1
2
i ∂̄(hi )|2 ≤ −

∫

Xi

tr(hi
√−1�F⊥

H0
).

Since we have uniform C0-estimate for si = log hi , there exist constants C1 and C2
independent of i such that

∫

Xi

|∂̄si |2 ≤ C1

∫

Xi

|∂̄hi |2 ≤ C2.

Let i → ∞, we have
∫
X |∂̄s|2 ≤ C2. ��

On the stability condition. Note that global semistability is known [18], if we assume
the restriction to D is semistable. There do exist irreducible holomorphic vector bun-
dles which are polystable when restricted to D but not globally stable, even under
more restrictive assumptions that X is Fano and D ∈ |K−1

X
|.

Example 5.10 Recall that for holomorphic vector bundles S, Q over a complex
manifold M , all exact sequences 0 → S → E → Q → 0 of holomorphic
vector bundles are classified by elements β ∈ H1(M,Hom(Q, S)) and in par-
ticular the exact sequence splits holomorphically if and only if the corresponding
element β = 0. Now taking M to be CP

1 × CP
1, D to be a smooth anticanoni-

cal divisor. Then c1(D) is a Kähler class and D itself is an elliptic curve. Choose
Hom(Q, S) = L = p∗

1(O(2)) ⊗ p∗
2(O(−2)). Then by the Künneth’s formula,

dim H1(M, L) = 3. Note that deg(L|D) = 0, which by Serre duality implies
dim H1(D, L) = dim H0(D, L∗) ≤ 1. So there exists a class β ∈ H1(M, L) cor-
responding to a non-splitting exact sequence of holomorphic vector bundles whose
restriction to D splits as a direct sum of two line bundles with the same degree.
Therefore E itself is not c1(D)-stable but E |D is c1(ND)-polystable. Such an E is
irreducible, because if E = L1 ⊕ L2, then deg(Li , c1(D)) = deg(Li |D) = 0 since
E |D is polystable of degree 0, which implies that S has to be one of the Li and Q is
the other one. This contradicts with the construction of E .

6 Discussion

6.1 More results on the existence of PHYMmetrics

By Donaldson’s theorem on the solvability of Dirichlet problem (Theorem 3.8), the
elliptic differential inequality (Lemma 3.2-(3)), the maximal principle and Bando–
Siu’s interior estimate (Theorem 3.11), we get the following well-known existence
result.

Theorem 6.1 Let (M, ω, g)bea completeKählermanifold, E be aholomorphic vector
bundle on M. Suppose there exists a smooth hermitian metric H0 on E such that the
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equation

�u = |�F⊥
H0

| (6.1)

admits a positive solution u. Then there exists a smooth hermitian metric H = H0es

satisfying

tr(s) = 0, |s|H0 ≤ C1u and �F⊥
H = 0.

Moreover, if u is bounded and |�FH0 | ∈ L1 then |∂̄s| ∈ L2.

There are many examples for which (6.1) has a positive solution and even bounded
solutions [1, 21, 23].

(1) Suppose (M, g) is asymptotically conical and |�F⊥
H0

| = O(r−2−ε) for some
ε > 0, then (6.1) admits a solution u with |u| = O(r−ε).

(2) Suppose (M, g) is non-parabolic (i.e admits a positive Green’s function) and
|�F⊥

H0
| ∈ L1, then (6.1) admits a positive solution.

(3) Suppose (M, g) has nonnegative Ricci curvature, |�F⊥
H0

| = O(r−2) and

1

Vol(Br )

∫

Br
|�F⊥

H0
| = O(r−2−ε),

for some ε > 0, then (6.1) admits a bounded solution. In particular, if (M, g)
has nonnegative Ricci curvature, volume growth order greater than 2, |�F⊥

H0
| =

O(r−2) and |�F⊥
H0

| ∈ L1, then (6.1) admits a bounded solution.

Theorem 6.1 can not be applied to (X , ω, g) satisfying Assumption 1 since we do
not knowwhether (6.1) admits a positive solution (for this volume growth order atmost
2 is a key issue). And actually Theorem 1.3 tells us that there are some obstructions for
the existence of ω-PHYMmetrics which are mutually bounded with the initial metric.

Such a phenomenon also appears when we seek a bounded solution for the Poisson
equation

�u = f (6.2)

on a complete noncompact Riemannian manifold (M, g) with nonnegative Ricci cur-
vature. Suppose f is compactly supported for simplicity, then we know that

(1) if the volume growth order is greater than 2, i.e. there is a constant c > 0 such that
Vol(Br ) ≥ cr2+ε for some ε > 0, then (6.2) admits a bounded solution. (Since
by Li–Yau [17], (M, g) admits a positive Green’s function which is O(r−ε) at
infinity, a bounded solution of (6.2) is obtained by the convolutionwith theGreen’s
function.)

(2) if the volume growth order does not exceed 2, i.e. there is a constant C > 0
such that Vol(Br ) ≤ C(r + 1)2, then (6.2) admits a bounded solution if and
only if

∫
M f = 0. (For the “if” direction, see [11, Theorem 1.5]. For the “only
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if” direction, suppose we have a bounded function u and a compactly supported
function f such that �u = f . Then by Cheng–Yau’s gradient estimate [5], we
obtain |∇u| ≤ C

r for some C > 0 independent of r . Multiplying u both sides in
(6.2) and integrating by parts, we obtain that |∇u| ∈ L2. Then Lemma 2.9 implies∫
M f = 0.)

Next we discuss another result whose proof is similar to the proof of Theorem 1.3.
Let (X , ω) be an n-dimensional (n ≥ 2) compact Kähler manifold, D be a smooth
divisor. Let ωD = ω|D denote the restriction of ω to D and X = X\D denote
the complement of D in X . Let LD be the line bundle determined by D and S ∈
H0(X , LD) be a defining section of D. Fix a hermitian metric h on LD . Then after
scaling h, the function t = − log |S|2h is smooth and positive on X . For any smooth
function F : (0,∞) −→ R with |F ′(t)| → 0 as t → ∞ and F ′′(t) ≥ 0 there exists a
large constant A such that

ω = Aω + ddcF(t) (6.3)

is a Kähler form on X . By scaling ω we may assume A = 1. One can easily check
that ω is complete is and only if

∫ ∞
1

√
F ′′ = ∞ and it always has finite volume. In

the following, we always assume the function F satisfies |F ′(t)| → 0 as t → ∞ and
F ′′(t) ≥ 0. Then we can state assumptions on ω.

Assumption 2 Let ω be the Kähler form defined by (6.3) and g be the corresponding
Riemannian metric. We assume that

(1) the sectional curvature of g is bounded.
(2) C−1t−2+ε ≤ F ′′(t) ≤ C for some constant C, ε > 0 and t sufficiently large.

A consequence of these assumptions is that (X , g) is complete and of (K , α, β)-
polynomial growth defined in [27, Definition 1.1], so we can use the weighted Sobolev
inequality as we did for the proof of Lemma 2.8.

Let E be an irreducible holomorphic vector bundle on X such that E |D is ωD-
polystable. Then by Donaldson–Uhlenbeck–Yau theorem, there exists a hermitian
metric HD on E |D such that

�ωD F
⊥
HD

= 0. (6.4)

Extend HD smoothly to get a smooth hermitian metric H0 on E . Then by (6.4) and
Assumption 2-(2), one can easily show that

Lemma 6.2 There exists a δ > 0 such that |�ωF⊥
H0

| = O(e−δt ).

Then we have the following result

Theorem 6.3 Suppose (X , ω) satisfies Assumption 2 and E |D is ωD-polystable. Let
H0 be a hermitian metric as above and PH0 be defined by (1.1). Then there exists an
ω-PHYM metric in PH0 if and only if E is ω-stable.

Using the argument in Proposition 5.5, the “only if” direction follows from
Lemma 2.9 and the following lemma.
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Lemma 6.4 For every smooth closed (1,1)-form θ on X, we have

∫

X
θ ∧ ωn−1 =

∫

X
θ ∧ ωn−1. (6.5)

Proof Firstly note that since there exists a positive number c > 0 such that ω > cω
and

∫
ωn < ∞, the left hand side of (6.5) is well-defined. Therefore it suffices to show

that for any 1 ≤ k ≤ n − 1

∫

X
θ ∧ ωn−1−k ∧ (ddcF)k = 0.

Let Sε denote the level set {|S|h = ε}. By integration by part, it suffices to show that

lim
ε→0

∫

Sε

θ ∧ ωn−1−k ∧ (ddcF)k−1 ∧ dcF = 0. (6.6)

Case 1. k = 1. Note that with respect to the smooth back ground metric ω, Vol(Sε) =
O(ε) and |dcF | ≤ C |F ′(t)|ε−1 on Sε . Then (6.6) follows from the assumption that
|F ′| → 0 as t → ∞.
Case 2. 2 ≤ k ≤ n − 1. Then (6.6) follows from the fact that |F ′(t)| → 0 as t → ∞
and dct ∧ dct = 0. ��

For the “if” direction, the argument in Proposition 5.6 applies. We will not give the
details and just point out the following two observations which make the argument
work in this setting. The key points are

(1) Assumption 2 and Lemma 6.2 ensure that we can apply the weighted mean value
inequality proved in Lemma 2.8.

(2) We have L2(X , ω) ⊂ L2(X , ω) since ω ≥ cω for some c > 0, therefore by
Uhlenbeck–Yau’s theorem (Theorem 3.6) a weakly projection map π of E over
X with |∂̄π | ∈ L2(X , ω) defines a coherent torsion free sheaf S of E .

6.2 Calabi–Yaumetrics satisfying Assumption 1

As mentioned in the Introduction, there do exist interesting Kähler metrics satisfying
the Assumption 1, which contain Calabi–Yau metrics on the complement of an anti-
canonical divisor of a Fano manifold and its generalizations [13, 14, 27]. We will call
themTian–Yaumetrics. Herewe give a sketch for the construction of theseCalabi–Yau
metrics and refer to [13]-Section 3 for more details.

Let X be an n-dimensional (n ≥ 2) projective manifold, D ∈ |K−1
X

| be a smooth

divisor and X = X\D be the complement of D in X . Suppose that the normal bundle
of D in X , ND = K−1

X
|D is ample. Fixing a defining section S ∈ H0(X , K−1

X
) of the

divisor D whose inverse can be viewed as a holomorphic volume form �X on X with
a simple pole along D. Let �D be the holomorphic volume form on D given by the
residue of �X along D. Using Yau’s theorem [29], there is a hermitian metric hD on
K−1

X
|D such that its curvature form is a Ricci-flat Kähler metric ωD with
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ωn−1
D = (

√−1)(n−1)2�D ∧ �D

by rescaling S if necessary. One can show that the hermitian metric hD extends to a
global hermitian metric hX on K−1

X
such that its curvature form is nonnegative and

positive in a neighborhood of D.
By glueing a smooth positive constant on a compact set, we get a global positive

smooth function z which is equal to (− log |S|2hX )
1
n outside a compact set. For any

A ∈ R, we denote hA = hXe
−A and vA = n

n+1 (− log |S|2hA
)
n+1
n , which is viewed as

a smooth function defined outside a compact set on X .
We denote by H2

c,+(X) the subset of Im(H2
c (X ,R) → H2(X ,R)) consisting of

classes k such that
∫
Y kp > 0 for any compact analytic subset Y of X of pure dimension

p > 0.
Then Hein–Sun–Viaclovsky–Zhang proved the following result.

Theorem 6.5 [13] For every class k ∈ H2
c,+(X), there is a unique Kähler metricω ∈ k

such that

(1) ωn = (
√−1)n

2
�X ∧ �X , and

(2) |∇l
ω(ω − √−1∂∂̄vA)|ω = O

(
e−δz

n
2

)
for some δ, A > 0 and all l ≥ 0.

And from the construction in [13]-Section 3, we have the decomposition ω =
ω0 + ddcϕ, where ω0 is a smooth (1,1)-form on X vanishing when restricted to D.
And by Theorem 6.5 and the estimate in [14, Proposition 3.4], one can directly check
that these Kähler metrics satisfy Assumption 1.

Remark 6.6 It was proved in [14] that Tian–Yau metrics ωTY can be realized as the
rescaled pointed Gromov–Hausdorff limits of a sequence of Calabi–Yau metrics ωk

on a K3 surface. We expect that ωTY -PHYM connections we obtained in this paper
give models for the limits of ωk-HYM connections on the K3 surface.

6.3 On the ampleness assumption of the normal bundle ND

In this subsection, we first explainwhywe assume the normal bundle of D is ample and
then discuss the case where the normal bundle is trivial on compact Kähler surfaces.

Let us start with a question. Suppose we have a nontrivial class α in H1,1(X) and
D ∈ X a smooth divisor, when does

μ(E, α) = μ(E |D, α|D) (6.7)

hold for every coherent reflexive sheaf E on X ? A sufficient condition is that

αn−2 ∧ (α − c1(D)) = 0 in Hn−1,n−1(X).

In order to have the above equality, a natural (possibly the only reasonable) choice is
that α = c1(D).
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To make the argument in this paper work, we also need the following property: if a
vector bundle F on D is polystable with respect to α|D and S is a coherent subsheaf
of F with the same α|D-degree as F , then S is a vector bundle and is a splitting
factor of F . (Note that this does not follow from the definition since α|D may not be a
Kähler class. For example if α|D is 0, then definitely it does not satisfy this property.)
In general in order to have this property, we need α|D to be a Kähler class. This is one
of the reasons why we assume that the normal bundle of D is ample, i.e. c1(D)|D is a
Kähler class. Another reason is that by assuming ND is ample, on the punctured disc
bundle C we have explicit exact Kähler forms, which give models of the Kähler forms
on X .

However if X is a compact complex surface, in which case the divisor D now is
a smooth Riemann surface, then the property mentioned above always holds. Note
that on a Riemann surface D, the slope of a vector bundle is canonically defined and
independent of the choice of cohomology classes on D.

Lemma 6.7 Let X be a compact Kähler surface and D be a smooth divisor. Suppose
E |D is polystable. Let S be a coherent reflexive subsheaf of E. Then μ(S, c1(D)) =
μ(E, c1(D)) if and only if S|D is a splitting factor of E |D.

Using this, most of the arguments in Sect. 5 can be modified to work for divisors D
with c1(ND) = 0 in complex dimension 2. In the following, we assume c1(ND) = 0
in H2(D,R). Then it is easy to see that c1(D) is nef and by the global ∂∂̄-lemma on
D, we know that there exists a hermitian metric hD on ND with vanishing curvature.
Let LD be the line bundle determined by D and S ∈ H0(X , LD) be a defining section
of D. Then we can extend hD smoothly to get a smooth hermitian metric h on LD and
after a rescaling, we may assume that t = − log |S|2h is positive on X . In this case, we
can consider (at least) all monomials potentials with degree greater than 1

H := {
F(t) = Ata : A > 0 is a constant and a > 1

}
. (6.8)

Assumption 3 Let ω be a Kähler form on X and g be the corresponding Riemannian
metric. We assume that

(1) the sectional curvature of g is bounded.
(2) the form ω can be written as ω0 + √−1∂∂̄F(t) for some F ∈ H, where ω0 is a

smooth closed (1,1)-form on X .

Suppose (X , ω, g) satisfies Assumption 3, then we have the following conse-
quences:

• the Riemannian metric g is complete and has volume growth order at most 2,
• (X , g) is of (K , 2, β)-polynomial growth as defined in [27, Definition 1.1] for
some positive constants K and β.

Let E be an irreducible holomorphic vector bundle over X such that E |D is
polystable with degree 0. Then by Donaldson–Uhlenbeck–Yau theorem (for Riemann
surfaces this was first proved by Narasimhan and Seshadri [20]), there exists a hermi-
tian metric HD on E |D such that

�ωD FHD = 0.
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Since D is a Riemann surface, this is equivalent to say that HD gives a flat metric on
E |D , i.e.

FHD = 0. (6.9)

Extending HD smoothly to get a hermitian metric H0 on E then by (6.9) and the proof
of Lemma 1.1, we know that H0 is already a good initial metric in the following sense:

|FH0 | = O(e−δt ). (6.10)

Then we have the following result, whose proof is essentially the same as that for
Theorem 1.3. We just point out the difference.

Theorem 6.8 Suppose (X , ω) satisfies Assumption 3 and E |D flat. Let H0 be a her-
mitian metric as above and PH0 be defined by (1.1). Then there exists an ω-PHYM
metric in PH0 if and only if E is (c1(D), [ω0])-stable.

The argument in Sect. 5 can be applied if Lemma 5.3 still holds. The analog of
Lemma 5.3 in this case is the following lemma, for which we need to assume E |D is
flat.

Lemma 6.9 Suppose (X , ω) satisfies Assumption 3 and E |D is flat. Let H0 be a her-
mitian metric as above. Then we have the following equality:

∫

X

√−1

2π
tr(FH0) ∧ ω =

∫

X
c1(E) ∧ [ω0].

Proof By Chern–Weil theory, it suffices to show that

∫

X

√−1

2π
tr(FH0) ∧ ddcϕ = 0. (6.11)

The argument in Lemma 2.10 can be used again to show that there exists a cut-off
function χ supported on a compact set and a smooth 1-form ψ supported outside a
compact set such that

ddcϕ = ddc(χϕ) + dψ.

Moreover |ψ | grows at most in a polynomial rate of r . Then (6.11) follows from
integration by parts and (6.10). ��
Example 6.10 Let X = CP

1 × D, where D is a compact Riemann surface. Then
D = {∞} × D is a smooth divisor with trivial normal bundle. Fix a Kähler form
ωD on D and also view it as a form on CP

1 × D via the pull-back of the obvious
projectionmap.Note that up to a scaling [ωD] ∈ c1(CP1) in H1,1(X).We can consider
asymptotically cylindrical metrics on X = C × D given by the Kähler forms

ω = ωD + √−1∂∂̄�(− log |z|2) = ωD + ϕ

|z|2
√−1dz ∧ dz,
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where z denotes the coordinate function onC andϕ = �′′ is a positive smooth function
defined on R such that ϕ(t) = et when t is sufficiently negative and ϕ(t) = 1 for
t sufficiently positive. Then one can easily check that (X , ω) satisfies Assumption 3
with F(t) = t2. Let E be an irreducible holomorphic vector bundle on CP1 × D such
that E |D is flat. Then by Theorem 6.8, we know that

Eadmits anω − PHYM metric inPH0 if and only if E is
(
c1(D), c1(CP

1)
)

− stable.

Similar examples as in Example 5.10 show that the condition
(
c1(D), c1(CP1)

)
-

stability is non-trivial. More specifically, let D be a Riemann surface with genus
g ≥ 1 and k ≥ 2 be an integer. Then similar argument as in Example 5.10 shows that
there exists a non-splitting extension

0 −→ O −→ E −→ p∗
1(OP1(−k)) −→ 0,

whose restriction to D splits. Then one can easily check that E is irreducible and not(
c1(D), c1(CP1)

)
-stable.

6.4 Some problems for further study

Let (X , ω) satisfy the Assumption 1. As illustrated by Theorem 6.5 it is more natural to
assume a stronger condition on the background Kähler metric ω. More precisely, we
assume that in (2.5) the right hand side is replaced by O(e−δ0rα0

) for some δ0, α0 > 0
andwe also have the same bound for higher order derivatives. Under these assumptions
and motivated by the result of Hein [12] for solutions of complex Monge–Ampère
equations, we make the following conjecture.

Conjecture 1 The solution s obtained in Proposition 5.6 decays exponentially, i.e
|∇ks| = O(e−δrα

) for some δ, α > 0 and all k ≥ 0.

Note that the key issue is to prove that |s| decays exponentially, since all of the
higher order estimates will follows form standard elliptic estimates.

It is also an interesting problem to study the notion of (α, β)-stability. From the
definition, we have the following consequence:

Proposition 6.11 Let α, β ∈ H1,1(M) be two classes on a compact Kähler manifold
M. Suppose α ∈ H2(M,Z) and α ∧ β = 0. Then a holomorphic vector bundle E
is (α, β)-stable if and only if E is α-semistalbe and there exists an ε0 > 0 such that
α + εβ-stable for all 0 < ε < ε0.

It is natural to consider the following problem. Let E be a (c1(D), [ω0])-stable
holomorphic vector bundle on X . Then by Proposition 6.11, we know that E is
[ω0] + ε−1c1(D)-stable for ε positive and sufficiently small. Donaldson–Uhlenbeck–
Yau theorem says that for every Kähler form ω in [ω0] + ε−1c1(D), there exists an
ω-Hermitian–Yang–Mills metric on E . In our setting, it is natural to consider the
following Kähler forms
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ωε = ω0 + ε−1θε + ddc(χεϕ) ∈ [ω0] + ε−1c1(D), (6.12)

where θε is a closed nonnegative (1,1)-form in c1(D), supported and positive in
an ε-neighborhood of D and χε is a cut-off function which equals 1 outside an ε-
neighborhood of D and 0 in a smaller neighborhood of D. The Kähler forms are
chosen such that

ωε −→ ω = ω0 + ddcϕ in C∞
loc(X).

Conjecture 2 Suppose E |D is c1(ND)-polystable and (c1(D), [ω0])-stable. Let Hε

denote the Hermitian–Yang–Mills metric on E with respect to the Kähler form ωε .
Then there exists smooth functions fε on X such that

Hεe
fε −→ H in C∞

loc(X),

where H is the hermitian metric constructed in Theorem 1.3.
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